Un Problema de Frontera Libre
en Teoria de Combustion

Resumen

En esta Tesis consideramos el siguiente problema de perturbacién
singular que se presenta en teoria de combustion

Aut —ui = Yef.(u®) en D,
AY®—YF = Yef.(u®) en D,

donde D C RN f.(s) = & f(2) con f una funcién Lipschitz sopor-
tada en (—oo, 1.

En este sistema Y© es la fraccién de masa de algiin reactante, u® la
temperatura rescalada de la mezcla y ¢ es esencialmente el inverso de
la energia de activacion. Este modelo es derivado en el contexto de la
teoria de llamas premezcladas equidifusionales para numero de Lewis
1.

Probamos que, bajo hipdtesis adecuadas sobre las funciones u° e
Ye, podemos pasar al limite (¢ — 0) — llamado lémite de alta energia
de activacion — y que la funciéon limite v = limu® = limY*® es una
solucion del siguiente problema de frontera libre

(P) Au—u =0 en {u > 0},
\Vu| = /2M(z,t) en 0{u > 0},

en un sentido puntual en los puntos regulares de la frontera libre y en el

sentido de la viscosidad. En (P), M(x,t) = f_lwo(x p(stwo(z, 1)) f(s)ds

. € __n€
y —1 <wO:hm5*}0Y 8“ .

Como Y — uf es una solucion de la ecuacion del calor, queda com-
pletamente determinada por sus datos iniciales y de contorno. En
particular, la condicién de frontera libre depende fuertemente de las
aproximaciones de esos datos.

También probamos que, bajo condiciones més débiles sobre los
datos, la funcién limite u (que llamaremos solucidn limite) es una super-
solucién clasica del problema de frontera libre. Mds ain, si DN o{u >
0} es una superficie Lipschitz, u resulta una solucién clsica de (P).

Finalmente probamos, bajo hipdtesis geométricas adecuadas sobre
los datos, la unicidad de solucién limite para el problema (P).
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Palabras clave: Sistemas parabdlicos, reaccion-difusién, combustion,
estimaciones uniformes, problemas de frontera libre, solucién viscosa,
solucién limite, soluciéon clasica.



A Free bounday Problem
in Combustion Theory
Abstract

In this work we consider the following problem arising in combustion
theory

Aut —ui = Yef.(u®) in D,
AY®—YF = Yef.(u®) in D,
where D C RN f.(s) = & f(£) with f a Lipschitz continuous func-
tion with support in (—oo, 1].

Here Y¢ is the mass fraction of some reactant, u° the rescaled tem-
perature of the mixture and ¢ is essentially the inverse of the activation
energy. This model is derived in the framework of the theory of equid-
iffusional premixed flames for Lewis number 1.

We prove that, under suitable assumptions on the functions u® and
Ye, we can pass to the limit (¢ — 0) — the so called high activation
energy limit — and that the limit function v = limu® = limY* is a
solution of the following free bounday problem

Au—u; =0 in {u > 0},

|Vu| = +/2M (z,t) on 9{u > 0},

in a pointwise sense at regular free bounday points and in a viscosity
sense. Here M(z,t) = f_lwo(m)(s + wo(z, 1)) f(s)ds and —1 < wy =

€

(P)

V€ —u
€

lim€_>()

Since Y — u® is a solution of the heat equation it is fully deter-
mined by its initial-boundary datum. In particular, the free bounday
condition only (but strongly) depends on the approximation of the
initial-boundary datum.

Also we prove that, under weaker assumptions on the data, the
limit function u (that we call limit solution) is a classical supersolution
of the free bounday problem. Moreover, if DN o{u > 0} is a Lipschitz
surface, u is a classical solution to (P).

Finally we prove, under adequate geometric assumptions on the
data, the uniqueness of limit solutions for problem (P).

Keywords: Parabolic systems, reaction-diffusion, combustion, uni-
form estimates, free bounday problems, viscosity solution, limit solu-
tion, classical solution.
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Introduccién

1. Descripciéon del modelo

El trabajo de esta Tesis es una contribucion al analisis matematico
de un modelo termo-difusivo que aparece en teoria de combustion.

Este modelo aparece en el andlisis de la propagacién de llamas cur-
vas. Para una reacciéon elemental de orden uno, del tipo

Reactante — Producto,

el problema general de propagacién de llamas se reduce a resolver el
sistema:

(0.1.1) pr — div(pv) =0,
(0.1.2) pvi+ p(v-V)v— puAv = AV(V -v) + Vp =0,
(0.1.3) oL+ p(v- V)T — KAT = cgw,

P
(0.1.4) pyr + p(v-V)y — K1Ay = —myw,
(0.1.5) p = pRT,

donde las incognitas son la densidad p, la velocidad v, la presion p,
la temperatura 7' y la concentracion del reactante y. Las ecuaciones
(0.1.1) y (0.1.2) son las ecuaciones de conservacién de masa y la de
Navier-Stokes; la ecuacién (0.1.5) es la ecuacién de estado para un
gas perfecto; y las ecuaciones (0.1.3) y (0.1.4) son las ecuaciones de la
cinética quimica para la que adoptamos la ley de Arrhenius:

Y E
0.1.6 = ppB(T,)— —— .
(0.1.6) v (b)myeXp( RT>
Suponemos que las cantidades i, A, ¢,, m,, @, R, Ky K; son con-

stantes positivas. Mas ain, p, y T}, representan la densidad y la tem-
peratura del gas quemado, y E es la energia de activacion.

Este ultimo parametro juega un rol importante debido a la depen-
dencia exponencial en el término de reaccién para la temperatura w;
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4 INTRODUCCION

Esta dependencia se incrementa cuando la energia de activacion se in-
crementa. Mas aun, es la base de los métodos de analisis asintéticos
comunmente usados por los fisicos. Es también la base para la identifi-
cacion de diferentes zonas caracterizadas por la importancia relativa de
los términos que aparecen en las ecuaciones. Cuando E tiene a infinito,
aparece un problema de frontera libre (ver [8, 37, 38]).

Con esta generalidad, el problema es demasiado complejo. El mo-
delo termo-difusivo, consiste en una simplificacién de este problema por
medio de dos suposiciones que son clédsicas en teoria de combustién. La
primera, es la suposicion de ntimero de match pequeno, es decir con-
siderar a la propagaciéon de la llama como un proceso isobérico. La se-
gunda consiste en considerar la densidad de la mezcla constante. Estas
dos hipétesis permiten desacoplar el sistema en el conjunto de ecua-
ciones que modelan el proceso hidrodinamico del gas, y las ecuaciones
que contienen el proceso de combustion. Este modelo esté fisicamente
justificado (cf. [29]) para altas energias de activacién

E >1
RT; ’
bajo la hipdtesis de cuasi-equidifusividad:
E T,-T. 1
0.1.7 — 1-— ] =0(1

donde Le = K/Kj es el numero de Lewis y T, es la temperatura del
gas frio.

Este modelo se adapta bien a la descripciéon del fenémeno de com-
bustion donde la dinamica del gas juega un rol secundario en com-
paracién con los efectos difusivos y reactivos. Este es el caso, por
ejemplo, en el fenémeno de inestabilidad celular [29, 33, 34].

El limite £ — +o00 es, por si mismo, de poco interés dado que el
término de reaccién w dado en (0.1.6) tiende a cero. Para preservar
la reaccién, es necesario que el término B(T}) tienda a infinito; i.e.
debemos considerar el limite distinguido caracterizado esencialmente
por

(0.1.8) B(T}) ~ e

Para T < T} el término de reaccion w tiende a cero exponencial-
mente; esto es conocido como el limite frio. Para T' > T;, (0.1.4) y
(0.1.6) implican que — al menos formalmente — y — 0 exponencial-
mente y de nuevo w tiende a cero exponencialmente. Luego, el primer
paso para hacer que este método funcione, consiste en asumir que la



2. EL PROBLEMA MATEMATICO 5

temperatura Ty en el frente de la combustién verifica una estimacién
de la forma:

E
0.1.9 —(Ty —Tp) = O(1).
El analisis asintético del sistema cuando RLTb — +00, conduce — por lo

menos formalmente — a un problema de frontera libre (ver [20, 35]).

En esta Tesis, nos enfocamos en el andlisis matematico riguroso de
este modelo y, mas precisamente, en el estudio del andlisis asintotico
para grandes energias de activacién. Consideraremos la mezcla de gas
en reposo (i.e. v = 0). Luego de adimensionalizar las ecuaciones, el
problema (0.1.1)-(0.1.4) es reducido a resolver el sistema

(0.1.10) Au—u =w(u,Y),
1
(0.1.11) L—eAY—Yt =w(u,Y),
donde u = 7 iTC (Ty —T) es la temperatura rescalada (o menos la tem-

peratura) e Y es la fraccion de masa rescalada del reactante. El término
w(u,Y') posee propiedades precisas que describimos mas adelante.

Para una deduccién mas detallada del modelo, referimos a [8].

El modelo termo-difusivo descripto, ha sido estudiado por muchos
autores: existencia de ondas estacionarias (por ejemplo [4, 7, 36]),
soluciones de problemas elipticos (ver [3, 4, 6]), el problema parabdlico
([26]), estabilidad de ondas viajeras ([5, 31, 32]), etc.

El analisis asintético para grandes energias de activacion ha sido
estudiado para ondas estacionarias por [7, 18, 28] entre otros. Para
problemas elipticos y parabdlicos, ha sido estudiado en el caso Le =1
y u =Y (que es una suposiciéon natural en el caso de ondas viajeras).
Citamos los trabajos [2, 25| para ondas viajeras y la ecuacién eliptica
y [10, 11, 13] para el problema parabdlico.

También queremos hacer mencién del trabajo [27] donde el sistema
(0.1.10)-(0.1.11) es estudiado en el caso Le ~ 1y se obtienen resultados
similares a los de [13] en dimensiones N = 1,2, 3.

2. Descripcion del problema matematico

En esta Tesis consideramos el problema (0.1.10)-(0.1.11) en el caso
equidifusional (i.e. Le = 1). Haremos las siguientes suposiciones na-
turales sobre el término no lineal w(u,Y): Llamamos ¢ al inverso de
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la energia de activacién rescalada, ¢! = P%Z(Tb —T.). Entonces, por

(0.1.6), w = w, viene dado por
we(u,Y) =Y fo(u).

Para evitar la llamada dificultad del borde frio, es usual en la literatura
fijar f. como cero en las zonas donde es exponencialmente pequena,
es decir, asumimos de aqui en mas que f.(s) = 0 si s > €. Para una
discusion més detallada sobre la dificultad del borde frio, ver [8].

Debido a (0.1.8), es facil verificar que las funciones f. verifican que

/ sf-(s)ds — My > 0, e —0.
0

Esta constante M, juega un rol esencial en el andlisis asintético del
modelo cuando ¢ — 0. Una forma usual — y conveniente — de simplificar
el andlisis, es cambiar las funciones f. asumiendo que estan dadas en
términos de una unica funcién f en la forma

1 S

£ = 51 ()

con lo cual, la integral fo‘g sf(s) ds resulta independiente de ¢.

Estas funciones f. todavia capturan las caracteristicas esenciales
de (0.1.6). Luego, sobre f, asumimos que es una funcién no negativa,
Lipschitz continua, que es positiva en el intervalo (—oo, 1) y cero en el
complemento (i.e., la reaccién sélo ocurre cuando T > Ty —e(Ty —1T1v.)).

A partir de ahora, haremos explicita la dependencia en ¢ de la
temperatura rescalada u y de la fracciéon de masa del reactante Y, con
lo cual el sistema a considerar sera

Aut —u; = Y°f.(u) enD,
(0.2.1) {AY&‘_}/;E — Y‘ffg(ua) en D,

donde D C RN+,

El estudio del limite cuando € — 0 fue propuesto en la década del
30 por Zeldovich y Frank-Kamenetski [38] y ha sido muy discutido en
la literatura de combustion.

En el caso u® = Y* el término de reaccién u®f.(u) tiende a una

delta de Dirac, Myd(u) donde My = fol sf(s)ds. De esta manera, la
zona de reaccién donde uf f.(u®) actia se ve reducida a una superficie,
el frente de la llama, y aparece el problema de frontera libre. El hecho
que My > 0 asegura que un proceso de combustion no trivial tiene
lugar con lo cual aparece una frontera libre no vacia.
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Si bien la convergencia de las formas mas relevantes de propa-
gacion, i.e. las ondas viajeras, fue ya discutido por Zeldovich y Frank-
Kamenetski, y un gran progreso se ha hecho en esa direccién, una
investigacion matematica rigurosa sobre la convergencia de soluciones
generales se encuentra todavia en curso. Berestycki y sus colaboradores
han estudiado rigurosamente el problema de la convergencia para on-
das viajeras y, més generalmente, el caso eliptico estacionario — cf. [2]
y sus referencias. Ver también [25]. El estudio del limite en el caso
general de evolucién para la ecuacion del calor fue realizado en [13]
para el caso de una fase (esto es, con v > 0) y en [10, 11] para el caso
de dos fases, donde no se impone ninguna restriccion en el signo de u°®.

En [13] los autores muestran que, bajo ciertas hipétesis sobre los
datos iniciales y sus aproximaciones, para toda sucecion ¢, — 0 existe
una subsucesion €, y una funcién limite v = lim u*** que resuelve el
siguiente problema de frontera libre

Au—u; =0 en DN {u >0},

0.2.2
( ) |Vu+|=*/2MO en DN o{u > 0},

en un sentido débil integral. Aca My = fol sf(s)ds.

En [10, 11] los autores muestran que la condicién de frontera libre
para el caso de dos fases (asumiendo que no ocurre ninguna reaccién si
u® <0) es

|VU+|2 - |VU,_|2 = 2M0

y que la funcién limite es una solucién del problema de frontera libre en
un sentido puntual en los puntos regulares de la frontera libre cuando
{u = 0} tiene “densidad parabdlica” cero y en el sentido de la viscosi-
dad en la ausencia de una fase nula (i.e. cuando {u =0}°ND = ()

Una pregunta natural es: ;Sera cierto que si uno tiene una sucesién
de soluciones uniformemente acotadas (u,Y*) de (0.2.1) con (Y* —
u®) — 0 cuando € — 0 entonces u® (o una subsucesién) converge a
una solucién del problema de frontera libre (0.2.2)? Es decir, ;jSerd el
limite asintético para energia de activacién tendiendo a infinito, en el
caso que (Y —u®) — 0 pero u® # Y¢, una solucién del mismo problema
de frontera libre que en el caso u® = Y7

Observemos que en el caso en consideracion, cuando el niimero de
Lewis es 1, la funcién w® = Y® — uf es una solucién de la ecuacién del
calor. Luego estd completamente determinada por sus valores iniciales
y de contorno. M4s atn, el sistema (0.2.1) puede ser reescrito como
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una unica ecuacién para uc,

(Pz) Au® — g = (u” + w®) fe(u).

En esta Tesis consideramos el caso que we®/e converge a una cierta
funcién wy (o sea que, en particular, Y¢ —u® — 0). Mds precisamente,
asumimos que los datos iniciales Y y u{ verifican

Y5 () — ug(x)

(0.2.3) -

— wp(z) uniformemente en RY,

con wy > —1. Luego, la funcién w®(x,t) es la solucién de la ecuacién
del calor con dato inicial Y7 (x) — ui(z) y por (0.2.3), satisface que
existe el limite

we(z, )

(0.2.4) ll_I)I(l) — = wo(x,t),

donde wy(x,t) es la solucién de la ecuacién del calor con dato inicial
wo(z).

De esta manera, por lo menos formalmente, el término de reaccién
todavia converge a una funcién delta y aparece un problema de frontera
libre. Pero en este trabajo probamos que la condicion de frontera libre
depende fuertemente de la funcion limite wy, o sea que es diferente para
diferentes aprorimaciones de los datos iniciales y de contorno de u.

En efecto, probamos que para cada sucesién €, — 0 existe una
subsucesion €, y una funcién limite © = limu*"* que es una solucién
del siguiente problema de frontera libre

Au—u; =0 en DN {u >0},
P
(#) |Vut| = /2M(z,t) en DN O{u > 0},

donde M (z,t) = f_lwo(x’t) (s + wo(z,t)) f(s)ds.

La presencia de la funcién wy en el limite de integracién, garantiza
la positividad de la funcién M (z,t).

En conclusion, el problema de combustion es muy inestable en el
sentido que el limite asintotico para energia de activacion tendiendo a
infinito depende de perturbaciones de orden € de los datos iniciales y
de contorno.

4

En esta Tesis probamos que la funcién limite es una solucién “vis-
cosa” de (P), con lo cual, como consecuencia de nuestros resultados
y de los resultados de regularidad para soluciones viscosas de (P) en
[17], deducimos que, cuando la frontera libre de una funcién limite u
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viene dada por x; = g(2',t), x = (z1,2’) con g Lipschitz continua, u es
una solucién clasica.

Queremos remarcar que, debido a nuestra suposicién Y —u® — 0
y dado que Y* > 0, la funcién limite u debe ser no negativa, luego el
hecho de que u sea una solucién viscosa de (P) es novedoso, atin en el
caso u® = Y*.

En particular, como consecuencia de nuestros resultados vemos que
funciones limite u con u®(x,0) construidas como en [13], e Y*(x,0)
pequenas perturbaciones de u®(z,0) son soluciones viscosas de (P). En
esta construccion, wy es cualquier constante tal que wg > —n donde
n > 0 es suficientemente pequeno.

Finalmente, estudiamos la unicidad del limite v = lim u®" de (P),
puesto que es una pregunta natural averiguar si la inica condicién que
determina la funcién limite u es la condicién (0.2.3).

El propédsito del ultimo capitulo de esta Tesis es probar que este es
el caso, por lo menos bajo ciertas hipotesis de monotonia sobre el dato
inicial ug. Estas hipdtesis de monotonia son similares a las utilizadas
para probar unicidad del limite en el caso u* = Y* en [30].

Nuestros resultados pueden ser resumidos en, bajo ciertas hipdtesis
sobre el dominio y sobre el dato inicial ug, existe a lo sumo una solucion
limite del problema de frontera libre (P) cuyo gradiente no se anula
cerca de su frontera libre, siempre y cuando las aproximaciones de los
datos iniciales — que convergen uniformemente a uy con soportes que
convergen al soporte de ug — satisfagan (0.2.3).

Mas aun, bajo las mismas hipdtesis geométricas, si existe una solu-
cion clasica de (P), entonces ella es el unico limite de soluciones
de (P.) con datos iniciales que satisfacen las condiciones antes men-
cionadas. En particular, es la unica solucion cldsica de (P).

Queremos remarcar que la unicidad del limite resulta independi-
ente de la aproximacion del dato inicial ug y de la aproximacién de la
funcién constitutiva wy. Més precisamente, tomemos uy, iig* distintas
aproximaciones del dato inicial ug y w® /e;, 0" [}, distintas aproxima-
ciones de wy, sean u* (resp. @°*) la solucién de (F.;) con funcién w® y
dato inicial ug’ (resp. solucién de (P.,) con funcién @ y dato inicial
ug*). Sean u = limu® y @ = limu®. Entonces, bajo las condiciones
antes mencionadas, u = u.

Como ya hemos mencionado, en el caso u* = Y¢, resultados de
unicidad para soluciones limite bajo hipdtesis geométricas similares a
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las hechas en este trabajo pueden ser encontrados en [30]. Las técnicas
utilizadas en este trabajo difieren de las de [30] ya que éstas tltimas
requeririan en nuestro caso, hipdtesis suplementarias sobre la funcién
f.

En [22] los autores estudian la unicidad y coincidencia entre difer-
entes conceptos de soluciones del problema (P) (nuevamente en el caso
u® = Y?) bajo la suposicién de la existencia de una solucién clésica
y bajo condiciones geométricas diferentes. Ver también [23] para un
resultado similar en el caso de dos fases. Usamos algunas de las ideas
de esos trabajos en el estudio de nuestro problema.

3. Notacién
A lo largo de esta Tesis N denotara a la dimensién espacial y,
ademas, la siguiente notacién sera usada:
Para cualquier xg € RY, tc € Ry 7> 0
Br(xg) = {z € RY/ |z — 20| < 7},
By (x0,t0) = {(2,1) € RY/ o — wo* + [t — to|* < 77},
QT(mo,to)E (o) X (to — 72,0 + 77,
Q5 (w0, t0) = Br(wo) X (to — 77, t0],

y para cualquier conjunto K C RV+!

NT(K> = U QT(‘r07t0)7
(zo,t0)EK

No(K)= | @ (o to).

({L‘(),to)EK

De ser necesario, notaremos a los puntos en RY por z = (z,2'), con
7’ € RV"1. Ademss, (-,-) denotara el producto escalar usual en RY.
Dada una funcién v, notaremos v+ = max(v,0), v~ = max(—wv,0).

También, los simbolos A y V notaran los correspondiente oper-
adores en las variables espaciales; el stmbolo d, notara el borde parabdli-
co.

Diremos que una funcién v pertenece a la clase Lipy(1, %) en un

dominio D C RNt si para cada D' CC D, existe una constante
L = L(D') tal que

[o(x,t) = v(y, s)| < L(le —y| + |t — 5'/?)



4. HIPOTESIS 11
para todo (z,1), (y,s) € D'. Sila constante L no depende del conjunto
D', diremos que v € Lip(1, 5) en D.

Finalmente, diremos que u es supercalérica si Au —u; < 0, y u es
subcalorica si Au — u; > 0.

4. Hipoétesis y estructura de la Tesis

Para la existencia de una funcién limite para una subsucesion u«
s6lo necesitamos la condiciéon mas débil que para cada compacto K C
N-(K) C D,

(0.4.5) 1Y*e - UEHLOO(N:(K)) = O(e).
Entonces, tenemos (ver [21])
(046) ”Yv‘E - UEHC'2,1(K) = O(E)

Bajo esta suposicién, somos capaces de aplicar los resultados de [9]
y obtener las estimaciones Lipschitz uniformes necesarias para pasar al
limite en (0.2.1). Esto esta realizado en el Capitulo 1 donde tambiés se
prueban algunos lemas técnicos que son usados a lo largo de la Tesis.

En el Capitulo 2 asumimos que v — 0 en {u = 0} suficientemente
rapido. Esta es una condicién esencial que ya fue considerada en [13].
Esta suposicion es natural en aplicaciones, significa que la temperatura
de la mezcla alcanza la temperatura de la llama sélo si alguna com-
bustién esta siendo llevada a cabo.

También asumimos que existe lim.o(Y® — u®)/e =: wy y, como
consecuencia de la hipdtesis u® — 0 en {u = 0} suficientemente rapido,
mostramos que necesariamente wy > —1 en {u = 0}°. Luego, en el
Capftulo 2, asumimos que para cada K C N (K) C D compacto

YE —
(0.4.7) - wo uniformemente en N (K).
£
Entonces,
YE —
(0.4.8) H—“ — w —0.
€ C21(K)

Y, para simplificar en analisis, asumimos que wg > —1 en D. También,
en el Capitulo 2, mostramos que la funcién limite u es una solucién
del problema de frontera libre (P) en un sentido puntual, y finalmente
probamos que la funcion limite u es de hecho una solucién viscosa del
problema de frontera libre (P) bajo una hipdtesis de nodegeneracién de
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la funcion limite u. Ademads probamos algunos resultados que garanti-
zan la nodegeneraciéon de wu.

Nuestra presentacion en este capitulo es de una naturaleza local, con
lo cual nuestras hipotesis estan enunciadas en términos de la solucién
(uf,Y*®). Como puede verse en el ejemplo tratado en el Corolario 2.3.8
es posible deducir nuestras hipdtesis sobre (u®,Y®) a partir de condi-
ciones sobre los datos iniciales y de contorno.

En el Capitulo 3, nos enfrentamos con el problema de unicidad para
funciones limite de (P), bajo ciertas hipdtesis geométricas adicionales
que ya han sido consideradas en el caso w® = 0 [22, 23, 30]. Msés
precisamente, asumimos que el dato inicial ug es estrellado con respecto
a algin punto. Esta hipdtesis de monotonia nos permite aproximar
una supersolucién cldsica de (P) por una familia de supersoluciones
estrictas de (P:). Probamos que el limite de una sucesién de soluciones
de (P.) es independiente de la sucesién siempre y cuando el limite de
sus datos iniciales y de w®/e sea fijo.



Introduction

1. Description of the model

The work in this Thesis is a contribution to the mathematical anal-
ysis of a thermal-diffusive model that appears in combustion theory in
the analysis of the propagation of curved flames.

For an elementary reaction of order one, of type
Reactant — Product,

the general problem of propagation of flames is reduced to solving the
system:

(0.1.1) pr — div(pv) = 0,
(0.1.2) pvi+ p(v-V)v — pAv — AV(V - v) + Vp =0,
(0.1.3) pTi+ p(v- V)T — KAT = CQW,

P
(0.1.4) Py +p(v - V)y — KiAy = —myw,
(0.1.5) p = pRT,

where the unknowns are the density p, the velocity v, the pressure p,
the temperature T and the concentration of the reactant y. Equations
(0.1.1) and (0.1.2) are the conservation of mass and Navier-Stokes equa-
tions; equation (0.1.5) is the equation of state for a perfect gas; and
equations (0.1.3) and (0.1.4) are the equations of the chemical cinetic
for which we adopt the Arrhenius law:

_ Y oxp (—
(0.1.6) w= pbB(Tb)my exp ( RT) .

We make the assumption that the quantities u, A, ¢,, m,, @, R, K
and K are positive constants. Moreover, p, and T} represent the den-
sity and the temperature of the burned gas, and F is the activation
energy.

13
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This last parameter plays an important role because of the expo-
nential dependence in the temperature of the reaction rate w; this de-
pendance is increased as the activation energy is increased. Moreover,
it is the basis of the asymptotic analysis commonly performed by physi-
cists. Also it is the basis for the identification of different zones char-
acterized by the relative importance of the terms that appear in the

equations. As F tends to infinity, a free boundary problem appears (see
8, 37, 38]).

With this generality, the problem is too complex. The thermal-
diffusive model, consists in a simplification of this problem by means
of two basic assumptions that are classical in combustion theory. The
first one is the assumption of low match number, this is to consider
the propagation of the flame as an isobaric process. The second one
consists in considering the density of the mixture as constant. These
two hypotheses allow us to decouple the system into the set of equations
that model the hydrodynamic process of the gas, and the equations that
describe the combustion process.

This model is physically justified (cf. [29]) for large activation
energies

E >1
RT; ’
under the hypothesis of almost-equidiffusion:
E T,-T. 1
0.1.7 —_— 1—-— ] =0(1
( ) RTb Tb ( L@) ( )’

where Le = K/K; is the Lewis number and T is the temperature of
the cold gas.

This model adapts well to the description of the phenomenon of
combustion when the dynamic of the gas plays a secondary role in
terms of the diffusive and reactive effects. This is the case, for instance,
in the phenomenon of cellular instability [29, 33, 34].

The limit F — 400 is, by itself, of little interest since the reaction
term w given in (0.1.6) vanishes. To preserve the reaction, it is nec-
essary for the term B(T}) to become unboundedly large; i.e. we must
consider a distinguished limit characterized essentially by

(0.1.8) B(Ty) ~ e

For T' < T, the reaction term w vanishes exponentially; this is
known as the frozen limit. For 7" > T,, (0.1.4) and (0.1.6) imply
that — at least formally — y — 0 exponentially and again w vanishes



1. THE MODEL 15

exponentially. So the first step for making this method work, consists
in assuming that the temperature 7' on the front of combustion verifies
an estimate of the form:

(0.1.9) é%@rqw:mu

The asymptotic analysis when RLT;, — 400 of the system, leads — at

least formally — to a free boundary problem (see [20, 35]).

In this Thesis, we will focus on the rigorous mathematical analysis
of this model, and more precisely, on the study of its asymptotic anal-
ysis for large activation energies. We will consider the mixture of a gas
in repose (i.e. v =0). After adimensionalization of the equations, the
problem (0.1.1)-(0.1.4) is reduce to solving the system

(0.1.10) Au—uy = w(u,Y),

1
(0.1.11) ZAY — Y = w(uY),

where u = Tf+T(T y — T) is the rescaled temperature (or minus the

temperature) and Y is the rescaled mass fraction of the reactant. The
term w(u, Y') has some precise properties that will be described below.

For a more precise description of the model, we refer to [8].

The thermal-diffusive model described above, has been studied by
many authors: existence of stationary waves (for example [4, 7, 36]),
solution of elliptic problems (see [3, 4, 6]), the parabolic problem
([26]), stability of traveling waves ([5, 31, 32]).

The asymptotic analysis for large activation energies has been stud-
ied for stationary waves in [7, 18, 28] among others. For elliptic and
parabolic problems, it has been studied in the case Le =1 and u =Y
(which is a natural assumption in the case of traveling waves). We cite
the works [2, 25] for the traveling waves and the elliptic equation and
(10, 11, 13] for the parabolic problem.

We also mention the work [27] where the system (0.1.10)-(0.1.11)
is studied in the case Le ~ 1 and results similar to those in [13] are
obtained in dimensions N =1, 2, 3.
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2. Description of the mathematical problem

In this Thesis we consider the problem (0.1.10)-(0.1.11) in the equid-
iffusional case (i.e. Le = 1). We make the following natural assump-
tions on the nonlinear term w(wu, Y'): We call € the inverse of the rescaled
activation energy, e ! = %(Tb —T.), then, by (0.1.6), w = w, is given
by ’

we(u,Y) =Y fo(u).
To avoid what is called the cold boundary difficulty, it is usual in the
literature to set f. to be zero wherever is exponentially small, that is,
we will assume in what follows that f.(s) = 0 if s > e. For a more
detailed discussion about the cold boundary difficulty, see [8].

By (0.1.8), it is easy to check that the functions f. verify that

/ sfe(s)ds — My > 0, e — 0.
0

This constant My plays a crucial role in the asymptotic analysis of the
model as ¢ — 0. A usual — and convenient — way of simplifying the
analysis, is to change the functions f. by assuming that they are given
in terms of a single function f in the form
1 S
fels) = 2 (6)’
and so the integral fos sfe(s)ds is independent of e.

These functions f. still capture the essential features of (0.1.6).
Then, on f we assume that it is a nonnegative Lipschitz continuous
function which is positive in the interval (—oo, 1) and vanishes other-
wise (i.e., reaction occurs only when 7' > Ty — e(Ty — 1.)).

From now on, we will make explicit the dependance on ¢ of the
rescaled temperature u and the mass fraction of the reactant Y, so the
system under consideration will be
{ Avf —ui = Yef.(uf) in D,

(021) AYE — Y;& — Y‘Efs(ua) in D,

where D C RV,

The study of the limit as ¢ — 0 was proposed in the 30’s by Zel-
dovich and Frank-Kamenetski [38] and has been much discussed in the
combustion literature.

In the case u® = Y the reaction function u® f.(u°) tends to a Dirac
delta, Myd(u) where My = fol sf(s)ds. In this way the reaction zone
where uf.(u®) acts is reduced to a surface, the flame front, and a
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free boundary problem arises. The fact that My > 0 ensures that
a nontrivial combustion process takes place so that a non-empty free
boundary actually appears.

Although the convergence of the most relevant propagation modes,
i.e. the traveling waves, was already discussed by Zeldovich and Frank-
Kamenetski, and an enormous progress in this direction has been made,
a rigorous mathematical investigation of the convergence of general
solutions is still in progress. Berestycki and his collaborators have
rigorously studied the convergence problem for traveling waves and,
more generally in the elliptic stationary case, cf. [2] and its references.
See also [25]. The study of the limit in the general evolution case for
the heat operator has been performed in [13] for the one phase case
(this is, with «® > 0) and in [9, 10, 11] for the two-phase case, where
no sign restriction on u° is made.

In [13] the authors show that, under certain assumptions on the
initial datum and its approximations, for every sequence €, — 0 there
exists a subsequence ¢, and a limit function v = lim u**+ which solves
the following free boundary problem
{Au—ut:() in DN {u >0},

0.2.2
( ) |Vu®|=+/2My on DN o{u >0},

in a weak integral sense. Here My = fol sf(s)ds.

In [10] and [11] the authors show that the free boundary condition
for the two phase case (when it is assumed that no reaction takes place
if u® <0) is

IVul|? — |[Vu~|? = 2M,
and that the limit function is a solution of the free boundary problem
in a pointwise sense at regular free boundary points when {u = 0} has

zero “parabolic density” and in a viscosity sense in the absence of a
zero phase (i.e. when {u =0}°ND =)

So that a natural question is: Will a sequence of uniformly bounded
solutions (uf,Y?) of (0.2.1) with (Y* — u®) — 0 as ¢ — 0 be such that
u® converges to a solution of the free boundary problem (0.2.2)? This
is, will the asymptotic limit for activation energy going to infinity, in
the case in which (Y¢—u®) — 0 but u® # Y*, be a solution of the same
free boundary problem as in the case in which u® = Y*?

Let us point out that in the case under consideration this is, when
Lewis number is 1, the function w® = Y¢ — u° is a solution of the heat
equation. So that it is fully determined by its initial-boundary datum.



18 INTRODUCTION

Moreover, the system (0.2.1) may be rewritten as a single equation for
u®, namely

(Pz) Au® — g = (u” + w®) fe(u).

In this thesis we consider the case in which w®/e converges to a
function wy (so that in particular, Y¢ — u® — 0). More precisely, we
assume that the initial data Y and v verify

Y5 () — u5(x)

— wp(z) uniformly in RY,
£

(0.2.3)

with wy > —1. Therefore, the function w®(x,t) is the solution of the
heat equation with initial datum Y (z) —uf(z) and by (0.2.3), satisfies
that there exists the limit

“(x,t
(0.2.4) li 221

e—0 £

= wo(z,t)

and wy(z,t) is the solution of the heat equation with initial datum
wo(x).

In this way, at least formally, the reaction term still converges to
a delta function and a free boundary problem appears. But we prove
in this work that the free boundary condition strongly depends on the
limit function wq, so that it is different for different approximations of
the initial-boundary datum of u.

In fact, we prove that for every sequence ¢, — 0 there exists a
subsequence ¢,, and a limit function v = limu*"» which is a solution
of the following free boundary problem

Au—u =0 in DN {u > 0},
|Vu™|=+/2M(z,t) on DNd{u> 0},

where M (x,t) = f—lwo(:c,t) (s + wo(z,t)) f(s)ds.

The presence of the function wy in the limit of integration gives the
necessary positive sign of the function M(z,t).

(P)

In conclusion, the combustion problem is very unstable in the sense
that the asymptotic limit for activation energy going to infinity depends
on order € perturbations of the initial-boundary data.

In this Thesis we prove that the limit function v is a “viscosity”
solution to (P), so that, as a consequence of our results and of the
regularity results for viscosity solutions to (P) of [17], we deduce that,
when the free boundary of a limit function w is given by x; = g(a’,t),
x = (x1,2") with g Lipschitz continuous, u is a classical solution.
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We want to stress, that because of our assumption that Y —u® — 0
and since Y¢ > 0, the limit function v must be nonnegative, so our
result that u is a viscosity solution to (P) is new, even in the case
u® =Y¢®.

In particular, as a consequence of our results we see that limit func-
tions u with u®(x,0) constructed as in [13], and Y*¢(z,0) small pertur-
bations of u®(z,0) are viscosity solutions to (P). In this construction,
wp is any constant such that wy > —n where > 0 is small enough.

Finally, we study the uniqueness of the limit functions v = lim u®"
since it is therefore natural to wonder whether the only condition that
determines the limit function u is condition (0.2.3).

The purpose of the last chapter of this Thesis is to prove that this
is indeed the case, at least under some monotonicity assumption on the
initial value ug. This monotonicity assumption is similar to that used
to prove uniqueness of the limit for the case u® = Y* in [30].

Our result can be summarized as saying that, under suitable as-
sumptions on the domain and on the initial datum ug, there exists at
most one limit solution to the free boundary problem (P) with non-
vanishing gradient near its free boundary, as long as the approximate
initial data — converging uniformly to ug with supports that converge to
the support of ug — satisfy (0.2.3).

Moreover, under the same geometric assumptions, if there exists a
classical solution to (P), this is the only limit of solutions to (P.) with
initial data satisfying the conditions above. In particular, it is the only
classical solution to (P).

We want to stress that the uniqueness of the limit turns out to
be independent of the approximation of the initial datum ug and the
approximation of the constitutive function wy. More precisely, let
us take ug,ug* different approximations of the initial datum wuy and
w [e;, W /ey, different approximations of wp, let u% (resp. @) be
the solution of (P.,) with function w® and initial datum wug (resp.
the solution of (P.,) with function @ and initial datum 4g*). Let
u = limu® and @ = limu®*. Then, under the same conditions stated
before, u = 1.

As already stated, in the case u® = Y¢, uniqueness results for limit
solutions under geometric hypotheses similar to the ones made here can
be found in [30]. Nevertheless, in our work we use a different technique
since, in our situation, the method used in [30] would require several
additional hypotheses on f.
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Also in [22] the authors study the uniqueness and agreement be-
tween different concepts of solutions of problem (P) (again in the case
u® = Y*®) under the assumption of the existence of a classical solution
and under different geometric assumptions. See also [23] for a similar
result in the two-phase case. We use some of the ideas in these works
for the study of our present situation.

3. Notation
Throughout this Thesis N will denote the spatial dimension and,
in addition, the following notation will be used:
For any 7o € RV, t € R and 7 > 0
Br(w) = {z € RY/ |z — 20| < 7},
B (o, to z,t) € RN |z — o2 + |t — to]* < 771,
Q- (xo, to (o) X (to — 72,0 + 72,
Q7 (wo,t0) = By(z0) X (to — 72, t0),

and for any set

S~— S~—
Il
—
—

=

N

s
E
t

N.(K) = U Q- (o, to),

({Eo,to)GK

No(K)= | @ (xo,to).

(:L‘Q,to)EK

When necessary, we will denote points in RY by x = (z1,2'), with
' € RV~ Also, (-, -) will mean the usual scalar product in RY. Given
a function v, we will denote v* = max(v,0), v~ = max(—v,0).

In addition, the symbols A and V will denote the corresponding
operators in the space variables; the symbol 0, will denote parabolic
boundary.

We will say that a function v is in the class Lipy(1, %) in a domain
D C RV if for every D' CC D, there exists a constant L = L(D')
such that
o(z, ) — vy, )] < L(Jz — gl + |t — 5]/
for every (z,t), (y,s) € D'. If the constant L does not depend on the
set D', we will say that v € Lip(1,3) in D.

Finally, we will say that u is supercaloric if Au —u; < 0, and u is
subcaloric if Au — u; > 0.
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4. Hypotheses and outline of the Thesis

For the existence of a limit function for a subsequence v+ we only
need the weaker condition that for every compact K C N (K) C D,

(0.4.5) 1Y5 = 7| oo (- (1)) = O().
Then, we have (see [21])
(046) H}/8 — UEHCQ,I(K) = O(E)

Under this assumption, we are able to apply the results of [9] and
get the uniform Lipschitz estimates needed to pass to the limit in
(0.2.1). This is done in Chapter 1 where we also prove some technical
lemmas that are used throughout the thesis.

In Chapter 2 we assume that v* — 0 in {u = 0} fast enough.
This is an essential condition that was already considered in [13]. This
assumption is a natural one in applications, roughly speaking it means
that the mixture temperature reaches the flame temperature only if
some combustion is taking place.

We also assume that there exists lim. _o(Y* — u®)/e =: wy and, as
a consequence of the hypothesis that u* — 0 in {u = 0} fast enough,
we show that necessarily wy > —1 in {u = 0}°. So that, in Chapter 2
we assume that for every K C N7 (K) C D compact

Y — uf
(0.4.7) v, wo uniformly in N (K).
£
Thus,
YE —
(0.4.8) H—“ — w —0.
€ C21(K)

And, for the sake of simplicity, we assume that wg > —1in D. Also, in
Chapter 2, we show that the limit function w is a solution to the free
boundary problem (P) in a pointwise sense, and finally we prove that
the limit function u is in fact a viscosity solution of the free boundary
problem (P) under a nondegeneracy assumption on the limit function
u. We also prove some results that give the necessary nondegeneracy
of u.

Our presentation is of a local nature, so that our hypotheses are
stated in terms of the solution (u®,Y®). As can be seen in the example
treated in Corollary 2.3.8 it is possible to deduce our hypotheses on
(uf,Y®) from conditions on its initial-boundary datum.
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In Chapter 3, we deal with the uniqueness nature of the limit of
solutions to (P.), under some additional geometric assumptions that
were already considered in the case w® = 0[22, 23, 30]. More precisely,
we assume that the initial datum wug is starshaped with respect to
some point. This monotonicity assumption allows us to approximate
a classical supersolution to (P) by a family of strict supersolutions to
(P.). We prove that the limit of a sequence of solutions of (P.) is
independent of the sequence as long as the limit of their initial values
and of w® /e is fixed.



CHAPTER 1

Uniform Estimates

In this chapter we consider a family (u°, Y*) of solutions to
A — uf = Y f.(),

(1.0.1) AY® =Y =Y f.(u),

in a domain D C RY¥*! which are uniformly bounded in L° norm in
D and satisfy that for every compact K C N7 (K) C D,

(1.0.2) 1YS = 07| oo (- (1)) = O().
Then, we have (see [21])
(1.0.3) ||Y€ — u5||02,1(K) = O(E)

In Section 1, we show that the functions u®, Y¢ are locally uniformly
bounded in the seminorm Lip(1,1). Then, in Section 2, we get further
local uniform estimates and pass to the limit as ¢ — 0. We also show
that the limit function w is a solution to the free boundary problem (P)
in a very weak sense. In Section 3, we prove an approximation lemma
that will be used throughout the rest of the work.

In Sections 4 and 5, we further assume that for every K € N (K) C
D compact there exists a function wg such that

YE _ uf
(1.0.4) ‘. wWo uniformly in N (K).
€
Thus,
YE —
(1.0.5) H T —0.
€ C21(K)

We will see that is natural to impose that wy > —1 in D. We observe
that, as Y° —u® is a solution of the heat equation, condition (1.0.4) (as
well as condition (1.0.2)) can be deduce from initial-boundary data.

In Section 4 we prove some lemmas concerning particular limit func-
tions in the particular case where wy is constant. These lemmas will
be useful in the next chapters. Finally, in Section 5, we begin our

23
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study of the limit functions and prove that every limit function u is a
supersolution to the free boundary problem (P).

1. The estimates

In this Section, we show that uniformly bounded solutions to (1.0.1)
are locally uniformly bounded in Lip(1, %) norm. First, we manage to
apply the results in [9] and obtain a uniform bound on the gradients of
(u®,Y?) and then (as usual in parabolic regularity theory) we get the
Hélder 1/2 bound on t.

For convenience, let us define the following function
(1.1.1) we(z,t) =Y (z,t) — u(x,t),

then, w® is a caloric function and, by (1.0.3), [|[w®||c21(x) = O(e) for
every compact set K C D.

For further references, let us now state the following Theorem proved
in [9]

THEOREM 1.1.2 ([9], Corollary 2). Let u be a bounded solution in

Q1 of

C
0<Au—wu < _X{0<u<6}-
€

Then u is Lipschitz (in space) in Q12 with bounds independent of ¢.

We begin with a proposition (which is a consequence of Theorem
1.1.2) that gives us the uniform control on the gradients of solutions of
(1.0.1).

PROPOSITION 1.1.3. Let (u®,Y?) be solutions of (1.0.1) such that
|uf]|o < A, Y= >0 and verify (1.0.2). Let K C D compact and T > 0
such that N (K) C D. Then, there exists L = L(t,.A) such that

\Vu(z,t)| < L, |[VY®(z,t)| < L.
PROOF. Let us start by making the following observation
uw =Y —w* > —w > -Ce.

Then, let 2* = c+r1<“€ + C¢) and define, for (z,ty) € K

1
25 (2, t) = =2°(zo + T, to + TL).
T
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In B1(0) x [-1,0], 2 verifies (with B > || f]|c0)
0z T 1, u®
0<Az-—-—TK< C N f(—
<net- T < (O e S A(D)
B

1
< BT—X_ceq(u®) = ——Xo,e/r i
< Br—Xj-cee(v”) /T 0,e/7](27)

On the other hand
|u(x,t)| + C < 1A+C
r1+C) —711+4C°
Therefore, by Theorem 1.1.2, it follows that
IVzi(z,t)| < L= L(r,A)  in By;(0) x (—1/2,0].
In particular,
VU (20, to)| = (C' + 1)|V2* (20, to)] = (C +1)[Vz2(0,0)] < (C'+ 1)L,
|VY®(x0,t0)| < |Vu (o, to)| + [V (zo,t0)] < (C+ 1)L+ C.
The proof is finished O

|27 (2, 1)| <

As is usual in parabolic regularity theory, Lipschitz regularity in
space, gives Holder 1/2 regularity in time. For the proof we need the
following result

PROPOSITION 1.1.4 ([10], Proposition 2.2). Let u € C(B;(0) x
[0,1/(4N + A)]) be such that |Au —w| < A in {u < 0} U{u > 1}, for
some A > 0. Let us assume that |Vu| < L, for some L > 0. Then
there exists a constant C' = C(L) such that

AN + A

PROPOSITION 1.1.5. Let (u,Y*®) be solutions of (1.0.1) such that
|u]loe < A, Y >0, and verify (1.0.2). Let K C D compact and T > 0
such that N> (K) C D. Then there exists C = C(t,.A) such that
(2, £+ Az, £)] < CIAY, Y7 (2, 4 A8 —Y*(z, 1] < CIAL,
for every (x,t), (z,t + At) € K.

PROOF. As in Proposition 1.1.3 we define 2° = &5 (u® + Ce) and

1
25(x,t) = Xza(xo + Az, to + A%t),

for 0 < A < 7 and (xg,ty) € K.
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By a simple computation we get, as in Proposition 1.1.3
075 B
0< Az — A< —X 3)-
= 52 ot — e/ 0=/1(23)

Now, 25 > 0, and in {z§ > 1} we have

%|{ <B ife/A>1

|Az5 — ot =0 ife/A<1.

Moreover, we have that
1 _
|Vz5(x,t)] = C—H|Vu5(a:o + Az, g+ Nt)| < L
in B;/,(0) x [0,72/A?]. Then, by Proposition 1.1.4, we have

125(0,t) — 25(0,0)] < C(L) v 0

IN

t <
T AN+ B

which, in terms of u?, is
[us (20, to + A*t) — u®(z0, t0)| < C(L)A.
In particular
)2
AN + B

|U€($0,t0 + ) - U€($07t0)| S O(Iz))\

Let (20,0 + At) € K. If 0 < At < 72/(4N + B), we take \ =
AtY2\/AN + B < 7 to get
|UE($0,to + At) — U,E(ilfg,to” S C(E) V 4N + BAt1/2.

If At > ﬁ, we have

2
|u5(:c0,t0 + At) — UE(Qjo,to)‘ < 2A < ;4\/ 4N + BAtl/Q
T

The analogous inequality for Y¢ is an immediate consequence of
(1.0.3). O

REMARK 1.1.6. Under the hypothesis of the previous propositions,
we have that

u® € Lippe(1,1/2).
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2. Passing to the limit

In this Section, we prove further uniform estimates on the solutions
of (1.0.1) and pass to the limit. Then we show that the limit function
u is a solution to (P) in a very weak form.

PROPOSITION 1.2.1. Let (u®,Y?) be solutions of (1.0.1) such that
|luf]lo < A, Y > 0 and verify (1.0.2). Then, for every sequence
e, — 0, there exists €,, — 0 a subsequence and w € Lipjy.(1,1/2) such
that

(1) u®" — u uniformly on compacts subsets of D.
(2) Vus — Vu in L3 .
(3) 2usw — Zu weakly in L.
(4) Au— —Om{u>0}
(5) For every compact K C D, exists Cx > 0 such that
0
‘ o < Ok
Ot || 2x)

for every € > 0.

PrRoOOF. Let K C D be a compact set, and 7 > 0 such that
N3 (K) C D. Let L = L(K) such that

|u5<$,t) — u5<y7 3)' S L (|x _ y| + |t |1/2)
where (z,1), (y,s) € N;(K).

Then, by Arzela-Ascoli’s theorem, there exists €, — 0 and u €
Lip(1,1/2) in N;(K) such that u*» — w uniformly in M;(K). By a
standard diagonal argument, (1) follows.

Let us now find uniform bounds for ‘% in L2
verifies
ous

— Ve ; €y,
" vep )
Now, let (zg,tp) € K and let us multiply the equation by ugt)?

where ¢ > 0, ¢ = ¥(x) € CX(B-(v0)), ¥ = 1 in B;js(x). Then,
integrating by parts, we get

1
// (uf)*? dwdt + 5 // (|Vuf|?)ap? dadt
Qr(wo,to) Qr(zo,to)

+2 // Vufu; Vi dedt = — // Y fo(uf)usep® dadt.
7(@o,to) Qr(o,to)

(D). In fact, u®
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Now we use Young’s inequality to obtain

1 1
5 // (uf)zwz dxdt + B / |Vus (o, to + 72)\2w2 de <
QT(CUO,tO) BT(wo)

1
3 / |Vus (zg,tg — 72)[*? da — // Y f. (uf)usep? dadt
Br(z0) ~(z0,to)

+ C// |Vus|?|Vy|? dadt.
~(xo,t0)

Then, by Proposition 1.1.3

t0+T
/ )2 dadt < / |Vus (zo, to — 72)[*1* do
-/2(z0) Jt Bz (o)

0—72
+C// |Vus |2 Vap|? dadt
~(xo,t0)

// Y fo (uf)usep? dadt
~(zo,to)

<CO(r)+2 ‘ / / Y fo(uf)usy? dmdt‘ :
+(zo,to

+2

Hence, it only remains to get bounds for

/ VPEYE () dadt = I
Qr

Let
0.0,.0) = [ (o) + )1

then

0 . _ow® o 0G., .
a (gﬁ(u 7‘r7t)) - 8t f€<u )+ at (U 7$7t>7

so that we get

[_//77/1 (Ge(u, z,t)) dxdt—// )2 gsu ,x,t)dxdt = A— B.
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Let us first get bounds on A:

/ — Q’s (uf,x,t)) dedt
to— —72 m())

to+72 a
_/ > / (G- (u®,x,t)) dt| dx
B (z0) [ to—T2 6t

—/ ? [Qs(us(x, to+72), 1, tg + 72)—
BT(Z'O)

G.(u(w,tg — 72), 2,19 — 7'2)} dz.
Since u® > —Ce, f.(s) =0if s > ¢ and |w®| = O(e), we have

G w )| <Ce [ fuls)ds+ / sfi(s)ds < C,
—Ce

t0+T

so that
Al < C(7).

It only remains to get bounds on B. For that purpose, let us first
make the following observation:

)| = [ty [ o] < €| B )
By (1.0.3),
aa“: <Ce for (mt) € NL(K).
Therefore, using the fact that 0 < ¢ < 1, we get
<_// ’a“’ )| dedt < = |QT| | < ok, 7).

Thus,

t0+T
/ dxdt <,
B ja(z0) Jto—72

with C' independent of ¢ and (zo, 1) € K. Now, as K is compact,

// uf)? drdt < C,

so that, for a subsequence, auen’ — 5 9w weakly in L?(K) and by a

standard diagonal argument, (3) follows.

Let us see that u is a solution of the heat equation in {u > 0} .
In fact, from the fact that u* — u uniformly on compact subsets of
D, we deduce that every point (zg,ty) € {u > 0} has a neighborhood
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V' such that u®(z,t) > A > 0 for some A > 0. Therefore, for ¢ < A,
fe(u®(x,t)) = 0in V. Thus u is caloric in V for every € < A, and then,
the same fact holds for w.

Let us finally analyze the convergence of the gradients. We already
know that ||Vu®||Le: (k) < L. So we can assume that Vu® — Vu
weakly in L?(N,(K)). In particular

// o|Vul? <hrn1nf// e | Vus|?,

for every nonnegative ¢ € L>*(D).

We follow here ideas from [2] and [13] in order to prove that we
have strong convergence.

Since Au — u; = 0 in {u > 0}, if we take § > 0 and multiply this
equation by (u — )Ty (z) with ¢ € L*(D) and nonnegative, we get
after integration by parts in Q. (o, o),

//{u>5} |Vul?p = //{u>5} uVuVi 44 /{u>5} VuVy
a0t 7).

Now, letting 6 — 0, we get

//{u>0}|w ) =— //{u>0}uVuV1/z——/{u>0} w?(x, o + 72)(x)

3 /{ L 2(2. 1y — 72)00(x).

On the other hand, since ¥ > 0, f. > 0 and u® > —Cs, multiplying
(1.0.1) by (u® + Ce)v and integrating by parts we get

// |Vus 2 < — // uVuVy — Ce // VusVip
+(xo,t0) ~(xo,t0) ~(xo,t0)

—§/BT($O)(u + Ce)*(m,to + 7)Y ()

2

limsup// |Vue|*y < // [Vul?,
e—0 +(zo,to) (zo,t0)

_|_1/ (ua—l—OE)Q(LtO —72)1/1(55)
B (z0)

Thus,
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so that

102V || 120, (roto)) = 192Vt 2@, (wo.t0)-
Since, in addition,

PV2VuE — ?Vu weakly in L*(Q,(zo, o)),
it follows that

YU2VuE — Y2V in L3H(Q(zo, o).
Therefore, as ¢ = 1 in B 2(2),
Vu® — Vu in LQ(QT/2(’:CO7tO))
and since K is compact, this implies that
Vu¢ — Vu in L*(K).

By the same standard diagonal argument used before, the assertion of
the Theorem follows. U

Next we show that the limit function u is a solution of the free
boundary problem in a very weak sense.

PROPOSITION 1.2.2. Let (u®, Y ) be a family of solutions of (1.0.1)
in a domain D C RN such that u® — u uniformly on compact subsets
of D, Y% > 0 and verify (1.0.2). Then, there exists a locally finite
measure p supported on the free boundary D N O{u > 0} such that
Yeif. (u) — p weakly in D and therefore

ou

AH_E:'M in D.

That is ¥ ¢ € C°(D)

(1.2.3) //D(uqst—vuw)) dmdt://pgbd,u.

PROOF. Let us multiply (1.0.1) by ¢ € C3°(D) and integrate by
parts. We obtain

(1.2.4) / /D (U — VUV @) dadt = / /D YE £ (uf) ¢ dudt.

We want to pass to the limit in (1.2.4). We now that v — u uni-
formly on compact sets of D and thus from Proposition 1.2.1, Vu® —
Vu in L2 (D), so the convergence of the left hand side follows. Now

loc
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let K C D be a compact set and choose ¢ = ¢ € C§°(D) such that
¢ = 11in K. Then (1.2.4) yields

[ vos e duat < con).
K

This L. bound implies that there exists a locally finite measure y in
D, such that (for a subsequence) Y% f, (u) — p as measures in D.
Now, passing to the limit in (1.2.4) we get (1.2.3). In addition, we see
that (1.2.3) implies that the whole sequence Y/ f, (u®) converge to p
and that

Au—u; =p in D.
Finally, since we know that Au —wu; = 0 in {u > 0}, we conclude that
support p C DN o{u > 0},
and the proof is complete. O

3. A technical lemma

In this section we state an approximation lemma that will be used
throughout the rest of the Thesis.

LEMMA 1.3.1. Let (u%,Y%) be a family of solutions of (1.0.1) in
a domain D C RY* such that u5 — u uniformly on compact subsets
of D, Y% >0 and verify (1.0.2). Let (xo,to) € DN O{u > 0} and let
(Tn,tn) € DN O{u > 0} be such that (x,,t,) — (xo,to) as n — oo.
Let N\, — 0, uy,(z,t) = ﬁu(mn + Az by + A2t) and (u)y, (z,t) =
ﬁusj (T + Auz, ty + A2t). Assume that uy, — U as n — oo uniformly
on compact sets of RNTL. Then, there exists j(n) — oo such that for
every j, > j(n) there holds that E/\J—: — 0 and

(1) (usn)y, — U uniformly on compact sets of RN
(2) V(usin)y, — VU in L2 (RNT1),

loc
(3) 2(usim)y, — 2U weakly in L*(RN*1).
Also, we deduce that

(4) Vuy, — VU in L*(RNTY),

(5) Suy, — 2U weakly in L*(RNT1).
PROOF. The proof is a rather straightforward adaptation of Lemma
3.2 of [10] but we include here the proof in order to make the thesis
self contained.
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Let us find the sequence j(n). In order to verify (1),

1
(u)y, (z,t) = U(z,t) =— [usj (Tp + Anz, ty + )\it)

' —u(x, + Az, by, + )\it)}
+ (un, (z,t) = Ulz,t)) = I+ I1.
Let us fix r > 0 such that Qs,.(zg,ty) CC D, so for n large
Q- (0, t0) C Qor(2p,t,) CC D.

Let & > 0 be fixed and § > 0 be arbitrary. We know by hypotheses
that [17] < d in Qx(0,0) if n > n(k,d). Let us bound |I|.

For each n there exists j(n) such that, if j > j(n),
|u (z,t) — u(z, t)] < % for (z,t) € Q(xn,ty).
Therefore, if j > j(n) with n large so that A, < r/k then,
1<~ for (a,1) € Qu(0,0).
So that if j > j(n) and n large,
|(u™)y, (x,t) = Uz, t)| < 5—1—% for (z,t) € Qx(0,0).

Therefore, if j, > j(n), then (u%n),, — U as n — +oo uniformly in
Q1(0,0). In particular (u%),, are bounded uniformly in n and j in
Qx(0,0) for j > j(n) and n large enough.

It is easy to see that (u®),, are solutions to
O(us An _ . .
W — (s + (000 o (51,

where (w),, = ﬁwaj(xn + A, by + A2t), in Qr(0,0) for n large,
and we may assume without loss of generality that ¢;/\, < 1/n for
j>ijn).

By Proposition 1.2.1, for every choice of a sequence (j,,) with j, >
j(n) there exists a subsequence j,, such that for the corresponding A,,

v(uejn/))\n, — VU in LIQOC(Qk(O7 0))

A(u7)y, —

and

0
—(u¥n)y , — =—U weakly in L? 0,0)).
at( )A ot y loc(Qk< ))
By the uniqueness of the limit we see that the whole sequence
(u),, converges. At this point we want to remark that the sequence

j(n) is independent of k. Therefore (1), (2), and (3) are proved.

n
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Let us see that we also have (4). In fact,

Vun, = VU 2@, 0,0) <IVur, — V(u)r, 2201 0,0))
+ [V (u)x, = VU] 200 = I + 11

We know that |[I| < § if j > j(n) for n large enough. Let us
estimate I.

[Vuy, — V(Uaj)/\nH%?(Qk(o,o)) =

// Vu — Vus *(x, + M\, ty + N2t) dadt =
Qx(0,0

1
An Qank(Tnitn)

By Proposition 1.2.1 and the fact that the whole sequence u®# con-
verges to u, Vu® — Vu in L*(Q,(0,0)), where Q. (zo,t0) C Qo (7, t5)
CC D. Therefore if j is sufficiently large and n is large enough so that
Mk <,

// |Vu — V| (2, 1) dedt < NV 262,
Qxnk(Tn,tn)

Therefore,
[Vux, = VU 2@ 00) < 20

if n is large and thus (4) follows.

Finally, let us show that (5) holds. Given k£ > 0, we want to bound
15 a | 2@u0.0)-
We first see that the uniform bound for (u%),, shown above, to-

gether with Proposition 1.2.1, implies that there exists C' > 0 such that
for j > j(n) and n large

H n

Next, it is easy to see that for every function v such that v; €
L*(Q(z0,10)) and for every A > 0 such that Ak < r,

<C.
2(Qx(0,0))

H_UA < m”thL?(QAk(xO,tO))

L2(Qr(0,0))
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(Where ox(z,t) = su(wo + Az, o + A*t)) and therefore, for n large
_ellz2@opientn) = 106 22(@upn )
An 2@ (00)) AN+2
H N — [+ I
2(Qx(0,0))

We already know that for j > j(n), |[I/| < C. On the other hand
since u;” — u; weakly in weakly in L%(Qs,.(70, 1)),

el 2@y < LimEnE i |20y, st

Thus for 6 > 0 and n large,

el 2200 k(onitn)) = 100 12200,k (@nitn)) < AN 26

if j is large enough. So that

15 un, Nl 2@ 0.0)) < C-

Therefore, for a subsequence A, — 0,

0
~uy, — Uy weakly in L*(Q1(0,0)).

ot
By the uniqueness of the limit, the whole sequence ( gtuxn) converges
to U weakly in L?(Q(0,0)), and therefore in L (RN T!). O

4. Basic examples

In this section, continuing with the local study of the problem, we
study the special cases in which the limit function is the difference of
two hyperplanes and the limit function wo =lim 2(Y® — vf) in (1.0.4)
is constant. First, we show that if u = ax], there holds that 0 < o <

\/2M,,, where
My, — / (s + wo) f(s) ds.

—wo
Next we prove that if w = az] + azr] with a,a > 0 then a = a@ <
/2M,y, -

These lemmas, will be helpful in the remaining of the thesis where
the situations covered by these lemmas appear as a blow-up limit of
(1.0.1) (see, for example, Proposition 1.5.1).
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LEMMA 1.4.1. Let (u,Y®) be a solution to (1.0.1) in a domain
D C RN such that Y& > 0, and verify (1.0.4) in D with wy =
constant. Let (xg,t9) € D and assume that u% converges to u = o(x —

zo)T uniformly on compact subsets of D, with a € R and ¢; — 0.

Then,
(1.4.2) 0<a</2M,
where M, = fin (s 4+ wp) f(s)ds.

0°

PROOF. The proof is an adaptation of Proposition 5.2 of [10].
Without loss of generality we may assume that (z, ) = (0,0).

First we see that necessarily o > 0 since u is subcaloric in D and
u(0,0) = 0. If a = 0 there is nothing to prove. So let us assume that
a > 0.

Let ¢ € C2°(D). Multiplying (P.) by u, 1 and integrating by parts
we get
(1.4.3

)
[ o= [[ v pe. - [[ aveve
+//1)st(u€j,x,t)wxl+//Dw;§( _:: £, (5)ds) 1,

where B.(u,z,t) = [* (s+ w®)f-(s)ds.

—wpe
In order to pass to the limit in (1.4.3) we observe that, by Propo-
sition 1.2.1

(u¥); — 0 weakly in L (D),
Vusi — aX(z, >01€1 in L1200(D)’
On the other hand,
Vwsi
€j

— 0 uniformly on compact subsets of D.

Therefore, in order to pass to the limit in (1.4.3) we only need to
analyze the limit of B, (u®,x,t). On one hand, it is easy to see that

(1.4.4) B, (u¥(z,t),2,t) — My,

for every (z,t) such that z; > 0. In fact,

usi v 1

Baj(usgx,t) = /Ej (3 + w )f(s)ds = / (s + w%j)f(s)ds

wo €j wo
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if j is large enough. Since |B.,(u®,z,t)| < C there holds that (1.4.4)
holds in L{ ({z; > 0}.
On the other hand, there exists M (z,t) € L>(D) such that
B.,(u%, x,t) — M(z,t) weakly in Lj, (D).

Clearly, M (z,t) = M,, in {z1 > 0}. Let us see that M(z,t) = M(t)
in {z; < 0}. In fact,

e

V(B (u(z,t),2,t)) = == (u", x,t)Vu + VB, (u, z,1)

ou |
= (u + w® )fs (u)Vu + szj/ fgj(s)ds
—Wwoé&;
— Y f (uT) VU + Vs[5 f(s)ds

J —wo
Since Y f, (u) — 0 in Ly, ({z1 < 0}), Vu is uniformly bounded in
L>(D")if D' cC D and Vg . — 0 uniformly on compact subsets of D,
there holds that
V(B.,(u(z,t),z,t)) =0  in L ({21 <0}).

So that, passing to the limit in (1.4.3) we get

- / - Mwo // ¢$1 / (t)¢5171
{z1>0} {z1>0} {z1<0}

Thus, integrating in the variable z; we get

Jocy (0

Since 1 is arbitrary, we conclude that

2
S = Muy + M(t) = 0.
Finally, we notice that M (t) > 0. In fact,

w©J w®i

B, (u,z,t) = / Ei_ (s + j)f(s)ds—i— /_ N (s—l— d j)f(s)ds
- € —wo €
> v (s+ wej)f(s)ds — 0
—wo €j

. €5 .
since > — wy uniformly on compact subsets of D.
J
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Thus,

o = \/2(M,, — M(1)) < \/2ML,,
and the proof is complete. O

LEMMA 1.4.5. Let (u%,Y%) be a solution to (1.0.1) in a domain
D C RN*L such that Y > 0 and verify (1.0.4) with wy = constant
in D. Let (zo,t9) € D and assume that us converges to u = a(x —
1o)] + alx — x9)] uniformly on compact subsets of D, with a,a > 0
and €; — 0. Then,

(1.4.6) a=a<\/2M,,

where My, = fl (s 4+ wo) f(s)ds.

—wo

PRrROOF. We argue in a similar way as in Proposition 5.3 of [10].

We will denote @, = Q,(0,0). Without loss of generality we will
assume that (zo,to) = (0,0) and that @ CC D.

As before, u® satisfies

uus, =2 [ [ VP, — [ u,vurvy
D 2 D D .
T / /D B.(uF 2, ), + / /D s, ( /0 ) fa(s)ds) b

We want to pass to the limit. By Proposition 1.2.1 and the fact
that u® converge to ax + az; we have that

— 0 weakly in L (D),

loc

&j
Uy

Vus — aXg soe1 — Xz <ope1  in Li,.(D).

Clearly, as a,a > 0, B(u®,x,t) — M in L}

loc

(D).

So, passing to the limit in the latter equation for the subsequence
€5, we get

a? o’
Y Yy
{z1>0} {z1<0}

Integrating in the x; variable, we conclude that

o= Q.

Next, we will assume that o > |/2M,,, and arrive at a contradic-
tion.



4. BASIC EXAMPLES 39

First, let us consider 2%, defined in ()5, the solution to
(A7) D25 — 2 = (B (%) + Way o, (59)) oy (25 /25) i Qs
with boundary conditions
2% =u—b" on 0,Qs

where 3.(s) = sf.(s), We = supg, w®, b = supg, |u —u| and p., is a
smooth cutoff function with support in [—(wo + 2C;,),3] and p., =1
in [—(wo + C.,),2] (Here C., — 07 is such that |w® /e; —wo| < C, in
QQ so that Uaj/Ej Z —(wo + Caj) in Qg)

Observe that z% (z1,2,t) = 25 (—xq, 2/, t) in Qs.

It is easy to see that the proofs of Propositions 1.1.3 and 1.1.5 can
be adapted to 2% so that, for a subsequence, that we still call ;, there
holds that 2% — z uniformly on compact sets of ()5. We will show that
Z = u.

First,
AuT —uy’ = (u” +w) fo, (u) < B, (u™) + We, fe (u™)
= (B, (™) + W, fo; (uf)) pe, (w9 /) in Q».
From the fact that 2% < u® on 0,Q)2, we deduce that 2% < u% in
()2 and therefore z < u.
In order to see that u < z, we consider a% € C?*(R) such that
agl = <6(a8f) + %f(aeﬂ')) p-;(a%7), s €R
a®(0) =1, a5 (0) = «
Integrating the equation we get, for every s € R, that
0<vy—he; <af(s) <a
where 9% = 3a% — M, > 0 and k., — 0 when j — oc.
It follows that there exists Se; < 0 such that

i (s) = 14+ as s>0
a=\8)= (v — ke, )(s —5.,) 8 <5

and it is easy to see that 5., are uniformly bounded by below and
moreover, there exists s < 0 such that s., —s.
Now let
e T b _
a’(r) =¢ja(— — ——— + 5., ).
! (fj (7 — Key)ej )
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Using that a%(0,2',t) = —b% and the bounds on ag’, we deduce
that
a <wu—>b%in Q.

Now, since a* < 2% on 0,()2, and a* is a one dimensional station-
ary solution to (1.4.7), we have that a% < z% in (). Since a% — u
uniformly on compact subsets of {x; > 0}, we deduce that u < z in
QQ N {1’1 > O}

Finally, we notice that z% (21,2, t) = 2% (—x1,2',t), so we conclude
that u < z in Q)».

Now, let

R={(z,t)|0 <z < 1,|2'| <1, |t| < 1}.

Let us multiply (1.4. 7) by 27, and integrate in R. Then, we have

= // Zejzcij - // Ax/Zngii = Fj — Gj,
R R

where F. (2) = f_ZWE_(S + We) fe;(8)pe, (s/e5) ds

Since every 2% is symmetric in the x; variable, we deduce that
2 (0,2',t) = 0 and therefore,

1
Bz (e me) aa
6Rﬁ{x1:1} 2

Since 2% — u = az] + ax] uniformly on compact subsets of Q,
we deduce that, in Qs N {z1 > 1}, 2% > ¢ is j is large and

. :
z;, — a uniformly,

ﬁﬁ%z/ G+MOﬂWM$%HMW

_WE]' /6]' Ej

Then we get

1
liminf F; > / (—a2 - Mwo) dx'dt.
j—oo ORA{w1=1} \2

On the other hand, we know from Lemma 1.2.1 that

€j

% —uy =0  weakly in L2(Qy2),

Zggcjl — Ug, in L2(Q3/2)7
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which implies that F; — 0.
Finally, integrating by parts, we get

1
-G, < / |25 ||V 25| dSdt —I—/ ~| V29| do'dt.
IR/ |=1} IR {w1=1}

From the convergence of 2% — wu it follows that
V2% — 0 pointwise in Q2 N {x1 > 0}.

If we now use that 2% are locally uniformly Lipschitz in space, we
deduce that

limsup(—G;) <0,

j—+oo
which gives that %ocz — M, < 0, a contradiction. This finishes the
proof. O

5. Behavior of limit functions near the free boundary

In this section we analyze the behavior of a limit function u =
lim u% near an arbitrary free boundary point.

First we show that every limit function u is a supersolution of
problem (P) under the assumption (1.0.4), and then we show that
if U is a global limit and wy in (1.0.4) is constant, there holds that

VU | < /2M,,, where M,,, = ffwo(s + wo) f(s) ds.

PROPOSITION 1.5.1. Let (u%,Y) be a solution to (1.0.1) in a do-
main D C R¥*L such that Y > 0 and verify (1.0.4) with wy > —1.
Assume that u® — u uniformly on compact subsets of D. Then u is a
supersolution of (P) in the sense that

i Au—uy =0 in{u>0}ND
ii. limsup |[Vu(z,t)] < 2M(zo,ty) for (xo,tg) € 0{u > 0} N

(x,t)ﬂ(xo 7t0)

D, u(z,t) > 0.

Proor. We only have to show ii. The proof is a rather simple
modification of Theorem 6.1 of [10].

Let v = limsup, 4_.( |Vu(x,t)| with u(z,t) > 0.

x0,t0)

Since u € Lipioc(1, 3) in D, we know that o < +oo. If a = 0 there is
nothing to prove. So let us assume that o > 0 and let (z,,, t,,) — (o, to)
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be such that u(z,,t,) > 0 and |Vu(z,,t,)| — «. Let (z,,$,) € DN
0{u > 0} be such that

dy, = max{|x, — zn|, [tn — sn|/*}
= inf max{|z, — 2|, |[t, — s|*/?}}.
(z,s)éa{u>0}{ X{| ’ ‘ | }}
Let us consider the sequence

1
ug, (z,t) = d—u(zn + dpx, 8, + d2t).

n

Since u € Lip(1, %) in D and d,, — 0, given a compact set X C RV+!
the functions ug, are uniformly bounded in Lip(1, 1) seminorm in K, if
n is large enough. On the other hand, w4, (0,0) = 0 for every n. So that
ug, are uniformly bounded on compact sets of RN*1. Therefore, for a

subsequence (that we still call ug, ), ug, — u uniformly on compact
sets of RV*!, where ug € Lip(1,3) in RV*L.

Let T, = (zn— 20)/dn, tn = (tn—5,)/d?. Then (7,,t,) € 0Q1(0,0)
so that (for a subsequence) (Z,,t,) — (Z,t) € 0Q1(0,0).

On the other hand, since ug, > 0 in Q1(Zy,t,) we deduce that in
Q1(Z,t), up(z,t) > 0 and ug is a solution of the heat equation.

Let us consider the sequence
L Vg, (Tn,tn)  Vu(z,,t,)

We may assume that v, — v. Let us see that

|\Vu(zn, t,)| — —(,1).
v

To this end, we will show that Vu,, — Vuy uniformly on compact
subsets of @Q1(Z,t). But this is a consequence of the fact that any
such compact set is at a fixed positive distance from the boundary of
Q1(Zn, t,), in n is large enough. In fact, let K be any such compact set
and let 7 > 0 be such that Ns, (K) C Q1(T,,t,) for n large. We have,
for n, m large,

|Vug, (z,t) — Vug,, (z,t)] = |V(ug, — ua,, )(x,t)]

< C max |ug, — Udq,,
NQT(K)

for any (x,t) € K,

since every ug, is a solution of the heat equation in @Q1(%,,t,). There-
fore we have the uniform convergence of the gradients, so that

(9u0 _ .
E( ) =«
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On the other hand, it is easy to see that |[Vug| < o in RN*L. In
fact, let R > 0 and ¢ > 0 be fixed. There exists Ay such that
|Vut(z,t)| <a+6 for (z,t) € Qrr(wo,1o)
if A < Ao.

Since Qa,r(2n, Sn) C Qsn,r(To,t0) if A\, = max{|z, — x|, |[t, —
to]"/2}(> d,,) and R > 1 and since \, — 0 as n — 400, we deduce that

Vg (z,t)] <a+d for (z,t) € Qxr(0,0)

if n is large enough. Thus Vu; — Vug *-weakly in L>(Qg(0,0)) and
therefore [Vugd| < a+4§ in Qr(0,0). Since § and R where arbitrary we
deduce that

Vul| <a in RV

Let V' = Oug/0v. We know that V is a solution of the heat equation
in {up > 0} since wug is a solution of the heat equation in this set. On
the other hand, we know that V' < « in {ug > 0} and V(Z,1) = «a.
Since a > 0 we must have ug(Z,t) > 0 (otherwise ug = 0 in Q7 (Z,1))
and thus up > 0 in Q,(z,t), for some p > 0. It follows that V' = a in
Q, (Z,t). Moreover, if we call R the set of points in {ug > 0} N {t <t}
which can be connected to (Z,t) by a continuous curve in {ug > 0}

along which the t—coordinate is nondecreasing, we see that V' = « in
R.

Since |Vug| < a in {up > 0} we deduce that Vuy = Vv in R.
Let us assume, for the sake of simplicity, that v = e;. Then by the
considerations above

up(z,t) = awy +b(t) in R.

Since wg is caloric in R, b(t) must be constant. Thus there exists
7 € RY such that

up(z,t) = a(r —&); in R.
It is not hard to see that R = {(x — %); > 0, ¢t < t}. Hence,
up(z,t) =alr —2); in{(x—2); >0, t <t}
By Corollary A.1 of [10], we get for some & > 0
uo(z,t) = alz — )7 +o(|lz — & + [t —#Y?) in {(z — %), <0, t <1}
Let us consider for A > 0 the function (ug)r(x,t) = (1/N)up(Ax +

7,A%t +1). Now, one can check that (ug)y converges uniformly on
compact sets of RV*! to ugy where

ugo(w,t) = ax{ +axr; in {t <0}.
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Let )
(u)g, (z,t) = d—uaj (zn + dpx, S5 + dit).

mn
By Lemma 1.3.1, there exists a sequence j,, — +o0o such that (u®n), —
1o uniformly on compact sets of R¥*! and €;./dn — 0. It is easy to
see that (u®n)y is a solution to

0
g(uej")dn = ((u)g, + (W9 )a, ) fe;, ja, (u7)a,)

in Q(z,t) for n large, where (wn)y, = (1/d,)wn (2, +dpx, s, + d>t).

A(usj“ )dn —_

By calling €% = ¢, /d,, u = (u%n)g, and w™ = (wn),, , then u
are solutions to (P ) with

0
wen

5~ — wo(zo,to) uniformly on compact sets of Q1(7,1),
n

U — uo uniformly on compact sets of Q1(Z,t),

(up)r, — ugo uniformly on compact sets of RN+

g2 — 0 and Ay — 0. Therefore we can apply Lemma 1.3.1 again and
find a sequence €% — 0 and solutions u™* to (P.oo) in Q1(0,0) such
that

00

wen

5 — wo(Zo,to) uniformly on compact sets of Q1(0,0),
gn
U — ugy = axi + az] uniformly on compact sets of Q1(0,0).

Finally, if & = 0 we apply Lemma 1.4.1 and if & > 0 we apply Lemma

1.4.5 to deduce that

a< ZM(I(), to)

So the Proposition is proved. O

LEMMA 1.5.2. Let (u%,Y®) be a solution to (1.0.1) in a domain
D; such that Y5 > 0 and satisfies (1.0.4) in D; with wy = constant.
Here D; is such that D; C Djy1 and U;D; = RN Let us assume that
u — U uniformly on compact subsets of RNt as j — oo ande; — 0,
with U >0, U € Lip(1,1/2) and 0{U > 0} # 0. Then,

(1.5.3) VU| < v/2M,,  in RN*!
with M, = f_lwo(s + wp) f(s)ds.

PRrROOF. The proof is similar to that of Theorem 6.2 in [10]. Here

we use Lemmas 1.4.1 and 1.4.5 instead of Propositions 5.2 and 5.3 in
[10].
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Let a = sup|VUT|. By assumption, @ < +o0o. If @ = 0 there
is nothing to prove. Let us assume that o > 0 and let (z,,t,) be
such that U(z,,t,) > 0 and |VU(x,,t,)| — a as n — 4o0o. Let
(2n, sn) € 0{U > 0} be such that

d,, := max{|x, — z,|, [t, — sn|1/2}

—  inf i — sy
(z,s)ég{wo}{maxﬂx 2|, | 5|2}

Let )
Ug, (2,t) = —U(zn + dp, 8, + d2t).
1

dn

Then the family Uy, is uniformly bounded in Lip(1,5) seminorm in
RN and since Uy, (0,0) = 0, the family is uniformly bounded on
compact sets of RV T, So that we may assume (by taking a subsequence

that we still call Uy,) that Uy, — Uy uniformly on compact sets of
RN+ where Uy € Lip(1, ) in RN*L
Let Z,, = (T — 20)/dp, tn = (t, — s,)/d%. Tt is easy to see (by
taking a subsequence) that (z,,t,) — (z,t) € 9Q1(0,0). Also,
VUdn (jna 2?n)
|VUdn (fm z?n)|
We will assume without loss of generality that v = e;.

— V.

Proceeding in a similar way as in the proof of Proposition 1.5.1 we
see that necessarily
Vol 1) = alz —2)f in(x—2);>0,t<t
N2\ ale—2)] +o(lz—2| + |t —1Y?) in(z—2) <0, t<t
for some point & € R and some & > 0.
Let UOO = hm)\_@(Uo))\ where (Uo))\(.T,t) = (1/)\)Ug(§3+)\$, E“‘ )\2t)
Then, Ugo(z,t) = ax] + axr] and the proof follows as in Proposition
1.5.1 O






CHAPTER 2

The Free Boundary Problem

In this chapter, we find the free boundary condition for the limit
problem and we show that the limit function u is a solution to the
free boundary problem (P) in a pointwise sense, under the assumption
that the free boundary admits an inward spatial normal in a parabolic
measure theoretic sense (Definition 2.1.3). Then we show that, under
suitable assumptions, the limit function w is a viscosity solution of the
free boundary problem (P).

Finally, we end this Chapter with some applications of the results
and construct a family (u®,Y?) of solutions to (1.0.1) with w®/e —
wp # 0 such that v = limu® is a viscosity solution to (P), by showing
that the local assumptions in Theorem 2.2.9 can be fulfilled by imposing
conditions on the initial data (ug, Yy).

1. The free boundary condition

Throughout this section we will assume that (1.0.4) holds and that
for every K C {u = 0}° compact there exists 0 < n < 1 and gy > 0
such that, for € < g

uE
(2.1.1) — <7 in K.
£

This assumption is a natural one in applications, roughly speaking
it means that the mixture temperature reaches the flame temperature
only if some combustion is taking place.

As a consequence there holds that

£

wp = lim Z—limsupu?Z—n>—1 in K.

e—0 € e—0

V& — uf

So that, for the sake of simplicity we will assume from now on that
wy > —1in D.

We start this section with a lemma that is the essential ingredient
in the subsequent proofs.

47
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LEMMA 2.1.2. Let (u®*,Y**) be a solution to (1.0.1) in a domain
D C RN* such that Yo > 0 and (1.0.4) and (2.1.1) are satisfied
with wg > —1. Let u = limu®, with ¢, — 0, and B (u,z,t) =
f_uwoek (s 4+ w™)f.,(s)ds. Then,

B, (u*, z,t) — M(z, t)X{u>0}, n L}OC(D).

where M (z,t) = [

—wo(x,t)

(s + wo(z,t)) f(s)ds.
PROOF. First, let us observe that

| wroreis= [ wrogr(2)a

Cwoe woe e2” \e
- /_;0 (w?g + s)f(s)ds.
Therefore,
lim K (W + s)fe, (s)ds = M(z,t).

é‘k—>0 —WoEk

uniformly on compact sets of D.

Let us now see that B, (u,z,t) — M (x,t) uniformly on compact
subsets of {u > 0}.

Let K CC {u > 0}, then there exists A > 0 and ¢y such that
uk(z,t) > X Vep < eo, (v,t) € K. Thus, we have

u®k (z,t)
klim B., (u™(z,t),x,t) = klim (W + 8) fe (8)ds
—00 —00 —woek
€k
= klim (w® 4 8) fe, (8)ds = M(z,t).
o —WOEL

Since |B., (u®*, z,t)| < C on every compact subset of D, there holds,
for a subsequence that we still call €, that

B., (u*, x,t) — M(x,t) weakly in L (D).

loc

Clearly, M (z,t) = M(z,t) in {u > 0}. Let us see that M(x,t) = 0 in
{u = 0}°. In fact, let K be a compact subset of {u = 0}°. For every
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€1,&9 > 0 there holds that, for £ large enough
{(z,t) € K /ey < B, (u*,x,t) < M(z,t) —ea}| <

{(z,t) € K/Z—t(m,t) > —wo(x,t),

%1</_w (5+w0)f(s)ds<M—%2}.

In fact, let 6 > 0 be such that

—wp—0 e
/ (s +wp) f(s)ds < 31

Since u* /ey, is bounded in K,

ufk /ey,
B. (u, 1) — / (5 + wo) f(5)ds

. €1 €2
< _—
o min( 55 )

if £ > kg. On the other hand

uak Ek
- 2 —
€k Ek

if k > kq. Thus, if & > max(ko, k1) and u® /e, < —wq there holds that

Z-ﬂ]o-&

B, (u*, x,t) < e.

Therefore,

€k

{(z,t) € K/Z—k(x,t) > —wo(z, 1),

utk

€1

5</:; (s—l—wo)f(s)ds<M—%2}

Uk
<@t e K/ —wet) +u s <1—p)

€k €k

[T}
>0 2 <1
250 - S1-u

<t ek/—

< {w0) € K /Y[ ) > 5]
k

Since Y+ f., (u®*) — 0 as measures in K and Y > 0, f,, > 0 there
holds that

Yerf,, (u) — 0 in L'(K).
Therefore,

|{(ZL‘,t> < K/El < Bak(uakax7t) < M(J],t) _62}| — 0.
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On the other hand, let 1 > 1 > supy(—wy) be the constant in (2.1.1)
in K, there holds that

u:: €x _ufkk wf':k
B., (u*, x,t) = . (8 + )f(s)ds —i—/ (s + 6 f(s)ds
w k —wo k
n k €k —wk €k
g/ (s+w ) f(s)ds + ’ (s—irw ) f(s)ds
w;: Ek —wo €k
n WEF n
:/ (s+ . ) f(s)ds — / (s +wo)f(s)ds < M(x,t),
—wp k —wo
since —% < % <7 in K. Therefore,
n
limsup B;, (u®*, x,t) < / (s +wo)f(s)ds < M(z,t).
—wo

So that, for e5 > 0 small we get
{(z,t) € K [e1 < B, (u™,z,t)}| =
{(w,6) € K /21 < Boy(u,3,1) < M — 5}] — 0.

Let us now see that M(x,t) = 0 in K. As in Lemma 1.4.1 we
see that M(x,t) > 0. Now assume that for some g; > 0 we have
{M(x,t) > e;}| > 0. Then, there exists m such that [{M(z,t) >
e1+ =} = |An| > 0.

Now,

_ 1
/ B., (u* x,t) — / M(z,t) > (81 + —)|Am|
Am Am m

but,

/ B, (u ™, z,t) :/ B., (u*, z,t)
Anm AmN{Be, (u®k z,t)>e1}

+ / Be, (u™, ).
A {Be, (u®k z,t)<e1}

Since the first term in the right hand side goes to zero and the second
is bounded by €1|A,,|, we get a contradiction.

The proof is finished. U

Let us give the definition of a regular point.
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DEFINITION 2.1.3. We say that v is the interior unit spatial normal
to the free boundary 0{u > 0} at a point (xo,to) € 0{u > 0} in the
parabolic measure theoretic sense, if v € RN, |v| =1 and

. 1
lim s / / | Xu>0) = X)) (2o w)>0p|dwdt = 0.
r(zo,t0)
DEFINITION 2.1.4. We say that (xg,to) is a reqular point of 0{u >

0} if there exists an interior unit spatial normal to 0{u > 0} at (xg, to)
wn the parabolic measure theoretic sense.

We can now prove the main result of this section.

THEOREM 2.1.5. Let (u®,Y*<) be a family of uniformly bounded
solutions of (1.0.1) in a domain D C RN such that u¥ — u uniformly
on compact subsets of D, Y >0 and verify (1.0.4) and (2.1.1), with
wo > —1. If (xg, 1) is a regular point of DN O{u > 0}, then u has the
asymptotic development

u(z,t) = alz — xo, V)" + o(|z — xo| + [t — to]?),
with o = \/2M (g, to), where M(z,t) = f_lwo(x 1t)(s + wo(z, 1)) f(s) ds.

Here v is the interior unit spatial normal to the free boundary at (xq, to)
in the parabolic measure theoretic sense.

PROOF. We assume, without loss of generality, that (zo,ty) = (0,0)
and v =e; = (1,0,...,0).

Let ¢ € C°(D). We proceed as in Lemma 1.4.1. Let us multiply
the equation for u® by uf v and integrate by parts. We have

//Dufui;ﬂﬁ = %//D\Vzﬂ?qpxl — //Duilvuav¢+//Df5’a(ua,x,t)wx1
+//D (w? —wo) f(—wo)(wo)xler//DwT; < _w f(s)ds) .

Since
B, t) = [ 7 st woss+ [T (1 - ) p(s)as
—wo —wo J

and B, (u%, x,t) — 0 weakly in L'(K) for every K C {u = 0}° com-
pact, there holds that

u®d

£

F (z,t):= [ " (s+wo)f(s)ds — 0 weakly in L'(K).

—wq
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Since F;; is nonnegative there holds that
F., —0 inLYK).
So that, for a subsequence that we still call €; there holds that
F., —0 ae. K.

Thus,
u_a] — —Wy ae. K
&j
Therefore,
u’d 1
(2.1.6) N f(s)ds — ( f(s)ds) Xius0} a.e. D.
—wo —wo

By using Proposition 1.2.1, Lemma 2.1.2 and (2.1.6) we can pass
to the limit (for the sequence ¢; — 0) in the latter equation and get
(2.1.7)

I s 2 [ 19— [ s
o ff 20000 [ o ([ 100)

for every ¢ € C2°(D).

Now, let ¥ (z,t) = Ap(3522, 542). Replacing ¢ by ¢* in (2.1.7)

and changing variables, we get for uy(z,t) = Tu(zg + Az, to + A*t),
(2.1.8)

// )i () e ¥ = %// [Vuatr, — //(UA)Q;1VUAV1/;
+ //{upo} Mz, Nt)tp,, + //{u>0} (wo),, ( _lwo f(s)ds) .

Let 7 > 0 be such that Q,(zg,t9) CC D. We have that u), €
Lip(1,1/2) in @Q,/(0,0) uniformly in A, and u,(0,0) = 0. Therefore,
for every A\, — 0, there exists a subsequence \,, — 0 and a function
U € Lip(1,1/2) in RN*! such that uy , — U uniformly on compact
sets of RN+,

By our assumption on (zo, ty), we can easily see that for every k > 0
(2.1.9) {ur > 0} 0 {1 < 0} N Q(0,0)] = 0 as A — 0,
and

(2.1.10) H{uy =0} N{z; >0} NQr(0,0)] — 0 as A — 0.
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Now, using lemma 1.3.1 and the fact that ¢* — 0 uniformly in D
and supp ¢ C supp ), we can pass to the limit in (2.1.8) and get
(2.1.11)

1
J[ v [ wupe - [ wvove
{z1>0} {z1>0} {z1>0}
+M(0,0)// Y,
{$1>0}

Our aim is to prove that U = ax{. First, by (2.1.9) and (2.1.10),
we deduce that U = 0 in {x; < 0}. On the other hand, U is a solution
to the heat equation in {U > 0} C {x; > 0}. By Corollary A.1 in [10],
for every 2’ € RV~ t € R there exists o > 0 such that

Ulz,t) = axf +o(|(z1,2") — (0, )] + [t — ) in {1 >0} N {t < }.

/

Replacing the test function ¢ by ®*(z,t) = AP(5H, ;i", 1) with @ €
C>({t < 0}) and proceeding as above we get

2
(2.1.12) —% / ®,, + M(0,0) // o, = 0.
{xz1>0} {z1>0}

In order to pass to the limit for a sequence A\, — 0 we have used Lemma
1.3.1.

Thus, a = /2M(0,0).
Jr

In order to see that U = az] we use Lemma 1.5.2. In fact, by
Lemma 1.3.1 there exists a sequence j,, — oo such that

1
u’r = )\—ugjn(knq:, Nt) — Ul(x,t)

n

uniformly on compact subsets of R¥*1. We recall that (u’,Y°") is a
solution to 1.0.1 with e replaced by ¢,,. Moreover,

w  wn (A, A2t)

6n gj

— U}O(O, O)

uniformly on compact sets of RV*!,

On the other hand, U > 0 and 0{U > 0} # (). By Lemma 1.5.2 we
have that |[VU| < a = 1/2M(0,0). Since U = 0 in {x; = 0} we deduce
that

U < ar in {z; > 0}.
By Hopf’s Principle, we deduce that

U=an in {z; > 0}.
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Since the limit of uy , is ax! with « independent of the sequence
A, we deduce that uy — ax] so that

u(z,t) = ax{ + of|z| + [¢]'/?).

The Theorem is proved. 0

REMARK 2.1.13. It is clear from the proof that the resull is still

u®J

true if we replace condition (2.1.1) by the following property: “= —
J
—wy a.e. {u=0}°.

2. Viscosity solutions

In this section we prove that, under suitable assumptions, the limit
function wu is a viscosity solution of the free boundary problem (P).

For the sake of completeness, we state here the definition of viscosity
solution that was introduced in [11] for the two phase case of this
problem when wy = 0.

DEFINITION 2.2.1. Let Q be a cylinder in RN x (0,T) and let v €
C(Q). Then v is called a classical subsolution (supersolution) of (P)
m Q if v>0 and

(1) Av—v,>0 (£0) in Qt =QnN{v>0}.

(2) v e CHQT).
(3) For any (z,t) € 00T NQ, Vu(x,t) #0, and

Vo(z, )] > /2M(2,8) (< /2M(z,1)).

We say that v is a classical solution in Q) if it is both a classical
subsolution and a classical supersolution.

DEFINITION 2.2.2. Let u be a continuous nonnegative function in
Q; u is called a viscosity subsolution (supersolution) of (P) in Q fif,
for every subcylinder Q' CC Q and for every classical supersolution
(subsolution) v in @',

u<wv on 0,Q (u>v ond,Q') and
v>0on{u>0}Nn0,Q (u>0on{v>0}n09Q)
implies that u < v (u > v) in Q'

The function u is called a viscosity solution if it is both a viscosity
subsolution and a viscosity supersolution.
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DEFINITION 2.2.3. Let u be a continuous nonnegative function in D
and let (xg,ty) € 0{u > 0} ND. We say that (xo, 1) is a reqular point
from the nonpositive side, if there exists a reqular nonnegative function
v in D such that v > w in {u > 0} fort <ty and v(xg,ty) = u(xo, to).

Finally we need the following definition of nondegeneracy.

DEFINITION 2.2.4. Let u be a continuous nonnegative function in
D. Let (xg,t9) € D be such that u(xg,ty) = 0. We say that u does not
degenerate at (zo,to) if there exist ro > 0 and C' > 0 such that

sup u>Cr for 0 <r <.
IpQr (z0,t0)

We now prove that, under suitable assumptions on the limit func-
tion wu, there holds that w is a viscosity solution to the free boundary
problem.

THEOREM 2.2.5. Let u = limu®, where (u*,Y=*) are uniformly
bounded solutions to (1.0.1) with Y& > 0, satisfying (1.0.4) in D, with
wo > —1, and such that u* either satisfies (2.1.1) or u;* <0 in D.

If u™ does not degenerate at every point of the free boundary which
1s reqular from the nonpositive side, then w is a viscosity solution of

(P).

In order to prove Theorem 2.2.5, we need to show that w is both a
viscosity super- and subsolution. We perform this in Theorems 2.2.6
and 2.2.9 respectively.

We want to remark that every limit function w is a viscosity su-
persolution to problem (P) (i.e. we do not need the nondegeneracy,
monotonicity nor condition (2.1.1)).

Let us first show that every limit function u is a viscosity superso-
lution.

THEOREM 2.2.6. Let u = limu®, where (u*,Y <) are uniformly
bounded solutions to (1.0.1) with Y+ > 0, satisfying (1.0.4) in D, with
wy > —1.

Then u is a viscosity supersolution of (P).
PRrROOF. The proof of this Theorem is analogous to that of Theorem
4.1 in [11]. We include the details here for the sake of completeness.

Let @ CC D be a cylinder which will be assumed to be By (0) % (0,7)
and let v be a classical subsolution in @) satisfying

u > v on 0,
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and
u>0on {v>0}N09Q if {v>0}N09Q #0.
We will show that v > v in Q).

If {v >0}N3J,Q =0, then v <0 in 9,Q and therefore v <0 in Q.
As u > 0 everywhere, we see that u > v in Q).

If {v >0}Nd,Q # 0, it follows from the continuity of v and v that
u>0in {v>0}NQ for 0 <t < 7, for some small 7 > 0. It is not
hard to see that if w > 0in {v >0} NQ for 0 <t < s, then u > v in
QN{0<t<s} Weset

to=sup{0<s<T:u>0in{v>0NQN{0<1t<s}},

and we will arrive at a contradiction assuming that ¢ty < 7.

We have that tg > 0 and v > v in Q N {0 < ¢ < to}. In addition,
there exists a sequence (x,,t,) — (79,%9) € Q such that u(x,,t,) =0,
(xn,tn) € {v>0}NQ. Then, u(zg,ty) = v(xo,to) = 0 and (xg,ty) €
0{v > 0}N@Q. Since v is a classical subsolution, there exists a sequence
Yn — o such that 0 < v(yy,,to) < u(yn,to), so we have proved that

u>vin @N{0 <t <to},
(20,t0) € H{u>0}No{v>0}NQ.

Now consider for A > 0

1
uy(x,t) = Xu(xg + Az, to + A%t),

1
on(z,t) = Xv(xo + Az, tg + A%t).

Since u,v € Lip(1, %) in @, and u,(0,0) = v)(0,0) = 0, there exists a
sequence A\, — 0 and wug, vy € Lip(1, %) in RV*! such that vy, — wg
and uy, — g uniformly on compact sets of R¥*!. Since v is a classical
subsolution, if we assume that Vo™ (zo,to)/|VoT(zo,to)| = €1 and we
set & = |[Vot(xg, )], we see that (as v > 0)

vo(x,t) = axy, a > \/2M (zo, to).
Moreover, uy > vy when ¢ < 0, so that wg is caloric in {z; > 0, t < 0}.
In addition uy(0,0) = 0.

There are two possibilities depending whether the following asser-
tion holds or not:
(2.2.7)

There exists § < 0 such that ug — vy > 0 when z; >0, d <t < 0.
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CASE I. Suppose that (2.2.7) does not hold. Then there exists a
sequence (z,,t,) in {z1 > 0, t < 0} such that ¢, — 0 and ug(x,,t,) —
vo(xp, t,) = 0. From the strong maximum principle, it follows that

ug = vg = axy in{z; >0, t <0},

implying that

1
(2.2.8) )\—(u —v)(zo + Aner, o) — 0 as n — +o0.

We denote (x,t) = (x1,2',t) and for small p,r > 0 we define
E={g(a',t) <z < g(a,t)+p, |2 —xp| <7, |t —to| <7?},

where g is a C! function in a neighborhood of (z},ty) such that for a
small ro > 0

By (o, t0) N O{v > 0} = B, (o, to) N{(x,t) | 21 = g(a, 1)}
and

By (o, t0) N {v > 0} = B,y (z0,t0) N {(z,t) | 21 > g(2', 1)}

If r and p are small enough, then £ C {v > 0} and therefore, u—v is
positive and supercaloric in EN{t < to} and in addition, u—v > p > 0
in B, for some small z and some ball B with center in 0,5 N {t < t,}
and not touching d{v > 0}.

Let w; be a caloric function in £ with smooth boundary data sat-
isfying

w1:Oon8pE\B, O<w1§,uon8pEﬁB,
and let wy be the caloric function in E such that wy = v on 9,E.
We have
u—uv>w > Cwy in EN By, (xo,to) N{t < to}

for some constants C' > 0 and r, > 0 small, the last inequality following
from Theorem 3 in [14]. Hence,

u—v>Cuv in EN By, (xo,to) N{t < to}

and therefore,

e _
ll)\rgérgfx(u —v)(zo + Aey, ty) > Ca > 0,

which contradicts (2.2.8).
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CASE II. The argument above implies that necessarily (2.2.7) holds.
Then, from Lemma A.1 in [10], it follows that

(o — vo)(x,t) = o + of|z| + [¢]'/?)
when x; > 0, t < 0, for some ¢ > 0. That is,

uo(x,t) = axf + o(|z| + [t|V?) in {z; >0, t < 0} with o > a.
Now consider for X\ > 0,

(wo)a(z,t) = iu()(/\x, Nt), (vo)a(z,t) = %vo()\x, N2t).

As before, there exists a sequence \, — 0 and wugg, vog € Lip(1, %) in
RN+ such that

(Uo),\n — Upo, (Uo),\n — Voo

uniformly on compact sets of RV*!. Clearly 1oy > vgo when t < 0 and
moreover,

voo(z,t) = ax] and
ugo(z,t) = axf in {x; >0, t <0}.

Since g is caloric in {ugy > 0}, we can apply Corollary A.1 in [10]
to ug in {x; <0, t < 0} and hence,

oo, 1) = ax] in {z; >0, t <0},
02y 4 o(|o| 4+ [¢M?) in {z, <0, t < 0},

for some v > 0. We consider
1 1
(Uoo)A(ZE, t) = —UOO(/\ZL', /\2t>, (’l}oo))\(l‘, t) = —’UOQ()\JZ, )\Qt)
A A

There is a sequence A, — 0 and oo, vooo € Lip(1, 1) in RV*! such
that

(00), — Uooo, (Vo0) A, — Vooo
uniformly on compact sets of R¥*1 and moreover,
vooo(z,t) = axy and
ugoo (7, ) = axf + x|
for ¢t <0.

Applying Lemma 1.3.1 three times, we find a sequence ¢;

and solutions u5"" Y™ of (1.0.1) in Q1(0,0) such that u="" — uggo

and w™" /;9%° — w(x(, to) uniformly on compact subsets of Q;(0,0).

000 _, 0
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We recall that
ugoo(z,t) = axf +~yxy  with a > 0,7 >0
for ¢t < 0.

If v =0, we apply Lemma 1.4.1 to ugg in a neighborhood of some
point (0,7) with ¢ < 0 and deduce that

(0% S \/ 2M($0,t0).
If v > 0, we apply Lemma 1.4.5 and conclude that v = o and

(07 S \ QM([L'O, to)

In any case, as a > & > /2M(xg,ty) we get a contradiction and
this finishes the proof. O

Finally, we end this section (and the proof of Theorem 2.2.5) by
showing that, under the nondegeneracy assumption, a limit function «
is a viscosity subsolution.

THEOREM 2.2.9. Let u = limu®, where (u*,Y<*) are uniformly
bounded solutions to (1.0.1) with Y& > 0, satisfying (1.0.4) in D, with
wo > —1, and such that u* either satisfies (2.1.1) or uf* <0 in D.

If u™ does not degenerate at every point of the free boundary which
is reqular from the nonpositive side, then u is a viscosity subsolution of

(P).

PROOF. In order to see that u is a viscosity subsolution, let v be a
classical supersolution such that

v <vin 9,Q and v > 0 in {u > 0} N J,Q

we want to see that u < v in Q.

If not, we define

to=sup{0<s<T:v>0in{u>0}NQN{0<t<s}}

From the definition of ty, it follows that t, > 0 and, from our
hypotheses we deduce that v > uwin QN{0 < ¢t < ty}. In addition, there
exists a sequence (z(s),t(s)) — (wo,t9) € Q such that v(z(s),t(s)) =
0, (z(s),t(s)) € {u>0}NQ. Clearly, u(xo,to) = v(zo,to) = 0 and
(xo,t0) € H{u > 0}NQ. If (x,tg) € {v = 0}° then, for 7 small we have
u < v =01in B (xg,ty) N{t < to} and therefore, u = 0 there, which
contradicts our hypothesis. Thus

v>uin @N{0 <t <to},
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(20,t0) € H{u>0}No{v>0}NAQ.

We may assume, without loss of generality, that (zo,to) = (0,0)

and 1(0,0) = @1 C @ (consider instead of u the function %u(wo +

Ao, to + At) for certain \g > 0 small, and analogously with v). Let us
take

on(z,t) = %U(/\:L', Nt),  uy(z,t) = %u()\x, N2t).

It is easy to see that there exists a sequence A\, — 0 and functions
ug, Vo such that vy — vy, uy — uy.

Since v is regular, we have that vy(z,t) = Bz with 0 < 3 <

2M(0,0) (for some system of coordinates).

Let us see that also ug(z,t) = ax] for some a > 0,

We may think that in @, 0{v > 0} is the graph of some function
(' t) =z, v = (x1,2") with ¢ € Lip(1,1/2), where ¢(0,0) = 0 and
{v>0} ={z; >, t)}.

Hence, we have that

(', )] < C (|2 + [t]?) .

Let R = {(z,t) € Q1: 1 < —C (|2'| +[¢['/*)}. Then RN {v >
0} = 0 and let w be the caloric function in O = Q7 \ R with w =0 in
J,R and w = L > ||u||« in the rest of 9,0.

Since u is globally subcaloric and v < w on 9,0, then u < w in O.

Now, w — wu is supercaloric in O, w — u > 0 in the interior and
w—u =0 at (0,0), then, by lemma A.1 of [10], we have that w —u =
Sx7 +o(]x|+|t]/?) and, since by the same lemma, w has an asymptotic
development at (0, 0),

u(x,t) = axf + o(|z| + [t|'/?), with a > 0.

Since by hypothesis u™ does not degenerate, there follows that o >

On the other hand, since v is regular, v admits an asymptotic devel-
opment at the origin in the form v(z,t) = Bz} + o(|z| +[t[*/?). Clearly,
B> a.

Now, let & be the caloric function in O := Q7 N{v > 0} N {—pu <
t < 0} for some small p > 0, with A = v — u on 8p(’j. And, let g be
the caloric function in @ with ¢ = v on 8p@. Then, h = g = 0 in
QrNofv>0tN{—p<t<0tand h>0,9>0inO.
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Therefore, by the results in [1], there exists 0 > 0 such that h > og
in @, N{v>0pn{-5 <t <0}

Since u is subcaloric in ()7 and v < v in (); we deduce that v —u >
ouin @, N{v>0}N{-5 <t <0} In particular § —a > oa > 0.

The theorem will be finished if we show that o = /20 (0,0).
Case 1: u* verifies (2.1.1).

As in Theorem 2.1.5, we obtain

//D“t“wﬂﬁ: %//DIVUIQ%I —//DumVuvw
i //m{u>o} M(z, 1), + //Dm{wo}(w())“ < jwo f(s)ds> Y

for every test function . Then, taking ¢*(z,t) = Mp(%, +5) and chang-
ing variables, we get

//D(u*)t(w)l‘lw = %//D V[, — //D(uA)leuAWﬁ
+ / /D . M(\z, N t)i,, + / /D m{u>o}(w°)“ < lwo f(3>ds) "

By Lemma 1.3.1, we get (for some sequence Ay — 0)

1
0= _Lo2 / / e + lim / / MO, A2E) 1,
2 D{z1>0} k=o0 J Jpnfuy, >0}

We want to check that X{ukk >0y — X{z;>0) a.e. or, equivalently,

(1) {z1 > 0} C U2, Ni>p {un, > 0} = liminf{u,, > 0} a.e.
(2) N2 Ugsp {un, > 0} = limsup{u,, > 0} C {z; > 0} a.e.

Let us see (1). If z; > 0, we get that ax; > 0 and since uy, (x,t) —
ax; it follows that uy, (x,t) >0 Vk > k.

Let us see (2). If exists k; — oo with U, (x,t) > 0 then it must
be x1 > 0, because if 1 < 0, we have that Uy, (z,t) = 0 for j > jo
(because as v is regular, {vy, > 0} — {x; > 0}). Since Uy, < Uy, We
get a contradiction.

Therefore,

1
0=—=-a? // Yy, + M(0,0) // Vg,
2 DA {w1>0} Dr{w1>0}



62 2. THE FREE BOUNDARY PROBLEM

So that,

1
0= / (—a2 — M(0, 0)> Yda'dt.
Dr{z=0} \2

Since 1t is arbitrary, 1o = M(0,0), so that,
a = \/2M(0,0)
and the proof is finished
Case 2: us* <0

We already know that, if we consider uy(z,t) = fu(Az, \*t), then
it follows that

ur(z,t) — ug(z,t) = axy,
uniformly on compact subsets of RV*1,
As before

// Fught = // |Vu5k|2¢xl_// TV
// Boy (0, 2, )0, + // (/wogk fak(S)dS) Wb
i //D(“’O)xl (5 =) )

Now, as in the previous case, if we consider first )*(z,t) = (%, 35)
and change variables, we obtain
(2.2.10)

Jaw e fnas
+// Bl (st 2, ), + // f<)3 v
+//D(w0)x1(l:_—j—wo)f(—w0)?/))\

where B (u, z,t) = fi‘wo(m /\Qt)s(s + we(x,t)) f-(s)ds. We want to pass

to the limit as both ¢, and A go to zero.

Using Lemma 1.3.1, we see that for every sequence A\, — 0 there
exists a sequence k, — oo such that 0, := e, /A, — 0 and udn =
(ufk)y, — wup uniformly on compact sets of R¥*1. By Proposition
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1.2.1 we see that we can pass to the limit in the first three terms of
(2.2.10) (with € = ¢4, and A = \,).

Let us study the limit of B(’s\:(u‘sn (x,t),z,1).

It is easy to see that in {x; > 0}, Bg‘;(u‘sn(a:,t),x,t) — M(0,0)
uniformly on compact sets. Now, let K C {x; < 0} be compact. We
will show that

V(B (' (w,t),2,t)) — 0 in L}(K)
In fact,

V(B (uf (x,t),2,1)) = Y f5, (™) V'™

w‘sn

On

+ X Vwo (A, A2t) (—— (2, 1) — wo(Anz, A2E)) f(—wo (An, A1)

udn

AVATI
5 / f(s)ds
n —wo(Anz,A21)

Since Y f5 (u°") — 0 as measures in K and is nonnegative, we deduce
that the convergence takes place in L'(K). On the other hand, Vu’"
is uniformly bounded. Therefore, the first term goes to zero in L'(K).

In order to see that the second and third terms go to zero uniformly
in K we only need to observe that

571 €k
u u-"n
—(x,t) =

5, (@t =

()\nﬂf, )‘it)

and a similar formula holds for %. So that

on
}u(; (z,t) — wo(Apw, \2t)| — 0 uniformly on compact sets of RV,
5 5
u'n w'r

> >,

dn — On
V On v Ekn
| :;U ‘(m, t) = )\n’ v ’()\nx, Mt — 0 uniformly on compact

n Eky,

sets of RV,

On the other hand, |Bg\: (u’(x,t),z,t)| < Ck, so that we have,

B (ub (w, ), x,t) — M(t)  weakly in L*(K).

Let us now see that, actually, the convergence takes place in L'(K).
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There holds that

0 0
a7 (Bor (™ (., 0), 2. 1)) = Y f, () (u™)e + =By (u™ 1)
d .\ .
— n < i
_0158"( 2,t) <Ckg  in K

On the other hand, for every (zo,ty) € K, and Q. (x¢,ty) C {z1 < 0}

0
— (B} (v’ (z,t),x,1)) =
/ / B )

/ By (u’(z,to 4+ 7°), z, (to + 72)) da

(

- / Bg\: (u(sn(l.? to - 7—2)7 z, (tO - 7-2)) dx 2 _O’T
Bz (zo)

since | By (u® (1), x,t)| < Ck for every compact set K.
Therefore there exists C'x > 0 such that

||B§\: (uén (‘Ta t>7 z, t)Hlel(K) < CK.

Hence the convergence takes place in L'(K) (for a subsequence).

Now arguing as in Lemma 2.1.2, we get that M (t) = 0 or M(t) =
M(0,0).

We can now take the limit in (2.2.10) for the sequences g, and A,
and we obtain

= ——CY // ¢x1+M 0 O // 'lvbm // wm
Dn{z1>0} Dn{z1>0} Dm{x1<0}

So that,

0= /mm:o} (;a _ M(0,0) — NI(t )) W da'dt.

Since 1 is arbitrary we get sa® = M(0,0) —M(t). So that, in
particular, M(t) is constant and then we have that M (t) = 0or M(t) =
M (0,0). Since a > 0 we deduce that M () =0 and

a =+/2M(0,0).

The proof is finished. U
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3. Consequences and applications

In this section, we study some consequences of the results collected
in Sections 1 and 2.

First, we prove a result that guarantees the nondegeneracy of a limit
function u and then we combine this result with Theorem 2.2.5 and
construct a family u® of solutions to (P.) such that the limit function
u = limu® is a viscosity solution to (P) for rather general initial data.

Now we prove a proposition that says that, under suitable assump-
tions, u* does not degenerate at the free boundary. The proof is similar
to Theorem 6.3 in [10], where the nondegeneracy of ut was proved in
the strictly two phase case. Here we assume, instead of (2.1.1) the
somewhat stronger condition that for every K C D compact, there
exist 0 <n < 1 and g9 > 0 such that for every 0 < € < g

e

(2.3.1) L <y imKEn{u=0}).
€

PROPOSITION 2.3.2. Let u = lim u®*, where (u®*,Y®*) are uniformly
bounded solutions to (1.0.1) satisfying (1.0.4) with wy > —1, such that
Y >0 and the functions u®* satisfy (2.3.1). Let (z9,1t9) € 0{u > 0}.

Let us assume that there exists v € RN, with |v| = 1 such that

H{u >0} N {{x — zo,v) >0} N Q. (g, t0)] -

lim inf
r—0+t |Q; (o, to)]
and
i inf {u =0} N{{x —z,v) <0} NQ. (xo,0)] - o
r—0+ |Q; (w0, t0)]

with ap + ag > %, then there exists a constant C' > 0 depending only
on N, f, ay + as and rq > 0 such that, if 0 < r < r,

sup u>Cr.
OpQr (zo,t0)
PRrROOF. Without loss of generality, we may assume that (xg,ty) =
(0,0) and that v = e; = (1,0,...,0).
We will note Q- = @, (0,0) and

1 1
(u*),(z,t) = —u* (TI,TQt), (Ye*)(z,t) = =Y (ra, 7‘215),
r r

1
u,(2,t) = —u(ra, r’t).
r
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STEP 1. Let us see that there exists vy > 0 and a constant ¢ such
that if r < rg and e, < g9 = £¢(r), then

//1(Y€k)rffk/r<<usk)r)d:c > c.

Without loss of generality we may assume that rq is small so that
lu®| < 1in Q.

Let 0 < 4X < a1 + g — % From our assumptions, it follows that
there exists ro > 0 such that, for r < rg,

o > 0} N {21 > 03 NQF| | [{uy = 0)° N {a < 0} N QY| _ 1
— + 2.
Qr) " o5 “a 7

We now fix r with this property. Then, there exists v > 0 small such
that

{ur >} 0 {21 >0} 0 Qr ] | {ur =030 {an <0} 0@ 1
Q| Q7| 2
Let us now define
A ={u, >v}N{x; >0}NQ7, B, ={u,=0}’N{x; <0}NQ;
and — B, = {(x1,2/,t)/ (—x1,2',t) € B,.}.

Then, we have

v

+ A

AN (=B,)| = Q7| = A
For 0 <y <1, let
glzr) = [{(@',t) « (z1,2',1) € A, N (=B,)}.
Let 0 < p < 1 be fixed, then
[{z1 = g(w1) > pA}] > 0.

In fact, if not
1

2 < A, N (=B,)| = / g(x1)dxy = / ~g(xy)dry < pS\
0 {9<pA}
which is a contradiction. Therefore, we have in particular that there
exists 0 < 2] < 1 such that
g(z1) = [N = {(@',1)/ (21, 2',1) € AN (=B,)} > pA

Let n > 0 be the constant in (2.3.1) in Q1(0,0), let 0 < &' < 9,

0 <b<V <1 besuch that
n < —wy(0,0) + 4§ < b.
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Let k > 0 be such that
f(s) >k >0 fors<V.
Then, for (2/,t) € A, we have

1 gl
— (U (2, 2 ) > > b,
€k/T( ) ( 1 ) 2(€k/T>

1
6k/T

if e, < €1 = &1(r) is small. So that, for every (',t) € A, there exists
7 € (—1,1) such that —w(0,0) + (5 < (usk),. (27, 2", t) < D.

(u™),(—af,2',t) < —wo(0,0) + &

a/r
Now, by the uniform Lipschitz regularity of (u°*), and (Y**),, and
(1.0.4), we have that for e < (< g1) and r < ry,

(ng)r (}/Ek)r
er/r er/T

where C depends on 6, ', b, b, on the Lipschitz constant of u® and Y**
in ()7 and ry depends only on wy.

(v, 2',t) <V and (xy,2',t) > & if |[xy — 2| < C’i—k

Finally we have

Jl ot = ], SRR )

/H te/( )25’ df(( ))>H}‘

Ex/T ex/r

]AT\ZC’— > 208 kpd = c.
T

>0

€k/T

STEP 2. Now we will prove that there exists a constant C' > 0 such
that, for every r > 0 small,

sup u > Cr.

OpQr
We will proceed by contradiction. If the result were false, there would
exist a sequence r, — 0 such that

1
sup u < —71p,.
QPQ;’“" n

Since u®* — u uniformly in Q— there holds that

- 2
sup u* < —rp,,
n

817 Q;rn
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for k > k(n). Therefore we have

S

sup (u*),, <
0pQy

In addition, by STEP 1,

/] Y e o (0)) 2

as long as r, < rg and ¢ < gg.
Since (u®*),,. are solutions to
0
"ot
in ()5, there holds the representation formula

@), 000 = [ .- [ e (6))6,

Qs

A(u), (@™ ) = (V) foprn (W)r,)

where

P >0 on 0,Q5, / P=1,
OpQy

G >0in @5, G>p>0in Q7.
It follows that

2 Iz
€k < - _~
(u*),..(0,0) < - e < 20,

if n is big enough and €, < min{eg, ex(n)}. But this gives a contradiction
since (u®*),. (0,0) — 0 as k — oo. Thus the proof is complete. O

REMARK 2.3.3. Proposition 2.3.2 remains true if we change the
hypothesis that u®s satisfies (2.53.1) by

Uk

(2.3.4)

— —wyp a.e. {u=0}°.
€k

In fact, as in the proof of Proposition 2.3.2 we consider for each 0 <
r <1 the sets A, and B,. So that, for some 0 < A < 1

|A- 0 (=B,)] = M@y .
Since B, C {u, = 0}°, there holds that

()
e/r

(=21, 2, t) — —wo(—rxy,ra’, r’t) a.e. A.-N(=B,).
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Let 0 <
(

< 1. There exists C, C (Ar N (—BT)) such that |C,.| =
AN r)

1
—B,)| and
(u)r
e/r

Let 6 > 0. There exists 1 = 1(r) such that

(u)r

e/r
ife <epandr <rg= r0(9). Now, the proof follows as in Proposition
2.3.2 by taking X = pA| Q1| and

A =A{(2)t) ) (o, 2/ 1) € C,}.

REMARK 2.3.5. Proposition 2.3.2 remains true if we change condi-
tion (2.3.1) by condition (2.1.1). In fact, as in the proof of Theorem
2.1.5 we see that condition (2.1.1) implies that

Be(u™,2,t) = 0 Ly ({u=0}°).
As in Theorem 2.1.5 we deduce that u®* satisfies (2.3.4).

(=1, 2", t) — —wo(—rxy, 2’ 7°t)  uniformly in C,.

1)
(=21, 2", t) < —wo(—razy,ra’, r’t) + 3 < —wp(0,0) 4+ 6 in C,

Using Remark 2.3.3, Remark 2.3.5 and Theorem 2.2.5 we get the
following Corollaries.

COROLLARY 2.3.6. Let u = limu®* where (u*,Y®*) are uniformly
bounded solutions to (1.0.1) in a domain D C RNTL with Y= > 0,
which verify (1.0.4) with wg > —1 and such that u®* satisfies (2.1.1).
If the free boundary D N 0{u > 0} is given by x; = g(2’,t) with g €
Lip(1,1/2), then, u is a viscosity solution of the free boundary problem
(P).

COROLLARY 2.3.7. Let u = limu®* where (u*,Y<*) are uniformly
bounded solutions to (1.0.1) in a domain D C RN*L with Yo+ > 0,
which verify (1.0.4) with wy > —1 and such that u* satisfies (2.5.4)
and us* < 0. If, for every (xo,ty) € DN I{u> 0}, {x € RN /(z,t) €
DN{u > 0}} is given by xy > ®(2) with ®, Lipschitz continuous then,
w is a viscosity solution of the free boundary problem (P).

Proor. We only need to see that u does not degenerate at points
of the free boundary which are regular from the zero side. Let (xq, o)
be any such point. We see that we can apply Remark 2.3.3 at that
point. In fact, since u;* < 0, u is decreasing in time. Therefore,

{(z,t) Jx1 > P(x), t <to} C {u>0}
and the parabolic density of this set is positive. O
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In particular, Corollary 2.3.7 can be applied to solutions of (1.0.1)
with uf constructed as in [13] and Y7 a small perturbation of uf§. In
fact we have the following result.

COROLLARY 2.3.8. Let ug € C(RY) N C?*({ug > 0}) be such that
[woll ez (quosay) < 00, Aug < 0 and (uo)s, — A[Vue| = 0 in {ug > 0}
with A\ > 0. Assume, moreover that 0 < ay < |[Vug| < a1 < v2M
in a neighborhood of the free boundary: {x € {uy > 0} / dist(x,{uy =
0}) <~} and My = fol sf(s). Then, there exists a sequence (u, Yy) €
(C’l (RN ))2 with u§ — ug uniformly in RY (so that ug are uniformly
bounded) and, moreover, they satisfy

(2.3.9)
(1) Aug — Yy f(u5) < 0

(2) (63)s, ~ V15| 2 0
(3) L

€
wo € R is any constant such that wy > —n with n > 0 small enough.

Let (u®,Y®) be the solution to (1.0.1) with initial datum (uf,Y{)
(so that, in particular, u® and Y are uniformly bounded). For every
sequence €; — 0 there exists a subsequence €;, such that there exists

— wy uniformly on compact sets, with wy > —1.

uw = lim u®*
k—oo

and u is a viscosity solution to the free boundary problem (P).

PROOF. Let u§ be the approximations constructed in [13]. The
approximations are constructed in the following way. First we extend
ug to a neighborhood of {ug > 0}: S := {z € RY /dist (z, {ug > 0}) <
7} in such a way that |lug|lc2(gy < oo. For e small enough we define

WE(x) = eF ( L (- “°<“">)> in {—Ce < up < e

where F' € C?*(R) is such that
F" < (1+8)Ff(F) +aF, F(0)=1, F(0)=—\/2M,.

Here 6 > 0, a > 0 are such that F' has a strict minimum at a finite
point § such that $v/2M, > 1. (§ — +ooasd — 0), and F is decreasing
for s < s.

The constant C' is taken as C' = 5/2M, — 1.
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We define

ug = Ug in {ug > e}

uy =eF(5) in RY\ {ug > —Ce}.

As in [13], we see that ui € CH(RN).
Let wy € R be such that wy > —n > —F(s) with n > 0 to be fixed
later and let
Yy = ug + ewp.
Then, Y5 > 0. It is immediate to verify that (2.3.9) 1) is satisfied

in {up > e} and RY \ {uy > —Ce}. Let us see that it is satisfied in
{—Ce < wuy < e}. In fact,

€ € € 1" 1 w
AUO_YE)JCE(UO) :2M F |VU0‘2— \/W (F)_?Of(F)
1+6 a
< F 2 F/ 2 _ /
_—2M fE)[Vuol” + —2M V| I

Wo
——F Y- 2 f(F
Lrpr) - pp)
where a > 0 is such that |Aug| < a.

Let 0 < s < 1 be such that a; < (1—pu)"/2A/2M, with 0 < A < 1,
and let ¢ in the definition of F' be such that (1 4+ §)A? < 1. Then, if €
is small enough so that aa3/v/2M, > ac there holds that

A~ 5 £(u5) <2 (1014 6)(1 — )42~ UFF(F)

a2
as ae

( =~ ) wef (F)
g[ B =) f(F) < <[ () — wolf(F) <0
if n = ukF(s).

Clearly, (2.3.9) 3) holds. Let us see that (2.3.9) 2) also holds. We

only need to verify this property in the set {—Ce < uy < €} and this
is clear from the fact that

1 1 U
Vui = — F’ 1——) | Vuy.
0 V2Mj <\/2M0( 3 )) 0

Now, by the results of Chapter 1, for every sequence ¢; — 0 there
exists a subsequence and a continuous function u such that u®x — u
uniformly on compact subsets of R x (0, 00).




72 2. THE FREE BOUNDARY PROBLEM

On the other hand, u is a solution to the following equation
AU — Uy = BL(u)U.

Here f5.(s) = sf-(s). Since, for £ small enough u(x,0) < 0 we conclude
that

(2.3.10) ui <0 in RY x (0,00).
In a similar way we see that u,, — Au,, > 0 for every 7. So that
(2.3.11) ug, — %]VUE\ >0  inRY x(0,00).
Clearly (2.3.10) and (2.3.11) imply that
up <0 and Uy, — %]VM >0 in {u > 0}.

In particular, the free boundary is Lipschitz in space.

So that, in order to apply Corollary 2.3.7 we only need to verify
that u®* satisfies (2.3.4). On one hand, given K C {ug = 0}° compact,
there exists gy such that for ¢ < g

()

F(3)

(s 4+ wo) f(s) :/ (s 4+ wp) f(s).

—wo

B (ug, z,0) :/

—wo

On the other hand,

a &g (3 € €
a(Ba(u ,x, 1)) =Y fo(u)up <0.
Therefore,
F(s)
B.(u,x,t) < / (s +wo)f(s) for x in K, t > 0.
—wo

As in the proof of Theorem 2.2.5 we see that, since u; < 0, there
holds that B.(u®,z,t) — M(z,t) in L ({u = 0}°) and, for almost

loc
every (x,t) we either have M(x,t) = 0 or M(x,t) = M = fij(s +
wo) f(s). Since

V(B.(u,2,t)) = Y°fo(u")Vu© — 0 in Ly ({u=0}°)
there holds that M (z,t) = M(t) in {u = 0}°. Therefore,
_ F(s)
M(t) < / (s +w)f(s) ae {u=0}°.

Since F(5) < 1, there holds that M(¢) = 0.



3. CONSEQUENCES AND APPLICATIONS 73

Thus, for every sequence g, — 0

utk
€k

(s +wo)f(s) =0  ae {u=0}°

—wo

and we deduce that u®* satisfies (2.3.4). O

Combining the regularity results for viscosity solutions of [17], Corol-
lary 2.3.6 and Corollary 2.3.7 we have the following regularity result
for limit functions.

COROLLARY 2.3.12. Let u as in Corollary 2.5.6 or Corollary 2.3.7.
If, moreover, the free boundary D N O{u > 0} is given by x1 = g(2', 1)
with g Lipschitz continuous, then, u is a classical solution of the free
boundary problem (P).






CHAPTER 3

Uniqueness of limit solutions

The main point in this Chapter is to give a positive answer to
the question of whether the limit of a sequence of solutions to (P)
is determined once the limit of w®* /ej, and of u®* are fixed. So we
study the uniqueness character of the limit functions (or limit solutions)
studied in the previous Chapters.

Some geometric assumptions are needed. In fact, uniqueness of
the limit fails, in a general setting, even in the case w® = 0. These
geometric assumptions are similar to that used to prove uniqueness of
the limit for the case u® = Y in [30]. We state these assumptions in
Section 1.

In fact, we follow here some of the ideas in [30] which are based
on the fact that any limit function is a supersolution to (P). This is
still true in our case. Unfortunately the simple construction in [30] of
supersolutions of (P.) that approximate a strict supersolution of (P),
when w® = 0, does not work in the general case unless one asks for a
lot of complementary conditions on the reaction function f.

Therefore, we follow here the construction done in [22]. The proof
that this construction works in based on blow up of the constructed
functions.

In Section 2 we prove some technical lemmas needed in the proof
of the uniqueness result.

In Section 3 we prove that, under the geometric assumptions in con-
sideration, a semi-classical supersolution of (P) is the uniform limit of
supersolutions of (P.), and restate an analogous result for subsolutions.

In Section 4 we arrive at the main point of the Chapter, we prove
that, under suitable assumptions, there exists a unique limit.

We end this Chapter with a discussion of different geometries where
these results hold.

75
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1. Preliminaries

Following [30] we give the definition of supersolution of problem (P)
that will be needed in this Chapter. Note that this definition differs
from the one given in Definition 2.2.1 since we are not assuming that
the function be C* up to the free boundary or that the free boundary
be C*.

DEFINITION 3.1.1. A continuous nonnegative function u in @T =
RN x [0,T], T > 0, is called a semi-classical supersolution of (P) if
ue C'({u>0}) and

(i) Au—u; <0 in Q= {u>0};
(i) Hmsupgsy 5y |Vuly, s)| < /2M(x,t) for every (z,t) €
0NN Qr;

(iil) u(-0) = uo.

Respectively, u is a semi-classical subsolution of (P) if conditions (i),
(i) and (iii) are satisfied with reversed inequalities and liminf instead
of imsup in (ii).

A function u is a classical solution of (P) if it is both a semi-
classical subsolution and a semi-classical supersolution of (P), u €

C'({u > 0}) and the free boundary {u > 0} N Q7 is a C* surface.

Nezxt, a semi-classical supersolution u of (P) is a strict semi-classical

supersolution of (P) if there is a § > 0 such that the stronger inequali-
ties

(i") Hmsupgsy o) (@ |VU(y, s)| < /2M(x,t) — 0 for every (z,t) €
o0 N QT;'

(iii") wu(-,0) > ug+ 0 on Qy = {uy > 0}

hold. Analogously a strict semi-classical subsolution is defined.

As a consequence of the results in Chapter 1, one can check that
every limit solution v = lim;_,., u of (P) is a semi-classical superso-
lution in the sense of Definition 3.1.1. In fact,

PROPOSITION 3.1.2. Let u® be solutions to (P.;) — with w* sat-
isfying (0.2.4) and wy > —1 — such that u® — w uniformly on com-
pact sets and ¢; — 0. Assume that the initial datum ug is Lipschitz
continuous and that the approrimations of the initial datum verify
lug ()], [Vus(z)] < C and uf € C'({u§ >0}). Then u is a semi-
classical supersolution of (P).



1. PRELIMINARIES 7

PROOF. We have to verify conditions (i)-(iii) of Definition 3.1.1.
By Proposition 1.5.1, (i) and (ii) hold.

Now, from our assumptions on the initial datum ug, by Proposition
5.2.1 of [27], we have that «° — u uniformly on compact sets of Q7 so
that u is continuous up to t = 0 and (iii) also holds. O

Let us suppose that the initial datum ug of problem (P) is star-
shaped with respect to a point x(, that we always assume to be 0, in
the following sense: For every A € (0,1) and z € R,

(3.1.3) up(Az) > up(z), AQy CC Qy,
where Qg = {ug > 0}.

Also, assume that

(3.1.4) wo(Az,0) < wo(z,0) ifzeRY, 0<A<1
and
(3.1.5) wp > —1+46; for some §; > 0.

Let u be a semi-classical supersolution of (P). Let A and A be two
real numbers with 0 < A < X' < 1. Define

1
(3.1.6) up(z,t) = yu()\x, N2t)

in Qr/x2. The rescaling is taken so that uy satisfies the heat equation
in

(3.1.7) Q= {(x,t) : (\z,\%t) € Q}.

Moreover, the fact that 0 < A < A < 1 makes u, a strict semi-classical
supersolution of (P).

In fact, let us first see that
Mz, \°t) < M(z,t) if0< A<l

This is a consequence of the fact that the function

" — /:(Ha)f(s) ds

is nondecreasing and
(3.1.8) wo(Ax, \*t) < wo(z,t) if0< A<
In fact, the function wy(z,t) = wo(Ax, A*t) is caloric and wj(z,0) <

wo(x,0)if 0 < A < 1 by hypothesis. Thus, by the comparison principle,
wy(x,t) < we(z,t) in Qr.
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Now, let (xo,to) € O{uy > 0}. Then,

A
limsup  |Vuy(z,t)| = lim sup —Vu(Az, \*t)]
Qa3 (@,t)— (z0,t0) O30\ N2 —(Azo,A20) A

A
< Y\/QM()\:CO’ >\2t0)

< V2M (20, to) — (1 - i) V2M,

)\/
where 0 < My < M(z,t) in Qr, by (3.1.5).
On the other hand, since AQ)y CC €2, there holds that
up(Ax) >~y >0 if x € Q.

Thus, for x € Q,

ux(x,0) = %ug()\:c) = up(Az) + <% — 1>u0()\a:)
> up(x) + (% — 1)7.

The following comparison lemma for problem (P) can be proved as
Lemma 2.4 in [30].

LEMMA 3.1.9. Let ug satisfy (3.1.3) and wq satisfy (3.1.4)-(3.1.5).
Then every semi-classical subsolution of (P) with bounded support, is
smaller than every semi-classical supersolution of (P). i.e. if u' is
a semi-classical subsolution such that Q' is bounded and u is a semi-
classical supersolution then

Q'cQ and v <u,
where ' = {u' > 0} and Q = {u > 0}.
PROOF. Let u’ be a subsolution and u be a supersolution of (P) in

Q1. We only need to show that €' C Q since the comparison between
v’ and u will follow from this inclusion by the maximum principle.

Suppose first that «' € C1(QY) and u € C*(Q2). Let
Ao =sup{\ € (0,1): Q C Q},

where 2, is defined in (3.1.7). We have to show that Ay = 1. Suppose
not, then \g < 1 and ' C Q,,, and there is a common point (zg, t) €
oY N oy, NQr. Let g < A\j < 1 and uy, be as in (3.1.6). Then
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u <y, in Q. At (z0,10), (as v’ and u are regular) by Hopf’s Lemma
we have

o’ 0
—8—1;(950,150) < —8—3(350,150),

where v is the outward spatial normal for Q' at (xg, ). Now since

ou’ ,
(w0 t) = |V (@, t0)] > /20 (w0, 1)

and

ou
—g(l‘o,to) = |VU(ZEO,t0)| < QM(I'Q,tO),

we arrive at a contradiction. Observe that here, we do not need the
strong inequality (ii’), so we only need the weaker assumption wy > —1
in Q7 instead of (3.1.5) in this case.

The general case, can be reduced to the previous one as in [30]. In
fact, let u be a supersolution. Choose 0 < A < X < 1 close to 1 and
regularize u by

u(x,t) = (ur(z,t +h) —n)",
for small h,n > 0. Analogously regularize a subsolution w'. Then we

will fall into the hypotheses of the previous case and then we can finish
the proof by letting first h,7 — 0+ and then A — 1—. O

2. Auxiliary results

This section contains results on the following problem:
(Py) Au—uy = (u+ wp) fu),

where the function f is as in Section 1 and wy is a constant, wg > —1.
The results will be used in the next sections where () appears as a
blow-up limit.

These results and their proofs are analogous to those in Section 4
in [22] where the case wy = 0 was analyzed. We prove them here for
the sake of completeness.

LEMMA 3.2.1. Let a,b > 0 and let 1) = 1,4 be the classical solution
to

Vss = (Y +wo) f()  for s >0,

S $(0) =a, ©(0) = —V2b.
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Let B(t) = [ (p+wo)f(p)dp.

(3.23) Ifb=0anda € {—wo}U[l,+00), then ¢ = a.

(3.24) Ifb=0 and a € (—wy, 1), then lim, ., o ¥(s) = +oo.
(3.2.5) Ifbe (0, B(a)), then lim,_ ;o ¥(s) = +o0.

(3.2.6) If0 < b= B(a), then ¥s < 0 and lim,_, o, ¥(s) = —wy.
(3.2.7) Ifbe (B(a), +00), then 1y < 0 and lim, o0 ¥(s) = —o0.

Proor. We first recall that the function f is Lipschitz continuous
and therefore, there is a unique classical solution to (3.2.2).

Let us multiply equation (3.2.2) by ¥s. We get

wssws = (w + wO)f(w>ws = %(B(lp)), for s > 0.

Then, if we integrate the expression above, we deduce that

(328)  Sv(s)— Bl(s)) = 502(0) ~ BW(O) = b~ Bla),
for every s > 0.

I. Assume b = 0 and a € {—wp} U [1,+00). Then, (3.2.3) follows
easily if we recall that (s + wp)f(s) =0 for s € {—wp} U [1, +00).

II. Assume b =0 and a € (—wp, 1). Since 155 > 0, then ¥4(s) > 0.
Moreover, ¥(s) > 0 if s > 0 (otherwise ) = a in some interval, which
is not possible). In particular, given sy > 0, we must have, for s > s,

(s) = 1b(s0) + 1s(s0) (s — s0)
and hence, (3.2.4) follows.
II. Assume b € (0, B(a)). From (3.2.8) we deduce
B(4(s)) > Bla) — b >0,
which implies, for some constant p,

(3.2.9) W(s) > p > —wp.

Let us suppose a > 1. Then, 1s; = (¢ + wo)f(¥) = 0 near the
origin. Hence
U(s) =a—V2bs,
as long as 1(s) > 1. In any case (a > 1 or a < 1), there exists so > 0
such that t(s) < 1 and 1),(so) = —v/2b, and therefore, there exists
s1 > 0 such that

77[)(81) < 1, ws(sl) < 0.
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If we had 15 < 0 for s > sy, then, from (3.2.9) and from equation
(3.2.2), we would get, for s > sy,

—wo < < Y(s) <P(s1) <1 and  Pg(s) > >0,
for some constant 6. Thus,

0 > ws(s) > ¢3(81) + 5(8 — 81),
for s > s, which is not possible.

That is, we have shown that there exists so > 0 such that ¥;(s2) >
0. Then, 14 > 0 now gives, for s > so,

Y(s) > ¥(s2) + Ps(s2)(s — s2),
that is, (3.2.5) holds.
IV. Assume 0 < b = B(a). Now, (3.2.8) gives

(3.2.10) %wg(s) — B(i(s)), fors>0.

If there existed sy > 0 such that (sg) = 0, then B(¢(sg)) = 0,
implying ¥ (sg) = —wp. The uniqueness of (3.2.2) would give (s) =
¥ (sp), a contradiction.

Hence, 1)4(s) < 0 and thus B(¢(s)) > 0. This implies that ¢(s) >
—wp and that there exists

lim (s) =7, —wy <7y < +oo,

§——+00
If v > —wy, it follows from (3.2.10) that

lim ¢,(s) = —v/2B(7) <0,

s§——400

and then 1(s) < —wy for s large. This gives a contradiction and thus,

(3.2.6) holds.
V. Finally, assume b € (B(a), +o0). Then, (3.2.8) gives

In particular, 1, never vanishes and we have, 1,(s) < —1/2(b — B(a)).
It follows that

$(s) <(0) — \/2(b = Ba)) s,
for s > 0, then (3.2.7) holds and the proof is complete. U
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LEMMA 3.2.11. Let B(t) = [~ (p+wo)f(p)dp.

wo

a) Let Y™ > —wy, symmetric with respect to s = %, be a solution to
Yss = (¥ +wo) f(¥) in (0,n),
¥(0) = ¢(n) = a € (—wo, 1).
Then, ¥™(0) = —+/2b,, with b, /" B(a) as n — oo.
b) Let ™ > —wy be a solution to
Yss = (Y +wo) f(¥) in (0,n),
(3.2.13) Y(0) = a € (—wo, 1],
(n) = —wp.
Then, ¢™(0) = —+/2b,, with b, \, B(a) as n — oo.

(3.2.12)

PROOF. Part a). Since 9" is symmetric, ¥ (5) = 0.
On the other hand, since

1
LWL — B = b, — Bla)
there holds that
—B(¥"(n/2)) = b, — B(a).
In particular, there holds that b, < B(a).

We claim that 9" (%) — —wp as n — oo. In fact, if not there would
exist & > —wy such that, for a subsequence that we still call ¢",

Y (s) > ¢Y"(n/2) > a, for 0 < s <n.
On the other hand, there holds that ¢"(s) < a for 0 < s < n. Thus,

(W™ + wo) f(¥"™(s)) > By > 0 for 0 < s < n. Therefore, Y7, > [, for
0 < s <n and thus

YPr(s) > a+ %(5 — n/2)2, for s € [n/2,n].
In particular,

a=1"(n) > a+(By/8)n* — o0, asn — oo
which is a contradiction. Thus,

by, — B(a) = =B(¢"(n/2)) — 0, asn — oo.
Part b). Since

S0 = B = b~ Bla),
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there holds that
1
L) = b, ~ B(a) 2 0
We claim that ¢”(n) — 0 as n — oo. In fact, if not, there would exist

a > 0 such that, for a subsequence that we still call ™, ¥?(n) < —a.
Since ¥ > 0, there holds that

Uy (n) =1y (s),
for 0 < s <n. Thus,
Y (s) < —a for 0 < s <n.
Therefore,
@+ wy = 6(0) — ¥"(n) = —U(B)n = an — o0, asn - o0

which is a contradiction. Therefore, ¥7(n) — 0 as n — oo and there

holds that
b, — B(a),

as n — oo. ]

LEMMA 3.2.14. Let B(7) be as in the previous Lemma and let R., =
{(x,t) € RVl /x> 0, —00 < t < 7}, 0 <0 < 1+wy and let
U € C**1*5(R,) be such that

AU~ U, = (U +w)f(U) in R,
U=1-46 on {x; = 0},
—wy <U<1-86 in R,

1) If 0 =0, then |VU| < /2B(1) on {z; = 0}.
2)If0 <8 <1+4+wy and 0 < o < B(1) is such that

1-6
/@+mﬁ@@=3m—m

wo
then |VU| = \/2(B(1) — o) on {x; = 0}.
PRrooF. For 6 € [0,1 + wy), let V,, be the bounded solution to
AV —Vi=V 4+w)f(V) in{0<z <n, 2 eR" t>0},
V(0,2',t)=1-6,
Vi(n,z',t) = —wo,
V(z,0) =0,
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and let W,, be the bounded solution to
AW — W, = (W +wo)f(W) in{0<z; <n, o ¢ R ¢>0},
W(0,2',t) =1-86,
Win,z',t)=1-6,
W(z,0)=1-86.
Let us point out that V,, and W,, are actually functions of (z1,1).

For k € N, let V*(z,t) = V,(z,t + k) and WF(x,t) = W, (z,t +
k). Since V¥ U and W are bounded solutions to equation Py in the
domain {0 < 2y < n, 2’ € RN~ —k <t <4}, and on the parabolic
boundary of this domain, we have V¥ < U < WF. Tt follows that

VR, t) <U(z,t) < Wh(z,t)

in {0 <z; <n, 2 € RN"! —k <t < ~}. On the other hand (see
[19]), V,(z,t) — ¢"(x1) uniformly as t — oo, where ™ > 0 is a
solution to (3.2.13) with a =1 — 4.

Analogously, W,,(z,t) — % (x1) uniformly as ¢ — oo, where 97 >
0, symmetric with respect to x; = %, is a solution to (3.2.12) with
a=1-—80.

Therefore, letting k — oo we get
P (z1) < U, t) <Pi(xy) for0< o <n,t <.
In particular,
(¥2)5(0) < Uy, (0,27,8) < (]1)5(0), for t <.
Let 6 = 0. We deduce from Lemma 3.2.11, b) that
—|VU(0,2,1)] = Uy, (0,2',¢) > lim (47),(0) = —/2B(1).

Let @ > 0. We deduce from Lemma 3.2.11, a) and b) that

—v/2(B(1) — o) = lim (¢")s(0) < U,,(0,2,t)

< i (91),(0) = ~VA(B(1) — o).
Therefore,
—|VU(0,2',t)| = U, (0,2',t) = —/2(B(1) — o).
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LEMMA 3.2.15. Let €5, v; and 7; be sequences such that €; > 0,
g =0, 7%, >0, 7%, =7, with0 <~y < +o0, 7, >0, 7o; — 7 with
0 <7 < 400, and such that T < 400 implies that v = +0c0. Let p > 0
and

p P’ P’
A, = {(:c,t) /|| < =, —min(r,, —2) <t< min(fysj,—z)} .
&j &j €j
Assume that 0 < 6 < 1+ wq(xo,to) and let u% be weak solutions to

w (gx + Te,, gﬁt + tsj)) (@
)

— s _E4 —E.
Au® —u,’ = (uEJ +

u’v=1-4 on {x; = h5j<x/’t)} n AEj?

(e, et 4 t.. h A
_'I,U (8]56 -+ x€],€] + EJ) S asj' S 1 _ 9 Zn {:L'l 2 th(x/7t)} N A5j7
€j

where (z.,,t.,) — (zo,t0), with u € C({z1 > he,(«/,t)} N A.,), and
Vs € L?. Here he, are continuous functions such that h. (0,0) =
0 with ]_15]. — 0 uniformly on compact subsets of RN=1 x (—7,7).

Moreover, we assume that ||he,||c1(x) + HVm,BEjHC"‘*%(K) are uniformly
bounded, for every compact set K C RN=! x (=7, 7).

Then, there exists a function u such that, for a subsequence,

u e Oty ({:Ul >0, v>t> —7'}),
u — u  uniformly on compact subsets of {x1 >0,y >t > —7},
At — up = (u+ wo(zo, to)) f(w) in{xy >0,7>t>—7},
1—-60 on{r1=0,y>t>—7},
—wo(zo,t0) <u<1—0 inf{x;>0,v>t>—-7}

U

If v < 400, we require, in addition, that
Voey @', 4 s = Dl + 1oy @8+ 7, = Dt e

be uniformly bounded for every compact set K C RV x (—o0,v]. And
we deduce that

e C*e ({ag >0, t < 7}).

If T < 400, we let

B., = {x /x| < 5, Ty > hsj(a;',—nj)},

J
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and we require, in addition, that for every R > 0,
||ﬂ5j (l’, _Taj)HCa(EsijR(O)) S CRa
and that there exists r > 0 such that
”ﬂaj (Qj, _Taj)HClJra(Egijr(O)) S C’r.

Moreover, we assume that ||h., (x',t — 7o, + )| c1(x) + | Varhe, (@', ¢ —
7, + T)||Ca,%(K) are uniformly bounded for every compact set K C
RN~ x [—7, +00).

Then, there holds that
e Ca’%({xl >0,t> —T}), Vu e C({O < <rt> —7'}),

u (x, —7.,) — u(x, —7) uniformly on compact subsets of {x1 > 0}.

In any case (1,7 be infinite or finite)
Va2 (0,0)] — [Va(0,0)].
Proor. We will drop the subscript j when referring to the se-
quences defined in the statement and ¢ — 0 will mean 7 — oo.
Case I. 7 = +00, v = +00.

In order to prove the result, we first apply suitable changes of vari-
ables to straighten up the boundaries x; = h.(2’,t). Namely, for every
g, we let

y = H(z,t)
where
Hf =xy — h(2,t), Hf=m;, i>1,
and we define
v°(y,t) = u°(x, t).
Let R > 0 be fixed and let
By ={(y,t) / y1 > 0} N Bg(0,0)

and let

Lv* _Za (Uy,

( 175 o
)+Zb -5

where

Z OHE OH: OH:

2.1 : = — .
(3 6) z] y? 8xk 8xk7 bz (y7t) 8t
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Note that there exists Cr > 0 such that

(3:2.17) 05l G, < O ey < Cin
Moreover, there exists A > 0 such that, if € is small enough,
(3.2.18) Y@y, 06 = NP for (y,t) € B
i J

Here we have used the fact that |[(DH®)™!| are uniformly bounded on
any compact set, if € is small enough.

Then the function o° € C(B}), with Vif € L*(B}) is a weak
solution to

€ . 2t ts
E@f—(@f+w(€x+x’5 i ))f(q‘ﬁ) in By,

5
”=1-0 onB_;gﬂ{gh:O},
W (g4 + xe, €52t + L)

- <F<1-6 in B,
&j

if £ is small enough.

By Theorem 10.1, Chapter III in [21], there exists Cr > 0 such
that
Hrl_}g”ca,%(%) S CR-

On the other hand, by Theorem 1.4.3 in [12] we also have that
| Ve ) < Cr.

(B,
2
Moreover, by Theorem 1.4.10 in [12], the functions V#° are continuous

in B}, with a modulus of continuity independent of .
2

Therefore, there exists a function w € C*2 (B_E) and a subsequence
2

that we still call v° such that v — w and Vv — V@ uniformly in B_E
2

Clearly,

S
I

1-6 in{ylz()}ﬂB_E,

—U)()(l’o, to) Sﬂ S 1-6 in

sy
v+

Since h. — 0 and V,h. — 0 uniformly on compact sets, it is easy
to see that we actually have that

u® —u, and Vu® — Vu uniformly on compact sets of BY,.
2
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Clearly u is a solution of Au — u, = (u + wo(zo, to)) f(u) in BE.
2

Standard Schauder estimates imply that @ € C2+®!*+5(B}).
4

Since h.(0,0) = 0, Vo f-(0,0) — 0 and Vo°(0,0) — Va(0,0), it is
easy to see that Va©(0,0) — Vu(0,0).

Since R is arbitrary, a standard procedure gives the result in
{1 >0, =7 <t <~} for7=+o0 and vy = +oc.

Case II. 7 < 4+00.

As in the previous case, we apply suitable changes of variables to
straighten up the boundaries x1 = h.(2’,t). Namely, for every e, we let

y=H(z,t), s=t+71.—r7,
where
Hi(x,t) =21 — ho(2,t), Hi(z,t) =z 0> 1,
and we define
v (y, ) = u(z,1).
Let R > 0 be fixed and let
Bf.=A{(y,s) / y1 >0, 5> —7} N Bg(0,0)

and let, as before,
o0v°
bE
Z a ( Z] y’ ) Z y7 ayZ as b
)

where a5;(y,s) and b5(y, s) are defined in B}, in a way analogous to

(3.2.16) and moreover, they satisfy estimates similar to those in (3.2.17)
and (3.2.18) in By .

Then the function o° € C(By ), with Vi* € L*(Bf;,) is a weak
solution to

€ 2t t
L — <@€ n w (61’ + xe, 7T+ 5)) f(@e) in BET,
8 K

*=1-9 on Bj, N {y = 0},
W (g5 + Te, €52t + L)

<F<1-6 in B,

*=¢°(y) in B;{F’T N{s= -7},
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if £ is small enough, where we have called ¢°(y) = v*(y, —7). In addi-
tion,

19"l ce@r@nzoy < Cr and  lgllore @ @ngsop < Cr
Moreover, g =1—6 on {y; = 0}.

By Theorem 10.1, Chapter III in [21], there exists Cr > 0 such
that
e

||1) <CR

2(BY,
2 vT

On the other hand, by Remark 1.4.11 in [12], applied to the functions
v° = 1° — ¢°, we also have that

Il < Cr

1 (B (0)x[~7 E)n{yn>0}) =
and that the functions V¢ are continuous in (B_%(O) x =7, BN n{y; >
0} with a modulus of continuity independent of .

Proceeding as in the case 7 = +o00 and using that 7. — 7 we see
that there exists a functionw € C*2 (BJr ) such that for a subsequence

v° — u uniformly in B -

Vv — Vu  uniformly on compact sets of BY, R

9

u® —u, Vu® — Vu uniformly on compact sets of B, |
2

u(y, —7.) — u(y, —7) uniformly on compact sets of

Vo — Vu  uniformly in (B_%(O) x [-7,=]) N {y: > 0}.

l\DIP:J

This function u satisfies
aeCM e ({y; >0, > —7}1N Bx(0,0)),
At —up = (u+ wo(zo,t0)) f(w) in{y; >0,t>—-7}N Bg(0,0),
u=1-6 on{y; =0,t> —T}HB%(0,0),
—wo(zg,tp) <u<1—0 in{y; >0,t>—-7}N Bg(0,0).
Moreover, there holds that Vu©(0,0) — Vu(0,0).
Since R is arbitrary, Case II is proved.
Case III. v < +00.
We proceed as in the previous cases. For every ¢, we let

y:He([L’,t), 3:15—%‘1“%
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where

Hi(x,t) =21 — he(2')t), Hi(x,t) =z i>1,
and we define
v (y, ) = u(z,1).
Let R > 0 be fixed and let
Bi, ={(y,s) / y1 >0, 5 <~} N Bg(0,0).

As in the previous cases, by using Theorem 10.1, Chapter III in [21],
and Theorems 1.4.3 and 1.4.10 in [12] we deduce that there exists a

function w € C*2 (BJEr 'y) such that for a subsequence
27

?° —u, V0°— Vu uniformly in B} .
2

u° —u, Vu* — Vu uniformly on compact sets of B, .
2

This function w satisfies
@€ C* s ({y1 > 0, ¢ <7} N Br(0,0)),
At — @y = (U + wo(zo,t0)) f(u) in{y1 >0,t<~}N B§(070)7
1-6 on{ylzo,tgﬂy}ﬂB%(0,0),
—wp(xp,tg) <u<1—6 in {ylzo,tgv}ﬂBg(0,0).

U

Moreover, there holds that Vu©(0,0) — Vu(0,0).

Since R is arbitrary, the lemma is proved. U

3. Approximation results

In this section we prove that, under certain assumptions, a strict
semi-classical supersolution to problem (P) is the uniform limit of a
family of supersolutions to problem (P.) (Theorem 3.3.1), and we state
an analogous result for subsolutions (Theorem 3.3.7). Also, we prove
that for compactly supported initial data, limit solutions have bounded
support (Proposition 3.3.8).

The following construction follows the lines of Theorem 5.2 in [22].
In our case we have to be more careful with the construction of the
initial data.

THEOREM 3.3.1. Let u be a semi-classical supersolution to (P) in
Qr with w € C*'({u > 0}) and such that {u > 0} is bounded. Assume,
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in addition, that there exist dg, So > 0 such that

|Vat| < /2M(z,t) — 5y on QN o{u> 0},
‘Va‘>(50 inQﬂ{O<§I<so}.
Let w® be a solution of the heat equation in Qr such that @
wo(z,t) uniformly in Qr with wy € C(Qr) N L=(Qr) and verifies
(3.1.5).

Then, there exists a family v¢ € C(Qr), with Vu® € L .(Qr),
of weak supersolutions to (P.) in Qr, such that, as € — 0, v* — u

uniformly in Qr.

—

PRrROOF. Step 1. Construction of the family u®. Let 0 < 6 < §; be
such that

1 50
/1 (s+W)f(s)ds = 3

-0
where W is a suitable uniform bound of ||w®/e||re(fas0y). For every
e > 0 small, we define the domain D® = {u < (1 —0)e} C Qr.

Let 2° be the bounded solution to
Azf — 2z = (2 +w ) fo(2°) in D°,
with boundary data
. (1-60)e ondD°Nt>0,
25(x,t) = .
25 () in DN {t =0}.

In order to give the initial data z§, we let ¢)°(s,z) be the solution to
(3.2.2) with

1-6 (o
a=1-0, b—/_ (S—l—w(’O))f(s)ds, Wy =

we (x,0) /e € €
Assume first that |Vl is smooth. Then we let

. l—0-¢
and we define

z5(x) = ep® <§ﬂ($, 0), x) :

If @ is not regular enough, we can replace |Vu(z,0)| by a smooth
approximation F.(z) so that the initial datum 2§ is C'™®. We leave
the details to the reader.
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Finally, we define the family u® as follows:

. {a in {7 > (1-0)e},

z¢ in De.

Step II. Passage to the limit. If (z,0) € D¢, we have 0 < 1@(z,0) <
1 — 6. Since, from Lemma 3.1, we know that —w®(z,0)/e < (s, z) <
1 — 0 for s > 0, it follows that —w®(z,0) < z°(x,0) < (1 — )e. Since
fe(s) > 0, constant functions larger than —w®(z,t) are supersolutions
to (P.). Therefore, (1 — 0)e is a supersolution if ¢ < £; and we may
apply the comparison principle for bounded super and subsolutions of
(P.) to conclude that —w® < z¢ < (1 — f)e.
Hence,

sup [u® —u| =sup |z —u| < Ce

Qr De
and therefore, the convergence of the family u® follows.

Step I11. Let us show that there exists €9 > 0 such that the functions
u® are supersolutions to (P.) for € < €.

If u* > (1 — 0)e, then u® = w, which by hypothesis is supercaloric.
Since f.(s) > 0 and (1 — 0)e > —w® if ¢ < g1, it follows that u® are
supersolutions to (P.) here.

If u* < (1 — 0)e, then we are in D® and therefore, by construction,
u® are solutions to (Px).

That is, the u®’s are continuous functions, and they are piecewise
supersolutions to (F). In order to see that u® are globally supersolu-
tions to (P.), it suffices to see that the jumps of the gradients (which
occur at smooth surfaces), have the right sign.

To this effect, we will show that there exists g9 > 0 such that
(3.3.2) |Vuf| > v/2M(z,t) — /2 on {u = (1—0)e}, for e < .

Assume that (3.3.2) does not hold. Then, for every j € N, there
exist €; > 0 and (z,,t.;) € Q, with

Ej - 0 and (J:Ej?tej‘) - (x(bto) € 8{ﬁ > 0} ﬁ {f'l:lj - 0},

such that
(3.3.3)

i (z. b)) = (1—0); and |Vu€j(:1:5j,tsj)|<\/QM(xEj,tEj)—(SO/Z.

From now on we will drop the subscript j when referring to the
sequences defined above and € — 0 will mean j — oco.



3. APPROXIMATION RESULTS 93

We can assume (performing a rotation in the space variables if
necessary) that there exists a family g. of smooth functions such that,
in a neighborhood of (x,t.),

{vv =1 -0} ={(z,t) /21 —2e1 = ge(2' — 2/, t = £.)},
{u* < (1—=0)e}={(x,t) /21 — 201 > go(2' — 2./t — 1)},
where there holds that

9:(0,0) =0, |Vug:(0,0)] =0, &—0.

We can assume that (3.3.4) holds in (B,(x.) X (t. — p?, t- 4+ p?)) N{0 <
t < T} for some p > 0.

(3.3.4)

Let us now define
1 1
u(z,t) = Eua(xa +ex,t. + %), ge(a',t) = Egg(ex’, e%t),

and let
te T—t.

_ — ’7/_
g2’ ’c 2

Te
We have, for a subsequence,
e T, %
where 0 < 7,7 < 400 and 7 and 7 cannot be both finite.

We now let
2 2
A, = {(x,t) / x| < g, — min(e, %) <t < min(7,, 5—2)} )

Then, the functions u® are weak solutions to

g te + &%t
AE = (ag+w (v +ex,t. +¢ >>f(a5)

€
in {z; > g.(2',t)} N A,

uw=1-0 on {z; = g.(a',t)} N A,

© £ 7t5 2t . a

_w($ rtertete )§ﬂ6§1—9 in {z; > g.(2',t)} N A..
£

Note that we are under the hypotheses of Lemma 3.2.15. Then,
there exists a function u such that, for a subsequence,

ue O ({2, >0, -1 <t <~}),
u® — u uniformly on compact subsets of {x; >0, —7 <t < v},
At — Uy = (u+ wo(wo, t0)) f(w)  in{z1 >0, -7 <t <7},

u=1-46 on{z; =0, —7 <t <7},
—wo(zg,tp) <u<1-—146 in{z; >0, -7 <t <~}
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We will divide the remainder of the proof into two cases, depending
on whether 7 = +00 or 7 < +00.
Case 1. Assume 7 = +o00.

In this case, Lemma 3.2.15 also gives

[Va£(0,0)] — [Vu(0,0)].

On the other hand, u satisfies the hypotheses of Lemma 3.2.14 and
therefore,

IVa| > v/2M (o, t9) — do/4 on {1 = 0},
which yields

(V@ (0,0)] > v/2M (z0,ty) — 300/8,
for € small. But this gives
|Vl (x,t.)| > /2M (22, t.) — 60/2,

for € small. This contradicts (3.3.3) and completes the proof in case
T = +00.

Case 1I. Assume 7 < +oo. (In this case vy = 400.)
There holds that @°(z, —7.) = Lu®(z. + ez, 0), then

1.
(3.3.5) u(x, —7.) = ¢° (EU(% +ex,0),z. + 61’).

Here we want to apply the result of Lemma 3.2.15 corresponding
to 7 < 4+o00. In fact, we can see that there exist C,r > 0 such that

@ (-, —TE)HCHQ(ET(O)) <C.
Now Lemma 3.2.15 gives, for a subsequence,
aeC™({z; >0,t>—1}),
u(x,—7.) — u(x,—7) uniformly on compact subsets of {x; > 0}.

Therefore, we get that (recall that in the case we are considering tg =
0),
i, =) = ¢(1 = 0 — [Vii* (20, o) | 71, 30).
here @(s, z) w(l_e_s ) d ¥(s, z) is the solution of (3.2.2)
where ¢(s,2) = Y| ==——,7 ) an s, x) is the solution of (3.2.
o Vii(z, 0)
with

1-6
a=1-46, b:/_ (s +wo(z,0))f(s)ds, wo=wo(z,0).

wo (z,0)
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Thus,
w(x, —7) = ¥(x1, x0).

Since the function ¥(z1,20) is a stationary solution to equation
(Py), bounded for z; > 0, and @ = 1 on the parabolic boundary of the
domain {xl >0,t> —7'}, we conclude that

u(z,t) = ¢Y(x1,20) in {xl >0,t> —T}.
It follows from Lemma 3.2.1 and the choice of § that, on {x; =0, t >

_7—},
1-6

%|VU|2 = %(%(0,%))2 = / (s + wo(wo, L)) f(s) ds

—wo(zo0,to)

This is,

V| > \/2M (x0,t0) — 6/4 on {1 =0,t > —7}.
But Lemma 3.2.15 gives
V@ (0,0)] — [Va(0,0)],
which yields

V@ (0,0)] > v/2M (z0,to) — 300/8,
for € small. Then,
|V (., t.)] > \/QM($€>t£) —do/2,

for ¢ small. This contradicts (3.3.3) and completes the proof in case
T < +o00. u

REMARK 3.3.6. Observe that from the construction of u® done in
the previous proof, it follows that

ut=u in {u> (1—0)}.

We state without proof the following Theorem.

THEOREM 3.3.7. Let u be a semi-classical subsolution to (P) in
Qr with uw € C'({u > 0}) such that { > 0} is bounded. Assume, in
addition, that there exist oo > 0 such that

\Va™| > \/2M(z,t) + 6 on QN d{u > 0}.
®(z,t)

Let w® be a solution of the heat equation in Qp such that ==
wo(x,t) uniformly in Qr. And assume, moreover that wy € C(Qr) N

L>(Qr) and verifies (3.1.5).

—
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Then, there exists a family u¢ € C(Qr), with Vu® € L% _(Qr), of

loc
weak subsolutions to (P.) in Qr, such that, as e — 0, u — u uniformly

in Qr.

PROOF. The proof is analogous to Theorem 3.3.1. See [22] for a
similar result in the case w® = 0. U

Finally, we end this Section by showing that, for compactly sup-
ported initial data, the support of a limit solution of problem (P) is
bounded.

PROPOSITION 3.3.8. Let ug € C(RY) with compact support. Let
ug converge uniformly to uy with supports converging to the support
of ug and let w® be a solution of the heat equation in Qr such that
@ — wo(x,t) uniformly in Qr. And assume, moreover that wy €
C(Qr)NL>(Qr) and verifies (3.1.5). Finally, let u® be the solution to
(P.) with function w® and initial condition ug.

Let uw = limu%. Then {u > 0} is bounded. Moreover, u vanishes
in finite time.

PROOF. Let —1 < wy < w®(z,t)/e. Then it is easy to check that
(3.3.9)
1

M, :/_ (5 + wo) f(5) ds < M(z,?) :/ (s + wolw, 1)) f(s) ds.

wo —wo(z,t)
Let us now consider the following self-similar function
V(e,t;T) = (T — )" h(|a[(T — 1)=1?),

where h = h(r) is a solution of

N-1 1 1
]’L,/+( +§7’)h/+§h:0, 0<7’<R,
r

(3.3.10) R(O)=0, h(r)>0, 0<r<R,
W(R) =0, N(R)=—\/2M,,.

It is proved in [13], Proposition 1.1, that there exists a unique R > 0
and a unique A solution of (3.3.10).

Moreover, it can be checked that if one picks T sufficiently large,
then
V(z,0;T) >ug+1 in {ug > 0},
and so V(z,t;T) is a strict semi-classical supersolution of (P) with
bounded support and positive gradient near its free boundary.
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Now, let u¥ be solutions to (P.,) — with initial data uy’ converging
unifomly to ug such that support u,’ — support ug — such that u =
lim u.

By Theorem 3.3.1, there exists a family v of supersolutions of (F))
such that v® — V uniformly on compact sets, and v/ (z,0) > u® (x, 0).
Therefore, by the comparison principle, we obtain u% < v% and passing
to the limit u(z,t) < V(x,t;T), and the result follows. O

4. Uniqueness of the limit solution

In this section we arrive at the main point of the Chapter: we prove
that, under certain assumptions, there exists a unique limit solution to
the initial and boundary value problem associated to (P) as long as
condition (0.2.3) is satisfied.

Let us begin with the following Proposition that is the key ingredi-
ent in the proof of our main result.

PROPOSITION 3.4.1. Let u be a strict semi-classical supersolution
to (P) with bounded support in Qr such that there exists sy > 0 so
that [Vu| > 0 in {0 < @ < so} and let w®/e be solutions to the heat
equation in Qr converging to wy uniformly with wy € C(Qr) N L>®(Qr)
and verifies (3.1.5).

Let u® be solutions to (P.) with function w® and initial condition
ug, where ug are uniform approximations of uy with support u; —
support ug. Then

lim sup u®(x,t) < u(z,t)
e—0+

for every (x,t) € Qr.

PROOF. Let @ be a strict semi-classical supersolution of (P). Let
us first, define the following regularization

U(ZB,t) = (ﬂ(xvt + h) - 77)+7

for h,m > 0 small. So that u is a strict semi-classical supersolution
of (P) with C* free boundary, C'({u > 0}) and [Vu| > > 0 in a
neighborhood of its free boundary. So, by Theorem 3.3.1, there exists
v® supersolution of (P.) such that v® — w uniformly in Q7_p,.

Now, using the comparison principle, we conclude that u® < v® in
Qr_p, and the Proposition now follows letting first ¢ — 0+ and then
h,n — 0+. U
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Finally, we arrive at the main point of the paper: The uniqueness
of limit solutions of (P).

THEOREM 3.4.2. Let the initial datum ug be Lipschitz, with compact
support and satisfy the condition (3.1.3). Then there ezists at most
one limit solution such that its gradient does not vanish near its free
boundary as long as the function w® in problem (P.) satisfies condition

(0.2.4).

More precisely, let uy ,ag* be uniformly Lipschitz continuous in RY
with uniformly bounded Lipschitz norms and €j, e, — 0. Assume that
uy € C'({ug > 0}), 4" € C'({ag" > 0}), g’ @g" — wo uniformly
and support uy’, support @5f— support wug. Let w® /e and w°* /gy, be
solutions of the heat equation converging uniformly to the same function
wy € C(Qr) N L>®(Qr), that verifies (3.1.5). Also, assume that wg
satisfies the monotonicity condition (3.1.4).

Let u® (resp. u*) be the solution to (P.;) with function w® and
indtial datum vy (resp. solution to (P.,) with function @ and initial
datum ug"). Let w = limu® and a4 = lima®~. If there exists so > 0
such that |Vau| >0 in {0 < @ < so}.

Then, u < u.

PROOF. Since 1 is a semi-classical supersolution of (P), u € C*({u >
0}) and, by Propositon 3.3.8, its support is bounded, the function 1,
as defined in (3.1.6) satisfies the hypotheses of Proposition 3.4.1 in
Qr/x2 D Qr. So by letting A — 1— we arrive at

(3.4.3) u(z,t) < a(z,t).
This finishes the proof. O

THEOREM 3.4.4. Let the initial datum ug be as in Theorem 3.4.2.
Assume that there ezists a semi-classical solution v to (P) with initial
datum uo and let ug be uniformly Lipschitz continuous in RN with
g; — 0, such that uy' € C'({uy >0}), vy — wuo uniformly and
support ug — support uy. Assume w /e is a solution of the heat
equation converging to wo uniformly with wy € C(Qr) N L=(Qr) and
verifying (3.1.5). Also, assume that wy satisfies the monotonicity con-
dition (3.1.4).

Let u® be the solution to (F.;) with function w® and initial datum
ug and let u = limu. Then, u = v.

In particular, there exists at most one classical solution to (P).
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PROOF. Since u is a semi-classical supersolution to (P) and v is a
semi-classical subsolution, Lemma 2.1 applies and we get that v < u.

On the other hand, if we define v asin (3.1.6), with 0 < A < X < 1,
we have that v, satisfies the hypotheses of Proposition 3.4.1. Thus,
there exists a family v of supersolutions to (F;;) with function w®
such that, for a subsequence, v — v with initial data converging
uniformly to ug. So by the comparison principle

v =limu® <limv% = v.

This finishes the proof. U

5. Conclusions

We have proved that the limits of sequences of solutions to (Px)
with different constitutive functions w® and initial data ug coincide —
as long as certain monotonicity assumptions are made — if the limit of
w*® /e and of uf are prescribed.

The monotonicity assumptions are necessary to provide strict semi-
classical supersolutions as close as we want to any semi-classical super-
solution. This kind of condition was also used with the same purpose
— in the case in which w® = 0 — in [30, 22|. In the latter, a different
geometry was considered namely, the domain was a cylinder, Neumann
boundary conditions were given on the boundary of the cylinder and
monotonicity in the direction of the cylinder axis was assumed. In [22]
it was proved that, if a classical solution exists and w® = 0, then it is
equal to any limit of solutions to (P).

In our case, this is with w® # 0 satisfying (0.2.4) and nondecreas-
ing in the direction of the cylinder axis, the uniqueness result in the
presence of a classical solution still holds.

The cylindrical geometry has the advantage of giving the condi-
tion of nonvanishing gradient in the positivity set of any limit solu-
tion. Since in dimension 2 one can prove that limit solutions are semi-
classical supersolutions up to the fixed boundary, the uniqueness of
limit solutions follows in this case without further assumptions.
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