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ABSTRACT. In this note we obtain estimates in terms of the size of the initial
data for the blow-up time of positive solutions of the heat equation in R4 with
a nonlinear boundary condition —u4(0,t) = u?(0,t).

INTRODUCTION.

In this note we obtain estimates for the blow-up time of positive solutions of the
following parabolic problem

Uy = Ugy in Ry x (0,T)),
(1) —ug(0,t) = uP(0,%) in (0,Ty),
u(z,0) = Ap(z)>0 inRy.

where p > 1 is fixed and A > 0 is a parameter.
Throughout this note we assume that the initial datum ¢ is continuous, positive
and bounded.

Existence, uniqueness, regularity and continuous dependence on the initial data
for this problem were proved, for instance, in [2].

For problem (1), it is well known that if A is large enough the solution blows up
in finite time T (T depends on A) , if and only if p > 1, see for example, [1], [3],
[4], [8], [10]. This means that there exists a finite time T with

lim ||u(:,t)|lcc = +00.
T

Here we are interested in the asymptotic behaviour of T)\ when \ goes to infinity.
We prove the following Theorem,

Theorem 1. Under the above assumptions on ¢, the function A — T, is decreasing
and continuous with the following asymptotic behaviour at infinity,
lim A\2P—D7, = Tp.

A—o00

Here Ty is the blow-up time of the solution of (1) with initial datum u(z,0) = ¢(0).

Some related papers that deal with the heat equation with a nonlinear source in
the entire space are [7] and [9].
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Under further assumptions on the initial datum, u(z,0) = ¥ (x) (a compatibility
condition and v, > 0, that guarantee u; > 0) it was proved in [6] and [8] that the
following blow up rate holds,

@) ¢ < (T = 1)%0 |[u(-, t) oo < C

We observe that the exponent that appears in Theorem 1 is related to the one in
the blow-up rate (2). This is a consequence of the natural scaling in the equation

(1).
PROOF OF THEOREM 1

The fact that A — T is decreasing is an immediate consequence of the maximum
principle. To see this, let us call u the solution of (1) with initial datum A¢ and v
the solution of (1) with initial datum p¢. If A < p then, by a comparison argument,
u(z,t) < wv(x,t) for all z > 0 and 0 < ¢ < min{T\,T,}. As T) is the blow-up time
for u, lim; ~p, |Ju(-,t)|lcc = +00 and hence v can not be defined beyond T}, proving
that T'u < T)\.

To see that is continuous we can assume that A < p, hence T > T),. Now, given
e > 0 we have to show that Ty —e¢ < T}, if u — A < 4§, but this follows by the
continuous dependence with respect to the initial data (see [2]). In fact,

u(-,Tx — €)|loc < C = C(e)

If we replace the power by a globally Lipchitz function g(u) that agrees with u? for
every u < 2C we deal with a regular problem, and hence there exists § = §(g) such
that
lo(, Tx — €)|lec <2C < 400, if u—XA<é.
We observe that as long as v < 2C' it is a solution of the problem with u? as
nonlinear flux at * = 0. By uniqueness, we can conclude that v is bounded up to
T\ — ¢. Therefore, T), > T — € as we wanted to prove.

Finally, let us study the asymptotic behaviour at infinity. This is the main point
of the paper.

Let u be the solution of (1) and inspired by the natural scaling of the problem
we define

(3) ua(x,t) = %u()\l_pam)?(l_p)t).
As u satisfies (1), vy verifies
(U)\)t = (U)\)l’m in R+3< (07 Cf)\)a
(4) —(2):(0.8) = ¥X(0,1) in (0,7,
va(z,0) = ¢(A17Pz) =¢r(x) inR,.

where f)\ = AQ(p_l)T)\. _
We want to compute limy_, o, 7). For that purpose, let us define w as the solution
of

Wy = Wy in Ry x (0,Tp),
(5) —w,(0,t) = wP(0,t) in (0,Tp),
w(z,0) = 60) R,

wich is the natural “limit” equation as ¢ — ¢(0) uniformly over compact sets of
[0, +00).
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As ¢(0) > 0, w blows up in finite time, Ty (see [4]).
The Theorem will follows if we prove that
TA — Ty, as A — oo.

To prove this claim, let ¢ > 0 and take TV = Ty —e. Let M = supgieqp |0 (-, 1) oo-
As before, we take g € Lip(R) such that g(s) = sP for s < 2M. With this g, we
define ¢ the solution of the following problem,

Yt = Pax in R+ X (OvT/)a
p(z,0) = or(x) in R,.

Observe that ¢ = vy if vy < 2M.
Let us see that |w(0,t) —p(0,t)] < § if A > Ag(0) for all ¢ < T”. For this purpose,
let us define z = w — . As g € Lip(R), z verifies

2t = Zgw in Ry x (0,77,
(7) —2:(0,t) = g(w)(0,t) — g(¢)(0,t) in (0,77),
2(x,0) = &(0) — oa(x) in R,.
Then we have
(8) |22(0, )| < K[2(0,1)],

where K depends only on M.
Let T'(z,t) be the fundamental solution of the heat equation, namely

1 x2
F(.T,t) = WGXP <_4t) .

For € R4, by (8) we have (see [5])

L0z
Z(l‘,t) = F(x_yat)z(y70) dy_ 7(O,T)F(.I‘,t—7') dr
(9) /R+ o /0 or
+/0 %(.ﬁ,t —7)2(0,7)dr.

Now we observe that I' satisfies

or 1

—(0,t—7) =0, rot—r7)=—— .

Ox 27t —7)2
Hence, using the initial and boundary conditions we get that

12(0,1)] g/R L(=y,1)|z(y,0)| dy + 257;/0 (lj(o’:));l ar.

Now we choose ty = to(K) such that

dr <

DN | =

K [t 1
2ﬁ/o (to —7)2

Hence, for ¢ € [0,ty] we have

max (0, £)] < 2max / P(—y. D)]=(y,0)| dy
[O,to] [O,to] R4
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We observe that for every d; > 0 there exists A; > 0 such that
“+o00

L
Ry 0 L

L +oo

< 77/ I(~y,t) dy+0/ [(~y,t)dy
0 L

<4

if A > A
Now, choose L large so that f;m I'(z — y,t)dy is small uniformly in (z,t) €
(0,L/2) x (0,tp), and take Ao > 0 such that |z(y,0)| < n for y € (0, L) and 7 small.
With this bound on |z(0,)| we can control z(z,t) for (x,t) € (0,L/2) x (0,t0),
in fact, from (8) and (9) we have

t t
I

\z($7t)|§/ F(m—y,t)|z(y,0)|dy+K§1/ F(ac,t—7)d7+§1/ g—($7t—7)d7
Ry 0 o 9r

L “+o00
é/’mx—MMAMmMyﬁ/ T(@ — . )|2(y. 0)| dy + 6,
0 L

L “+00
gn/ F(m—y,t)dy—i—C’/ D(x—y,t)dy + Cdo < dy
0 L

if A is big enough.

Now, as tg is independent of A, we can repeat this procedure beginning with
z(xz,to) as initial datum to find that |z(z,t)| < d3 for (x,t) € (0,L/4) x (to, 2to).
Therefore, after a finite number of iterations we obtain that, for A large (A > Ag(4))

|2(0,t)] < & for all t < T",
as we wanted to see.

Now, as w(0,77) < M and |w(0,t) — ¢(0,¢)| < d, we have that ¢(0,t) < 2M in
[0,7"]. Therefore, by uniqueness, ¢ = vy in [0,7’]. Hence Ty > T’ =Ty — .

Now, take 1 a compatible initial datum with compact support and ., > 0
such that 1(x) < ¢(0) and ¢(0) — ¢(z) small enough in (0, L). From the previous
argument, it follows that the solution w of (1) with v as initial datum verifies

w(0,7") —w(0,7") < 4.
Hence T'(¢)) > T'. By the assumptions on ¢, w verifies (2). Then

w(0,T') = 6 < w(0,T) < w(, Tl < C(T(w) - T') 7.

Therefore it is easy to see that T'(¢) —T' < k if e =T —T" is small (depending on
k). Now, choosing A large enough, we can obtain ¢y (z) > (), then Ty < T(¢) <
T' + k and hence as Ty — T" = ¢, we conclude the desired result. ([l
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