
Un Problema de Frontera Libre
en Teoŕıa de Combustión

Resumen

En esta Tesis consideramos el siguiente problema de perturbación
singular que se presenta en teoŕıa de combustión

∆uε − uε
t = Y εfε(u

ε) en D,
∆Y ε − Y ε

t = Y εfε(u
ε) en D,

donde D ⊂ RN+1, fε(s) = 1
ε2 f( s

ε
) con f una función Lipschitz sopor-

tada en (−∞, 1].

En este sistema Y ε es la fracción de masa de algún reactante, uε la
temperatura rescalada de la mezcla y ε es esencialmente el inverso de
la enerǵıa de activación. Este modelo es derivado en el contexto de la
teoŕıa de llamas premezcladas equidifusionales para número de Lewis
1.

Probamos que, bajo hipótesis adecuadas sobre las funciones uε e
Y ε, podemos pasar al ĺımite (ε → 0) – llamado ĺımite de alta enerǵıa
de activación – y que la función ĺımite u = lim uε = lim Y ε es una
solución del siguiente problema de frontera libre

(P )
∆u− ut = 0 en {u > 0},
|∇u| =

√
2M(x, t) en ∂{u > 0},

en un sentido puntual en los puntos regulares de la frontera libre y en el
sentido de la viscosidad. En (P ), M(x, t) =

∫ 1

−w0(x,t)
(s+w0(x, t))f(s)ds

y −1 < w0 = limε→0
Y ε−uε

ε
.

Como Y ε− uε es una solución de la ecuación del calor, queda com-
pletamente determinada por sus datos iniciales y de contorno. En
particular, la condición de frontera libre depende fuertemente de las
aproximaciones de esos datos.

También probamos que, bajo condiciones más débiles sobre los
datos, la función ĺımite u (que llamaremos solución ĺımite) es una super-
solución clásica del problema de frontera libre. Más aún, si D ∩ ∂{u >
0} es una superficie Lipschitz, u resulta una solución clsica de (P ).

Finalmente probamos, bajo hipótesis geométricas adecuadas sobre
los datos, la unicidad de solución ĺımite para el problema (P ).
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A Free bounday Problem
in Combustion Theory

Abstract

In this work we consider the following problem arising in combustion
theory

∆uε − uε
t = Y εfε(u

ε) in D,
∆Y ε − Y ε

t = Y εfε(u
ε) in D,

where D ⊂ RN+1, fε(s) = 1
ε2 f( s

ε
) with f a Lipschitz continuous func-

tion with support in (−∞, 1].

Here Y ε is the mass fraction of some reactant, uε the rescaled tem-
perature of the mixture and ε is essentially the inverse of the activation
energy. This model is derived in the framework of the theory of equid-
iffusional premixed flames for Lewis number 1.

We prove that, under suitable assumptions on the functions uε and
Y ε, we can pass to the limit (ε → 0) – the so called high activation
energy limit – and that the limit function u = lim uε = lim Y ε is a
solution of the following free bounday problem

(P )
∆u− ut = 0 in {u > 0},
|∇u| =

√
2M(x, t) on ∂{u > 0},

in a pointwise sense at regular free bounday points and in a viscosity
sense. Here M(x, t) =

∫ 1

−w0(x,t)
(s + w0(x, t))f(s)ds and −1 < w0 =

limε→0
vε−uε

ε
.

Since Y ε − uε is a solution of the heat equation it is fully deter-
mined by its initial-boundary datum. In particular, the free bounday
condition only (but strongly) depends on the approximation of the
initial-boundary datum.

Also we prove that, under weaker assumptions on the data, the
limit function u (that we call limit solution) is a classical supersolution
of the free bounday problem. Moreover, if D ∩ ∂{u > 0} is a Lipschitz
surface, u is a classical solution to (P ).

Finally we prove, under adequate geometric assumptions on the
data, the uniqueness of limit solutions for problem (P ).

Keywords: Parabolic systems, reaction-diffusion, combustion, uni-
form estimates, free bounday problems, viscosity solution, limit solu-
tion, classical solution.
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Introducción

1. Descripción del modelo

El trabajo de esta Tesis es una contribución al análisis matemático
de un modelo termo-difusivo que aparece en teoŕıa de combustión.

Este modelo aparece en el análisis de la propagación de llamas cur-
vas. Para una reacción elemental de orden uno, del tipo

Reactante → Producto,

el problema general de propagación de llamas se reduce a resolver el
sistema:

ρt − div(ρv) = 0,(0.1.1)

ρvt + ρ(v · ∇)v− µ∆v− λ∇(∇ · v) +∇p = 0,(0.1.2)

ρTt + ρ(v · ∇)T −K∆T =
Q

cp

ω,(0.1.3)

ρyt + ρ(v · ∇)y −K1∆y = −myω,(0.1.4)

p = ρRT,(0.1.5)

donde las incógnitas son la densidad ρ, la velocidad v, la presión p,
la temperatura T y la concentración del reactante y. Las ecuaciones
(0.1.1) y (0.1.2) son las ecuaciones de conservación de masa y la de
Navier-Stokes; la ecuación (0.1.5) es la ecuación de estado para un
gas perfecto; y las ecuaciones (0.1.3) y (0.1.4) son las ecuaciones de la
cinética qúımica para la que adoptamos la ley de Arrhenius:

(0.1.6) ω = ρbB(Tb)
y

my

exp

(
− E

RT

)
.

Suponemos que las cantidades µ, λ, cp, my, Q, R, K y K1 son con-
stantes positivas. Más aún, ρb y Tb representan la densidad y la tem-
peratura del gas quemado, y E es la enerǵıa de activación.

Este último parámetro juega un rol importante debido a la depen-
dencia exponencial en el término de reacción para la temperatura ω;
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4 INTRODUCCIÓN

Esta dependencia se incrementa cuando la enerǵıa de activación se in-
crementa. Más aún, es la base de los métodos de análisis asintóticos
comúnmente usados por los f́ısicos. Es también la base para la identifi-
cación de diferentes zonas caracterizadas por la importancia relativa de
los términos que aparecen en las ecuaciones. Cuando E tiene a infinito,
aparece un problema de frontera libre (ver [8, 37, 38]).

Con esta generalidad, el problema es demasiado complejo. El mo-
delo termo-difusivo, consiste en una simplificación de este problema por
medio de dos suposiciones que son clásicas en teoŕıa de combustión. La
primera, es la suposición de número de match pequeño, es decir con-
siderar a la propagación de la llama como un proceso isobárico. La se-
gunda consiste en considerar la densidad de la mezcla constante. Estas
dos hipótesis permiten desacoplar el sistema en el conjunto de ecua-
ciones que modelan el proceso hidrodinámico del gas, y las ecuaciones
que contienen el proceso de combustión. Este modelo está f́ısicamente
justificado (cf. [29]) para altas enerǵıas de activación

E

RTb

À 1,

bajo la hipótesis de cuasi-equidifusividad:

(0.1.7)
E

RTb

Tb − Tc

Tb

(
1− 1

Le

)
= O(1),

donde Le = K/K1 es el número de Lewis y Tc es la temperatura del
gas fŕıo.

Este modelo se adapta bien a la descripción del fenómeno de com-
bustión donde la dinámica del gas juega un rol secundario en com-
paración con los efectos difusivos y reactivos. Este es el caso, por
ejemplo, en el fenómeno de inestabilidad celular [29, 33, 34].

El ĺımite E → +∞ es, por śı mismo, de poco interés dado que el
término de reacción ω dado en (0.1.6) tiende a cero. Para preservar
la reacción, es necesario que el término B(Tb) tienda a infinito; i.e.
debemos considerar el ĺımite distinguido caracterizado esencialmente
por

(0.1.8) B(Tb) ∼ e
E

RTb

Para T < Tb el término de reacción ω tiende a cero exponencial-
mente; esto es conocido como el ĺımite fŕıo. Para T > Tb, (0.1.4) y
(0.1.6) implican que – al menos formalmente – y → 0 exponencial-
mente y de nuevo ω tiende a cero exponencialmente. Luego, el primer
paso para hacer que este método funcione, consiste en asumir que la
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temperatura Tf en el frente de la combustión verifica una estimación
de la forma:

(0.1.9)
E

RT 2
b

(Tf − Tb) = O(1).

El análisis asintótico del sistema cuando E
RTb

→ +∞, conduce – por lo

menos formalmente – a un problema de frontera libre (ver [20, 35]).

En esta Tesis, nos enfocamos en el análisis matemático riguroso de
este modelo y, más precisamente, en el estudio del análisis asintótico
para grandes enerǵıas de activación. Consideraremos la mezcla de gas
en reposo (i.e. v = 0). Luego de adimensionalizar las ecuaciones, el
problema (0.1.1)-(0.1.4) es reducido a resolver el sistema

∆u− ut = ω(u, Y ),(0.1.10)

1

Le
∆Y − Yt = ω(u, Y ),(0.1.11)

donde u = 1
Tf−Tc

(Tf −T ) es la temperatura rescalada (o menos la tem-

peratura) e Y es la fracción de masa rescalada del reactante. El término
ω(u, Y ) posee propiedades precisas que describimos más adelante.

Para una deducción más detallada del modelo, referimos a [8].

El modelo termo-difusivo descripto, ha sido estudiado por muchos
autores: existencia de ondas estacionarias (por ejemplo [4, 7, 36]),
soluciones de problemas eĺıpticos (ver [3, 4, 6]), el problema parabólico
([26]), estabilidad de ondas viajeras ([5, 31, 32]), etc.

El análisis asintótico para grandes enerǵıas de activación ha sido
estudiado para ondas estacionarias por [7, 18, 28] entre otros. Para
problemas eĺıpticos y parabólicos, ha sido estudiado en el caso Le = 1
y u = Y (que es una suposición natural en el caso de ondas viajeras).
Citamos los trabajos [2, 25] para ondas viajeras y la ecuación eĺıptica
y [10, 11, 13] para el problema parabólico.

También queremos hacer mención del trabajo [27] donde el sistema
(0.1.10)-(0.1.11) es estudiado en el caso Le ∼ 1 y se obtienen resultados
similares a los de [13] en dimensiones N = 1, 2, 3.

2. Descripción del problema matemático

En esta Tesis consideramos el problema (0.1.10)-(0.1.11) en el caso
equidifusional (i.e. Le = 1). Haremos las siguientes suposiciones na-
turales sobre el término no lineal ω(u, Y ): Llamamos ε al inverso de
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la enerǵıa de activación rescalada, ε−1 = E
RT 2

b
(Tb − Tc). Entonces, por

(0.1.6), ω = ωε viene dado por

ωε(u, Y ) = Y fε(u).

Para evitar la llamada dificultad del borde fŕıo, es usual en la literatura
fijar fε como cero en las zonas donde es exponencialmente pequeña,
es decir, asumimos de aqúı en más que fε(s) = 0 si s ≥ ε. Para una
discusión más detallada sobre la dificultad del borde fŕıo, ver [8].

Debido a (0.1.8), es fácil verificar que las funciones fε verifican que
∫ ε

0

sfε(s) ds → M0 > 0, ε → 0.

Esta constante M0 juega un rol esencial en el análisis asintótico del
modelo cuando ε → 0. Una forma usual – y conveniente – de simplificar
el análisis, es cambiar las funciones fε asumiendo que están dadas en
términos de una única función f en la forma

fε(s) =
1

ε2
f

(s

ε

)
,

con lo cual, la integral
∫ ε

0
sfε(s) ds resulta independiente de ε.

Estas funciones fε todav́ıa capturan las caracteŕısticas esenciales
de (0.1.6). Luego, sobre f , asumimos que es una función no negativa,
Lipschitz continua, que es positiva en el intervalo (−∞, 1) y cero en el
complemento (i.e., la reacción sólo ocurre cuando T > Tf −ε(Tf −Tc)).

A partir de ahora, haremos expĺıcita la dependencia en ε de la
temperatura rescalada u y de la fracción de masa del reactante Y , con
lo cual el sistema a considerar será

(0.2.1)

{
∆uε − uε

t = Y εfε(u
ε) en D,

∆Y ε − Y ε
t = Y εfε(u

ε) en D,

donde D ⊂ RN+1.

El estudio del ĺımite cuando ε → 0 fue propuesto en la década del
30 por Zeldovich y Frank-Kamenetski [38] y ha sido muy discutido en
la literatura de combustión.

En el caso uε = Y ε el término de reacción uεfε(u
ε) tiende a una

delta de Dirac, M0δ(u) donde M0 =
∫ 1

0
sf(s)ds. De esta manera, la

zona de reacción donde uεfε(u
ε) actúa se ve reducida a una superficie,

el frente de la llama, y aparece el problema de frontera libre. El hecho
que M0 > 0 asegura que un proceso de combustión no trivial tiene
lugar con lo cual aparece una frontera libre no vaćıa.
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Si bien la convergencia de las formas más relevantes de propa-
gación, i.e. las ondas viajeras, fue ya discutido por Zeldovich y Frank-
Kamenetski, y un gran progreso se ha hecho en esa dirección, una
investigación matemática rigurosa sobre la convergencia de soluciones
generales se encuentra todav́ıa en curso. Berestycki y sus colaboradores
han estudiado rigurosamente el problema de la convergencia para on-
das viajeras y, más generalmente, el caso eĺıptico estacionario – cf. [2]
y sus referencias. Ver también [25]. El estudio del ĺımite en el caso
general de evolución para la ecuación del calor fue realizado en [13]
para el caso de una fase (esto es, con uε ≥ 0) y en [10, 11] para el caso
de dos fases, donde no se impone ninguna restricción en el signo de uε.

En [13] los autores muestran que, bajo ciertas hipótesis sobre los
datos iniciales y sus aproximaciones, para toda suceción εn → 0 existe
una subsucesión εnk

y una función ĺımite u = lim uεnk que resuelve el
siguiente problema de frontera libre

(0.2.2)

{
∆u− ut = 0 en D ∩ {u > 0},
|∇u+| =

√
2M0 en D ∩ ∂{u > 0},

en un sentido débil integral. Acá M0 =
∫ 1

0
sf(s)ds.

En [10, 11] los autores muestran que la condición de frontera libre
para el caso de dos fases (asumiendo que no ocurre ninguna reacción si
uε ≤ 0) es

|∇u+|2 − |∇u−|2 = 2M0

y que la función ĺımite es una solución del problema de frontera libre en
un sentido puntual en los puntos regulares de la frontera libre cuando
{u = 0} tiene “densidad parabólica” cero y en el sentido de la viscosi-
dad en la ausencia de una fase nula (i.e. cuando {u = 0}◦ ∩ D = ∅)

Una pregunta natural es: ¿Será cierto que si uno tiene una sucesión
de soluciones uniformemente acotadas (uε, Y ε) de (0.2.1) con (Y ε −
uε) → 0 cuando ε → 0 entonces uε (o una subsucesión) converge a
una solución del problema de frontera libre (0.2.2)? Es decir, ¿Será el
ĺımite asintótico para enerǵıa de activación tendiendo a infinito, en el
caso que (Y ε−uε) → 0 pero uε 6= Y ε, una solución del mismo problema
de frontera libre que en el caso uε = Y ε?

Observemos que en el caso en consideración, cuando el número de
Lewis es 1, la función wε = Y ε − uε es una solución de la ecuación del
calor. Luego está completamente determinada por sus valores iniciales
y de contorno. Más aún, el sistema (0.2.1) puede ser reescrito como
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una única ecuación para uε,

(Pε) ∆uε − uε
t = (uε + wε)fε(u

ε).

En esta Tesis consideramos el caso que wε/ε converge a una cierta
función w0 (o sea que, en particular, Y ε− uε → 0). Más precisamente,
asumimos que los datos iniciales Y ε

0 y uε
0 verifican

(0.2.3)
Y ε

0 (x)− uε
0(x)

ε
→ w0(x) uniformemente en RN ,

con w0 > −1. Luego, la función wε(x, t) es la solución de la ecuación
del calor con dato inicial Y ε

0 (x) − uε
0(x) y por (0.2.3), satisface que

existe el ĺımite

(0.2.4) lim
ε→0

wε(x, t)

ε
= w0(x, t),

donde w0(x, t) es la solución de la ecuación del calor con dato inicial
w0(x).

De esta manera, por lo menos formalmente, el término de reacción
todav́ıa converge a una función delta y aparece un problema de frontera
libre. Pero en este trabajo probamos que la condición de frontera libre
depende fuertemente de la función ĺımite w0, o sea que es diferente para
diferentes aproximaciones de los datos iniciales y de contorno de u.

En efecto, probamos que para cada sucesión εn → 0 existe una
subsucesión εnk

y una función ĺımite u = lim uεnk que es una solución
del siguiente problema de frontera libre

(P )

{
∆u− ut = 0 en D ∩ {u > 0},
|∇u+| =

√
2M(x, t) en D ∩ ∂{u > 0},

donde M(x, t) =
∫ 1

−w0(x,t)

(
s + w0(x, t)

)
f(s)ds.

La presencia de la función w0 en el ĺımite de integración, garantiza
la positividad de la función M(x, t).

En conclusión, el problema de combustión es muy inestable en el
sentido que el ĺımite asintótico para enerǵıa de activación tendiendo a
infinito depende de perturbaciones de orden ε de los datos iniciales y
de contorno.

En esta Tesis probamos que la función ĺımite es una solución “vis-
cosa” de (P ), con lo cual, como consecuencia de nuestros resultados
y de los resultados de regularidad para soluciones viscosas de (P ) en
[17], deducimos que, cuando la frontera libre de una función ĺımite u
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viene dada por x1 = g(x′, t), x = (x1, x
′) con g Lipschitz continua, u es

una solución clásica.

Queremos remarcar que, debido a nuestra suposición Y ε − uε → 0
y dado que Y ε ≥ 0, la función ĺımite u debe ser no negativa, luego el
hecho de que u sea una solución viscosa de (P ) es novedoso, aún en el
caso uε = Y ε.

En particular, como consecuencia de nuestros resultados vemos que
funciones ĺımite u con uε(x, 0) construidas como en [13], e Y ε(x, 0)
pequeñas perturbaciones de uε(x, 0) son soluciones viscosas de (P ). En
esta construcción, w0 es cualquier constante tal que w0 ≥ −η donde
η > 0 es suficientemente pequeño.

Finalmente, estudiamos la unicidad del ĺımite u = lim uεnk de (P ),
puesto que es una pregunta natural averiguar si la única condición que
determina la función ĺımite u es la condición (0.2.3).

El propósito del último caṕıtulo de esta Tesis es probar que este es
el caso, por lo menos bajo ciertas hipótesis de monotońıa sobre el dato
inicial u0. Estas hipótesis de monotońıa son similares a las utilizadas
para probar unicidad del ĺımite en el caso uε = Y ε en [30].

Nuestros resultados pueden ser resumidos en, bajo ciertas hipótesis
sobre el dominio y sobre el dato inicial u0, existe a lo sumo una solución
ĺımite del problema de frontera libre (P ) cuyo gradiente no se anula
cerca de su frontera libre, siempre y cuando las aproximaciones de los
datos iniciales – que convergen uniformemente a u0 con soportes que
convergen al soporte de u0 – satisfagan (0.2.3).

Más aún, bajo las mismas hipótesis geométricas, si existe una solu-
ción clásica de (P ), entonces ella es el único ĺımite de soluciones
de (Pε) con datos iniciales que satisfacen las condiciones antes men-
cionadas. En particular, es la única solución clásica de (P ).

Queremos remarcar que la unicidad del ĺımite resulta independi-
ente de la aproximación del dato inicial u0 y de la aproximación de la
función constitutiva w0. Más precisamente, tomemos u

εj

0 , ũεk
0 distintas

aproximaciones del dato inicial u0 y wεj/εj, w̃
εk/εk distintas aproxima-

ciones de w0, sean uεj (resp. ũεk) la solución de (Pεj
) con función wεj y

dato inicial u
εj

0 (resp. solución de (Pεk
) con función w̃εk y dato inicial

ũεk
0 ). Sean u = lim uεj y ũ = lim ũεk . Entonces, bajo las condiciones

antes mencionadas, u = ũ.

Como ya hemos mencionado, en el caso uε = Y ε, resultados de
unicidad para soluciones ĺımite bajo hipótesis geométricas similares a
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las hechas en este trabajo pueden ser encontrados en [30]. Las técnicas
utilizadas en este trabajo difieren de las de [30] ya que éstas últimas
requeriŕıan en nuestro caso, hipótesis suplementarias sobre la función
f .

En [22] los autores estudian la unicidad y coincidencia entre difer-
entes conceptos de soluciones del problema (P ) (nuevamente en el caso
uε = Y ε) bajo la suposición de la existencia de una solución clásica
y bajo condiciones geométricas diferentes. Ver también [23] para un
resultado similar en el caso de dos fases. Usamos algunas de las ideas
de esos trabajos en el estudio de nuestro problema.

3. Notación

A lo largo de esta Tesis N denotara a la dimensión espacial y,
además, la siguiente notación será usada:

Para cualquier x0 ∈ RN , t0 ∈ R y τ > 0

Bτ (x0) ≡ {x ∈ RN/ |x− x0| < τ},
Bτ (x0, t0) ≡ {(x, t) ∈ RN+1/ |x− x0|2 + |t− t0|2 < τ 2},
Qτ (x0, t0) ≡ Bτ (x0)× (t0 − τ 2, t0 + τ 2),

Q−
τ (x0, t0) ≡ Bτ (x0)× (t0 − τ 2, t0],

y para cualquier conjunto K ⊂ RN+1

Nτ (K) ≡
⋃

(x0,t0)∈K

Qτ (x0, t0),

N−
τ (K) ≡

⋃

(x0,t0)∈K

Q−
τ (x0, t0).

De ser necesario, notaremos a los puntos en RN por x = (x1, x
′), con

x′ ∈ RN−1. Además, 〈·, ·〉 denotará el producto escalar usual en RN .
Dada una función v, notaremos v+ = max(v, 0), v− = max(−v, 0).

También, los śımbolos ∆ y ∇ notarán los correspondiente oper-
adores en las variables espaciales; el śımbolo ∂p notará el borde parabóli-
co.

Diremos que una función v pertenece a la clase Liploc(1,
1
2
) en un

dominio D ⊂ RN+1, si para cada D′ ⊂⊂ D, existe una constante
L = L(D′) tal que

|v(x, t)− v(y, s)| ≤ L(|x− y|+ |t− s|1/2)
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para todo (x, t), (y, s) ∈ D′. Si la constante L no depende del conjunto
D′, diremos que v ∈ Lip(1, 1

2
) en D.

Finalmente, diremos que u es supercalórica si ∆u − ut ≤ 0, y u es
subcalórica si ∆u− ut ≥ 0.

4. Hipótesis y estructura de la Tesis

Para la existencia de una función ĺımite para una subsucesión uεnk

sólo necesitamos la condición más débil que para cada compacto K ⊂
N−

τ (K) ⊂ D,

(0.4.5) ‖Y ε − uε‖L∞(N−
τ (K)) = O(ε).

Entonces, tenemos (ver [21])

(0.4.6) ‖Y ε − uε‖C2,1(K) = O(ε).

Bajo esta suposición, somos capaces de aplicar los resultados de [9]
y obtener las estimaciones Lipschitz uniformes necesarias para pasar al
ĺımite en (0.2.1). Esto está realizado en el Caṕıtulo 1 donde tambiés se
prueban algunos lemas técnicos que son usados a lo largo de la Tesis.

En el Caṕıtulo 2 asumimos que uε → 0 en {u = 0} suficientemente
rápido. Esta es una condición esencial que ya fue considerada en [13].
Esta suposición es natural en aplicaciones, significa que la temperatura
de la mezcla alcanza la temperatura de la llama sólo si alguna com-
bustión esta siendo llevada a cabo.

También asumimos que existe limε→0(Y
ε − uε)/ε =: w0 y, como

consecuencia de la hipótesis uε → 0 en {u = 0} suficientemente rápido,
mostramos que necesariamente w0 > −1 en {u ≡ 0}◦. Luego, en el
Caṕıtulo 2, asumimos que para cada K ⊂ N−

τ (K) ⊂ D compacto

(0.4.7)
Y ε − uε

ε
→ w0 uniformemente en N−

τ (K).

Entonces,

(0.4.8)

∥∥∥∥
Y ε − uε

ε
− w0

∥∥∥∥
C2,1(K)

→ 0.

Y, para simplificar en análisis, asumimos que w0 > −1 en D. También,
en el Caṕıtulo 2, mostramos que la función ĺımite u es una solución
del problema de frontera libre (P ) en un sentido puntual, y finalmente
probamos que la función ĺımite u es de hecho una solución viscosa del
problema de frontera libre (P ) bajo una hipótesis de nodegeneración de
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la función ĺımite u. Además probamos algunos resultados que garanti-
zan la nodegeneración de u.

Nuestra presentación en este caṕıtulo es de una naturaleza local, con
lo cual nuestras hipótesis están enunciadas en términos de la solución
(uε, Y ε). Como puede verse en el ejemplo tratado en el Corolario 2.3.8
es posible deducir nuestras hipótesis sobre (uε, Y ε) a partir de condi-
ciones sobre los datos iniciales y de contorno.

En el Caṕıtulo 3, nos enfrentamos con el problema de unicidad para
funciones ĺımite de (P ), bajo ciertas hipótesis geométricas adicionales
que ya han sido consideradas en el caso wε = 0 [22, 23, 30]. Más
precisamente, asumimos que el dato inicial u0 es estrellado con respecto
a algún punto. Esta hipótesis de monotońıa nos permite aproximar
una supersolución clásica de (P ) por una familia de supersoluciones
estrictas de (Pε). Probamos que el ĺımite de una sucesión de soluciones
de (Pε) es independiente de la sucesión siempre y cuando el ĺımite de
sus datos iniciales y de wε/ε sea fijo.



Introduction

1. Description of the model

The work in this Thesis is a contribution to the mathematical anal-
ysis of a thermal-diffusive model that appears in combustion theory in
the analysis of the propagation of curved flames.

For an elementary reaction of order one, of type

Reactant → Product,

the general problem of propagation of flames is reduced to solving the
system:

ρt − div(ρv) = 0,(0.1.1)

ρvt + ρ(v · ∇)v− µ∆v− λ∇(∇ · v) +∇p = 0,(0.1.2)

ρTt + ρ(v · ∇)T −K∆T =
Q

cp

ω,(0.1.3)

ρyt + ρ(v · ∇)y −K1∆y = −myω,(0.1.4)

p = ρRT,(0.1.5)

where the unknowns are the density ρ, the velocity v, the pressure p,
the temperature T and the concentration of the reactant y. Equations
(0.1.1) and (0.1.2) are the conservation of mass and Navier-Stokes equa-
tions; equation (0.1.5) is the equation of state for a perfect gas; and
equations (0.1.3) and (0.1.4) are the equations of the chemical cinetic
for which we adopt the Arrhenius law:

(0.1.6) ω = ρbB(Tb)
y

my

exp

(
− E

RT

)
.

We make the assumption that the quantities µ, λ, cp, my, Q, R, K
and K1 are positive constants. Moreover, ρb and Tb represent the den-
sity and the temperature of the burned gas, and E is the activation
energy.

13



14 INTRODUCTION

This last parameter plays an important role because of the expo-
nential dependence in the temperature of the reaction rate ω; this de-
pendance is increased as the activation energy is increased. Moreover,
it is the basis of the asymptotic analysis commonly performed by physi-
cists. Also it is the basis for the identification of different zones char-
acterized by the relative importance of the terms that appear in the
equations. As E tends to infinity, a free boundary problem appears (see
[8, 37, 38]).

With this generality, the problem is too complex. The thermal-
diffusive model, consists in a simplification of this problem by means
of two basic assumptions that are classical in combustion theory. The
first one is the assumption of low match number, this is to consider
the propagation of the flame as an isobaric process. The second one
consists in considering the density of the mixture as constant. These
two hypotheses allow us to decouple the system into the set of equations
that model the hydrodynamic process of the gas, and the equations that
describe the combustion process.

This model is physically justified (cf. [29]) for large activation
energies

E

RTb

À 1,

under the hypothesis of almost-equidiffusion:

(0.1.7)
E

RTb

Tb − Tc

Tb

(
1− 1

Le

)
= O(1),

where Le = K/K1 is the Lewis number and Tc is the temperature of
the cold gas.

This model adapts well to the description of the phenomenon of
combustion when the dynamic of the gas plays a secondary role in
terms of the diffusive and reactive effects. This is the case, for instance,
in the phenomenon of cellular instability [29, 33, 34].

The limit E → +∞ is, by itself, of little interest since the reaction
term ω given in (0.1.6) vanishes. To preserve the reaction, it is nec-
essary for the term B(Tb) to become unboundedly large; i.e. we must
consider a distinguished limit characterized essentially by

(0.1.8) B(Tb) ∼ e
E

RTb

For T < Tb the reaction term ω vanishes exponentially; this is
known as the frozen limit. For T > Tb, (0.1.4) and (0.1.6) imply
that – at least formally – y → 0 exponentially and again ω vanishes
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exponentially. So the first step for making this method work, consists
in assuming that the temperature Tf on the front of combustion verifies
an estimate of the form:

(0.1.9)
E

RT 2
b

(Tf − Tb) = O(1).

The asymptotic analysis when E
RTb

→ +∞ of the system, leads – at

least formally – to a free boundary problem (see [20, 35]).

In this Thesis, we will focus on the rigorous mathematical analysis
of this model, and more precisely, on the study of its asymptotic anal-
ysis for large activation energies. We will consider the mixture of a gas
in repose (i.e. v = 0). After adimensionalization of the equations, the
problem (0.1.1)-(0.1.4) is reduce to solving the system

∆u− ut = ω(u, Y ),(0.1.10)

1

Le
∆Y − Yt = ω(u, Y ),(0.1.11)

where u = 1
Tf−Tc

(Tf − T ) is the rescaled temperature (or minus the

temperature) and Y is the rescaled mass fraction of the reactant. The
term ω(u, Y ) has some precise properties that will be described below.

For a more precise description of the model, we refer to [8].

The thermal-diffusive model described above, has been studied by
many authors: existence of stationary waves (for example [4, 7, 36]),
solution of elliptic problems (see [3, 4, 6]), the parabolic problem
([26]), stability of traveling waves ([5, 31, 32]).

The asymptotic analysis for large activation energies has been stud-
ied for stationary waves in [7, 18, 28] among others. For elliptic and
parabolic problems, it has been studied in the case Le = 1 and u = Y
(which is a natural assumption in the case of traveling waves). We cite
the works [2, 25] for the traveling waves and the elliptic equation and
[10, 11, 13] for the parabolic problem.

We also mention the work [27] where the system (0.1.10)-(0.1.11)
is studied in the case Le ∼ 1 and results similar to those in [13] are
obtained in dimensions N = 1, 2, 3.
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2. Description of the mathematical problem

In this Thesis we consider the problem (0.1.10)-(0.1.11) in the equid-
iffusional case (i.e. Le = 1). We make the following natural assump-
tions on the nonlinear term ω(u, Y ): We call ε the inverse of the rescaled
activation energy, ε−1 = E

RT 2
b
(Tb−Tc), then, by (0.1.6), ω = ωε is given

by
ωε(u, Y ) = Y fε(u).

To avoid what is called the cold boundary difficulty, it is usual in the
literature to set fε to be zero wherever is exponentially small, that is,
we will assume in what follows that fε(s) = 0 if s ≥ ε. For a more
detailed discussion about the cold boundary difficulty, see [8].

By (0.1.8), it is easy to check that the functions fε verify that∫ ε

0

sfε(s) ds → M0 > 0, ε → 0.

This constant M0 plays a crucial role in the asymptotic analysis of the
model as ε → 0. A usual – and convenient – way of simplifying the
analysis, is to change the functions fε by assuming that they are given
in terms of a single function f in the form

fε(s) =
1

ε2
f

(s

ε

)
,

and so the integral
∫ ε

0
sfε(s) ds is independent of ε.

These functions fε still capture the essential features of (0.1.6).
Then, on f we assume that it is a nonnegative Lipschitz continuous
function which is positive in the interval (−∞, 1) and vanishes other-
wise (i.e., reaction occurs only when T > Tf − ε(Tf − Tc)).

From now on, we will make explicit the dependance on ε of the
rescaled temperature u and the mass fraction of the reactant Y , so the
system under consideration will be

(0.2.1)

{
∆uε − uε

t = Y εfε(u
ε) in D,

∆Y ε − Y ε
t = Y εfε(u

ε) in D,

where D ⊂ RN+1.

The study of the limit as ε → 0 was proposed in the 30’s by Zel-
dovich and Frank-Kamenetski [38] and has been much discussed in the
combustion literature.

In the case uε = Y ε the reaction function uεfε(u
ε) tends to a Dirac

delta, M0δ(u) where M0 =
∫ 1

0
sf(s)ds. In this way the reaction zone

where uεfε(u
ε) acts is reduced to a surface, the flame front, and a
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free boundary problem arises. The fact that M0 > 0 ensures that
a nontrivial combustion process takes place so that a non-empty free
boundary actually appears.

Although the convergence of the most relevant propagation modes,
i.e. the traveling waves, was already discussed by Zeldovich and Frank-
Kamenetski, and an enormous progress in this direction has been made,
a rigorous mathematical investigation of the convergence of general
solutions is still in progress. Berestycki and his collaborators have
rigorously studied the convergence problem for traveling waves and,
more generally in the elliptic stationary case, cf. [2] and its references.
See also [25]. The study of the limit in the general evolution case for
the heat operator has been performed in [13] for the one phase case
(this is, with uε ≥ 0) and in [9, 10, 11] for the two-phase case, where
no sign restriction on uε is made.

In [13] the authors show that, under certain assumptions on the
initial datum and its approximations, for every sequence εn → 0 there
exists a subsequence εnk

and a limit function u = lim uεnk which solves
the following free boundary problem

(0.2.2)

{
∆u− ut = 0 in D ∩ {u > 0},
|∇u+| =

√
2M0 on D ∩ ∂{u > 0},

in a weak integral sense. Here M0 =
∫ 1

0
sf(s)ds.

In [10] and [11] the authors show that the free boundary condition
for the two phase case (when it is assumed that no reaction takes place
if uε ≤ 0) is

|∇u+|2 − |∇u−|2 = 2M0

and that the limit function is a solution of the free boundary problem
in a pointwise sense at regular free boundary points when {u = 0} has
zero “parabolic density” and in a viscosity sense in the absence of a
zero phase (i.e. when {u = 0}◦ ∩ D = ∅)

So that a natural question is: Will a sequence of uniformly bounded
solutions (uε, Y ε) of (0.2.1) with (Y ε − uε) → 0 as ε → 0 be such that
uε converges to a solution of the free boundary problem (0.2.2)? This
is, will the asymptotic limit for activation energy going to infinity, in
the case in which (Y ε−uε) → 0 but uε 6= Y ε, be a solution of the same
free boundary problem as in the case in which uε = Y ε?

Let us point out that in the case under consideration this is, when
Lewis number is 1, the function wε = Y ε − uε is a solution of the heat
equation. So that it is fully determined by its initial-boundary datum.
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Moreover, the system (0.2.1) may be rewritten as a single equation for
uε, namely

(Pε) ∆uε − uε
t = (uε + wε)fε(u

ε).

In this thesis we consider the case in which wε/ε converges to a
function w0 (so that in particular, Y ε − uε → 0). More precisely, we
assume that the initial data Y ε

0 and uε
0 verify

(0.2.3)
Y ε

0 (x)− uε
0(x)

ε
→ w0(x) uniformly in RN ,

with w0 > −1. Therefore, the function wε(x, t) is the solution of the
heat equation with initial datum Y ε

0 (x)−uε
0(x) and by (0.2.3), satisfies

that there exists the limit

(0.2.4) lim
ε→0

wε(x, t)

ε
= w0(x, t)

and w0(x, t) is the solution of the heat equation with initial datum
w0(x).

In this way, at least formally, the reaction term still converges to
a delta function and a free boundary problem appears. But we prove
in this work that the free boundary condition strongly depends on the
limit function w0, so that it is different for different approximations of
the initial-boundary datum of u.

In fact, we prove that for every sequence εn → 0 there exists a
subsequence εnk

and a limit function u = lim uεnk which is a solution
of the following free boundary problem

(P )

{
∆u− ut = 0 in D ∩ {u > 0},
|∇u+| =

√
2M(x, t) on D ∩ ∂{u > 0},

where M(x, t) =
∫ 1

−w0(x,t)

(
s + w0(x, t)

)
f(s)ds.

The presence of the function w0 in the limit of integration gives the
necessary positive sign of the function M(x, t).

In conclusion, the combustion problem is very unstable in the sense
that the asymptotic limit for activation energy going to infinity depends
on order ε perturbations of the initial-boundary data.

In this Thesis we prove that the limit function u is a “viscosity”
solution to (P ), so that, as a consequence of our results and of the
regularity results for viscosity solutions to (P ) of [17], we deduce that,
when the free boundary of a limit function u is given by x1 = g(x′, t),
x = (x1, x

′) with g Lipschitz continuous, u is a classical solution.
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We want to stress, that because of our assumption that Y ε−uε → 0
and since Y ε ≥ 0, the limit function u must be nonnegative, so our
result that u is a viscosity solution to (P ) is new, even in the case
uε = Y ε.

In particular, as a consequence of our results we see that limit func-
tions u with uε(x, 0) constructed as in [13], and Y ε(x, 0) small pertur-
bations of uε(x, 0) are viscosity solutions to (P ). In this construction,
w0 is any constant such that w0 ≥ −η where η > 0 is small enough.

Finally, we study the uniqueness of the limit functions u = lim uεnk ,
since it is therefore natural to wonder whether the only condition that
determines the limit function u is condition (0.2.3).

The purpose of the last chapter of this Thesis is to prove that this
is indeed the case, at least under some monotonicity assumption on the
initial value u0. This monotonicity assumption is similar to that used
to prove uniqueness of the limit for the case uε = Y ε in [30].

Our result can be summarized as saying that, under suitable as-
sumptions on the domain and on the initial datum u0, there exists at
most one limit solution to the free boundary problem (P ) with non-
vanishing gradient near its free boundary, as long as the approximate
initial data – converging uniformly to u0 with supports that converge to
the support of u0 – satisfy (0.2.3).

Moreover, under the same geometric assumptions, if there exists a
classical solution to (P ), this is the only limit of solutions to (Pε) with
initial data satisfying the conditions above. In particular, it is the only
classical solution to (P ).

We want to stress that the uniqueness of the limit turns out to
be independent of the approximation of the initial datum u0 and the
approximation of the constitutive function w0. More precisely, let
us take u

εj

0 , ũεk
0 different approximations of the initial datum u0 and

wεj/εj, w̃
εk/εk different approximations of w0, let uεj (resp. ũεk) be

the solution of (Pεj
) with function wεj and initial datum u

εj

0 (resp.
the solution of (Pεk

) with function w̃εk and initial datum ũεk
0 ). Let

u = lim uεj and ũ = lim ũεk . Then, under the same conditions stated
before, u = ũ.

As already stated, in the case uε = Y ε, uniqueness results for limit
solutions under geometric hypotheses similar to the ones made here can
be found in [30]. Nevertheless, in our work we use a different technique
since, in our situation, the method used in [30] would require several
additional hypotheses on f .



20 INTRODUCTION

Also in [22] the authors study the uniqueness and agreement be-
tween different concepts of solutions of problem (P ) (again in the case
uε = Y ε) under the assumption of the existence of a classical solution
and under different geometric assumptions. See also [23] for a similar
result in the two-phase case. We use some of the ideas in these works
for the study of our present situation.

3. Notation

Throughout this Thesis N will denote the spatial dimension and,
in addition, the following notation will be used:

For any x0 ∈ RN , t0 ∈ R and τ > 0

Bτ (x0) ≡ {x ∈ RN/ |x− x0| < τ},
Bτ (x0, t0) ≡ {(x, t) ∈ RN+1/ |x− x0|2 + |t− t0|2 < τ 2},
Qτ (x0, t0) ≡ Bτ (x0)× (t0 − τ 2, t0 + τ 2),

Q−
τ (x0, t0) ≡ Bτ (x0)× (t0 − τ 2, t0],

and for any set K ⊂ RN+1

Nτ (K) ≡
⋃

(x0,t0)∈K

Qτ (x0, t0),

N−
τ (K) ≡

⋃

(x0,t0)∈K

Q−
τ (x0, t0).

When necessary, we will denote points in RN by x = (x1, x
′), with

x′ ∈ RN−1. Also, 〈·, ·〉 will mean the usual scalar product in RN . Given
a function v, we will denote v+ = max(v, 0), v− = max(−v, 0).

In addition, the symbols ∆ and ∇ will denote the corresponding
operators in the space variables; the symbol ∂p will denote parabolic
boundary.

We will say that a function v is in the class Liploc(1,
1
2
) in a domain

D ⊂ RN+1, if for every D′ ⊂⊂ D, there exists a constant L = L(D′)
such that

|v(x, t)− v(y, s)| ≤ L(|x− y|+ |t− s|1/2)

for every (x, t), (y, s) ∈ D′. If the constant L does not depend on the
set D′, we will say that v ∈ Lip(1, 1

2
) in D.

Finally, we will say that u is supercaloric if ∆u − ut ≤ 0, and u is
subcaloric if ∆u− ut ≥ 0.
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4. Hypotheses and outline of the Thesis

For the existence of a limit function for a subsequence uεnk we only
need the weaker condition that for every compact K ⊂ N−

τ (K) ⊂ D,

(0.4.5) ‖Y ε − uε‖L∞(N−
τ (K)) = O(ε).

Then, we have (see [21])

(0.4.6) ‖Y ε − uε‖C2,1(K) = O(ε).

Under this assumption, we are able to apply the results of [9] and
get the uniform Lipschitz estimates needed to pass to the limit in
(0.2.1). This is done in Chapter 1 where we also prove some technical
lemmas that are used throughout the thesis.

In Chapter 2 we assume that uε → 0 in {u = 0} fast enough.
This is an essential condition that was already considered in [13]. This
assumption is a natural one in applications, roughly speaking it means
that the mixture temperature reaches the flame temperature only if
some combustion is taking place.

We also assume that there exists limε→0(Y
ε − uε)/ε =: w0 and, as

a consequence of the hypothesis that uε → 0 in {u = 0} fast enough,
we show that necessarily w0 > −1 in {u ≡ 0}◦. So that, in Chapter 2
we assume that for every K ⊂ N−

τ (K) ⊂ D compact

(0.4.7)
Y ε − uε

ε
→ w0 uniformly in N−

τ (K).

Thus,

(0.4.8)

∥∥∥∥
Y ε − uε

ε
− w0

∥∥∥∥
C2,1(K)

→ 0.

And, for the sake of simplicity, we assume that w0 > −1 in D. Also, in
Chapter 2, we show that the limit function u is a solution to the free
boundary problem (P ) in a pointwise sense, and finally we prove that
the limit function u is in fact a viscosity solution of the free boundary
problem (P ) under a nondegeneracy assumption on the limit function
u. We also prove some results that give the necessary nondegeneracy
of u.

Our presentation is of a local nature, so that our hypotheses are
stated in terms of the solution (uε, Y ε). As can be seen in the example
treated in Corollary 2.3.8 it is possible to deduce our hypotheses on
(uε, Y ε) from conditions on its initial-boundary datum.
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In Chapter 3, we deal with the uniqueness nature of the limit of
solutions to (Pε), under some additional geometric assumptions that
were already considered in the case wε = 0 [22, 23, 30]. More precisely,
we assume that the initial datum u0 is starshaped with respect to
some point. This monotonicity assumption allows us to approximate
a classical supersolution to (P ) by a family of strict supersolutions to
(Pε). We prove that the limit of a sequence of solutions of (Pε) is
independent of the sequence as long as the limit of their initial values
and of wε/ε is fixed.



CHAPTER 1

Uniform Estimates

In this chapter we consider a family (uε, Y ε) of solutions to

∆uε − uε
t = Y εfε(u

ε),

∆Y ε − Y ε
t = Y εfε(u

ε),
(1.0.1)

in a domain D ⊂ RN+1 which are uniformly bounded in L∞ norm in
D and satisfy that for every compact K ⊂ N−

τ (K) ⊂ D,

(1.0.2) ‖Y ε − uε‖L∞(N−
τ (K)) = O(ε).

Then, we have (see [21])

(1.0.3) ‖Y ε − uε‖C2,1(K) = O(ε).

In Section 1, we show that the functions uε, Y ε are locally uniformly
bounded in the seminorm Lip(1, 1

2
). Then, in Section 2, we get further

local uniform estimates and pass to the limit as ε → 0. We also show
that the limit function u is a solution to the free boundary problem (P )
in a very weak sense. In Section 3, we prove an approximation lemma
that will be used throughout the rest of the work.

In Sections 4 and 5, we further assume that for every K ⊂ N−
τ (K) ⊂

D compact there exists a function w0 such that

(1.0.4)
Y ε − uε

ε
→ w0 uniformly in N−

τ (K).

Thus,

(1.0.5)

∥∥∥∥
Y ε − uε

ε
− w0

∥∥∥∥
C2,1(K)

→ 0.

We will see that is natural to impose that w0 > −1 in D. We observe
that, as Y ε−uε is a solution of the heat equation, condition (1.0.4) (as
well as condition (1.0.2)) can be deduce from initial-boundary data.

In Section 4 we prove some lemmas concerning particular limit func-
tions in the particular case where w0 is constant. These lemmas will
be useful in the next chapters. Finally, in Section 5, we begin our

23
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study of the limit functions and prove that every limit function u is a
supersolution to the free boundary problem (P ).

1. The estimates

In this Section, we show that uniformly bounded solutions to (1.0.1)
are locally uniformly bounded in Lip(1, 1

2
) norm. First, we manage to

apply the results in [9] and obtain a uniform bound on the gradients of
(uε, Y ε) and then (as usual in parabolic regularity theory) we get the
Hölder 1/2 bound on t.

For convenience, let us define the following function

(1.1.1) wε(x, t) = Y ε(x, t)− uε(x, t),

then, wε is a caloric function and, by (1.0.3), ‖wε‖C2,1(K) = O(ε) for
every compact set K ⊂ D.

For further references, let us now state the following Theorem proved
in [9]

Theorem 1.1.2 ([9], Corollary 2). Let u be a bounded solution in
Q1 of

0 ≤ ∆u− ut ≤ C

ε
X{0<u<ε}.

Then u is Lipschitz (in space) in Q1/2 with bounds independent of ε.

We begin with a proposition (which is a consequence of Theorem
1.1.2) that gives us the uniform control on the gradients of solutions of
(1.0.1).

Proposition 1.1.3. Let (uε, Y ε) be solutions of (1.0.1) such that
‖uε‖∞ ≤ A, Y ε ≥ 0 and verify (1.0.2). Let K ⊂ D compact and τ > 0
such that N−

τ (K) ⊂ D. Then, there exists L = L(τ,A) such that

|∇uε(x, t)| ≤ L, |∇Y ε(x, t)| ≤ L.

Proof. Let us start by making the following observation

uε = Y ε − wε ≥ −wε ≥ −Cε.

Then, let zε = 1
C+1

(uε + Cε) and define, for (x0, t0) ∈ K

zε
τ (x, t) =

1

τ
zε(x0 + τx, t0 + τ 2t).
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In B1(0)× [−1, 0], zε
τ verifies (with B ≥ ‖f‖∞)

0 ≤ ∆zε
τ −

∂zε
τ

∂t
≤ τ

C + 1
(Cε + |uε|) 1

ε2
f(

uε

ε
)

≤ Bτ
1

ε
X[−Cε,ε](u

ε) =
B

ε/τ
X[0,ε/τ ](z

ε
τ ).

On the other hand

|zε
τ (x, t)| ≤ |uε(x, t)|+ C

τ(1 + C)
≤ 1

τ

A+ C

1 + C
.

Therefore, by Theorem 1.1.2, it follows that

|∇zε
τ (x, t)| ≤ L̄ = L̄(τ,A) in B1/2(0)× (−1/2, 0].

In particular,

|∇uε(x0, t0)| = (C + 1)|∇zε(x0, t0)| = (C + 1)|∇zε
τ (0, 0)| ≤ (C + 1)L̄,

|∇Y ε(x0, t0)| ≤ |∇uε(x0, t0)|+ |∇wε(x0, t0)| ≤ (C + 1)L̄ + C.

The proof is finished ¤

As is usual in parabolic regularity theory, Lipschitz regularity in
space, gives Hölder 1/2 regularity in time. For the proof we need the
following result

Proposition 1.1.4 ([10], Proposition 2.2). Let u ∈ C(B̄1(0) ×
[0, 1/(4N + Λ)]) be such that |∆u− ut| ≤ Λ in {u < 0} ∪ {u > 1}, for
some Λ > 0. Let us assume that |∇u| ≤ L, for some L > 0. Then
there exists a constant C = C(L) such that

|u(0, T )− u(0, 0)| ≤ C if 0 ≤ T ≤ 1

4N + Λ
.

Proposition 1.1.5. Let (uε, Y ε) be solutions of (1.0.1) such that
‖uε‖∞ ≤ A, Y ε ≥ 0, and verify (1.0.2). Let K ⊂ D compact and τ > 0
such that Nτ (K) ⊂ D. Then there exists C = C(τ,A) such that

|uε(x, t+∆t)−uε(x, t)| ≤ C|∆t|1/2, |Y ε(x, t+∆t)−Y ε(x, t)| ≤ C|∆t|1/2,

for every (x, t), (x, t + ∆t) ∈ K.

Proof. As in Proposition 1.1.3 we define zε = 1
C+1

(uε + Cε) and

zε
λ(x, t) =

1

λ
zε(x0 + λx, t0 + λ2t),

for 0 < λ < τ and (x0, t0) ∈ K.
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By a simple computation we get, as in Proposition 1.1.3

0 ≤ ∆zε
λ −

∂zε
λ

∂t
≤ B

ε/λ
X[0,ε/λ](z

ε
λ).

Now, zε
λ ≥ 0, and in {zε

λ > 1} we have

|∆zε
λ −

∂zε
λ

∂t
|
{ ≤ B if ε/λ ≥ 1

= 0 if ε/λ < 1.

Moreover, we have that

|∇zε
λ(x, t)| = 1

C + 1
|∇uε(x0 + λx, t0 + λ2t)| ≤ L̄

in Bτ/λ(0)× [0, τ 2/λ2]. Then, by Proposition 1.1.4, we have

|zε
λ(0, t)− zε

λ(0, 0)| ≤ C(L̄) ∀ 0 ≤ t ≤ 1

4N + B

which, in terms of uε, is

|uε(x0, t0 + λ2t)− uε(x0, t0)| ≤ C(L̄)λ.

In particular

|uε(x0, t0 +
λ2

4N + B
)− uε(x0, t0)| ≤ C(L̄)λ.

Let (x0, t0 + ∆t) ∈ K. If 0 < ∆t < τ 2/(4N + B), we take λ =
∆t1/2

√
4N + B < τ to get

|uε(x0, t0 + ∆t)− uε(x0, t0)| ≤ C(L̄)
√

4N + B∆t1/2.

If ∆t ≥ τ2

4N+B
, we have

|uε(x0, t0 + ∆t)− uε(x0, t0)| ≤ 2A ≤ 2A
τ

√
4N + B∆t1/2.

The analogous inequality for Y ε is an immediate consequence of
(1.0.3). ¤

Remark 1.1.6. Under the hypothesis of the previous propositions,
we have that

uε ∈ Liploc(1, 1/2).
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2. Passing to the limit

In this Section, we prove further uniform estimates on the solutions
of (1.0.1) and pass to the limit. Then we show that the limit function
u is a solution to (P ) in a very weak form.

Proposition 1.2.1. Let (uε, Y ε) be solutions of (1.0.1) such that
‖uε‖∞ ≤ A, Y ε ≥ 0 and verify (1.0.2). Then, for every sequence
εn → 0, there exists εn′ → 0 a subsequence and u ∈ Liploc(1, 1/2) such
that

(1) uεn′ → u uniformly on compacts subsets of D.
(2) ∇uεn′ → ∇u in L2

loc.
(3) ∂

∂t
uεn′ → ∂

∂t
u weakly in L2

loc.

(4) ∆u− ∂u
∂t

= 0 in {u > 0}
(5) For every compact K ⊂ D, exists CK > 0 such that∥∥∥∥

∂uε

∂t

∥∥∥∥
L2(K)

≤ CK

for every ε > 0.

Proof. Let K ⊂ D be a compact set, and τ > 0 such that
N3τ (K) ⊂ D. Let L = L(K) such that

|uε(x, t)− uε(y, s)| ≤ L
(|x− y|+ |t− s|1/2

)
,

where (x, t), (y, s) ∈ Nτ (K).

Then, by Arzela-Ascoli’s theorem, there exists εn′ → 0 and u ∈
Lip(1, 1/2) in Nτ (K) such that uεn′ → u uniformly in Nτ (K). By a
standard diagonal argument, (1) follows.

Let us now find uniform bounds for ∂uε

∂t
in L2

loc(D). In fact, uε

verifies

∆uε − ∂uε

∂t
= Y εfε(u

ε).

Now, let (x0, t0) ∈ K and let us multiply the equation by uε
tψ

2

where ψ ≥ 0, ψ = ψ(x) ∈ C∞
c (Bτ (x0)), ψ ≡ 1 in Bτ/2(x0). Then,

integrating by parts, we get

∫∫

Qτ (x0,t0)

(uε
t)

2ψ2 dxdt +
1

2

∫∫

Qτ (x0,t0)

(|∇uε|2)tψ
2 dxdt

+ 2

∫∫

Qτ (x0,t0)

∇uεuε
tψ∇ψ dxdt = −

∫∫

Qτ (x0,t0)

Y εfε(u
ε)uε

tψ
2 dxdt.
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Now we use Young’s inequality to obtain

1

2

∫∫

Qτ (x0,t0)

(uε
t)

2ψ2 dxdt +
1

2

∫

Bτ (x0)

|∇uε(x0, t0 + τ 2)|2ψ2 dx ≤

1

2

∫

Bτ (x0)

|∇uε(x0, t0 − τ 2)|2ψ2 dx−
∫∫

Qτ (x0,t0)

Y εfε(u
ε)uε

tψ
2 dxdt

+ C

∫∫

Qτ (x0,t0)

|∇uε|2|∇ψ|2 dxdt.

Then, by Proposition 1.1.3

∫

Bτ/2(x0)

∫ t0+τ2

t0−τ2

(uε
t)

2 dxdt ≤
∫

Bτ (x0)

|∇uε(x0, t0 − τ 2)|2ψ2 dx

+ 2

∣∣∣∣
∫∫

Qτ (x0,t0)

Y εfε(u
ε)uε

tψ
2 dxdt

∣∣∣∣ + C

∫∫

Qτ (x0,t0)

|∇uε|2|∇ψ|2 dxdt

≤ C(τ) + 2

∣∣∣∣
∫∫

Qτ (x0,t0)

Y εfε(u
ε)uε

tψ
2 dxdt

∣∣∣∣ .

Hence, it only remains to get bounds for

∫∫

Qτ

ψ2uε
tY

εfε(u
ε)dxdt = I.

Let

Gε(u, x, t) =

∫ u

0

(wε(x, t) + s)fε(s)ds,

then

∂

∂t
(Gε(u

ε, x, t)) =
∂uε

∂t
Y εfε(u

ε) +
∂Gε

∂t
(uε, x, t),

so that we get

I =

∫∫

Qτ

ψ2 ∂

∂t
(Gε(u

ε, x, t)) dxdt−
∫∫

Qτ

ψ2∂Gε

∂t
(uε, x, t)dxdt = A−B.
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Let us first get bounds on A:

A =

∫ t0+τ2

t0−τ2

∫

Bτ (x0)

ψ2 ∂

∂t
(Gε(u

ε, x, t)) dxdt

=

∫

Bτ (x0)

ψ2

[∫ t0+τ2

t0−τ2

∂

∂t
(Gε(u

ε, x, t)) dt

]
dx

=

∫

Bτ (x0)

ψ2
[Gε(u

ε(x, t0 + τ 2), x, t0 + τ 2)−

Gε(u
ε(x, t0 − τ 2), x, t0 − τ 2)

]
dx.

Since uε ≥ −Cε, fε(s) = 0 if s ≥ ε and |wε| = O(ε), we have

|Gε(u
ε, x, t)| ≤ Cε

∫ ε

−Cε

fε(s)ds +

∫ ε

−Cε

sfε(s)ds ≤ C,

so that
|A| ≤ C(τ).

It only remains to get bounds on B. For that purpose, let us first
make the following observation:∣∣∣∣

∂Gε

∂t
(uε, x, t)

∣∣∣∣ =

∣∣∣∣
∂wε

∂t
(x, t)

∫ uε

0

fε(s)ds

∣∣∣∣ ≤
C

ε

∣∣∣∣
∂wε

∂t
(x, t)

∣∣∣∣ .

By (1.0.3), ∣∣∣∣
∂wε

∂t

∣∣∣∣ ≤ Cε for (x, t) ∈ Nτ (K).

Therefore, using the fact that 0 ≤ ψ ≤ 1, we get

B ≤ C

ε

∫∫

Qτ

∣∣∣∣
∂wε

∂t
(x, t)

∣∣∣∣ dxdt ≤ C

ε
|Qτ |

∣∣∣∣
∂wε

∂t

∣∣∣∣ ≤ C(K, τ).

Thus, ∫

Bτ/2(x0)

∫ t0+τ2

t0−τ2

(uε
t)

2 dxdt ≤ C,

with C independent of ε and (x0, t0) ∈ K. Now, as K is compact,∫∫

K

(uε
t)

2 dxdt ≤ C,

so that, for a subsequence, ∂
∂t

uεn′ → ∂
∂t

u weakly in L2(K) and by a
standard diagonal argument, (3) follows.

Let us see that u is a solution of the heat equation in {u > 0} .
In fact, from the fact that uε → u uniformly on compact subsets of
D, we deduce that every point (x0, t0) ∈ {u > 0} has a neighborhood
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V such that uε(x, t) ≥ λ > 0 for some λ > 0. Therefore, for ε < λ,
fε(u

ε(x, t)) = 0 in V . Thus uε is caloric in V for every ε < λ, and then,
the same fact holds for u.

Let us finally analyze the convergence of the gradients. We already
know that ‖∇uε‖L∞(Nτ (K)) ≤ L. So we can assume that ∇uε → ∇u
weakly in L2(Nτ (K)). In particular

∫∫

Nτ (K)

φ|∇u|2 ≤ lim inf
ε→0

∫∫

Nτ (K)

φ|∇uε|2,

for every nonnegative φ ∈ L∞(D).

We follow here ideas from [2] and [13] in order to prove that we
have strong convergence.

Since ∆u − ut = 0 in {u > 0}, if we take δ > 0 and multiply this
equation by (u − δ)+ψ(x) with ψ ∈ L∞(D) and nonnegative, we get
after integration by parts in Qτ (x0, t0),∫∫

{u>δ}
|∇u|2ψ = −

∫∫

{u>δ}
u∇u∇ψ + δ

∫∫

{u>δ}
∇u∇ψ

− 1

2

∫

{u>δ}
(u− δ)2(x, t0 + τ 2)ψ(x) +

1

2

∫

{u>δ}
(u− δ)2(x, t0 − τ 2)ψ(x).

Now, letting δ → 0, we get
∫∫

{u>0}
|∇u|2ψ =−

∫∫

{u>0}
u∇u∇ψ − 1

2

∫

{u>0}
u2(x, t0 + τ 2)ψ(x)

+
1

2

∫

{u>0}
u2(x, t0 − τ 2)ψ(x).

On the other hand, since ψ ≥ 0, fε ≥ 0 and uε ≥ −Cε, multiplying
(1.0.1) by (uε + Cε)ψ and integrating by parts we get
∫∫

Qτ (x0,t0)

|∇uε|2ψ ≤−
∫∫

Qτ (x0,t0)

uε∇uε∇ψ − Cε

∫∫

Qτ (x0,t0)

∇uε∇ψ

− 1

2

∫

Bτ (x0)

(uε + Cε)2(x, t0 + τ 2)ψ(x)

+
1

2

∫

Bτ (x0)

(uε + Cε)2(x, t0 − τ 2)ψ(x).

Thus,

lim sup
ε→0

∫∫

Qτ (x0,t0)

|∇uε|2ψ ≤
∫∫

Qτ (x0,t0)

|∇u|2ψ,
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so that

‖ψ1/2∇uε‖L2(Qτ (x0,t0)) → ‖ψ1/2∇u‖L2(Qτ (x0,t0)).

Since, in addition,

ψ1/2∇uε → ψ1/2∇u weakly in L2(Qτ (x0, t0)),

it follows that

ψ1/2∇uε → ψ1/2∇u in L2(Qτ (x0, t0)).

Therefore, as ψ ≡ 1 in Bτ/2(x0),

∇uε → ∇u in L2(Qτ/2(x0, t0))

and since K is compact, this implies that

∇uε → ∇u in L2(K).

By the same standard diagonal argument used before, the assertion of
the Theorem follows. ¤

Next we show that the limit function u is a solution of the free
boundary problem in a very weak sense.

Proposition 1.2.2. Let (uεj , Y εj) be a family of solutions of (1.0.1)
in a domain D ⊆ RN+1 such that uεj → u uniformly on compact subsets
of D, Y εj ≥ 0 and verify (1.0.2). Then, there exists a locally finite
measure µ supported on the free boundary D ∩ ∂{u > 0} such that
Y εjfεj

(uεj) → µ weakly in D and therefore

∆u− ∂u

∂t
= µ in D.

That is ∀ φ ∈ C∞
c (D)

(1.2.3)

∫∫

D
(uφt −∇u∇φ) dxdt =

∫∫

D
φ dµ.

Proof. Let us multiply (1.0.1) by φ ∈ C∞
0 (D) and integrate by

parts. We obtain

(1.2.4)

∫∫

D
(uεφt −∇uε∇φ) dxdt =

∫∫

D
Y εfε(u

ε)φ dxdt.

We want to pass to the limit in (1.2.4). We now that uεj → u uni-
formly on compact sets of D and thus from Proposition 1.2.1, ∇uεj →
∇u in L2

loc(D), so the convergence of the left hand side follows. Now
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let K ⊂ D be a compact set and choose φ = φK ∈ C∞
0 (D) such that

φK = 1 in K. Then (1.2.4) yields
∫∫

K

Y εjfεj
(uεj) dxdt ≤ C(φK).

This L1
loc bound implies that there exists a locally finite measure µ in

D, such that (for a subsequence) Y εjfεj
(uεj) → µ as measures in D.

Now, passing to the limit in (1.2.4) we get (1.2.3). In addition, we see
that (1.2.3) implies that the whole sequence Y εjfεj

(uεj) converge to µ
and that

∆u− ut = µ in D.

Finally, since we know that ∆u− ut = 0 in {u > 0}, we conclude that

support µ ⊂ D ∩ ∂{u > 0},
and the proof is complete. ¤

3. A technical lemma

In this section we state an approximation lemma that will be used
throughout the rest of the Thesis.

Lemma 1.3.1. Let (uεj , Y εj) be a family of solutions of (1.0.1) in
a domain D ⊆ RN+1 such that uεj → u uniformly on compact subsets
of D, Y εj ≥ 0 and verify (1.0.2). Let (x0, t0) ∈ D ∩ ∂{u > 0} and let
(xn, tn) ∈ D ∩ ∂{u > 0} be such that (xn, tn) → (x0, t0) as n → ∞.
Let λn → 0, uλn(x, t) = 1

λn
u(xn + λnx, tn + λ2

nt) and (uεj)λn(x, t) =
1

λn
uεj(xn + λnx, tn + λ2

nt). Assume that uλn → U as n →∞ uniformly

on compact sets of RN+1. Then, there exists j(n) → ∞ such that for
every jn ≥ j(n) there holds that

εjn

λn
→ 0 and

(1) (uεjn )λn → U uniformly on compact sets of RN+1,
(2) ∇(uεjn )λn → ∇U in L2

loc(RN+1),
(3) ∂

∂t
(uεjn )λn → ∂

∂t
U weakly in L2(RN+1).

Also, we deduce that
(4) ∇uλn → ∇U in L2(RN+1),
(5) ∂

∂t
uλn → ∂

∂t
U weakly in L2(RN+1).

Proof. The proof is a rather straightforward adaptation of Lemma
3.2 of [10] but we include here the proof in order to make the thesis
self contained.
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Let us find the sequence j(n). In order to verify (1),

(uεj)λn(x, t)− U(x, t) =
1

λn

[
uεj(xn + λnx, tn + λ2

nt)

−u(xn + λnx, tn + λ2
nt)

]

+ (uλn(x, t)− U(x, t)) = I + II.

Let us fix r > 0 such that Q3r(x0, t0) ⊂⊂ D, so for n large

Qr(x0, t0) ⊂ Q2r(xn, tn) ⊂⊂ D.

Let k > 0 be fixed and δ > 0 be arbitrary. We know by hypotheses
that |II| < δ in Qk(0, 0) if n ≥ n(k, δ). Let us bound |I|.

For each n there exists j(n) such that, if j > j(n),

|uεj(x, t)− u(x, t)| ≤ λn

n
for (x, t) ∈ Qr(xn, tn).

Therefore, if j > j(n) with n large so that λn < r/k then,

|I| ≤ 1

n
for (x, t) ∈ Qk(0, 0).

So that if j > j(n) and n large,

|(uεj)λn(x, t)− U(x, t)| < δ +
1

n
for (x, t) ∈ Qk(0, 0).

Therefore, if jn ≥ j(n), then (uεjn )λn → U as n → +∞ uniformly in
Qk(0, 0). In particular (uεj)λn are bounded uniformly in n and j in
Qk(0, 0) for j ≥ j(n) and n large enough.

It is easy to see that (uεj)λn are solutions to

∆(uεj)λn −
∂(uεj)λn

∂t
= ((uεj)λn + (wεj)λn)fεj/λn((uεj)λn),

where (wεj)λn = 1
λn

wεj(xn + λnx, tn + λ2
nt), in Qk(0, 0) for n large,

and we may assume without loss of generality that εj/λn < 1/n for
j > j(n).

By Proposition 1.2.1, for every choice of a sequence (jn) with jn ≥
j(n) there exists a subsequence jn′ such that for the corresponding λn′ ,

∇(uεjn′ )λn′ → ∇U in L2
loc(Qk(0, 0))

and
∂

∂t
(uεjn′ )λn′ →

∂

∂t
U weakly in L2

loc(Qk(0, 0)).

By the uniqueness of the limit we see that the whole sequence
(uεj)λn converges. At this point we want to remark that the sequence
j(n) is independent of k. Therefore (1), (2), and (3) are proved.
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Let us see that we also have (4). In fact,

‖∇uλn −∇U‖L2(Qk(0,0)) ≤‖∇uλn −∇(uεj)λn‖L2(Qk(0,0))

+ ‖∇(uεj)λn −∇U‖L2(Qk(0,0)) = I + II

We know that |II| < δ if j ≥ j(n) for n large enough. Let us
estimate I.

‖∇uλn −∇(uεj)λn‖2
L2(Qk(0,0)) =∫∫

Qk(0,0)

|∇u−∇uεj |2(xn + λnx, tn + λ2t) dxdt =

1

λN+2
n

∫∫

Qλnk(xn,tn)

|∇u−∇uεj |2(x, t) dxdt.

By Proposition 1.2.1 and the fact that the whole sequence uεj con-
verges to u, ∇uεj → ∇u in L2(Qr(0, 0)), where Qr(x0, t0) ⊂ Q2r(xn, tn)
⊂⊂ D. Therefore if j is sufficiently large and n is large enough so that
λnk ≤ r,

∫∫

Qλnk(xn,tn)

|∇u−∇uεj |2(x, t) dxdt < λN+2
n δ2.

Therefore,

‖∇uλn −∇U‖L2(Qk(0,0)) ≤ 2δ

if n is large and thus (4) follows.

Finally, let us show that (5) holds. Given k > 0, we want to bound
‖ ∂

∂t
uλn‖L2(Qk(0,0)).

We first see that the uniform bound for (uεj)λn shown above, to-
gether with Proposition 1.2.1, implies that there exists C > 0 such that
for j ≥ j(n) and n large

∥∥∥∥
∂

∂t
(uεj)λn

∥∥∥∥
L2(Qk(0,0))

≤ C.

Next, it is easy to see that for every function v such that vt ∈
L2(Qk(x0, t0)) and for every λ > 0 such that λk ≤ r,

∥∥∥∥
∂

∂t
vλ

∥∥∥∥
L2(Qk(0,0))

≤ 1

λN+2
‖vt‖L2(Qλk(x0,t0))
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(where vλ(x, t) = 1
λ
v(x0 + λx, t0 + λ2t)) and therefore, for n large

∥∥∥∥
∂

∂t
uλn

∥∥∥∥
L2(Qk(0,0))

=
‖ut‖L2(Qλnk(xn,tn)) − ‖uεj

t ‖L2(Qλnk(xn,tn))

λN+2
n

+

∥∥∥∥
∂

∂t
(uεj)λn

∥∥∥∥
L2(Qk(0,0))

= I + II.

We already know that for j ≥ j(n), |II| ≤ C. On the other hand
since u

εj

t → ut weakly in weakly in L2(Q3r(x0, t0)),

‖ut‖L2(Qλnk(xn,tn)) ≤ lim inf
j→+∞

‖uεj

t ‖L2(Qλnk(xn,tn)).

Thus for δ > 0 and n large,

‖ut‖L2(Qλnk(xn,tn)) − ‖uεj

t ‖L2(Qλnk(xn,tn)) ≤ λN+2
n δ

if j is large enough. So that

‖ ∂
∂t

uλn‖L2(Qk(0,0)) ≤ C.

Therefore, for a subsequence λn′ → 0,

∂

∂t
uλn′ → Ut weakly in L2(Qk(0, 0)).

By the uniqueness of the limit, the whole sequence ( ∂
∂t

uλn) converges
to Ut weakly in L2(Qk(0, 0)), and therefore in L2

loc(RN+1). ¤

4. Basic examples

In this section, continuing with the local study of the problem, we
study the special cases in which the limit function is the difference of
two hyperplanes and the limit function w0 = lim 1

ε
(Y ε − uε) in (1.0.4)

is constant. First, we show that if u = αx+
1 , there holds that 0 ≤ α ≤√

2Mw0 where

Mw0 =

∫ 1

−w0

(s + w0)f(s) ds.

Next we prove that if u = αx+
1 + ᾱx−1 with α, ᾱ > 0 then α = ᾱ ≤√

2Mw0 .

These lemmas, will be helpful in the remaining of the thesis where
the situations covered by these lemmas appear as a blow-up limit of
(1.0.1) (see, for example, Proposition 1.5.1).
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Lemma 1.4.1. Let (uεj , Y εj) be a solution to (1.0.1) in a domain
D ⊂ RN+1 such that Y εj ≥ 0, and verify (1.0.4) in D with w0 =
constant. Let (x0, t0) ∈ D and assume that uεj converges to u = α(x−
x0)

+
1 uniformly on compact subsets of D, with α ∈ R and εj → 0.

Then,

(1.4.2) 0 ≤ α ≤
√

2Mw0 .

where Mw0 =
∫ 1

−w0
(s + w0)f(s) ds.

Proof. The proof is an adaptation of Proposition 5.2 of [10].

Without loss of generality we may assume that (x0, t0) = (0, 0).

First we see that necessarily α ≥ 0 since u is subcaloric in D and
u(0, 0) = 0. If α = 0 there is nothing to prove. So let us assume that
α > 0.

Let ψ ∈ C∞
c (D). Multiplying (Pε) by uε

x1
ψ and integrating by parts

we get
(1.4.3)∫∫

D
u

εj

t uεj
x1

ψ =
1

2

∫∫

D
|∇uεj |2ψx1 −

∫∫

D
uεj

x1
∇uεj∇ψ

+

∫∫

D
Bεj

(uεj , x, t)ψx1 +

∫∫

D
wεj

x1

( ∫ uεj

−w0

fεj
(s)ds

)
ψ,

where Bε(u, x, t) =
∫ u

−w0ε
(s + wε)fε(s)ds.

In order to pass to the limit in (1.4.3) we observe that, by Propo-
sition 1.2.1

(uεj)t → 0 weakly in L2
loc(D),

∇uεj → αX{x1>0}e1 in L2
loc(D).

On the other hand,

∇wεj

εj

→ 0 uniformly on compact subsets of D.

Therefore, in order to pass to the limit in (1.4.3) we only need to
analyze the limit of Bεj

(uεj , x, t). On one hand, it is easy to see that

(1.4.4) Bεj
(uεj(x, t), x, t) → Mw0

for every (x, t) such that x1 > 0. In fact,

Bεj
(uεj , x, t) =

∫ u
εj

εj

−w0

(
s +

wεj

εj

)
f(s)ds =

∫ 1

−w0

(
s +

wεj

εj

)
f(s)ds
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if j is large enough. Since |Bεj
(uεj , x, t)| ≤ C there holds that (1.4.4)

holds in L1
loc({x1 ≥ 0}.

On the other hand, there exists M̄(x, t) ∈ L∞(D) such that

Bεj
(uεj , x, t) → M̄(x, t) weakly in L2

loc(D).

Clearly, M̄(x, t) = Mw0 in {x1 > 0}. Let us see that M̄(x, t) = M̄(t)
in {x1 < 0}. In fact,

∇(Bεj
(uεj(x, t), x, t)) =

∂Bεj

∂u
(uεj , x, t)∇uεj +∇Bεj

(uεj , x, t)

= (uεj + wεj)fεj
(uεj)∇uεj +∇wεj

∫ uεj

−w0εj

fεj
(s)ds

= Y εjfεj
(uεj)∇uεj +

∇wεj

εj

∫ u
εj

εj

−w0

f(s)ds.

Since Y εjfεj
(uεj) → 0 in L1

loc({x1 < 0}), ∇uεj is uniformly bounded in

L∞(D′) if D′ ⊂⊂ D and ∇wεj

εj
→ 0 uniformly on compact subsets of D,

there holds that

∇(Bεj
(uεj(x, t), x, t)) → 0 in L1

loc({x1 < 0}).
So that, passing to the limit in (1.4.3) we get

α2

2

∫∫

{x1>0}
ψx1 = Mw0

∫∫

{x1>0}
ψx1 +

∫

{x1<0}
M̄(t)ψx1 .

Thus, integrating in the variable x1 we get
∫

{x1=0}

(α2

2
−Mw0 + M̄(t)

)
ψ = 0.

Since ψ is arbitrary, we conclude that

α2

2
−Mw0 + M̄(t) = 0.

Finally, we notice that M̄(t) ≥ 0. In fact,

Bεj
(uεj , x, t) =

∫ u
εj

εj

−w
εj

εj

(
s +

wεj

εj

)
f(s)ds +

∫ −w
εj

εj

−w0

(
s +

wεj

εj

)
f(s)ds

≥
∫ −w

εj

εj

−w0

(
s +

wεj

εj

)
f(s)ds → 0

since wεj

εj
→ w0 uniformly on compact subsets of D.
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Thus,

α =
√

2(Mw0 − M̄(t)) ≤
√

2Mw0

and the proof is complete. ¤

Lemma 1.4.5. Let (uεj , Y εj) be a solution to (1.0.1) in a domain
D ⊂ RN+1 such that Y εj ≥ 0 and verify (1.0.4) with w0 = constant
in D. Let (x0, t0) ∈ D and assume that uεj converges to u = α(x −
x0)

+
1 + ᾱ(x − x0)

−
1 uniformly on compact subsets of D, with α, ᾱ > 0

and εj → 0. Then,

(1.4.6) ᾱ = α ≤
√

2Mw0

where Mw0 =
∫ 1

−w0
(s + w0)f(s) ds.

Proof. We argue in a similar way as in Proposition 5.3 of [10].

We will denote Qr = Qr(0, 0). Without loss of generality we will
assume that (x0, t0) = (0, 0) and that Q2 ⊂⊂ D.

As before, uε satisfies
∫∫

D
uε

tu
ε
x1

ψ =
1

2

∫∫

D
|∇uε|2ψx1 −

∫∫

D
uε

x1
∇uε∇ψ

+

∫∫

D
Bε(u

ε, x, t)ψx1 +

∫∫

D
wε

x1

(∫ uε

0

fε(s)ds

)
ψ.

We want to pass to the limit. By Proposition 1.2.1 and the fact
that uεj converge to αx+

1 + ᾱx−1 we have that

u
εj

t → 0 weakly in L2
loc(D),

∇uεj → αX{x1>0}e1 − ᾱX{x1<0}e1 in L2
loc(D).

Clearly, as α, ᾱ > 0, B(uεj , x, t) → M in L1
loc(D).

So, passing to the limit in the latter equation for the subsequence
εj, we get

−α2

2

∫∫

{x1>0}
ψx1 −

α2

2

∫∫

{x1<0}
ψx1 + Mw0

∫∫
ψx1 = 0.

Integrating in the x1 variable, we conclude that

α = ᾱ.

Next, we will assume that α >
√

2Mw0 and arrive at a contradic-
tion.
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First, let us consider zεj , defined in Q2, the solution to

(1.4.7) ∆zεj − z
εj

t =
(
βεj

(zεj) + Wεj
fεj

(zεj)
)
ρεj

(zεj/εj) in Q2

with boundary conditions

zεj = u− bεj on ∂pQ2

where βε(s) = sfε(s), Wε = supQ2
wε, bεj = supQ2

|uεj − u| and ρεj
is a

smooth cutoff function with support in [−(w0 + 2Cεj
), 3] and ρεj

≡ 1

in [−(w0 + Cεj
), 2] (Here Cεj

→ 0+ is such that
∣∣wεj/εj −w0

∣∣ ≤ Cεj
in

Q2 so that uεj/εj ≥ −(w0 + Cεj
) in Q2).

Observe that zεj(x1, x
′, t) = zεj(−x1, x

′, t) in Q2.

It is easy to see that the proofs of Propositions 1.1.3 and 1.1.5 can
be adapted to zεj so that, for a subsequence, that we still call εj, there
holds that zεj → z uniformly on compact sets of Q2. We will show that
z = u.

First,

∆uεj − u
εj

t = (uεj + wεj)fεj
(uεj) ≤ βεj

(uεj) + Wεj
fεj

(uεj)

=
(
βεj

(uεj) + Wεj
fεj

(uεj)
)
ρεj

(uεj/εj) in Q2.

From the fact that zεj ≤ uεj on ∂pQ2, we deduce that zεj ≤ uεj in
Q2 and therefore z ≤ u.

In order to see that u ≤ z, we consider aεj ∈ C2(R) such that

a
εj
ss =

(
β(aεj) +

Wεj

εj
f(aεj)

)
ρεj

(aεj), s ∈ R
aεj(0) = 1, a

εj
s (0) = α

Integrating the equation we get, for every s ∈ R, that

0 < γ − κεj
≤ aεj

s (s) ≤ α

where 1
2
γ2 ≡ 1

2
α2 −Mw0 > 0 and κεj

→ 0 when j →∞.

It follows that there exists sεj
< 0 such that

aεj(s) =

{
1 + αs s ≥ 0
(γ − κεj

)(s− sεj
) s ≤ sεj

and it is easy to see that sεj
are uniformly bounded by below and

moreover, there exists s < 0 such that sεj
→ s.

Now let

ãεj(x) = εja
εj

(x1

εj

− bεj

(γ − κεj
)εj

+ sεj

)
.
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Using that ãεj(0, x′, t) = −bεj and the bounds on a
εj
s , we deduce

that
ãεj ≤ u− bεj in Q2.

Now, since ãεj ≤ zεj on ∂pQ2, and ãεj is a one dimensional station-
ary solution to (1.4.7), we have that ãεj ≤ zεj in Q2. Since ãεj → u
uniformly on compact subsets of {x1 > 0}, we deduce that u ≤ z in
Q2 ∩ {x1 > 0}.

Finally, we notice that zεj(x1, x
′, t) = zεj(−x1, x

′, t), so we conclude
that u ≤ z in Q2.

Now, let

R = {(x, t)|0 < x1 < 1, |x′| < 1, |t| < 1}.
Let us multiply (1.4.7) by z

εj
x1 and integrate in R. Then, we have

Ej =

∫∫

R

∂

∂x1

(
1

2
(zεj

x1
)2 −Fεj

(zεj)

)

=

∫∫

R
z

εj

t zεj
x1
−

∫∫

R
∆x′z

εjzεj
x1

= Fj −Gj,

where Fεj
(z) =

∫ z

−Wεj
(s + Wεj

)fεj
(s)ρεj

(s/εj) ds.

Since every zεj is symmetric in the x1 variable, we deduce that
z

εj
x1(0, x

′, t) = 0 and therefore,

Ej ≥
∫

∂R∩{x1=1}

(
1

2
(zεj

x1
)2 −Fεj

(zεj)

)
dx′dt.

Since zεj → u = αx+
1 + αx−1 uniformly on compact subsets of Q2,

we deduce that, in Q3/2 ∩ {x1 > 1
2
}, zεj ≥ εj is j is large and

zεj
x1
→ α uniformly,

Fεj
(zεj) =

∫ 1

−Wεj /εj

(
s +

Wεj

εj

)
f(s)ρεj

(s) ds → Mw0 .

Then we get

lim inf
j→+∞

Ej ≥
∫

∂R∩{x1=1}

(
1

2
α2 −Mw0

)
dx′dt.

On the other hand, we know from Lemma 1.2.1 that

z
εj

t → ut = 0 weakly in L2(Q3/2),

zεj
x1
→ ux1 in L2(Q3/2),
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which implies that Fj → 0.

Finally, integrating by parts, we get

−Gj ≤
∫

∂R∩{|x′|=1}
|zεj

x1
||∇x′z

εj | dSdt +

∫

∂R∩{x1=1}

1

2
|∇x′z

εj |2 dx′dt.

From the convergence of zεj → u it follows that

|∇x′z
εj | → 0 pointwise in Q2 ∩ {x1 > 0}.

If we now use that zεj are locally uniformly Lipschitz in space, we
deduce that

lim sup
j→+∞

(−Gj) ≤ 0,

which gives that 1
2
α2 − Mw0 ≤ 0, a contradiction. This finishes the

proof. ¤

5. Behavior of limit functions near the free boundary

In this section we analyze the behavior of a limit function u =
lim uεj near an arbitrary free boundary point.

First we show that every limit function u is a supersolution of
problem (P ) under the assumption (1.0.4), and then we show that
if U is a global limit and w0 in (1.0.4) is constant, there holds that

|∇U+| ≤ √
2Mw0 , where Mw0 =

∫ 1

−w0
(s + w0)f(s) ds.

Proposition 1.5.1. Let (uεj , Y εj) be a solution to (1.0.1) in a do-
main D ⊂ RN+1 such that Y εj ≥ 0 and verify (1.0.4) with w0 > −1.
Assume that uεj → u uniformly on compact subsets of D. Then u is a
supersolution of (P ) in the sense that

i. ∆u− ut = 0 in {u > 0} ∩ D
ii. lim sup

(x,t)→(x0,t0)

|∇u(x, t)| ≤
√

2M(x0, t0) for (x0, t0) ∈ ∂{u > 0} ∩
D, u(x, t) > 0.

Proof. We only have to show ii. The proof is a rather simple
modification of Theorem 6.1 of [10].

Let α = lim sup(x,t)→(x0,t0) |∇u(x, t)| with u(x, t) > 0.

Since u ∈ Liploc(1,
1
2
) in D, we know that α < +∞. If α = 0 there is

nothing to prove. So let us assume that α > 0 and let (xn, tn) → (x0, t0)
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be such that u(xn, tn) > 0 and |∇u(xn, tn)| → α. Let (zn, sn) ∈ D ∩
∂{u > 0} be such that

dn ≡ max{|xn − zn|, |tn − sn|1/2}
= inf

(z,s)∈∂{u>0}

{
max{|xn − z|, |tn − s|1/2}} .

Let us consider the sequence

udn(x, t) =
1

dn

u(zn + dnx, sn + d2
nt).

Since u ∈ Liploc(1,
1
2
) in D and dn → 0, given a compact set K ⊂ RN+1

the functions udn are uniformly bounded in Lip(1, 1
2
) seminorm in K, if

n is large enough. On the other hand, udn(0, 0) = 0 for every n. So that
udn are uniformly bounded on compact sets of RN+1. Therefore, for a
subsequence (that we still call udn), udn → u0 uniformly on compact
sets of RN+1, where u0 ∈ Lip(1, 1

2
) in RN+1.

Let x̄n = (xn−zn)/dn, t̄n = (tn−sn)/d2
n. Then (x̄n, t̄n) ∈ ∂Q1(0, 0)

so that (for a subsequence) (x̄n, t̄n) → (x̄, t̄) ∈ ∂Q1(0, 0).

On the other hand, since udn > 0 in Q1(x̄n, t̄n) we deduce that in
Q1(x̄, t̄), u0(x, t) ≥ 0 and u0 is a solution of the heat equation.

Let us consider the sequence

νn =
∇udn(x̄n, t̄n)

|∇udn(x̄n, t̄n)| =
∇u(xn, tn)

|∇u(xn, tn)| .

We may assume that νn → ν. Let us see that

|∇u(xn, tn)| → ∂u0

∂ν
(x̄, t̄).

To this end, we will show that ∇udn → ∇u0 uniformly on compact
subsets of Q1(x̄, t̄). But this is a consequence of the fact that any
such compact set is at a fixed positive distance from the boundary of
Q1(x̄n, t̄n), in n is large enough. In fact, let K be any such compact set
and let τ > 0 be such that N2τ (K) ⊂ Q1(x̄n, t̄n) for n large. We have,
for n,m large,

|∇udn(x, t)−∇udm(x, t)| = |∇(udn − udm)(x, t)|
≤ C max

N2τ (K)
|udn − udm| for any (x, t) ∈ K,

since every udn is a solution of the heat equation in Q1(x̄n, t̄n). There-
fore we have the uniform convergence of the gradients, so that

∂u0

∂ν
(x̄, t̄) = α.
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On the other hand, it is easy to see that |∇u+
0 | ≤ α in RN+1. In

fact, let R > 0 and δ > 0 be fixed. There exists λ0 such that

|∇u+(x, t)| ≤ α + δ for (x, t) ∈ QλR(x0, t0)

if λ < λ0.

Since QdnR(zn, sn) ⊂ Q3λnR(x0, t0) if λn = max{|xn − x0|, |tn −
t0|1/2}(≥ dn) and R > 1 and since λn → 0 as n → +∞, we deduce that

|∇u+
dn

(x, t)| ≤ α + δ for (x, t) ∈ QλR(0, 0)

if n is large enough. Thus ∇u+
dn
→ ∇u+

0 *-weakly in L∞(QR(0, 0)) and

therefore |∇u+
0 | ≤ α+ δ in QR(0, 0). Since δ and R where arbitrary we

deduce that
|∇u+

0 | ≤ α in RN+1.

Let V = ∂u0/∂ν. We know that V is a solution of the heat equation
in {u0 > 0} since u0 is a solution of the heat equation in this set. On
the other hand, we know that V ≤ α in {u0 > 0} and V (x̄, t̄) = α.
Since α > 0 we must have u0(x̄, t̄) > 0 (otherwise u0 ≡ 0 in Q−

1 (x̄, t̄))
and thus u0 > 0 in Qρ(x̄, t̄), for some ρ > 0. It follows that V ≡ α in
Q−

ρ (x̄, t̄). Moreover, if we call R the set of points in {u0 > 0}∩ {t < t̄}
which can be connected to (x̄, t̄) by a continuous curve in {u0 > 0}
along which the t−coordinate is nondecreasing, we see that V ≡ α in
R.

Since |∇u0| ≤ α in {u0 > 0} we deduce that ∇u0 = V ν in R.
Let us assume, for the sake of simplicity, that ν = e1. Then by the
considerations above

u0(x, t) = αx1 + b(t) in R.

Since u0 is caloric in R, b(t) must be constant. Thus there exists
x̃ ∈ RN such that

u0(x, t) = α(x− x̃)1 in R.

It is not hard to see that R = {(x− x̃)1 > 0, t < t̄}. Hence,

u0(x, t) = α(x− x̃)1 in {(x− x̃)1 > 0, t < t̄}.
By Corollary A.1 of [10], we get for some ᾱ ≥ 0

u0(x, t) = ᾱ(x− x̃)−1 + o(|x− x̃|+ |t− t̄|1/2) in {(x− x̃)1 < 0, t < t̄}.
Let us consider for λ > 0 the function (u0)λ(x, t) = (1/λ)u0(λx +

x̃, λ2t + t̄). Now, one can check that (u0)λ converges uniformly on
compact sets of RN+1 to u00 where

u00(x, t) = αx+
1 + ᾱx−1 in {t ≤ 0}.
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Let

(uεj)dn(x, t) =
1

dn

uεj(zn + dnx, sn + d2
nt).

By Lemma 1.3.1, there exists a sequence jn → +∞ such that (uεjn )dn →
u0 uniformly on compact sets of RN+1 and εjn/dn → 0. It is easy to
see that (uεjn )dn is a solution to

∆(uεjn )dn −
∂

∂t
(uεjn )dn = ((uεjn )dn + (wεjn )dn)fεjn/dn((uεjn )dn)

in Q1(x̃, t̄) for n large, where (wεjn )dn = (1/dn)wεjn (zn +dnx, sn +d2
nt).

By calling ε0
n = εjn/dn, uε0

n = (uεjn )dn and wε0
n = (wεjn )dn , then uε0

n

are solutions to (Pε0
n
) with

wε0
n

ε0
n

→ w0(x0, t0) uniformly on compact sets of Q1(x̃, t̄),

uε0
n → u0 uniformly on compact sets of Q1(x̃, t̄),

(u0)λk
→ u00 uniformly on compact sets of RN+1,

ε0
n → 0 and λk → 0. Therefore we can apply Lemma 1.3.1 again and

find a sequence ε00
n → 0 and solutions uε00

n to (Pε00
n

) in Q1(0, 0) such
that

wε00
n

ε00
n

→ w0(x0, t0) uniformly on compact sets of Q1(0, 0),

uε00
n → u00 = αx+

1 + ᾱx−1 uniformly on compact sets of Q1(0, 0).

Finally, if ᾱ = 0 we apply Lemma 1.4.1 and if ᾱ > 0 we apply Lemma
1.4.5 to deduce that

α ≤
√

2M(x0, t0).

So the Proposition is proved. ¤
Lemma 1.5.2. Let (uεj , Y εj) be a solution to (1.0.1) in a domain

Dj such that Y εj ≥ 0 and satisfies (1.0.4) in Dj with w0 = constant.
Here Dj is such that Dj ⊂ Dj+1 and ∪jDj = RN+1. Let us assume that
uεj → U uniformly on compact subsets of RN+1 as j →∞ and εj → 0,
with U ≥ 0, U ∈ Lip(1, 1/2) and ∂{U > 0} 6= ∅. Then,

(1.5.3) |∇U | ≤
√

2Mw0 in RN+1

with Mw0 =
∫ 1

−w0
(s + w0)f(s)ds.

Proof. The proof is similar to that of Theorem 6.2 in [10]. Here
we use Lemmas 1.4.1 and 1.4.5 instead of Propositions 5.2 and 5.3 in
[10].
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Let α = sup |∇U+|. By assumption, α < +∞. If α = 0 there
is nothing to prove. Let us assume that α > 0 and let (xn, tn) be
such that U(xn, tn) > 0 and |∇U(xn, tn)| → α as n → +∞. Let
(zn, sn) ∈ ∂{U > 0} be such that

dn := max{|xn − zn|, |tn − sn|1/2}
= inf

(z,s)∈∂{u>0}

{
max{|xn − z|, |tn − s|1/2}} .

Let

Udn(x, t) =
1

dn

U(zn + dnx, sn + d2
nt).

Then the family Udn is uniformly bounded in Lip(1, 1
2
) seminorm in

RN+1 and since Udn(0, 0) = 0, the family is uniformly bounded on
compact sets of RN+1. So that we may assume (by taking a subsequence
that we still call Udn) that Udn → U0 uniformly on compact sets of
RN+1, where U0 ∈ Lip(1, 1

2
) in RN+1.

Let x̄n = (xn − zn)/dn, t̄n = (tn − sn)/d2
n. It is easy to see (by

taking a subsequence) that (x̄n, t̄n) → (x̄, t̄) ∈ ∂Q1(0, 0). Also,

∇Udn(x̄n, t̄n)

|∇Udn(x̄n, t̄n)| → ν.

We will assume without loss of generality that ν = e1.

Proceeding in a similar way as in the proof of Proposition 1.5.1 we
see that necessarily

U0(x, t) =

{
α(x− x̃)+

1 in (x− x̃)1 > 0, t < t̄
ᾱ(x− x̃)−1 + o(|x− x̃|+ |t− t̄|1/2) in (x− x̃)1 < 0, t < t̄

for some point x̃ ∈ RN and some ᾱ ≥ 0.

Let U00 = limλ→0(U0)λ where (U0)λ(x, t) = (1/λ)U0(x̃+λx, t̄+λ2t).
Then, U00(x, t) = αx+

1 + ᾱx−1 and the proof follows as in Proposition
1.5.1 ¤





CHAPTER 2

The Free Boundary Problem

In this chapter, we find the free boundary condition for the limit
problem and we show that the limit function u is a solution to the
free boundary problem (P ) in a pointwise sense, under the assumption
that the free boundary admits an inward spatial normal in a parabolic
measure theoretic sense (Definition 2.1.3). Then we show that, under
suitable assumptions, the limit function u is a viscosity solution of the
free boundary problem (P ).

Finally, we end this Chapter with some applications of the results
and construct a family (uε, Y ε) of solutions to (1.0.1) with wε/ε →
w0 6= 0 such that u = lim uε is a viscosity solution to (P ), by showing
that the local assumptions in Theorem 2.2.9 can be fulfilled by imposing
conditions on the initial data (uε

0, Y
ε
0 ).

1. The free boundary condition

Throughout this section we will assume that (1.0.4) holds and that
for every K ⊂ {u ≡ 0}◦ compact there exists 0 < η < 1 and ε0 > 0
such that, for ε < ε0

(2.1.1)
uε

ε
≤ η in K.

This assumption is a natural one in applications, roughly speaking
it means that the mixture temperature reaches the flame temperature
only if some combustion is taking place.

As a consequence there holds that

w0 = lim
ε→0

vε − uε

ε
≥ − lim sup

ε→0

uε

ε
≥ −η > −1 in K.

So that, for the sake of simplicity we will assume from now on that
w0 > −1 in D.

We start this section with a lemma that is the essential ingredient
in the subsequent proofs.

47
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Lemma 2.1.2. Let (uεk , Y εk) be a solution to (1.0.1) in a domain
D ⊂ RN+1 such that Y εk ≥ 0 and (1.0.4) and (2.1.1) are satisfied
with w0 > −1. Let u = lim uεk , with εk → 0, and Bεk

(u, x, t) =∫ u

−w0εk

(
s + wεk)fεk

(s)ds. Then,

Bεk
(uεk , x, t) → M(x, t)X{u>0}, in L1

loc(D).

where M(x, t) =
∫ 1

−w0(x,t)
(s + w0(x, t))f(s)ds.

Proof. First, let us observe that

∫ ε

−w0ε

(wε + s)fε(s)ds =

∫ ε

−w0ε

(wε + s)
1

ε2
f

(s

ε

)
ds

=

∫ 1

−w0

(wε

ε
+ s

)
f(s)ds.

Therefore,

lim
εk→0

∫ εk

−w0εk

(wεk + s)fεk
(s)ds = M(x, t).

uniformly on compact sets of D.

Let us now see that Bεk
(uεk , x, t) → M(x, t) uniformly on compact

subsets of {u > 0}.
Let K ⊂⊂ {u > 0}, then there exists λ > 0 and ε0 such that

uεk(x, t) > λ ∀εk < ε0 , (x, t) ∈ K. Thus, we have

lim
k→∞

Bεk
(uεk(x, t), x, t) = lim

k→∞

∫ uεk (x,t)

−w0εk

(wε + s)fεk
(s)ds

= lim
k→∞

∫ εk

−w0εk

(wε + s)fεk
(s)ds = M(x, t).

Since |Bεk
(uεk , x, t)| ≤ C on every compact subset of D, there holds,

for a subsequence that we still call εk that

Bεk
(uεk , x, t) → M̄(x, t) weakly in L2

loc(D).

Clearly, M̄(x, t) = M(x, t) in {u > 0}. Let us see that M̄(x, t) = 0 in
{u ≡ 0}◦. In fact, let K be a compact subset of {u ≡ 0}◦. For every
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ε1, ε2 > 0 there holds that, for k large enough

|{(x, t) ∈ K / ε1 < Bεk
(uεk , x, t) < M(x, t)− ε2}| ≤∣∣∣{(x, t) ∈ K /

uεk

εk

(x, t) > −w0(x, t),

ε1

2
<

∫ uεk
εk

−w0

(s + w0)f(s)ds < M − ε2

2
}
∣∣∣.

In fact, let δ > 0 be such that
∫ −w0−δ

−w0

(s + w0)f(s)ds <
ε1

2
.

Since uεk/εk is bounded in K,
∣∣∣∣∣Bεk

(uεk , x, t)−
∫ uεk/εk

−w0

(s + w0)f(s)ds

∣∣∣∣∣ < min(
ε1

2
,
ε2

2
)

if k ≥ k0. On the other hand

uεk

εk

≥ −wεk

εk

≥ −w0 − δ

if k ≥ k1. Thus, if k ≥ max(k0, k1) and uεk/εk ≤ −w0 there holds that

Bεk
(uεk , x, t) < ε1.

Therefore,
∣∣∣{(x, t) ∈ K /

uεk

εk

(x, t) > −w0(x, t),

ε1

2
<

∫ uεk
εk

−w0

(s + w0)f(s)ds < M − ε2

2
}
∣∣∣

≤ |{(x, t) ∈ K / − w0(x, t) + µ ≤ uεk

εk

≤ 1− µ}|

≤ |{(x, t) ∈ K /
Y εk

εk

≥ µ

2
,

uεk

εk

≤ 1− µ}|

≤ |{(x, t) ∈ K / Y εkfεk
(uεk) ≥ Cµ

2εk

}|.

Since Y εkfεk
(uεk) → 0 as measures in K and Y εk ≥ 0, fεk

≥ 0 there
holds that

Y εkfεk
(uεk) → 0 in L1(K).

Therefore,

|{(x, t) ∈ K / ε1 < Bεk
(uεk , x, t) < M(x, t)− ε2}| → 0.
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On the other hand, let 1 > η > supK(−w0) be the constant in (2.1.1)
in K, there holds that

Bεk
(uεk , x, t) =

∫ uεk
εk

−wεk
εk

(
s +

wεk

εk

)
f(s)ds +

∫ −wεk
εk

−w0

(
s +

wεk

εk

)
f(s)ds

≤
∫ η

−wεk
εk

(
s +

wεk

εk

)
f(s)ds +

∫ −wεk
εk

−w0

(
s +

wεk

εk

)
f(s)ds

=

∫ η

−w0

(
s +

wεk

εk

)
f(s)ds →

∫ η

−w0

(s + w0)f(s)ds < M(x, t),

since −wεk

εk
≤ uεk

εk
≤ η in K. Therefore,

lim supBεk
(uεk , x, t) ≤

∫ η

−w0

(s + w0)f(s)ds < M(x, t).

So that, for ε2 > 0 small we get

|{(x, t) ∈ K / ε1 < Bεk
(uεk , x, t)}| =

|{(x, t) ∈ K / ε1 < Bεk
(uεk , x, t) < M − ε2}| → 0.

Let us now see that M̄(x, t) = 0 in K. As in Lemma 1.4.1 we
see that M̄(x, t) ≥ 0. Now assume that for some ε1 > 0 we have
|{M̄(x, t) > ε1}| > 0. Then, there exists m such that |{M̄(x, t) >
ε1 + 1

m
}| := |Am| > 0.

Now,
∫

Am

Bεk
(uεk , x, t) →

∫

Am

M̄(x, t) >
(
ε1 +

1

m

)|Am|

but,
∫

Am

Bεk
(uεk , x, t) =

∫

Am∩{Bεk
(uεk ,x,t)>ε1}

Bεk
(uεk , x, t)

+

∫

Am∩{Bεk
(uεk ,x,t)≤ε1}

Bεk
(uεk , x, t).

Since the first term in the right hand side goes to zero and the second
is bounded by ε1|Am|, we get a contradiction.

The proof is finished. ¤

Let us give the definition of a regular point.
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Definition 2.1.3. We say that ν is the interior unit spatial normal
to the free boundary ∂{u > 0} at a point (x0, t0) ∈ ∂{u > 0} in the
parabolic measure theoretic sense, if ν ∈ RN , |ν| = 1 and

lim
r→0

1

rN+2

∫∫

Qr(x0,t0)

|X{u>0} −X{(x,t)/ 〈x−x0,ν〉>0}|dxdt = 0.

Definition 2.1.4. We say that (x0, t0) is a regular point of ∂{u >
0} if there exists an interior unit spatial normal to ∂{u > 0} at (x0, t0)
in the parabolic measure theoretic sense.

We can now prove the main result of this section.

Theorem 2.1.5. Let (uεj , Y εj) be a family of uniformly bounded
solutions of (1.0.1) in a domain D ⊂ RN+1 such that uεj → u uniformly
on compact subsets of D, Y εj ≥ 0 and verify (1.0.4) and (2.1.1), with
w0 > −1. If (x0, t0) is a regular point of D ∩ ∂{u > 0}, then u has the
asymptotic development

u(x, t) = α〈x− x0, ν〉+ + o(|x− x0|+ |t− t0|1/2),

with α =
√

2M(x0, t0), where M(x, t) =
∫ 1

−w0(x,t)
(s + w0(x, t))f(s) ds.

Here ν is the interior unit spatial normal to the free boundary at (x0, t0)
in the parabolic measure theoretic sense.

Proof. We assume, without loss of generality, that (x0, t0) = (0, 0)
and ν = e1 = (1, 0, ..., 0).

Let ψ ∈ C∞
c (D). We proceed as in Lemma 1.4.1. Let us multiply

the equation for uε by uε
x1

ψ and integrate by parts. We have
∫∫

D
uε

tu
ε
x1

ψ =
1

2

∫∫

D
|∇uε|2ψx1 −

∫∫

D
uε

x1
∇uε∇ψ +

∫∫

D
Bε(u

ε, x, t)ψx1

+

∫∫

D

(
wε

ε
− w0

)
f(−w0)(w0)x1ψ +

∫∫

D

wε
x1

ε

(∫ uε

ε

−w0

f(s)ds

)
ψ.

Since

Bεj
(uεj , x, t) =

∫ u
εj

εj

−w0

(s + w0)f(s)ds +

∫ u
εj

εj

−w0

(wεj

εj

− w0

)
f(s)ds,

and Bεj
(uεj , x, t) → 0 weakly in L1(K) for every K ⊂ {u ≡ 0}◦ com-

pact, there holds that

Fεj
(x, t) :=

∫ u
εj

εj

−w0

(s + w0)f(s)ds → 0 weakly in L1(K).
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Since Fεj
is nonnegative there holds that

Fεj
→ 0 in L1(K).

So that, for a subsequence that we still call εj there holds that

Fεj
→ 0 a.e. K.

Thus,
uεj

εj

→ −w0 a.e. K.

Therefore,

(2.1.6)

∫ u
εj

εj

−w0

f(s)ds →
(∫ 1

−w0

f(s)ds

)
X{u>0} a.e. D.

By using Proposition 1.2.1, Lemma 2.1.2 and (2.1.6) we can pass
to the limit (for the sequence εj → 0) in the latter equation and get
(2.1.7)∫∫

D
utux1ψ =

1

2

∫∫

D
|∇u|2ψx1 −

∫∫

D
ux1∇u∇ψ

+

∫∫

{u>0}
M(x, t)ψx1 +

∫∫

{u>0}
(w0)x1

(∫ 1

−w0

f(s)ds

)
ψ

for every ψ ∈ C∞
c (D).

Now, let ψλ(x, t) = λψ(x−x0

λ
, t−t0

λ2 ). Replacing ψ by ψλ in (2.1.7)

and changing variables, we get for uλ(x, t) = 1
λ
u(x0 + λx, t0 + λ2t),

(2.1.8)∫∫
(uλ)t(uλ)x1ψ =

1

2

∫∫
|∇uλ|2ψx1 −

∫∫
(uλ)x1∇uλ∇ψ

+

∫∫

{uλ>0}
M(λx, λ2t)ψx1 +

∫∫

{u>0}
(w0)x1

(∫ 1

−w0

f(s)ds

)
ψλ.

Let r > 0 be such that Qr(x0, t0) ⊂⊂ D. We have that uλ ∈
Lip(1, 1/2) in Qr/λ(0, 0) uniformly in λ, and uλ(0, 0) = 0. Therefore,
for every λn → 0, there exists a subsequence λn′ → 0 and a function
U ∈ Lip(1, 1/2) in RN+1 such that uλn′ → U uniformly on compact
sets of RN+1.

By our assumption on (x0, t0), we can easily see that for every k > 0

(2.1.9) |{uλ > 0} ∩ {x1 < 0} ∩Qk(0, 0)| → 0 as λ → 0,

and

(2.1.10) |{uλ = 0} ∩ {x1 > 0} ∩Qk(0, 0)| → 0 as λ → 0.
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Now, using lemma 1.3.1 and the fact that ψλ → 0 uniformly in D
and supp ψλ ⊂ supp ψ, we can pass to the limit in (2.1.8) and get
(2.1.11)∫∫

{x1>0}
UtUx1ψ =

1

2

∫∫

{x1>0}
|∇U |2ψx1 −

∫∫

{x1>0}
Ux1∇U∇ψ

+ M(0, 0)

∫∫

{x1>0}
ψx1 .

Our aim is to prove that U = αx+
1 . First, by (2.1.9) and (2.1.10),

we deduce that U = 0 in {x1 < 0}. On the other hand, U is a solution
to the heat equation in {U > 0} ⊂ {x1 > 0}. By Corollary A.1 in [10],
for every x̄′ ∈ RN−1, t̄ ∈ R there exists α ≥ 0 such that

U(x, t) = αx+
1 + o(|(x1, x

′)− (0, x̄′)|+ |t− t̄|1/2) in {x1 > 0} ∩ {t < t̄}.
Replacing the test function ψ by Φλ(x, t) = λΦ(x1

λ
, x′−x̄′

λ
, t−t̄

λ2 ) with Φ ∈
C∞

c ({t < 0}) and proceeding as above we get

(2.1.12) −α2

2

∫∫

{x1>0}
Φx1 + M(0, 0)

∫∫

{x1>0}
Φx1 = 0.

In order to pass to the limit for a sequence λn → 0 we have used Lemma
1.3.1.

Thus, α =
√

2M(0, 0).

In order to see that U = αx+
1 we use Lemma 1.5.2. In fact, by

Lemma 1.3.1 there exists a sequence jn →∞ such that

uδn :=
1

λn

uεjn (λnx, λ2
nt) → U(x, t)

uniformly on compact subsets of RN+1. We recall that (uδn , Y δn) is a
solution to 1.0.1 with ε replaced by δn. Moreover,

wδn

δn

=
wεjn (λnx, λ2

nt)

εjn

→ w0(0, 0)

uniformly on compact sets of RN+1.

On the other hand, U ≥ 0 and ∂{U > 0} 6= ∅. By Lemma 1.5.2 we

have that |∇U | ≤ α =
√

2M(0, 0). Since U ≡ 0 in {x1 = 0} we deduce
that

U ≤ αx1 in {x1 > 0}.
By Hopf’s Principle, we deduce that

U = αx1 in {x1 > 0}.
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Since the limit of uλn′ is αx+
1 with α independent of the sequence

λn′ , we deduce that uλ → αx+
1 so that

u(x, t) = αx+
1 + o(|x|+ |t|1/2).

The Theorem is proved. ¤

Remark 2.1.13. It is clear from the proof that the result is still
true if we replace condition (2.1.1) by the following property: uεj

εj
→

−w0 a.e. {u ≡ 0}◦.

2. Viscosity solutions

In this section we prove that, under suitable assumptions, the limit
function u is a viscosity solution of the free boundary problem (P ).

For the sake of completeness, we state here the definition of viscosity
solution that was introduced in [11] for the two phase case of this
problem when w0 = 0.

Definition 2.2.1. Let Q be a cylinder in RN × (0, T ) and let v ∈
C(Q). Then v is called a classical subsolution (supersolution) of (P )
in Q if v ≥ 0 and

(1) ∆v − vt ≥ 0 (≤ 0) in Ω+ ≡ Q ∩ {v > 0}.
(2) v ∈ C1(Ω+).
(3) For any (x, t) ∈ ∂Ω+ ∩Q, ∇v(x, t) 6= 0, and

|∇v(x, t)| ≥
√

2M(x, t) (≤
√

2M(x, t)).

We say that v is a classical solution in Q if it is both a classical
subsolution and a classical supersolution.

Definition 2.2.2. Let u be a continuous nonnegative function in
Q; u is called a viscosity subsolution (supersolution) of (P ) in Q if,
for every subcylinder Q′ ⊂⊂ Q and for every classical supersolution
(subsolution) v in Q′,

u ≤ v on ∂pQ
′ (u ≥ v on ∂pQ

′) and

v > 0 on {u > 0} ∩ ∂pQ
′ (u > 0 on {v > 0} ∩ ∂pQ

′)

implies that u ≤ v (u ≥ v) in Q′.

The function u is called a viscosity solution if it is both a viscosity
subsolution and a viscosity supersolution.
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Definition 2.2.3. Let u be a continuous nonnegative function in D
and let (x0, t0) ∈ ∂{u > 0} ∩ D. We say that (x0, t0) is a regular point
from the nonpositive side, if there exists a regular nonnegative function
v in D such that v > u in {u > 0} for t < t0 and v(x0, t0) = u(x0, t0).

Finally we need the following definition of nondegeneracy.

Definition 2.2.4. Let u be a continuous nonnegative function in
D. Let (x0, t0) ∈ D be such that u(x0, t0) = 0. We say that u does not
degenerate at (x0, t0) if there exist r0 > 0 and C > 0 such that

sup
∂pQ−r (x0,t0)

u ≥ C r for 0 < r ≤ r0.

We now prove that, under suitable assumptions on the limit func-
tion u, there holds that u is a viscosity solution to the free boundary
problem.

Theorem 2.2.5. Let u = lim uεk , where (uεk , Y εk) are uniformly
bounded solutions to (1.0.1) with Y εk ≥ 0, satisfying (1.0.4) in D, with
w0 > −1, and such that uεk either satisfies (2.1.1) or uεk

t ≤ 0 in D.

If u+ does not degenerate at every point of the free boundary which
is regular from the nonpositive side, then u is a viscosity solution of
(P ).

In order to prove Theorem 2.2.5, we need to show that u is both a
viscosity super- and subsolution. We perform this in Theorems 2.2.6
and 2.2.9 respectively.

We want to remark that every limit function u is a viscosity su-
persolution to problem (P ) (i.e. we do not need the nondegeneracy,
monotonicity nor condition (2.1.1)).

Let us first show that every limit function u is a viscosity superso-
lution.

Theorem 2.2.6. Let u = lim uεk , where (uεk , Y εk) are uniformly
bounded solutions to (1.0.1) with Y εk ≥ 0, satisfying (1.0.4) in D, with
w0 > −1.

Then u is a viscosity supersolution of (P ).

Proof. The proof of this Theorem is analogous to that of Theorem
4.1 in [11]. We include the details here for the sake of completeness.

Let Q ⊂⊂ D be a cylinder which will be assumed to be B1(0)×(0, T )
and let v be a classical subsolution in Q satisfying

u ≥ v on ∂pQ
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and

u > 0 on {v > 0} ∩ ∂pQ if {v > 0} ∩ ∂pQ 6= ∅.
We will show that u ≥ v in Q.

If {v > 0} ∩ ∂pQ = ∅, then v ≤ 0 in ∂pQ and therefore v ≤ 0 in Q.
As u ≥ 0 everywhere, we see that u ≥ v in Q.

If {v > 0}∩ ∂pQ 6= ∅, it follows from the continuity of u and v that

u > 0 in {v > 0} ∩ Q for 0 ≤ t < τ , for some small τ > 0. It is not

hard to see that if u > 0 in {v > 0} ∩ Q for 0 ≤ t < s, then u ≥ v in
Q ∩ {0 ≤ t ≤ s}. We set

t0 = sup{0 < s < T : u > 0 in {v > 0} ∩Q ∩ {0 ≤ t < s}},
and we will arrive at a contradiction assuming that t0 < T .

We have that t0 > 0 and u ≥ v in Q ∩ {0 ≤ t ≤ t0}. In addition,
there exists a sequence (xn, tn) → (x0, t0) ∈ Q̄ such that u(xn, tn) = 0,

(xn, tn) ∈ {v > 0} ∩ Q. Then, u(x0, t0) = v(x0, t0) = 0 and (x0, t0) ∈
∂{v > 0}∩Q. Since v is a classical subsolution, there exists a sequence
yn → x0 such that 0 < v(yn, t0) ≤ u(yn, t0), so we have proved that

u ≥ v in Q ∩ {0 ≤ t ≤ t0},
(x0, t0) ∈ ∂{u > 0} ∩ ∂{v > 0} ∩Q.

Now consider for λ > 0

uλ(x, t) =
1

λ
u(x0 + λx, t0 + λ2t),

vλ(x, t) =
1

λ
v(x0 + λx, t0 + λ2t).

Since u, v ∈ Lip(1, 1
2
) in Q, and uλ(0, 0) = vλ(0, 0) = 0, there exists a

sequence λn → 0 and u0, v0 ∈ Lip(1, 1
2
) in RN+1 such that vλn → v0

and uλn → u0 uniformly on compact sets of RN+1. Since v is a classical
subsolution, if we assume that ∇v+(x0, t0)/|∇v+(x0, t0)| = e1 and we
set ᾱ = |∇v+(x0, t0)|, we see that (as v ≥ 0)

v0(x, t) = ᾱx+
1 , ᾱ ≥

√
2M(x0, t0).

Moreover, u0 ≥ v0 when t < 0, so that u0 is caloric in {x1 > 0, t < 0}.
In addition u0(0, 0) = 0.

There are two possibilities depending whether the following asser-
tion holds or not:
(2.2.7)

There exists δ < 0 such that u0 − v0 > 0 when x1 > 0, δ < t < 0.
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Case I. Suppose that (2.2.7) does not hold. Then there exists a
sequence (xn, tn) in {x1 > 0, t < 0} such that tn → 0 and u0(xn, tn)−
v0(xn, tn) = 0. From the strong maximum principle, it follows that

u0 ≡ v0 = ᾱx+
1 in {x1 ≥ 0, t ≤ 0},

implying that

(2.2.8)
1

λn

(u− v)(x0 + λne1, t0) → 0 as n → +∞.

We denote (x, t) = (x1, x
′, t) and for small ρ, r > 0 we define

E = {g(x′, t) < x1 < g(x′, t) + ρ, |x′ − x′0| < r, |t− t0| < r2},
where g is a C1 function in a neighborhood of (x′0, t0) such that for a
small r0 > 0

Br0(x0, t0) ∩ ∂{v > 0} = Br0(x0, t0) ∩ {(x, t) | x1 = g(x′, t)}
and

Br0(x0, t0) ∩ {v > 0} = Br0(x0, t0) ∩ {(x, t) | x1 > g(x′, t)}.

If r and ρ are small enough, then E ⊂ {v > 0} and therefore, u−v is
positive and supercaloric in E∩{t < t0} and in addition, u−v ≥ µ > 0
in B̃, for some small µ and some ball B̃ with center in ∂pE ∩ {t < t0}
and not touching ∂{v > 0}.

Let w1 be a caloric function in E with smooth boundary data sat-
isfying

w1 = 0 on ∂pE \ B̃, 0 < w1 ≤ µ on ∂pE ∩ B̃,

and let w2 be the caloric function in E such that w2 = v on ∂pE.

We have

u− v ≥ w1 ≥ Cw2 in E ∩Br2(x0, t0) ∩ {t ≤ t0}
for some constants C > 0 and r2 > 0 small, the last inequality following
from Theorem 3 in [14]. Hence,

u− v ≥ Cv in E ∩Br2(x0, t0) ∩ {t ≤ t0}
and therefore,

lim inf
λ→0+

1

λ
(u− v)(x0 + λe1, t0) ≥ Cᾱ > 0,

which contradicts (2.2.8).
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Case II. The argument above implies that necessarily (2.2.7) holds.
Then, from Lemma A.1 in [10], it follows that

(u0 − v0)(x, t) = σx+
1 + o(|x|+ |t|1/2)

when x1 > 0, t < 0, for some σ > 0. That is,

u0(x, t) = αx+
1 + o(|x|+ |t|1/2) in {x1 > 0, t < 0} with α > ᾱ.

Now consider for λ > 0,

(u0)λ(x, t) =
1

λ
u0(λx, λ2t), (v0)λ(x, t) =

1

λ
v0(λx, λ2t).

As before, there exists a sequence λn → 0 and u00, v00 ∈ Lip(1, 1
2
) in

RN+1 such that

(u0)λn → u00, (v0)λn → v00

uniformly on compact sets of RN+1. Clearly u00 ≥ v00 when t < 0 and
moreover,

v00(x, t) = ᾱx+
1 and

u00(x, t) = αx+
1 in {x1 > 0, t < 0}.

Since u00 is caloric in {u00 > 0}, we can apply Corollary A.1 in [10]
to u00 in {x1 ≤ 0, t < 0} and hence,

u00(x, t) =

{
αx+

1 in {x1 > 0, t < 0},
γx−1 + o(|x|+ |t|1/2) in {x1 < 0, t < 0},

for some γ ≥ 0. We consider

(u00)λ(x, t) =
1

λ
u00(λx, λ2t), (v00)λ(x, t) =

1

λ
v00(λx, λ2t).

There is a sequence λn → 0 and u000, v000 ∈ Lip(1, 1
2
) in RN+1 such

that

(u00)λn → u000, (v00)λn → v000

uniformly on compact sets of RN+1 and moreover,

v000(x, t) = ᾱx+
1 and

u000(x, t) = αx+
1 + γx−1

for t ≤ 0.

Applying Lemma 1.3.1 three times, we find a sequence εj
000 → 0

and solutions uεj
000

, Y εj
000

of (1.0.1) in Q1(0, 0) such that uεj
000 → u000

and wεj
000

/εj
000 → w(x0, t0) uniformly on compact subsets of Q1(0, 0).



2. VISCOSITY SOLUTIONS 59

We recall that

u000(x, t) = αx+
1 + γx−1 with α > 0, γ ≥ 0

for t ≤ 0.

If γ = 0, we apply Lemma 1.4.1 to u000 in a neighborhood of some
point (0, t̄) with t̄ < 0 and deduce that

α ≤
√

2M(x0, t0).

If γ > 0, we apply Lemma 1.4.5 and conclude that γ = α and

α ≤
√

2M(x0, t0).

In any case, as α > ᾱ ≥
√

2M(x0, t0) we get a contradiction and
this finishes the proof. ¤

Finally, we end this section (and the proof of Theorem 2.2.5) by
showing that, under the nondegeneracy assumption, a limit function u
is a viscosity subsolution.

Theorem 2.2.9. Let u = lim uεk , where (uεk , Y εk) are uniformly
bounded solutions to (1.0.1) with Y εk ≥ 0, satisfying (1.0.4) in D, with
w0 > −1, and such that uεk either satisfies (2.1.1) or uεk

t ≤ 0 in D.

If u+ does not degenerate at every point of the free boundary which
is regular from the nonpositive side, then u is a viscosity subsolution of
(P ).

Proof. In order to see that u is a viscosity subsolution, let v be a
classical supersolution such that

u ≤ v in ∂pQ and v > 0 in {u > 0} ∩ ∂pQ

we want to see that u ≤ v in Q.

If not, we define

t0 = sup{0 < s < T : v > 0 in {u > 0} ∩Q ∩ {0 ≤ t < s}}.
From the definition of t0, it follows that t0 > 0 and, from our

hypotheses we deduce that v ≥ u in Q∩{0 ≤ t ≤ t0}. In addition, there
exists a sequence (x(s), t(s)) → (x0, t0) ∈ Q such that v(x(s), t(s)) =

0, (x(s), t(s)) ∈ {u > 0} ∩ Q. Clearly, u(x0, t0) = v(x0, t0) = 0 and
(x0, t0) ∈ ∂{u > 0}∩Q. If (x0, t0) ∈ {v = 0}◦ then, for τ small we have
u ≤ v = 0 in Bτ (x0, t0) ∩ {t < t0} and therefore, u ≡ 0 there, which
contradicts our hypothesis. Thus

v ≥ u in Q ∩ {0 ≤ t ≤ t0},
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(x0, t0) ∈ ∂{u > 0} ∩ ∂{v > 0} ∩Q.

We may assume, without loss of generality, that (x0, t0) = (0, 0)
and Q1(0, 0) = Q1 ⊂ Q (consider instead of u the function 1

λ0
u(x0 +

λ0x, t0 + λ2
0t) for certain λ0 > 0 small, and analogously with v). Let us

take

vλ(x, t) =
1

λ
v(λx, λ2t), uλ(x, t) =

1

λ
u(λx, λ2t).

It is easy to see that there exists a sequence λn → 0 and functions
u0, v0 such that vλ → v0, uλ → u0.

Since v is regular, we have that v0(x, t) = βx+
1 with 0 ≤ β ≤√

2M(0, 0) (for some system of coordinates).

Let us see that also u0(x, t) = αx+
1 for some α ≥ 0,

We may think that in Q1, ∂{v > 0} is the graph of some function
ψ(x′, t) = x1, x = (x1, x

′) with ψ ∈ Lip(1, 1/2), where ψ(0, 0) = 0 and
{v > 0} = {x1 > ψ(x′, t)}.

Hence, we have that

|ψ(x′, t)| ≤ C
(|x′|+ |t|1/2

)
.

Let R =
{
(x, t) ∈ Q1 : x1 < −C

(|x′|+ |t|1/2
)}

. Then R ∩ {v >

0} = ∅ and let w be the caloric function in O = Q−
1 \ R with w = 0 in

∂pR and w = L ≥ ‖u‖∞ in the rest of ∂pO.

Since u is globally subcaloric and u ≤ w on ∂pO, then u < w in O.

Now, w − u is supercaloric in O, w − u > 0 in the interior and
w− u = 0 at (0, 0), then, by lemma A.1 of [10], we have that w− u =
δx+

1 +o(|x|+ |t|1/2) and, since by the same lemma, w has an asymptotic
development at (0, 0),

u(x, t) = αx+
1 + o(|x|+ |t|1/2), with α ≥ 0.

Since by hypothesis u+ does not degenerate, there follows that α >
0.

On the other hand, since v is regular, v admits an asymptotic devel-
opment at the origin in the form v(x, t) = βx+

1 +o(|x|+ |t|1/2). Clearly,
β ≥ α.

Now, let h be the caloric function in Õ := Q−
1 ∩ {v > 0} ∩ {−µ <

t < 0} for some small µ > 0, with h = v − u on ∂pÕ. And, let g be

the caloric function in Õ with g = v on ∂pÕ. Then, h = g = 0 in

Q−
1 ∩ ∂{v > 0} ∩ {−µ < t < 0} and h > 0, g > 0 in Õ.



2. VISCOSITY SOLUTIONS 61

Therefore, by the results in [1], there exists σ > 0 such that h ≥ σg
in Q−

1/2 ∩ {v > 0} ∩ {−µ
2

< t < 0}.
Since u is subcaloric in Q−

1 and u ≤ v in Q−
1 we deduce that v−u ≥

σu in Q−
1/2 ∩ {v > 0} ∩ {−µ

2
< t < 0}. In particular β − α ≥ σα > 0.

The theorem will be finished if we show that α =
√

2M(0, 0).

Case 1: uεk verifies (2.1.1).

As in Theorem 2.1.5, we obtain∫∫

D
utux1ψ =

1

2

∫∫

D
|∇u|2ψx1 −

∫∫

D
ux1∇u∇ψ

+

∫∫

D∩{u>0}
M(x, t)ψx1 +

∫∫

D∩{u>0}
(w0)x1

(∫ 1

−w0

f(s)ds

)
ψ

for every test function ψ. Then, taking ψλ(x, t) = λψ(x
λ
, t

λ2 ) and chang-
ing variables, we get∫∫

D
(uλ)t(uλ)x1ψ =

1

2

∫∫

D
|∇uλ|2ψx1 −

∫∫

D
(uλ)x1∇uλ∇ψ

+

∫∫

D∩{uλ>0}
M(λx, λ2t)ψx1 +

∫∫

D∩{u>0}
(w0)x1

(∫ 1

−w0

f(s)ds

)
ψλ

By Lemma 1.3.1, we get (for some sequence λk → 0)

0 = −1

2
α2

∫∫

D∩{x1>0}
ψx1 + lim

k→∞

∫∫

D∩{uλk
>0}

M(λkx, λ2
kt)ψx1 .

We want to check that X{uλk
>0} → X{x1>0} a.e. or, equivalently,

(1) {x1 > 0} ⊂ ∪∞n=1 ∩k≥n {uλk
> 0} = lim inf{uλk

> 0} a.e.
(2) ∩∞n=1 ∪k≥n {uλk

> 0} = lim sup{uλk
> 0} ⊂ {x1 > 0} a.e.

Let us see (1). If x1 > 0, we get that αx1 > 0 and since uλk
(x, t) →

αx1 it follows that uλk
(x, t) > 0 ∀k ≥ k0.

Let us see (2). If exists kj → ∞ with uλkj
(x, t) > 0 then it must

be x1 ≥ 0, because if x1 < 0, we have that vλkj
(x, t) = 0 for j ≥ j0

(because as v is regular, {vλk
> 0} → {x1 > 0}). Since uλkj

≤ vλkj
we

get a contradiction.

Therefore,

0 = −1

2
α2

∫∫

D∩{x1>0}
ψx1 + M(0, 0)

∫∫

D∩{x1>0}
ψx1 .
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So that,

0 =

∫

D∩{x1=0}

(
1

2
α2 −M(0, 0)

)
ψdx′dt.

Since ψ is arbitrary, 1
2
α2 = M(0, 0), so that,

α =
√

2M(0, 0)

and the proof is finished

Case 2: uεk
t ≤ 0

We already know that, if we consider uλ(x, t) = 1
λ
u(λx, λ2t), then

it follows that

uλ(x, t) → u0(x, t) ≡ αx+
1 ,

uniformly on compact subsets of RN+1.

As before∫∫

D
uεk

t uεk
x1

ψ =
1

2

∫∫

D
|∇uεk |2ψx1 −

∫∫

D
uεk

x1
∇uεk∇ψ

+

∫∫

D
Bεk

(uεk , x, t)ψx1 +

∫∫

D
wεk

x1

(∫ uεk

−w0εk

fεk
(s)ds

)
ψ

+

∫∫

D
(w0)x1

(wεk

εk

− w0

)
f(−w0)ψ

Now, as in the previous case, if we consider first ψλ(x, t) = λψ(x
λ
, t

λ2 )
and change variables, we obtain
(2.2.10)∫∫

(uεk
λ )t(u

εk
λ )x1ψ =

1

2

∫∫
|∇uεk

λ |2ψx1 −
∫∫

(uεk
λ )x1∇uεk

λ ∇ψ

+

∫∫
Bλ

εk/λ(u
εk
λ , x, t)ψx1 +

∫∫

D

(wεk)x1

εk




∫ uε
k

εk

−w0

f(s)ds


 ψλ

+

∫∫

D
(w0)x1

(wεk

εk

− w0

)
f(−w0)ψ

λ

where Bλ
ε (u, x, t) =

∫ u

−w0(λx,λ2t)ε
(s + wε(x, t))fε(s)ds. We want to pass

to the limit as both εk and λ go to zero.

Using Lemma 1.3.1, we see that for every sequence λn → 0 there
exists a sequence kn → ∞ such that δn := εkn/λn → 0 and uδn :=
(uεkn )λn → u0 uniformly on compact sets of RN+1. By Proposition
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1.2.1 we see that we can pass to the limit in the first three terms of
(2.2.10) (with ε = εkn and λ = λn).

Let us study the limit of Bλn
δn

(uδn(x, t), x, t).

It is easy to see that in {x1 > 0}, Bλn
δn

(uδn(x, t), x, t) → M(0, 0)
uniformly on compact sets. Now, let K ⊂ {x1 < 0} be compact. We
will show that

∇(Bλn
δn

(uδn(x, t), x, t)) → 0 in L1(K)

In fact,

∇(Bλn
δn

(uδn(x, t), x, t)) = Y δnfδn(uδn)∇uδn

+ λn∇w0(λnx, λ2
nt)

(wδn

δn

(x, t)− w0(λnx, λ2
nt)

)
f(−w0(λnx, λ2

nt))

+
∇wδn

δn

∫ uδn

δn

−w0(λnx,λ2
nt)

f(s)ds

Since Y δnfδn(uδn) → 0 as measures in K and is nonnegative, we deduce
that the convergence takes place in L1(K). On the other hand, ∇uδn

is uniformly bounded. Therefore, the first term goes to zero in L1(K).

In order to see that the second and third terms go to zero uniformly
in K we only need to observe that

uδn

δn

(x, t) =
uεkn

εkn

(λnx, λ2
nt)

and a similar formula holds for wδn

δn
. So that

∣∣wδn

δn

(x, t)− w0(λnx, λ2
nt)| → 0 uniformly on compact sets of RN+1,

uδn

δn

≥ −wδn

δn

≥ −C,

|∇wδn|
δn

(x, t) = λn
|∇wεkn |

εkn

(λnx, λ2
nt) → 0 uniformly on compact

sets of RN+1.

On the other hand, |Bλn
δn

(uδn(x, t), x, t)| ≤ CK , so that we have,

Bλn
δn

(uδn(x, t), x, t) → M̄(t) weakly in L2(K).

Let us now see that, actually, the convergence takes place in L1(K).
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There holds that

∂

∂t

(Bλn
δn

(uδn(x, t), x, t)
)

= Y δnfδn(uδn)(uδn)t +
∂

∂t
Bλn

δn
(uδn , x, t)

≤ ∂

∂t
Bλn

δn
(uδn , x, t) ≤ CK in K.

On the other hand, for every (x0, t0) ∈ K, and Qτ (x0, t0) ⊂ {x1 < 0}
∫∫

Qτ (x0,t0)

∂

∂t

(Bλn
δn

(uδn(x, t), x, t)
)

=

∫

Bτ (x0)

Bλn
δn

(uδn(x, t0 + τ 2), x, (t0 + τ 2)) dx

−
∫

Bτ (x0)

Bλn
δn

(uδn(x, t0 − τ 2), x, (t0 − τ 2)) dx ≥ −Cτ

since |Bλn
δn

(uδn(x, t), x, t)| ≤ CK for every compact set K.

Therefore there exists CK > 0 such that

‖Bλn
δn

(uδn(x, t), x, t)‖W 1,1(K) ≤ CK .

Hence the convergence takes place in L1(K) (for a subsequence).

Now arguing as in Lemma 2.1.2, we get that M̄(t) = 0 or M̄(t) =
M(0, 0).

We can now take the limit in (2.2.10) for the sequences εkn and λn

and we obtain

0 = −1

2
α2

∫∫

D∩{x1>0}
ψx1+M(0, 0)

∫∫

D∩{x1>0}
ψx1+

∫∫

D∩{x1<0}
M̄(t)ψx1 .

So that,

0 =

∫

D∩{x1=0}

(
1

2
α2 −M(0, 0)− M̄(t)

)
ψ dx′dt.

Since ψ is arbitrary we get 1
2
α2 = M(0, 0) − M̄(t). So that, in

particular, M̄(t) is constant and then we have that M̄(t) ≡ 0 or M̄(t) ≡
M(0, 0). Since α > 0 we deduce that M̄(t) ≡ 0 and

α =
√

2M(0, 0).

The proof is finished. ¤
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3. Consequences and applications

In this section, we study some consequences of the results collected
in Sections 1 and 2.

First, we prove a result that guarantees the nondegeneracy of a limit
function u and then we combine this result with Theorem 2.2.5 and
construct a family uε of solutions to (Pε) such that the limit function
u = lim uε is a viscosity solution to (P ) for rather general initial data.

Now we prove a proposition that says that, under suitable assump-
tions, u+ does not degenerate at the free boundary. The proof is similar
to Theorem 6.3 in [10], where the nondegeneracy of u+ was proved in
the strictly two phase case. Here we assume, instead of (2.1.1) the
somewhat stronger condition that for every K ⊂ D compact, there
exist 0 < η < 1 and ε0 > 0 such that for every 0 < ε ≤ ε0

(2.3.1)
uε

ε
≤ η in K ∩ {u ≡ 0}◦.

Proposition 2.3.2. Let u = lim uεk , where (uεk , Y εk) are uniformly
bounded solutions to (1.0.1) satisfying (1.0.4) with w0 > −1, such that
Y εk ≥ 0 and the functions uεk satisfy (2.3.1). Let (x0, t0) ∈ ∂{u > 0}.

Let us assume that there exists ν ∈ RN , with |ν| = 1 such that

lim inf
r→0+

|{u > 0} ∩ {〈x− x0, ν〉 > 0} ∩Q−
r (x0, t0)|

|Q−
r (x0, t0)| > α1

and

lim inf
r→0+

|{u = 0}◦ ∩ {〈x− x0, ν〉 < 0} ∩Q−
r (x0, t0)|

|Q−
r (x0, t0)| > α2

with α1 + α2 > 1
2
, then there exists a constant C > 0 depending only

on N , f , α1 + α2 and r0 > 0 such that, if 0 < r ≤ r0,

sup
∂pQ−r (x0,t0)

u ≥ Cr.

Proof. Without loss of generality, we may assume that (x0, t0) =
(0, 0) and that ν = e1 = (1, 0, ..., 0).

We will note Q−
r = Q−

r (0, 0) and

(uεk)r(x, t) =
1

r
uεk(rx, r2t), (Y εk)r(x, t) =

1

r
Y εk(rx, r2t),

ur(x, t) =
1

r
u(rx, r2t).
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Step 1. Let us see that there exists r0 > 0 and a constant c such
that if r < r0 and εk < ε0 = ε0(r), then∫∫

Q−1

(Y εk)rfεk/r((u
εk)r)dx ≥ c.

Without loss of generality we may assume that r0 is small so that
|uε| ≤ 1 in Q−

r0
.

Let 0 < 4λ < α1 + α2 − 1
2
. From our assumptions, it follows that

there exists r0 > 0 such that, for r ≤ r0,

|{ur > 0} ∩ {x1 > 0} ∩Q−
1 |

|Q−
1 |

+
|{ur = 0}◦ ∩ {x1 < 0} ∩Q−

1 |
|Q−

1 |
>

1

2
+ 2λ.

We now fix r with this property. Then, there exists γ > 0 small such
that

|{ur > γ} ∩ {x1 > 0} ∩Q−
1 |

|Q−
1 |

+
|{ur = 0}◦ ∩ {x1 < 0} ∩Q−

1 |
|Q−

1 |
≥ 1

2
+ λ.

Let us now define

Ar = {ur > γ} ∩ {x1 > 0} ∩Q−
1 , Br = {ur = 0}◦ ∩ {x1 < 0} ∩Q−

1

and −Br = {(x1, x
′, t)/ (−x1, x

′, t) ∈ Br}.
Then, we have

|Ar ∩ (−Br)| ≥ λ|Q−
1 | = λ̃.

For 0 ≤ x1 < 1, let

g(x1) = |{(x′, t) : (x1, x
′, t) ∈ Ar ∩ (−Br)}|.

Let 0 < ρ < 1 be fixed, then

|{x1 : g(x1) > ρλ̃}| > 0.

In fact, if not

λ̃ ≤ |Ar ∩ (−Br)| =
∫ 1

0

g(x1) dx1 =

∫

{g≤ρλ̃}
g(x1) dx1 ≤ ρλ̃

which is a contradiction. Therefore, we have in particular that there
exists 0 < xr

1 < 1 such that

g(x1) = |Λr| = |{(x′, t)/ (xr
1, x

′, t) ∈ Ar ∩ (−Br)}| > ρλ̃

Let η > 0 be the constant in (2.3.1) in Q1(0, 0), let 0 < δ′ < δ,
0 < b < b′ < 1 be such that

η < −w0(0, 0) + δ < b.
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Let κ > 0 be such that

f(s) > κ > 0 for s ≤ b′.

Then, for (x′, t) ∈ Λr we have

1

εk/r
(uεk)r(x

r
1, x

′, t) >
γ

2(εk/r)
> b,

1

εk/r
(uεk)r(−xr

1, x
′, t) < −w0(0, 0) + δ

if εk < ε1 = ε1(r) is small. So that, for every (x′, t) ∈ Λr there exists
x̃r

1 ∈ (−1, 1) such that −w0(0, 0) + δ ≤ 1
εk/r

(uεk)r(x̃
r
1, x

′, t) ≤ b.

Now, by the uniform Lipschitz regularity of (uεk)r and (Y εk)r, and
(1.0.4), we have that for εk ≤ ε0(≤ ε1) and r ≤ r0,

(uεk)r

εk/r
(x1, x

′, t) ≤ b′ and
(Y εk)r

εk/r
(x1, x

′, t) ≥ δ′ if |x1 − x̃r
1| < C

εk

r

where C depends on δ, δ′, b, b′, on the Lipschitz constant of uεk and Y εk

in Q−
1 and r0 depends only on w0.

Finally we have
∫∫

Q−1

(Y εk)rfεk/r((u
εk)r) =

∫∫

Q−1

(Y εk)r

εk/r

1

εk/r
f
((uεk)r

εk/r

)

≥ δ′
κ

εk/r

∣∣∣∣
{

(x, t) ∈ Q−
1 /

(Y εk)r

εk/r
≥ δ′ and f

((uεk)r

εk/r

) ≥ κ

}∣∣∣∣
≥ δ′

κ

εk/r
|Λr|2C εk

r
≥ 2Cδ′κρδ̃ ≡ c.

Step 2. Now we will prove that there exists a constant C > 0 such
that, for every r > 0 small,

sup
∂pQ−r

u ≥ Cr.

We will proceed by contradiction. If the result were false, there would
exist a sequence rn → 0 such that

sup
∂pQ−2rn

u ≤ 1

n
rn.

Since uεk → u uniformly in Q−
r0

, there holds that

sup
∂pQ−2rn

uεk ≤ 2

n
rn,
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for k ≥ k(n). Therefore we have

sup
∂pQ−2

(uεk)rn ≤
2

n
.

In addition, by Step 1,
∫∫

Q−1

(Y εk)rnfεk/rn((uεk)rn) ≥ c,

as long as rn ≤ r0 and εk ≤ ε0.

Since (uεk)rn are solutions to

∆(uεk)rn −
∂

∂t
(uεk)rn = (Y εk)rnfεk/rn((uεk)rn)

in Q−
2 , there holds the representation formula

(uεk)rn(0, 0) =

∫

∂pQ−2

(uεk)rnP −
∫∫

Q−2

(Y εk)rnfεk/rn((uεk)rn)G,

where

P ≥ 0 on ∂pQ
−
2 ,

∫

∂pQ−2

P = 1,

G ≥ 0 in Q−
2 , G ≥ µ > 0 in Q−

1 .

It follows that

(uεk)rn(0, 0) ≤ 2

n
− µc < −µ

2
c,

if n is big enough and εk ≤ min{ε0, εk(n)}. But this gives a contradiction
since (uεk)rn(0, 0) → 0 as k →∞. Thus the proof is complete. ¤

Remark 2.3.3. Proposition 2.3.2 remains true if we change the
hypothesis that uεk satisfies (2.3.1) by

(2.3.4)
uεk

εk

→ −w0 a.e. {u ≡ 0}◦.

In fact, as in the proof of Proposition 2.3.2 we consider for each 0 <
r < 1 the sets Ar and Br. So that, for some 0 < λ < 1

|Ar ∩ (−Br)| ≥ λ|Q−
1 |.

Since Br ⊂ {ur ≡ 0}◦, there holds that

(uε)r

ε/r
(−x1, x

′, t) → −w0(−rx1, rx
′, r2t) a.e. Ar ∩ (−Br).



3. CONSEQUENCES AND APPLICATIONS 69

Let 0 < µ < 1. There exists Cr ⊂
(
Ar ∩ (−Br)

)
such that |Cr| =

µ|Ar ∩ (−Br)| and

(uε)r

ε/r
(−x1, x

′, t) → −w0(−rx1, rx
′, r2t) uniformly in Cr.

Let δ > 0. There exists ε1 = ε1(r) such that

(uε)r

ε/r
(−x1, x

′, t) ≤ −w0(−rx1, rx
′, r2t) +

δ

2
≤ −w0(0, 0) + δ in Cr

if ε < ε1 and r < r0 = r0(δ). Now, the proof follows as in Proposition

2.3.2 by taking λ̃ = µλ|Q−
1 | and

Λr := {(x′, t) / (xr
1, x

′, t) ∈ Cr}.
Remark 2.3.5. Proposition 2.3.2 remains true if we change condi-

tion (2.3.1) by condition (2.1.1). In fact, as in the proof of Theorem
2.1.5 we see that condition (2.1.1) implies that

Bεk
(uεk , x, t) → 0 L1

loc({u ≡ 0}◦).
As in Theorem 2.1.5 we deduce that uεk satisfies (2.3.4).

Using Remark 2.3.3, Remark 2.3.5 and Theorem 2.2.5 we get the
following Corollaries.

Corollary 2.3.6. Let u = lim uεk where (uεk , Y εk) are uniformly
bounded solutions to (1.0.1) in a domain D ⊂ RN+1 with Y εk ≥ 0,
which verify (1.0.4) with w0 > −1 and such that uεk satisfies (2.1.1).
If the free boundary D ∩ ∂{u > 0} is given by x1 = g(x′, t) with g ∈
Lip(1, 1/2), then, u is a viscosity solution of the free boundary problem
(P ).

Corollary 2.3.7. Let u = lim uεk where (uεk , Y εk) are uniformly
bounded solutions to (1.0.1) in a domain D ⊂ RN+1 with Y εk ≥ 0,
which verify (1.0.4) with w0 > −1 and such that uεk satisfies (2.3.4)
and uεk

t ≤ 0. If, for every (x0, t0) ∈ D ∩ ∂{u > 0}, {x ∈ RN / (x, t0) ∈
D∩{u > 0}} is given by x1 > Φ(x′) with Φ, Lipschitz continuous then,
u is a viscosity solution of the free boundary problem (P ).

Proof. We only need to see that u does not degenerate at points
of the free boundary which are regular from the zero side. Let (x0, t0)
be any such point. We see that we can apply Remark 2.3.3 at that
point. In fact, since uεk

t ≤ 0, u is decreasing in time. Therefore,

{(x, t) / x1 > Φ(x) , t ≤ t0} ⊂ {u > 0}
and the parabolic density of this set is positive. ¤
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In particular, Corollary 2.3.7 can be applied to solutions of (1.0.1)
with uε

0 constructed as in [13] and Y ε
0 a small perturbation of uε

0. In
fact we have the following result.

Corollary 2.3.8. Let u0 ∈ C(RN) ∩ C2({u0 > 0}) be such that
‖u0‖C2({u0>0}) < ∞, ∆u0 ≤ 0 and (u0)x1 − λ|∇u0| ≥ 0 in {u0 > 0}
with λ > 0. Assume, moreover that 0 < a2 ≤ |∇u0| ≤ a1 <

√
2M0

in a neighborhood of the free boundary: {x ∈ {u0 > 0} / dist(x, {u0 =

0}) ≤ γ}, and M0 =
∫ 1

0
sf(s). Then, there exists a sequence (uε

0, Y
ε
0 ) ∈(

C1(RN)
)2

with uε
0 → u0 uniformly in RN (so that uε

0 are uniformly
bounded) and, moreover, they satisfy
(2.3.9)

(1) ∆uε
0 − Y ε

0 fε(u
ε
0) ≤ 0

(2) (uε
0)x1 − λ|∇uε

0| ≥ 0

(3)
Y ε

0 − uε
0

ε
→ w0 uniformly on compact sets, with w0 > −1.

w0 ∈ R is any constant such that w0 ≥ −η with η > 0 small enough.

Let (uε, Y ε) be the solution to (1.0.1) with initial datum (uε
0, Y

ε
0 )

(so that, in particular, uε and Y ε are uniformly bounded). For every
sequence εj → 0 there exists a subsequence εjk

such that there exists

u = lim
k→∞

uεjk

and u is a viscosity solution to the free boundary problem (P ).

Proof. Let uε
0 be the approximations constructed in [13]. The

approximations are constructed in the following way. First we extend
u0 to a neighborhood of {u0 > 0}: S := {x ∈ RN / dist (x, {u0 > 0}) ≤
γ} in such a way that ‖u0‖C2(S) < ∞. For ε small enough we define

uε
0(x) = εF

(
1√
2M0

(
1− u0(x)

ε

))
in {−Cε ≤ u0 ≤ ε}.

where F ∈ C2(R) is such that

F ′′ ≤ (1 + δ)Ff(F ) + αF ′, F (0) = 1, F ′(0) = −
√

2M0.

Here δ > 0, α > 0 are such that F has a strict minimum at a finite
point s̄ such that s̄

√
2M0 > 1. (s̄ → +∞ as δ → 0), and F is decreasing

for s < s̄.

The constant C is taken as C = s̄
√

2M0 − 1.
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We define

uε
0 = u0 in {u0 > ε}

uε
0 = εF (s̄) in RN \ {u0 > −Cε}.

As in [13], we see that uε
0 ∈ C1(RN).

Let w0 ∈ R be such that w0 ≥ −η > −F (s̄) with η > 0 to be fixed
later and let

Y ε
0 = uε

0 + εw0.

Then, Y ε
0 ≥ 0. It is immediate to verify that (2.3.9) 1) is satisfied

in {u0 > ε} and RN \ {u0 > −Cε}. Let us see that it is satisfied in
{−Cε ≤ u0 ≤ ε}. In fact,

∆uε
0 − Y ε

0 fε(u
ε
0) =

1

2M0ε
F ′′|∇u0|2 − 1√

2M0

F ′∆u0 − 1

ε
Ff(F )− w0

ε
f(F )

≤ 1 + δ

2M0ε
Ff(F )|∇u0|2 +

α

2M0ε
F ′|∇u0|2 − a√

2M0

F ′

− 1

ε
Ff(F )− w0

ε
f(F )

where a > 0 is such that |∆u0| ≤ a.

Let 0 < µ < 1 be such that a1 ≤ (1−µ)1/2A
√

2M0 with 0 < A < 1,
and let δ in the definition of F be such that (1 + δ)A2 ≤ 1. Then, if ε
is small enough so that αa2

2/
√

2M0 > aε there holds that

∆uε
0 − Y ε

0 fε(u
ε
0) ≤

1

ε

[
[(1 + δ)(1− µ)A2 − 1]Ff(F )

+
( αa2

2

2M0

− aε√
2M0

)
F ′ − w0f(F )

]

≤ 1

ε
[−µF − w0]f(F ) ≤ 1

ε
[−µF (s̄)− w0]f(F ) ≤ 0

if η = µF (s̄).

Clearly, (2.3.9) 3) holds. Let us see that (2.3.9) 2) also holds. We
only need to verify this property in the set {−Cε < u0 < ε} and this
is clear from the fact that

∇uε
0 = − 1√

2M0

F ′
(

1√
2M0

(
1− u0

ε

))∇u0.

Now, by the results of Chapter 1, for every sequence εj → 0 there
exists a subsequence and a continuous function u such that uεjk → u
uniformly on compact subsets of RN × (0,∞).
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On the other hand, uε
t is a solution to the following equation

∆U − Ut = β′ε(u)U.

Here βε(s) = sfε(s). Since, for ε small enough uε
t(x, 0) ≤ 0 we conclude

that

(2.3.10) uε
t ≤ 0 in RN × (0,∞).

In a similar way we see that ux1 − λuxi
≥ 0 for every i. So that

(2.3.11) uε
x1
− λ

N
|∇uε| ≥ 0 in RN × (0,∞).

Clearly (2.3.10) and (2.3.11) imply that

ut ≤ 0 and ux1 −
λ

N
|∇u| ≥ 0 in {u > 0}.

In particular, the free boundary is Lipschitz in space.

So that, in order to apply Corollary 2.3.7 we only need to verify
that uεk satisfies (2.3.4). On one hand, given K ⊂ {u0 ≡ 0}◦ compact,
there exists ε0 such that for ε < ε0

Bε(u
ε
0, x, 0) =

∫ uε
0
ε

(x)

−w0

(s + w0)f(s) =

∫ F (s̄)

−w0

(s + w0)f(s).

On the other hand,

∂

∂t

(Bε(u
ε, x, t)

)
= Y εfε(u

ε)uε
t ≤ 0.

Therefore,

Bε(u
ε, x, t) ≤

∫ F (s̄)

−w0

(s + w0)f(s) for x in K , t > 0.

As in the proof of Theorem 2.2.5 we see that, since uε
t ≤ 0, there

holds that Bε(u
ε, x, t) → M̄(x, t) in L1

loc({u ≡ 0}◦) and, for almost

every (x, t) we either have M̄(x, t) = 0 or M̄(x, t) = M =
∫ 1

−w0
(s +

w0)f(s). Since

∇(
Bε(u

ε, x, t)
)

= Y εfε(u
ε)∇uε → 0 in L1

loc({u ≡ 0}◦)
there holds that M̄(x, t) = M̄(t) in {u ≡ 0}◦. Therefore,

M̄(t) ≤
∫ F (s̄)

−w0

(s + w0)f(s) a.e. {u ≡ 0}◦.

Since F (s̄) < 1, there holds that M̄(t) ≡ 0.
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Thus, for every sequence εk → 0
∫ uεk

εk

−w0

(s + w0)f(s) → 0 a.e. {u ≡ 0}◦

and we deduce that uεk satisfies (2.3.4). ¤

Combining the regularity results for viscosity solutions of [17], Corol-
lary 2.3.6 and Corollary 2.3.7 we have the following regularity result
for limit functions.

Corollary 2.3.12. Let u as in Corollary 2.3.6 or Corollary 2.3.7.
If, moreover, the free boundary D ∩ ∂{u > 0} is given by x1 = g(x′, t)
with g Lipschitz continuous, then, u is a classical solution of the free
boundary problem (P ).





CHAPTER 3

Uniqueness of limit solutions

The main point in this Chapter is to give a positive answer to
the question of whether the limit of a sequence of solutions to (Pε)
is determined once the limit of wεk/εk and of uεk are fixed. So we
study the uniqueness character of the limit functions (or limit solutions)
studied in the previous Chapters.

Some geometric assumptions are needed. In fact, uniqueness of
the limit fails, in a general setting, even in the case wε ≡ 0. These
geometric assumptions are similar to that used to prove uniqueness of
the limit for the case uε = Y ε in [30]. We state these assumptions in
Section 1.

In fact, we follow here some of the ideas in [30] which are based
on the fact that any limit function is a supersolution to (P ). This is
still true in our case. Unfortunately the simple construction in [30] of
supersolutions of (Pε) that approximate a strict supersolution of (P ),
when wε ≡ 0, does not work in the general case unless one asks for a
lot of complementary conditions on the reaction function f .

Therefore, we follow here the construction done in [22]. The proof
that this construction works in based on blow up of the constructed
functions.

In Section 2 we prove some technical lemmas needed in the proof
of the uniqueness result.

In Section 3 we prove that, under the geometric assumptions in con-
sideration, a semi-classical supersolution of (P ) is the uniform limit of
supersolutions of (Pε), and restate an analogous result for subsolutions.

In Section 4 we arrive at the main point of the Chapter, we prove
that, under suitable assumptions, there exists a unique limit.

We end this Chapter with a discussion of different geometries where
these results hold.

75
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1. Preliminaries

Following [30] we give the definition of supersolution of problem (P )
that will be needed in this Chapter. Note that this definition differs
from the one given in Definition 2.2.1 since we are not assuming that
the function be C1 up to the free boundary or that the free boundary
be C1.

Definition 3.1.1. A continuous nonnegative function u in QT =
RN × [0, T ], T > 0, is called a semi-classical supersolution of (P ) if
u ∈ C1({u > 0}) and

(i) ∆u− ut ≤ 0 in Ω = {u > 0};
(ii) lim supΩ3(y,s)→(x,t) |∇u(y, s)| ≤

√
2M(x, t) for every (x, t) ∈

∂Ω ∩QT ;
(iii) u(·, 0) ≥ u0.

Respectively, u is a semi-classical subsolution of (P ) if conditions (i),
(ii) and (iii) are satisfied with reversed inequalities and lim inf instead
of lim sup in (ii).

A function u is a classical solution of (P ) if it is both a semi-
classical subsolution and a semi-classical supersolution of (P ), u ∈
C1({u > 0}) and the free boundary ∂{u > 0} ∩QT is a C1 surface.

Next, a semi-classical supersolution u of (P ) is a strict semi-classical
supersolution of (P ) if there is a δ > 0 such that the stronger inequali-
ties

(ii’) lim supΩ3(y,s)→(x,t) |∇u(y, s)| ≤
√

2M(x, t)− δ for every (x, t) ∈
∂Ω ∩QT ;

(iii’) u(·, 0) ≥ u0 + δ on Ω0 = {u0 > 0}
hold. Analogously a strict semi-classical subsolution is defined.

As a consequence of the results in Chapter 1, one can check that
every limit solution u = limj→∞ uεj of (P ) is a semi-classical superso-
lution in the sense of Definition 3.1.1. In fact,

Proposition 3.1.2. Let uεj be solutions to (Pεj
) – with wεj sat-

isfying (0.2.4) and w0 > −1 – such that uεj → u uniformly on com-
pact sets and εj → 0. Assume that the initial datum u0 is Lipschitz
continuous and that the approximations of the initial datum verify
|uε

0(x)|, |∇uε
0(x)| ≤ C and uε

0 ∈ C1({uε
0 > 0}). Then u is a semi-

classical supersolution of (P ).
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Proof. We have to verify conditions (i)-(iii) of Definition 3.1.1.

By Proposition 1.5.1, (i) and (ii) hold.

Now, from our assumptions on the initial datum u0, by Proposition
5.2.1 of [27], we have that uε → u uniformly on compact sets of QT so
that u is continuous up to t = 0 and (iii) also holds. ¤

Let us suppose that the initial datum u0 of problem (P ) is star-
shaped with respect to a point x0, that we always assume to be 0, in
the following sense: For every λ ∈ (0, 1) and x ∈ RN ,

(3.1.3) u0(λx) ≥ u0(x), λΩ0 ⊂⊂ Ω0,

where Ω0 = {u0 > 0}.
Also, assume that

(3.1.4) w0(λx, 0) ≤ w0(x, 0) if x ∈ RN , 0 < λ < 1

and

(3.1.5) w0 > −1 + δ1 for some δ1 > 0.

Let u be a semi-classical supersolution of (P ). Let λ and λ′ be two
real numbers with 0 < λ < λ′ < 1. Define

(3.1.6) uλ(x, t) =
1

λ′
u(λx, λ2t)

in QT/λ2 . The rescaling is taken so that uλ satisfies the heat equation
in

(3.1.7) Ωλ = {(x, t) : (λx, λ2t) ∈ Ω}.
Moreover, the fact that 0 < λ < λ′ < 1 makes uλ a strict semi-classical
supersolution of (P ).

In fact, let us first see that

M(λx, λ2t) ≤ M(x, t) if 0 < λ < 1.

This is a consequence of the fact that the function

a −→
∫ 1

−a

(s + a)f(s) ds

is nondecreasing and

(3.1.8) w0(λx, λ2t) ≤ w0(x, t) if 0 < λ < 1.

In fact, the function wλ(x, t) = w0(λx, λ2t) is caloric and wλ(x, 0) ≤
w0(x, 0) if 0 < λ < 1 by hypothesis. Thus, by the comparison principle,
wλ(x, t) ≤ w0(x, t) in QT .
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Now, let (x0, t0) ∈ ∂{uλ > 0}. Then,

lim sup
Ωλ3(x,t)→(x0,t0)

|∇uλ(x, t)| = lim sup
Ω3(λx,λ2t)→(λx0,λ2t0)

| λ
λ′
∇u(λx, λ2t)|

≤ λ

λ′
√

2M(λx0, λ2t0)

≤
√

2M(x0, t0)−
(
1− λ

λ′

)√
2M0,

where 0 < M0 < M(x, t) in QT , by (3.1.5).

On the other hand, since λΩ0 ⊂⊂ Ω0, there holds that

u0(λx) ≥ γ > 0 if x ∈ Ω0.

Thus, for x ∈ Ω0,

uλ(x, 0) =
1

λ′
u0(λx) = u0(λx) +

( 1

λ′
− 1

)
u0(λx)

≥ u0(x) +
( 1

λ′
− 1

)
γ.

The following comparison lemma for problem (P ) can be proved as
Lemma 2.4 in [30].

Lemma 3.1.9. Let u0 satisfy (3.1.3) and w0 satisfy (3.1.4)-(3.1.5).
Then every semi-classical subsolution of (P ) with bounded support, is
smaller than every semi-classical supersolution of (P ). i.e. if u′ is
a semi-classical subsolution such that Ω′ is bounded and u is a semi-
classical supersolution then

Ω′ ⊂ Ω and u′ ≤ u,

where Ω′ = {u′ > 0} and Ω = {u > 0}.

Proof. Let u′ be a subsolution and u be a supersolution of (P ) in
QT . We only need to show that Ω′ ⊂ Ω since the comparison between
u′ and u will follow from this inclusion by the maximum principle.

Suppose first that u′ ∈ C1(Ω′) and u ∈ C1(Ω). Let

λ0 = sup{λ ∈ (0, 1) : Ω′ ⊂ Ωλ},
where Ωλ is defined in (3.1.7). We have to show that λ0 = 1. Suppose
not, then λ0 < 1 and Ω′ ⊂ Ωλ0 , and there is a common point (x0, t0) ∈
∂Ω′ ∩ ∂Ωλ0 ∩ QT . Let λ0 < λ′0 < 1 and uλ0 be as in (3.1.6). Then
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u′ ≤ uλ0 in Ω′. At (x0, t0), (as u′ and u are regular) by Hopf’s Lemma
we have

−∂u′

∂ν
(x0, t0) < −∂u

∂ν
(x0, t0),

where ν is the outward spatial normal for Ω′ at (x0, t0). Now since

−∂u′

∂ν
(x0, t0) = |∇u′(x0, t0)| ≥

√
2M(x0, t0)

and

−∂u

∂ν
(x0, t0) = |∇u(x0, t0)| <

√
2M(x0, t0),

we arrive at a contradiction. Observe that here, we do not need the
strong inequality (ii’), so we only need the weaker assumption w0 > −1
in QT instead of (3.1.5) in this case.

The general case, can be reduced to the previous one as in [30]. In
fact, let ũ be a supersolution. Choose 0 < λ < λ′ < 1 close to 1 and
regularize ũ by

u(x, t) = (ũλ(x, t + h)− η)+,

for small h, η > 0. Analogously regularize a subsolution ũ′. Then we
will fall into the hypotheses of the previous case and then we can finish
the proof by letting first h, η → 0+ and then λ → 1−. ¤

2. Auxiliary results

This section contains results on the following problem:

(P0) ∆u− ut = (u + ω0)f(u),

where the function f is as in Section 1 and ω0 is a constant, ω0 > −1.
The results will be used in the next sections where (P0) appears as a
blow-up limit.

These results and their proofs are analogous to those in Section 4
in [22] where the case ω0 = 0 was analyzed. We prove them here for
the sake of completeness.

Lemma 3.2.1. Let a, b ≥ 0 and let ψ = ψa,b be the classical solution
to

ψss = (ψ + ω0)f(ψ) for s > 0,

ψ(0) = a, ψs(0) = −
√

2b.
(3.2.2)
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Let B(τ) =
∫ τ

−ω0
(ρ + ω0)f(ρ) dρ.

If b = 0 and a ∈ {−ω0} ∪ [1, +∞), then ψ ≡ a.(3.2.3)

If b = 0 and a ∈ (−ω0, 1), then lims→+∞ ψ(s) = +∞.(3.2.4)

If b ∈ (
0, B(a)

)
, then lims→+∞ ψ(s) = +∞.(3.2.5)

If 0 < b = B(a), then ψs < 0 and lims→+∞ ψ(s) = −ω0.(3.2.6)

If b ∈ (
B(a), +∞)

, then ψs < 0 and lims→+∞ ψ(s) = −∞.(3.2.7)

Proof. We first recall that the function f is Lipschitz continuous
and therefore, there is a unique classical solution to (3.2.2).

Let us multiply equation (3.2.2) by ψs. We get

ψssψs = (ψ + ω0)f(ψ)ψs =
d

d s

(
B(ψ)

)
, for s > 0.

Then, if we integrate the expression above, we deduce that

(3.2.8)
1

2
ψ2

s(s)−B(ψ(s)) =
1

2
ψ2

s(0)−B(ψ(0)) = b−B(a),

for every s ≥ 0.

I. Assume b = 0 and a ∈ {−ω0} ∪ [1, +∞). Then, (3.2.3) follows
easily if we recall that (s + ω0)f(s) = 0 for s ∈ {−ω0} ∪ [1, +∞).

II. Assume b = 0 and a ∈ (−ω0, 1). Since ψss ≥ 0, then ψs(s) ≥ 0.
Moreover, ψs(s) > 0 if s > 0 (otherwise ψ ≡ a in some interval, which
is not possible). In particular, given s0 > 0, we must have, for s > s0,

ψ(s) ≥ ψ(s0) + ψs(s0)(s− s0)

and hence, (3.2.4) follows.

III. Assume b ∈ (
0, B(a)

)
. From (3.2.8) we deduce

B(ψ(s)) ≥ B(a)− b > 0,

which implies, for some constant µ,

(3.2.9) ψ(s) ≥ µ > −ω0.

Let us suppose a > 1. Then, ψss = (ψ + ω0)f(ψ) = 0 near the
origin. Hence

ψ(s) = a−
√

2b s,

as long as ψ(s) > 1. In any case ( a > 1 or a ≤ 1), there exists s0 ≥ 0

such that ψ(s0) ≤ 1 and ψs(s0) = −
√

2b, and therefore, there exists
s1 ≥ 0 such that

ψ(s1) < 1, ψs(s1) < 0.
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If we had ψs ≤ 0 for s ≥ s1, then, from (3.2.9) and from equation
(3.2.2), we would get, for s ≥ s1,

−ω0 < µ ≤ ψ(s) ≤ ψ(s1) < 1 and ψss(s) > δ > 0,

for some constant δ. Thus,

0 ≥ ψs(s) ≥ ψs(s1) + δ(s− s1),

for s ≥ s1, which is not possible.

That is, we have shown that there exists s2 > 0 such that ψs(s2) >
0. Then, ψss ≥ 0 now gives, for s ≥ s2,

ψ(s) ≥ ψ(s2) + ψs(s2)(s− s2),

that is, (3.2.5) holds.

IV. Assume 0 < b = B(a). Now, (3.2.8) gives

(3.2.10)
1

2
ψ2

s(s) = B(ψ(s)), for s ≥ 0.

If there existed s0 ≥ 0 such that ψs(s0) = 0, then B(ψ(s0)) = 0,
implying ψ(s0) = −ω0. The uniqueness of (3.2.2) would give ψ(s) ≡
ψ(s0), a contradiction.

Hence, ψs(s) < 0 and thus B(ψ(s)) > 0. This implies that ψ(s) >
−ω0 and that there exists

lim
s→+∞

ψ(s) = γ, −ω0 ≤ γ < +∞.

If γ > −ω0, it follows from (3.2.10) that

lim
s→+∞

ψs(s) = −
√

2B(γ) < 0,

and then ψ(s) < −ω0 for s large. This gives a contradiction and thus,
(3.2.6) holds.

V. Finally, assume b ∈ (
B(a), +∞)

. Then, (3.2.8) gives

1

2
ψ2

s(s) ≥ b−B(a) > 0.

In particular, ψs never vanishes and we have, ψs(s) ≤ −
√

2
(
b−B(a)

)
.

It follows that

ψ(s) ≤ ψ(0)−
√

2
(
b−B(a)

)
s,

for s > 0, then (3.2.7) holds and the proof is complete. ¤
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Lemma 3.2.11. Let B(τ) =
∫ τ

−ω0
(ρ + ω0)f(ρ) dρ.

a) Let ψn ≥ −ω0, symmetric with respect to s = n
2
, be a solution to

ψss = (ψ + ω0)f(ψ) in (0, n),

ψ(0) = ψ(n) = a ∈ (−ω0, 1).
(3.2.12)

Then, ψn
s (0) = −√2bn with bn ↗ B(a) as n →∞.

b) Let ψn ≥ −ω0 be a solution to

ψss = (ψ + ω0)f(ψ) in (0, n),

ψ(0) = a ∈ (−ω0, 1],

ψ(n) = −ω0.

(3.2.13)

Then, ψn
s (0) = −√2bn with bn ↘ B(a) as n →∞.

Proof. Part a). Since ψn is symmetric, ψn
s (n

2
) = 0.

On the other hand, since

1

2
(ψn

s )2 −B(ψn) = bn −B(a),

there holds that

−B
(
ψn(n/2)

)
= bn −B(a).

In particular, there holds that bn ≤ B(a).

We claim that ψn(n
2
) → −ω0 as n →∞. In fact, if not there would

exist α > −ω0 such that, for a subsequence that we still call ψn,

ψn(s) ≥ ψn(n/2) ≥ α, for 0 ≤ s ≤ n.

On the other hand, there holds that ψn(s) ≤ a for 0 ≤ s ≤ n. Thus,
(ψn + ω0)f(ψn(s)) ≥ β0 > 0 for 0 ≤ s ≤ n. Therefore, ψn

ss ≥ β0 for
0 ≤ s ≤ n and thus

ψn(s) ≥ α +
β0

2

(
s− n/2

)2
, for s ∈ [n/2, n].

In particular,

a = ψn(n) ≥ α + (β0/8)n2 →∞, as n →∞
which is a contradiction. Thus,

bn −B(a) = −B
(
ψn(n/2)

) → 0, as n →∞.

Part b). Since

1

2
(ψn

s )2 −B(ψn) = bn −B(a),
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there holds that
1

2
(ψn

s (n))2 = bn −B(a) ≥ 0.

We claim that ψn
s (n) → 0 as n →∞. In fact, if not, there would exist

α > 0 such that, for a subsequence that we still call ψn, ψn
s (n) ≤ −α.

Since ψn
ss ≥ 0, there holds that

ψn
s (n) ≥ ψn

s (s),

for 0 ≤ s ≤ n. Thus,

ψn
s (s) ≤ −α for 0 ≤ s ≤ n.

Therefore,

a + ω0 = ψn(0)− ψn(n) = −ψn
s (θ)n ≥ αn →∞, as n →∞

which is a contradiction. Therefore, ψn
s (n) → 0 as n → ∞ and there

holds that

bn → B(a),

as n →∞. ¤

Lemma 3.2.14. Let B(τ) be as in the previous Lemma and let Rγ ={
(x, t) ∈ RN+1 /x1 > 0 , −∞ < t ≤ γ

}
, 0 ≤ θ < 1 + ω0 and let

U ∈ C2+α,1+α
2 (Rγ) be such that

∆U − Ut = (U + ω0)f(U) in Rγ,

U = 1− θ on {x1 = 0},
−ω0 ≤U ≤ 1− θ in Rγ.

1) If θ = 0, then |∇U | ≤
√

2B(1) on {x1 = 0}.
2) If 0 < θ < 1 + ω0 and 0 < σ < B(1) is such that

∫ 1−θ

−ω0

(ρ + ω0)f(ρ) dρ = B(1)− σ,

then |∇U | =
√

2(B(1)− σ) on {x1 = 0}.

Proof. For θ ∈ [0, 1 + ω0), let Vn be the bounded solution to

∆V − Vt = (V + ω0)f(V ) in {0 < x1 < n, x′ ∈ RN−1 , t > 0},
V (0, x′, t) = 1− θ,

V (n, x′, t) = −ω0,

V (x, 0) = 0,
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and let Wn be the bounded solution to

∆W −Wt = (W + ω0)f(W ) in {0 < x1 < n, x′ ∈ RN−1 , t > 0},
W (0, x′, t) = 1− θ,

W (n, x′, t) = 1− θ,

W (x, 0) = 1− θ.

Let us point out that Vn and Wn are actually functions of (x1, t).

For k ∈ N, let V k
n (x, t) = Vn(x, t + k) and W k

n (x, t) = Wn(x, t +
k). Since V k

n , U and W k
n are bounded solutions to equation P0 in the

domain {0 < x1 < n, x′ ∈ RN−1 , −k < t ≤ γ}, and on the parabolic
boundary of this domain, we have V k

n ≤ U ≤ W k
n . It follows that

V k
n (x, t) ≤ U(x, t) ≤ W k

n (x, t)

in {0 < x1 < n, x′ ∈ RN−1 , −k < t ≤ γ}. On the other hand (see
[19]), Vn(x, t) → ψn

−(x1) uniformly as t → ∞, where ψn
− ≥ 0 is a

solution to (3.2.13) with a = 1− θ.

Analogously, Wn(x, t) → ψn
+(x1) uniformly as t →∞, where ψn

+ ≥
0, symmetric with respect to x1 = n

2
, is a solution to (3.2.12) with

a = 1− θ.

Therefore, letting k →∞ we get

ψn
−(x1) ≤ U(x, t) ≤ ψn

+(x1) for 0 ≤ x1 ≤ n , t ≤ γ.

In particular,

(ψn
−)s(0) ≤ Ux1(0, x

′, t) ≤ (ψn
+)s(0), for t ≤ γ.

Let θ = 0. We deduce from Lemma 3.2.11, b) that

−|∇U(0, x′, t)| = Ux1(0, x
′, t) ≥ lim

n→∞
(ψn

−)s(0) = −
√

2B(1).

Let θ > 0. We deduce from Lemma 3.2.11, a) and b) that

−
√

2(B(1)− σ) = lim
n→∞

(ψn
−)s(0) ≤ Ux1(0, x

′, t)

≤ lim
n→∞

(ψn
+)s(0) = −

√
2(B(1)− σ).

Therefore,

−|∇U(0, x′, t)| = Ux1(0, x
′, t) = −

√
2(B(1)− σ).

¤
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Lemma 3.2.15. Let εj, γεj
and τεj

be sequences such that εj > 0,
εj → 0, γεj

> 0, γεj
→ γ, with 0 ≤ γ ≤ +∞, τεj

> 0, τεj
→ τ with

0 ≤ τ ≤ +∞, and such that τ < +∞ implies that γ = +∞. Let ρ > 0
and

Aεj
=

{
(x, t) / |x| < ρ

εj

, −min(τεj
,

ρ2

εj
2
) < t < min(γεj

,
ρ2

εj
2
)

}
.

Assume that 0 ≤ θ < 1 + w0(x0, t0) and let ūεj be weak solutions to

∆ūεj − ū
εj

t =

(
ūεj +

wεj(εjx + xεj
, εj

2t + tεj
)

εj

)
f(ūεj)

in {x1 > h̄εj
(x′, t)} ∩ Aεj

,

ūεj = 1− θ on {x1 = h̄εj
(x′, t)} ∩ Aεj

,

−wεj(εjx + xεj
, εj

2t + tεj
)

εj

≤ ūεj ≤ 1− θ in {x1 ≥ h̄εj
(x′, t)} ∩ Aεj

,

where (xεj
, tεj

) → (x0, t0), with ūεj ∈ C({x1 ≥ h̄εj
(x′, t)} ∩ Aεj

), and

∇ūεj ∈ L2. Here h̄εj
are continuous functions such that h̄εj

(0, 0) =

0 with h̄εj
→ 0 uniformly on compact subsets of RN−1 × (−τ, γ).

Moreover, we assume that ‖h̄εj
‖C1(K) + ‖∇x′h̄εj

‖
Cα, α

2 (K)
are uniformly

bounded, for every compact set K ⊂ RN−1 × (−τ, γ).

Then, there exists a function ū such that, for a subsequence,

ū ∈ C2+α,1+α
2

({x1 ≥ 0, γ > t > −τ}),
ūεj → ū uniformly on compact subsets of {x1 > 0, γ > t > −τ},

∆ū− ūt = (ū + w0(x0, t0))f(ū) in {x1 > 0, γ > t > −τ},
ū = 1− θ on {x1 = 0, γ > t > −τ},

−w0(x0, t0) ≤ ū ≤ 1− θ in {x1 ≥ 0, γ > t > −τ}.

If γ < +∞, we require, in addition, that

‖h̄εj
(x′, t + γεj

− γ)‖C1(K) + ‖∇x′h̄εj
(x′, t + γεj

− γ)‖
Cα, α

2 (K)

be uniformly bounded for every compact set K ⊂ RN−1× (−∞, γ]. And
we deduce that

u ∈ C2+α,1+α
2

({x1 ≥ 0, t ≤ γ}).
If τ < +∞, we let

Bεj
=

{
x / |x| < ρ

εj

, x1 > h̄εj
(x′,−τεj

)

}
,
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and we require, in addition, that for every R > 0,

‖ūεj(x,−τεj
)‖Cα(Bεj∩BR(0)) ≤ CR,

and that there exists r > 0 such that

‖ūεj(x,−τεj
)‖C1+α(Bεj∩Br(0)) ≤ Cr.

Moreover, we assume that ‖h̄εj
(x′, t − τεj

+ τ)‖C1(K) + ‖∇x′h̄εj
(x′, t −

τεj
+ τ)‖

Cα, α
2 (K)

are uniformly bounded for every compact set K ⊂
RN−1 × [−τ, +∞).

Then, there holds that

ū ∈ Cα, α
2

({x1 ≥ 0, t ≥ −τ}), ∇u ∈ C
({0 ≤ x1 < r, t ≥ −τ}),

ūεj(x,−τεj
) → ū(x,−τ) uniformly on compact subsets of {x1 > 0}.

In any case (τ, γ be infinite or finite)

|∇ūεj(0, 0)| → |∇ū(0, 0)|.

Proof. We will drop the subscript j when referring to the se-
quences defined in the statement and ε → 0 will mean j →∞.

Case I. τ = +∞, γ = +∞.

In order to prove the result, we first apply suitable changes of vari-
ables to straighten up the boundaries x1 = h̄ε(x

′, t). Namely, for every
ε, we let

y = Hε(x, t)

where

Hε
1 = x1 − h̄ε(x

′, t), Hε
i = xi, i > 1,

and we define

v̄ε(y, t) = ūε(x, t).

Let R > 0 be fixed and let

B+
R = {(y, t) / y1 > 0} ∩BR(0, 0)

and let

Lv̄ε =
∑

i, j

∂

∂yi

(
aε

ij(y, t)
∂v̄ε

∂yj

)
+

∑

i

bε
i (y, t)

∂v̄ε

∂yi

− ∂v̄ε

∂t
,

where

(3.2.16) aε
ij(y, t) =

∑

k

∂Hε
i

∂xk

∂Hε
j

∂xk

, bε
i (y, t) = −∂Hε

i

∂t
.
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Note that there exists CR > 0 such that

(3.2.17) ‖aε
ij‖Cα, α

2 (B+
R)
≤ CR, ‖bε

i‖L∞(B+
R) ≤ CR.

Moreover, there exists λ > 0 such that, if ε is small enough,

(3.2.18)
∑

i, j

aε
ij(y, t)ξi ξj ≥ λ|ξ|2 for (y, t) ∈ B+

R .

Here we have used the fact that |(DHε)−1| are uniformly bounded on
any compact set, if ε is small enough.

Then the function v̄ε ∈ C(B+
R), with ∇v̄ε ∈ L2(B+

R) is a weak
solution to

Lv̄ε =

(
v̄ε +

wε(εx + xε, ε
2t + tε)

ε

)
f(v̄ε) in B+

R ,

v̄ε = 1− θ on B+
R ∩ {y1 = 0},

−wεj(εjx + xε, εj
2t + tε)

εj

≤ v̄ε ≤ 1− θ in B+
R ,

if ε is small enough.

By Theorem 10.1, Chapter III in [21], there exists CR > 0 such
that

||v̄ε||
Cα, α

2 (B+
R
2

)
≤ CR.

On the other hand, by Theorem 1.4.3 in [12] we also have that

||∇v̄ε||
L∞(B+

R
2

)
≤ CR.

Moreover, by Theorem 1.4.10 in [12], the functions ∇v̄ε are continuous

in B+
R
2

with a modulus of continuity independent of ε.

Therefore, there exists a function u ∈ Cα, α
2 (B+

R
2

) and a subsequence

that we still call v̄ε such that v̄ε → u and ∇v̄ε → ∇u uniformly in B+
R
2

.

Clearly,

u = 1− θ in {y1 = 0} ∩B+
R
2

,

−w0(x0, t0) ≤u ≤ 1− θ in B+
R
2

.

Since h̄ε → 0 and ∇x′h̄ε → 0 uniformly on compact sets, it is easy
to see that we actually have that

ūε → u, and ∇ūε → ∇u uniformly on compact sets of B+
R
2

.
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Clearly u is a solution of ∆u − ut = (u + w0(x0, t0))f(u) in B+
R
2

.

Standard Schauder estimates imply that ū ∈ C2+α,1+α
2 (B+

R
4

).

Since h̄ε(0, 0) = 0, ∇x′ f̄ε(0, 0) → 0 and ∇v̄ε(0, 0) → ∇ū(0, 0), it is
easy to see that ∇ūε(0, 0) → ∇ū(0, 0).

Since R is arbitrary, a standard procedure gives the result in

{y1 > 0 , −τ < t < γ} for τ = +∞ and γ = +∞.

Case II. τ < +∞.

As in the previous case, we apply suitable changes of variables to
straighten up the boundaries x1 = h̄ε(x

′, t). Namely, for every ε, we let

y = Hε(x, t), s = t + τε − τ,

where

Hε
1(x, t) = x1 − h̄ε(x

′, t), Hε
i (x, t) = xi, i > 1,

and we define

v̄ε(y, s) = ūε(x, t).

Let R > 0 be fixed and let

B+
R,τ = {(y, s) / y1 > 0 , s > −τ} ∩BR(0, 0)

and let, as before,

Lv̄ε =
∑

i, j

∂

∂yi

(
aε

ij(y, s)
∂v̄ε

∂yj

)
+

∑

i

bε
i (y, s)

∂v̄ε

∂yi

− ∂v̄ε

∂s
,

where aε
ij(y, s) and bε

i (y, s) are defined in B+
R,τ in a way analogous to

(3.2.16) and moreover, they satisfy estimates similar to those in (3.2.17)
and (3.2.18) in B+

R,τ .

Then the function v̄ε ∈ C(B+
R,τ ), with ∇v̄ε ∈ L2(B+

R,τ ) is a weak
solution to

Lv̄ε =

(
v̄ε +

wε(εx + xε, ε
2t + tε)

ε

)
f(v̄ε) in B+

R,τ ,

v̄ε = 1− θ on B+
R,τ ∩ {y1 = 0},

−wεj(εjx + xε, εj
2t + tε)

εj

≤ v̄ε ≤ 1− θ in B+
R,τ ,

v̄ε = gε(y) in B+
R,τ ∩ {s = −τ},
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if ε is small enough, where we have called gε(y) = v̄ε(y,−τ). In addi-
tion,

‖gε‖Cα(BR(0)∩{y1≥0}) ≤ CR and ‖gε‖C1+α(Br(0)∩{y1≥0}) ≤ Cr.

Moreover, gε = 1− θ on {y1 = 0}.
By Theorem 10.1, Chapter III in [21], there exists CR > 0 such

that
||v̄ε||

Cα, α
2 (B+

R
2 ,τ

)
≤ CR.

On the other hand, by Remark 1.4.11 in [12], applied to the functions
v̂ε = v̄ε − gε, we also have that

||∇v̄ε||
L∞

(
(B r

2
(0)×[−τ, R

2
])∩{y1≥0}

) ≤ CR

and that the functions ∇v̄ε are continuous in (B r
2
(0)× [−τ, R

2
])∩{y1 ≥

0} with a modulus of continuity independent of ε.

Proceeding as in the case τ = +∞ and using that τε → τ we see

that there exists a function u ∈ Cα, α
2 (B+

R
2

,τ
) such that for a subsequence

v̄ε → u uniformly in B+
R
2

,τ
,

∇v̄ε → ∇u uniformly on compact sets of B+
R
2

,τ
,

ūε → u, ∇ūε → ∇u uniformly on compact sets of B+
R
2

,τ
,

ūε(y,−τε) → u(y,−τ) uniformly on compact sets of

{y1 > 0} ∩ BR
2
(0),

∇v̄ε → ∇u uniformly in
(
B r

2
(0)× [−τ,

R

2
]
) ∩ {y1 ≥ 0}.

This function u satisfies

ū ∈ C2+α,1+α
2

({y1 ≥ 0, t > −τ} ∩BR
2
(0, 0)

)
,

∆ū− ūt = (ū + w0(x0, t0))f(ū) in {y1 > 0, t > −τ} ∩ BR
2
(0, 0),

ū = 1− θ on {y1 = 0, t ≥ −τ} ∩BR
2
(0, 0),

−w0(x0, t0) ≤ ū ≤ 1− θ in {y1 ≥ 0, t ≥ −τ} ∩BR
2
(0, 0).

Moreover, there holds that ∇ūε(0, 0) → ∇ū(0, 0).

Since R is arbitrary, Case II is proved.

Case III. γ < +∞.

We proceed as in the previous cases. For every ε, we let

y = Hε(x, t), s = t− γε + γ,



90 3. UNIQUENESS OF LIMIT SOLUTIONS

where

Hε
1(x, t) = x1 − h̄ε(x

′, t), Hε
i (x, t) = xi, i > 1,

and we define

v̄ε(y, s) = ūε(x, t).

Let R > 0 be fixed and let

B+
R,γ = {(y, s) / y1 > 0 , s < γ} ∩BR(0, 0).

As in the previous cases, by using Theorem 10.1, Chapter III in [21],
and Theorems 1.4.3 and 1.4.10 in [12] we deduce that there exists a

function u ∈ Cα, α
2

(
B+

R
2

,γ

)
such that for a subsequence

v̄ε → u, ∇v̄ε → ∇u uniformly in B+
R
2

,γ
,

ūε → u, ∇ūε → ∇u uniformly on compact sets of B+
R
2

,γ
.

This function u satisfies

ū ∈ C2+α,1+α
2

({y1 ≥ 0, t ≤ γ} ∩BR
2
(0, 0)

)
,

∆ū− ūt = (ū + w0(x0, t0))f(ū) in {y1 > 0, t < γ} ∩BR
2
(0, 0),

ū = 1− θ on {y1 = 0, t ≤ γ} ∩BR
2
(0, 0),

−w0(x0, t0) ≤ ū ≤ 1− θ in {y1 ≥ 0, t ≤ γ} ∩ BR
2
(0, 0).

Moreover, there holds that ∇ūε(0, 0) → ∇ū(0, 0).

Since R is arbitrary, the lemma is proved. ¤

3. Approximation results

In this section we prove that, under certain assumptions, a strict
semi-classical supersolution to problem (P ) is the uniform limit of a
family of supersolutions to problem (Pε) (Theorem 3.3.1), and we state
an analogous result for subsolutions (Theorem 3.3.7). Also, we prove
that for compactly supported initial data, limit solutions have bounded
support (Proposition 3.3.8).

The following construction follows the lines of Theorem 5.2 in [22].
In our case we have to be more careful with the construction of the
initial data.

Theorem 3.3.1. Let ũ be a semi-classical supersolution to (P ) in

QT with ũ ∈ C1({ũ > 0}) and such that {ũ > 0} is bounded. Assume,
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in addition, that there exist δ0, s0 > 0 such that

|∇ũ+| ≤
√

2M(x, t)− δ0 on Q ∩ ∂{ũ > 0},
|∇ũ| > δ0 in Q ∩ {0 < ũ < s0}.

Let wε be a solution of the heat equation in QT such that wε(x,t)
ε

→
w0(x, t) uniformly in QT with w0 ∈ C(QT ) ∩ L∞(QT ) and verifies
(3.1.5).

Then, there exists a family uε ∈ C(QT ), with ∇uε ∈ L2
loc(QT ),

of weak supersolutions to (Pε) in QT , such that, as ε → 0, uε → ũ
uniformly in QT .

Proof. Step I. Construction of the family uε. Let 0 < θ < δ1 be
such that ∫ 1

1−θ

(s + W )f(s) ds =
δ0

8
,

where W is a suitable uniform bound of ‖wε/ε‖L∞({eu>0}). For every
ε > 0 small, we define the domain Dε = {ũ < (1− θ)ε} ⊂ QT .

Let zε be the bounded solution to

∆zε − zε
t = (zε + wε)fε(z

ε) in Dε,

with boundary data

zε(x, t) =

{
(1− θ)ε on ∂Dε ∩ t > 0,

zε
0(x) in Dε ∩ {t = 0}.

In order to give the initial data zε
0, we let ψε(s, x) be the solution to

(3.2.2) with

a = 1− θ, b =

∫ 1−θ

−wε(x,0)/ε

(s +
wε(x, 0)

ε
)f(s) ds, ω0 =

wε(x, 0)

ε
.

Assume first that |∇ũ| is smooth. Then we let

ϕε(ξ, x) = ψε
( 1− θ − ξ

|∇ũ(x, 0)| , x
)
,

and we define

zε
0(x) = εϕε

(1

ε
ũ(x, 0), x

)
.

If ũ is not regular enough, we can replace |∇ũ(x, 0)| by a smooth
approximation Fε(x) so that the initial datum zε

0 is C1+α. We leave
the details to the reader.
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Finally, we define the family uε as follows:

uε =

{
ũ in {ũ ≥ (1− θ)ε},
zε in Dε.

Step II. Passage to the limit. If (x, 0) ∈ Dε, we have 0 ≤ 1
ε
ũ(x, 0) ≤

1− θ. Since, from Lemma 3.1, we know that −wε(x, 0)/ε ≤ ψ(s, x) ≤
1 − θ for s ≥ 0, it follows that −wε(x, 0) ≤ zε(x, 0) ≤ (1 − θ)ε. Since
fε(s) ≥ 0, constant functions larger than −wε(x, t) are supersolutions
to (Pε). Therefore, (1 − θ)ε is a supersolution if ε < ε1 and we may
apply the comparison principle for bounded super and subsolutions of
(Pε) to conclude that −wε ≤ zε ≤ (1− θ)ε.

Hence,
sup
QT

|uε − ũ| = sup
Dε

|zε − ũ| ≤ Cε

and therefore, the convergence of the family uε follows.

Step III. Let us show that there exists ε0 > 0 such that the functions
uε are supersolutions to (Pε) for ε < ε0.

If uε > (1 − θ)ε, then uε = ũ, which by hypothesis is supercaloric.
Since fε(s) ≥ 0 and (1 − θ)ε ≥ −wε if ε < ε1, it follows that uε are
supersolutions to (Pε) here.

If uε < (1− θ)ε, then we are in Dε and therefore, by construction,
uε are solutions to (Pε).

That is, the uε’s are continuous functions, and they are piecewise
supersolutions to (Pε). In order to see that uε are globally supersolu-
tions to (Pε), it suffices to see that the jumps of the gradients (which
occur at smooth surfaces), have the right sign.

To this effect, we will show that there exists ε0 > 0 such that

(3.3.2) |∇uε| ≥
√

2M(x, t)− δ0/2 on {ũ = (1− θ)ε}, for ε < ε0.

Assume that (3.3.2) does not hold. Then, for every j ∈ N, there
exist εj > 0 and (xεj

, tεj
) ∈ Q, with

εj → 0 and (xεj
, tεj

) → (x0, t0) ∈ ∂{ũ > 0} ∩ {ũ = 0},
such that
(3.3.3)

uεj(xεj
, tεj

) = (1−θ)εj and |∇uεj(xεj
, tεj

)| <
√

2M(xεj
, tεj

)− δ0/2.

From now on we will drop the subscript j when referring to the
sequences defined above and ε → 0 will mean j →∞.



3. APPROXIMATION RESULTS 93

We can assume (performing a rotation in the space variables if
necessary) that there exists a family gε of smooth functions such that,
in a neighborhood of (xε, tε),

{uε = (1− θ)ε} = {(x, t) / x1 − xε1 = gε(x
′ − xε

′, t− tε)},
{uε < (1− θ)ε} = {(x, t) / x1 − xε1 > gε(x

′ − xε
′, t− tε)},

(3.3.4)

where there holds that

gε(0, 0) = 0, |∇x′gε(0, 0)| → 0, ε → 0.

We can assume that (3.3.4) holds in
(
Bρ(xε)× (tε− ρ2, tε + ρ2)

)∩{0 ≤
t ≤ T} for some ρ > 0.

Let us now define

ūε(x, t) =
1

ε
uε(xε + εx, tε + ε2t), ḡε(x

′, t) =
1

ε
gε(εx

′, ε2t),

and let

τε =
tε
ε2

, γε =
T − tε

ε2
.

We have, for a subsequence,

τε → τ , γε → γ

where 0 ≤ τ, γ ≤ +∞ and τ and γ cannot be both finite.

We now let

Aε =

{
(x, t) / |x| < ρ

ε
, −min(τε,

ρ2

ε2
) < t < min(γε,

ρ2

ε2
)

}
.

Then, the functions ūε are weak solutions to

∆ūε − ūε
t =

(
ūε +

wε(xε + εx, tε + ε2t)

ε

)
f(ūε)

in {x1 > ḡε(x
′, t)} ∩ Aε,

ūε = 1− θ on {x1 = ḡε(x
′, t)} ∩ Aε,

−wε(xε + εx, tε + ε2t)

ε
≤ ūε ≤ 1− θ in {x1 ≥ ḡε(x

′, t)} ∩ Aε.

Note that we are under the hypotheses of Lemma 3.2.15. Then,
there exists a function ū such that, for a subsequence,

ū ∈ C2+α,1+α
2

({x1 ≥ 0, −τ < t < γ}),
ūε → ū uniformly on compact subsets of {x1 > 0, −τ < t < γ},

∆ū− ūt = (ū + w0(x0, t0))f(ū) in {x1 > 0, −τ < t < γ},
ū = 1− θ on {x1 = 0, −τ < t < γ},

−w0(x0, t0) ≤ ū ≤ 1− θ in {x1 ≥ 0, −τ < t < γ}.
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We will divide the remainder of the proof into two cases, depending
on whether τ = +∞ or τ < +∞.

Case I. Assume τ = +∞.

In this case, Lemma 3.2.15 also gives

|∇ūε(0, 0)| → |∇ū(0, 0)|.

On the other hand, ū satisfies the hypotheses of Lemma 3.2.14 and
therefore,

|∇ū| ≥
√

2M(x0, t0)− δ0/4 on {x1 = 0},
which yields

|∇ūε(0, 0)| ≥
√

2M(x0, t0)− 3δ0/8,

for ε small. But this gives

|∇uε(xε, tε)| ≥
√

2M(xε, tε)− δ0/2,

for ε small. This contradicts (3.3.3) and completes the proof in case
τ = +∞.

Case II. Assume τ < +∞. (In this case γ = +∞.)

There holds that ūε(x,−τε) = 1
ε
uε(xε + εx, 0), then

(3.3.5) ūε(x,−τε) = ϕε
(1

ε
ũ(xε + εx, 0), xε + εx

)
.

Here we want to apply the result of Lemma 3.2.15 corresponding
to τ < +∞. In fact, we can see that there exist C, r > 0 such that
‖ūε(·,−τε)‖C1+α(Br(0)) ≤ C.

Now Lemma 3.2.15 gives, for a subsequence,

ū ∈ Cα, α
2

({x1 ≥ 0, t ≥ −τ}),
ūε(x,−τε) → ū(x,−τ) uniformly on compact subsets of {x1 > 0}.

Therefore, we get that (recall that in the case we are considering t0 =
0),

ū(x,−τ) = ϕ̄
(
1− θ − |∇ũ+(x0, t0)|x1, x0

)
.

where ϕ̄(s, x) = ψ
( 1− θ − s

|∇ũ(x, 0)| , x
)

and ψ(s, x) is the solution of (3.2.2)

with

a = 1− θ, b =

∫ 1−θ

−w0(x,0)

(s + w0(x, 0))f(s) ds, ω0 = w0(x, 0).
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Thus,
ū(x,−τ) = ψ(x1, x0).

Since the function ψ(x1, x0) is a stationary solution to equation
(P0), bounded for x1 ≥ 0, and ū = ψ on the parabolic boundary of the
domain

{
x1 > 0, t > −τ

}
, we conclude that

ū(x, t) = ψ(x1, x0) in
{
x1 ≥ 0, t ≥ −τ

}
.

It follows from Lemma 3.2.1 and the choice of θ that, on {x1 = 0, t ≥
−τ},

1

2
|∇ū|2 =

1

2

(
ψs(0, x0)

)2
=

∫ 1−θ

−w0(x0,t0)

(s + w0(x0, t0))f(s) ds

≥ M(x0, t0)− δ0

8
.

This is,

|∇ū| ≥
√

2M(x0, t0)− δ0/4 on {x1 = 0, t ≥ −τ}.
But Lemma 3.2.15 gives

|∇ūε(0, 0)| → |∇ū(0, 0)|,
which yields

|∇ūε(0, 0)| ≥
√

2M(x0, t0)− 3δ0/8,

for ε small. Then,

|∇uε(xε, tε)| ≥
√

2M(xε, tε)− δ0/2,

for ε small. This contradicts (3.3.3) and completes the proof in case
τ < +∞. ¤

Remark 3.3.6. Observe that from the construction of uε done in
the previous proof, it follows that

uε ≡ ũ in {ũ > (1− θ)ε}.

We state without proof the following Theorem.

Theorem 3.3.7. Let ũ be a semi-classical subsolution to (P ) in

QT with ũ ∈ C1({ũ > 0}) such that {ũ > 0} is bounded. Assume, in
addition, that there exist δ0 > 0 such that

|∇ũ+| ≥
√

2M(x, t) + δ0 on Q ∩ ∂{ũ > 0}.

Let wε be a solution of the heat equation in QT such that wε(x,t)
ε

→
w0(x, t) uniformly in QT . And assume, moreover that w0 ∈ C(QT ) ∩
L∞(QT ) and verifies (3.1.5).
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Then, there exists a family uε ∈ C(QT ), with ∇uε ∈ L2
loc(QT ), of

weak subsolutions to (Pε) in QT , such that, as ε → 0, uε → ũ uniformly
in QT .

Proof. The proof is analogous to Theorem 3.3.1. See [22] for a
similar result in the case wε = 0. ¤

Finally, we end this Section by showing that, for compactly sup-
ported initial data, the support of a limit solution of problem (P ) is
bounded.

Proposition 3.3.8. Let u0 ∈ C(RN) with compact support. Let
uε

0 converge uniformly to u0 with supports converging to the support
of u0 and let wε be a solution of the heat equation in QT such that
wε(x,t)

ε
→ w0(x, t) uniformly in QT . And assume, moreover that w0 ∈

C(QT )∩L∞(QT ) and verifies (3.1.5). Finally, let uε be the solution to
(Pε) with function wε and initial condition uε

0.

Let u = lim uεj . Then {u > 0} is bounded. Moreover, u vanishes
in finite time.

Proof. Let −1 < ω0 < wε(x, t)/ε. Then it is easy to check that
(3.3.9)

Mω0 =

∫ 1

−ω0

(s + ω0)f(s) ds < M(x, t) =

∫ 1

−w0(x,t)

(s + w0(x, t))f(s) ds.

Let us now consider the following self-similar function

V (x, t; T ) = (T − t)1/2h(|x|(T − t)−1/2),

where h = h(r) is a solution of

h′′ +
(

N − 1

r
+

1

2
r

)
h′ +

1

2
h = 0, 0 < r < R,

h′(0) = 0, h(r) > 0, 0 ≤ r < R,

h(R) = 0, h′(R) = −
√

2Mω0 .

(3.3.10)

It is proved in [13], Proposition 1.1, that there exists a unique R > 0
and a unique h solution of (3.3.10).

Moreover, it can be checked that if one picks T sufficiently large,
then

V (x, 0; T ) ≥ u0 + 1 in {u0 > 0},
and so V (x, t; T ) is a strict semi-classical supersolution of (P ) with
bounded support and positive gradient near its free boundary.
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Now, let uεj be solutions to (Pεj
) – with initial data u

εj

0 converging

unifomly to u0 such that support u
εj

0 → support u0 – such that u =
lim uεj .

By Theorem 3.3.1, there exists a family vεj of supersolutions of (Pεj
)

such that vεj → V uniformly on compact sets, and vεj(x, 0) ≥ uεj(x, 0).
Therefore, by the comparison principle, we obtain uεj ≤ vεj and passing
to the limit u(x, t) ≤ V (x, t; T ), and the result follows. ¤

4. Uniqueness of the limit solution

In this section we arrive at the main point of the Chapter: we prove
that, under certain assumptions, there exists a unique limit solution to
the initial and boundary value problem associated to (P ) as long as
condition (0.2.3) is satisfied.

Let us begin with the following Proposition that is the key ingredi-
ent in the proof of our main result.

Proposition 3.4.1. Let ũ be a strict semi-classical supersolution
to (P ) with bounded support in QT such that there exists s0 > 0 so
that |∇ũ| > 0 in {0 < ũ < s0} and let wε/ε be solutions to the heat
equation in QT converging to w0 uniformly with w0 ∈ C(QT )∩L∞(QT )
and verifies (3.1.5).

Let uε be solutions to (Pε) with function wε and initial condition
uε

0, where uε
0 are uniform approximations of u0 with support uε

0 →
support u0. Then

lim sup
ε→0+

uε(x, t) ≤ ũ(x, t)

for every (x, t) ∈ QT .

Proof. Let ũ be a strict semi-classical supersolution of (P ). Let
us first, define the following regularization

u(x, t) = (ũ(x, t + h)− η)+,

for h, η > 0 small. So that u is a strict semi-classical supersolution
of (P ) with C1 free boundary, C1({u > 0}) and |∇u| > δ0 > 0 in a
neighborhood of its free boundary. So, by Theorem 3.3.1, there exists
vε supersolution of (Pε) such that vε → u uniformly in QT−h.

Now, using the comparison principle, we conclude that uε ≤ vε in
QT−h, and the Proposition now follows letting first ε → 0+ and then
h, η → 0+. ¤
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Finally, we arrive at the main point of the paper: The uniqueness
of limit solutions of (P ).

Theorem 3.4.2. Let the initial datum u0 be Lipschitz, with compact
support and satisfy the condition (3.1.3). Then there exists at most
one limit solution such that its gradient does not vanish near its free
boundary as long as the function wε in problem (Pε) satisfies condition
(0.2.4).

More precisely, let u
εj

0 , ũεk
0 be uniformly Lipschitz continuous in RN

with uniformly bounded Lipschitz norms and εj, εk → 0. Assume that

u
εj

0 ∈ C1({uεj

0 > 0}), ũεk
0 ∈ C1({ũεk

0 > 0}), u
εj

0 , ũεk
0 → u0 uniformly

and support u
εj

0 , support ũεk
0 → support u0. Let wεj/εj and w̃εk/εk be

solutions of the heat equation converging uniformly to the same function
w0 ∈ C(QT ) ∩ L∞(QT ), that verifies (3.1.5). Also, assume that w0

satisfies the monotonicity condition (3.1.4).

Let uεj (resp. ũεk) be the solution to (Pεj
) with function wεj and

initial datum u
εj

0 (resp. solution to (Pεk
) with function w̃εk and initial

datum ũεk
0 ). Let u = lim uεj and ũ = lim ũεk . If there exists s0 > 0

such that |∇ũ| > 0 in {0 < ũ < s0}.
Then, u ≤ ũ.

Proof. Since ũ is a semi-classical supersolution of (P ), ũ ∈ C1({ũ >
0}) and, by Propositon 3.3.8, its support is bounded, the function ũλ

as defined in (3.1.6) satisfies the hypotheses of Proposition 3.4.1 in
QT/λ2 ⊃ QT . So by letting λ → 1− we arrive at

(3.4.3) u(x, t) ≤ ũ(x, t).

This finishes the proof. ¤

Theorem 3.4.4. Let the initial datum u0 be as in Theorem 3.4.2.
Assume that there exists a semi-classical solution v to (P ) with initial
datum u0 and let u

εj

0 be uniformly Lipschitz continuous in RN with

εj → 0, such that u
εj

0 ∈ C1({uεj

0 > 0}), u
εj

0 → u0 uniformly and
support u

εj

0 → support u0. Assume wεj/εj is a solution of the heat
equation converging to w0 uniformly with w0 ∈ C(QT ) ∩ L∞(QT ) and
verifying (3.1.5). Also, assume that w0 satisfies the monotonicity con-
dition (3.1.4).

Let uεj be the solution to (Pεj
) with function wεj and initial datum

u
εj

0 and let u = lim uεj . Then, u = v.

In particular, there exists at most one classical solution to (P ).
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Proof. Since u is a semi-classical supersolution to (P ) and v is a
semi-classical subsolution, Lemma 2.1 applies and we get that v ≤ u.

On the other hand, if we define vλ as in (3.1.6), with 0 < λ < λ′ < 1,
we have that vλ satisfies the hypotheses of Proposition 3.4.1. Thus,
there exists a family vεj of supersolutions to (Pεj

) with function wεj

such that, for a subsequence, vεj → v with initial data converging
uniformly to u0. So by the comparison principle

u = lim uεj ≤ lim vεj = v.

This finishes the proof. ¤

5. Conclusions

We have proved that the limits of sequences of solutions to (Pε)
with different constitutive functions wε and initial data uε

0 coincide –
as long as certain monotonicity assumptions are made – if the limit of
wε/ε and of uε

0 are prescribed.

The monotonicity assumptions are necessary to provide strict semi-
classical supersolutions as close as we want to any semi-classical super-
solution. This kind of condition was also used with the same purpose
– in the case in which wε = 0 – in [30, 22]. In the latter, a different
geometry was considered namely, the domain was a cylinder, Neumann
boundary conditions were given on the boundary of the cylinder and
monotonicity in the direction of the cylinder axis was assumed. In [22]
it was proved that, if a classical solution exists and wε = 0, then it is
equal to any limit of solutions to (Pε).

In our case, this is with wε 6= 0 satisfying (0.2.4) and nondecreas-
ing in the direction of the cylinder axis, the uniqueness result in the
presence of a classical solution still holds.

The cylindrical geometry has the advantage of giving the condi-
tion of nonvanishing gradient in the positivity set of any limit solu-
tion. Since in dimension 2 one can prove that limit solutions are semi-
classical supersolutions up to the fixed boundary, the uniqueness of
limit solutions follows in this case without further assumptions.
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