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Abstract. In this article we study symmetry properties of the extremals for

the Sobolev trace embedding H1(B(0, µ)) ↪→ Lq(∂B(0, µ)) with 1 ≤ q ≤
2(N − 1)/(N − 2) for different values of µ. These extremals u are solutions of

the problem {
∆u = u in B(0, µ),
∂u
∂η

= λ|u|q−2u on ∂B(0, µ).

We find that, for 1 ≤ q < 2(N − 1)/(N − 2), there exists a unique normalized

extremal u, which is positive and has to be radial, for µ small enough. For the
critical case, q = 2(N−1)/(N−2), as a consequence of the symmetry properties

for small balls, we conclude the existence of radial extremals. Finally, for

1 < q ≤ 2, we show that a radial extremal exists for every ball.

1. Introduction.

The aim of this article is to study of the following problem: Given a ball of radius
µ, B(0, µ), in RN , N ≥ 3, decide wether or not there exists a radial extremal for
the embedding

H1(B(0, µ)) ↪→ Lq(∂B(0, µ)).

First, let us introduce our motivation. Let Ω ⊂ RN be a bounded smooth do-
main. Relevant for the study of boundary value problems for differential operators
are the two following Sobolev inequalities. For each 1 ≤ q ≤ 2(N−1)/(N−2) ≡ 2∗,
we have a continuous inclusion H1(Ω) ↪→ Lq(∂Ω), and for each 1 ≤ p ≤ 2N/(N −
2) ≡ 2∗, H1

0 (Ω) ↪→ Lp(Ω), hence the following inequalities hold:

S‖u‖2Lq(∂Ω) ≤ ‖u‖2H1(Ω), S̄‖u‖2Lp(Ω) ≤ ‖u‖2H1
0 (Ω).

These inequalities are known as the Sobolev trace theorem and the Sobolev embed-
ding theorem respectively. The best constants for these embeddings are the largest
S and S̄ such that the above inequalities hold, that is,

(1.1) S = inf
v∈H1(Ω)\H1

0 (Ω)

∫
Ω

|∇v|2 + |v|2 dx(∫
∂Ω

|v|q dσ

)2/q

Key words and phrases. nonlinear boundary conditions, Sobolev trace embedding.
2000 Mathematics Subject Classification. 35J65, 35B33.
Supported by CONICET and by ANPCyT PICT No. 05009.

1
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and

(1.2) S̄ = inf
v∈H1

0 (Ω)\{0}

∫
Ω

|∇v|2 dx(∫
Ω

|v|p dx

)2/p
.

Along this paper, we denote by dx (dσ) the N dimensional (N − 1 dimensional)
Hausdorff measure.

The main difference between these two quantities, is the fact that S̄ is homo-
geneous under dilatations of the domain, that is, if we define µΩ = {µx| x ∈ Ω},
taking v(x) = u(µx) in (1.2) and changing variables we get

S̄(µΩ) = µ(pN−2p−2N)/pS̄(Ω).

On the other hand, S is not homogeneous under dilatations. In fact we have

(1.3) Sµ ≡ S(µΩ) = µβ inf
v∈H1(Ω)\H1

0 (Ω)

∫
Ω

µ−2|∇v|2 + |v|2 dx(∫
∂Ω

|v|q dσ

)2/q
,

where β = (Nq − 2N + 2)/q.
For 1 ≤ q < 2∗ and 1 ≤ p < 2∗ the embeddings are compact, so we have existence

of extremals, i.e. functions where the infimum is attained. These extremals are weak
solutions of the following problems

(1.4)


∆u = u in Ω,

∂u
∂η = λ|u|q−2u on ∂Ω,

where ∂
∂η is the outer unit normal derivative, and

(1.5)

 −∆u = λ|u|p−2u in Ω,

u = 0 on ∂Ω.

The asymptotic behavior of S(µΩ) in expanding (µ → ∞) and contracting do-
mains (µ → 0), was studied in [4] and [6]. In [4] it is proved that for expanding
domains and q > 2, S(µΩ) → S(RN

+ ). In [6] it is shown that

(1.6) lim
µ→0+

Sµ

µβ
=

|Ω|
|∂Ω|2/q

.

The behavior of the extremals for (1.1) in expanding and contracting domains
is also studied in [4] and [6]. For expanding domains, it is proved in [4] that the
extremals develop a peak near a point where the mean curvature of the boundary is
a maximum. For contracting domains, we have that the extremals, when rescaled
to the original domain as v(x) = u(µx), x ∈ Ω, and normalized with ‖v‖Lq(∂Ω)) = 1,
are nearly constant in the sense that

lim
µ→0

v =
1

|∂Ω|1/q
in H1(Ω).

Another big difference between the Sobolev trace theorem and the Sobolev
embedding theorem arises in the behavior of extremals. Namely, if Ω is a ball,
Ω = B(0, µ), as the extremals do not change sign, from results of [7] the extremals
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for (1.2) are radial while, if q exceeds 2 and µ is large, extremals for (1.1) are not,
since they develop a peaking concentration phenomena as is described in [4].

The above discussion leads naturally to the purpose of this article: the study of
the symmetry properties for the extremals of the Sobolev trace embedding in small
balls. We find that the symmetry properties of the extremals depend on the size of
the ball. Our main result describes when there exists a radial extremal.

Theorem 1.1. Let 2∗ = 2(N − 1)/(N − 2) be the critical exponent for the Sobolev
trace immersion. Concerning symmetry properties of the extremals for the embed-
ding H1(B(0, µ)) ↪→ Lq(∂B(0, µ)) there holds,

(1) Let 1 < q ≤ 2. For every µ > 0 there exists a radial extremal.

(2) Let 2 < q < 2∗. There exists µ0 > 0 such that for every µ < µ0 there is
a unique positive extremal, u, normalized such that ‖u(µx)‖Lq(∂B(0,1)) = 1,
moreover this extremal is a radial function. However, for large values of µ
there is no radial extremal.

(3) Let q = 2∗. There exists µ0 > 0 such that for every µ < µ0 there is a
positive radial extremal.

The main ingredient of the proof of the symmetry result for small balls is the
implicit function theorem. We remark that the moving planes technique cannot be
applied to obtain symmetry results in this case, as the extremals for large µ are not
radial.

For the critical exponent 2∗ = 2(N−1)/(N−2), we prove existence of extremals,
which turns out to be radial functions, for small balls. We remark that the exis-
tence of extremals for the critical exponent is not trivial, this is due to the lack
of compactness. This result has to be compared with the case of the immersion
H1

0 (B(0, µ)) → L2∗(B(0, µ)) where it is well known that, by Pohozaev identity,
there is no positive solution of (1.5) regardless the size of the ball for the criti-
cal exponent 2∗ = 2N/(N − 2). However, there exist solutions for topologically
nontrivial domains.

For the existence of extremals in this critical case for general domains Ω, see [3].

The rest of the paper is organized as follows: in section 2 we prove our symmetry
result for small balls and subcritical q. In section 3 we find a bound on the critical
radius below which there exists radial extremals. In section 4 we deal with the
existence of radial extremals with critical exponent and finally in section 5 we
prove that there exists a radial extremal for every ball if 1 < q ≤ 2.

2. Symmetry for small balls and subcritical q.

In this section we use the implicit function theorem to show that there exists a
unique minimizer for µ small.

As observed in the introduction, making the change of variables v(x) = u(µx),
we get

Sµ = µβ inf
v∈H1(B(0,1))\H1

0 (B(0,1))

∫
B(0,1)

µ−2|∇v|2 + |v|2 dx(∫
∂B(0,1)

|v|q dσ

)2/q
,
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where β = (qN − 2N + 2)/q. As q < 2∗ the extremals exists and are solutions of

(2.1)


∆v = µ2v in B(0, 1),

∂v
∂η = µ2 Sµ

µβ |v|q−2v on ∂B(0, 1).

We denote

S =

{
v ∈ H1(B(0, 1)) ;

∫
∂B(0,1)

|v|q dσ = 1

}
.

Let us consider the functional

F : S × [0, 1] → (H1(B(0, 1)))∗

given by

F (v, µ)(φ) =
∫

B(0,1)

∇v∇φdx + µ2

∫
B(0,1)

vφ dx− µ2 Sµ

µβ

∫
∂B(0,1)

vq−1φdσ.

This functional F is continuous and C1 with respect to v.
We observe that

v0 ≡
1

|∂B(0, 1)|1/q
∈ S

and satisfies

F

(
1

|∂B(0, 1)|1/q
, 0
)

= 0.

We want to use the implicit function theorem to show that there exists a unique
solution, v = v(µ) to the equation F (v, µ) = 0, defined for small values of µ near
v0 = 1

|∂B(0,1)|1/q .
To this end we state the following lemmas.

Lemma 2.1. The tangent space to S at v0 is given by

Tv0(S) =

{
z ∈ H1(B(0, 1)) ;

∫
∂B(0,1)

z dσ = 0

}
.

Proof. First let us prove that

Tv0(S) ⊂

{
z ∈ H1(B(0, 1)) ;

∫
∂B(0,1)

z dσ = 0

}
.

Each curve γ : (−1, 1) → S with γ(0) = v0 satisfies∫
∂B(0,1)

|γ(t)|q dσ = 1.

Differentiating at t = 0 we get

q

∫
∂B(0,1)

γ(0)q−1γ′(0) dσ = qvq−1
0

∫
∂B(0,1)

γ′(0) dσ = 0.

Now let us prove the reverse inclusion

Tv0(S) ⊃

{
z ∈ H1(B(0, 1)) ;

∫
∂B(0,1)

z dσ = 0

}
.

Let z be such that ∫
∂B(0,1)

z dσ = 0,
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and consider the following curve

γ(t) =
v0 + tz(∫

∂B(0,1)

|v0 + tz|q dσ

)1/q
.

This curve verifies γ(t) ∈ S, γ(0) = v0, γ′(0) = z. This ends the proof. �

Lemma 2.2. Let

A = {ϕ ∈ (H1(B(0, 1)))∗ : 〈ϕ, 1〉 = 0}.
The derivative of F with respect to v at the point (v0, 0) is given by

∂F

∂v
(v0, 0) : Tv0(S) → A

∂F

∂v
(v0, 0)(w)(φ) =

∫
B(0,1)

∇w∇φdx.

Proof. The result follows directly from the fact that

F (v, 0)(φ) =
∫

B(0,1)

∇v∇φdx.

�

Next we prove that ∂F
∂v (v0, 0) has a continuous inverse.

Lemma 2.3. Given ϕ ∈ A there exists a unique w ∈ Tv0(S) such that∫
B(0,1)

∇w∇φdx = 〈ϕ, φ〉, ∀φ ∈ H1(B(0, 1)).

Moreover the map ϕ 7→ w is continuous.

Proof. Observe that Tv0(S) is a Hilbert space with the inner product given by

(u, v) =
∫

B(0,1)

∇u∇v dx.

Then the lemma follows from the Riesz representation Theorem. �

Theorem 2.1. Suppose that 1 ≤ q < 2∗. There exists µ0 > 0 such that for every
µ < µ0 there exists a unique positive extremal, u, for the embedding H1(B(0, µ)) ↪→
Lq(∂B(0, µ)) normalized such that ‖u(µx)‖Lq(∂B(0,1)) = 1. Moreover this extremal
is a radial function.

Proof. From the previous lemmas we get that F verifies the hypothesis of the
implicit function theorem, see for example [1]. Hence there exists µ0 such that for
every µ ∈ [0, µ0] there exists a unique solution v = v(µ) of

F (v, µ) = 0

with v near v0. Therefore there exists a unique weak solution of (2.1) near v0 for
small values of µ. By the results of [6] the extremals are weak solutions of (2.1) that
converges, as µ goes to zero, to v0 in H1(B(0, 1)), the uniqueness of the extremal
follows.

Now take an extremal u1 in B(0, µ) and let R be any rotation, then u2(x) =
u1(Rx) is also an extremal. Since there is a unique extremal we must have u1 = u2

and we conclude that the unique extremal must be a radial function. �
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Remark 2.1. This method also works for any domain Ω and hence there exists
µ0 > 0 such that for every µ < µ0 there exists a unique positive extremal, u, for
the embedding H1(µΩ) ↪→ Lq(∂µΩ) normalized such that ‖u(µx)‖Lq(∂Ω) = 1.

Remark 2.2. Once we know that the extremals are radial we can obtain some
monotonicity properties expanding them as power series. Indeed as radial extremals
can be written in terms of Bessel functions, they have an expansion in powers of µ,
v(r) =

∑∞
j=0 aj(r)µ2j. As an immediate consequence, we get some monotonicity

properties for small values of µ, the normalized extremals are strictly decreasing as
functions of µ, that is, if µ1 < µ2 then vµ1 > vµ2 in B(0, 1). Moreover, Sµ/µβ is
decreasing as a function of µ, that is, if µ1 < µ2 then Sµ1/µβ

1 > Sµ2/µβ
2 .

Remark 2.3. In the case N = 2, Theorem 2.1 holds for 1 < q < ∞.

3. Estimate for the critical radius.

Theorem 2.1 says that for small balls (µ small) the extremals are radial, while
the results of [4] say that this is not the case for large balls. Therefore we can define

(3.1) µ0 = sup{µ : there exists uθ a radial extremal in B(0, θ), ∀ θ < µ}.
This value µ0 is the critical size where we pass from radial extremals to nonradial
ones. Our next result is an estimate on the value of µ0

Theorem 3.1. The critical radius µ0 defined by (3.1) verifies

(3.2) µ0 ≥
|∂B(0, 1)|1/q

|B(0, 1)|1/2

√
c̄1

q − 1
,

where

(3.3) c̄1 = inf


∫

B(0,1)

|∇v|2 dx

‖v‖2L2∗ (∂B(0,1))

: v ∈ H1(B(0, 1)),
∫

∂B(0,1)

v dσ = 0,

 > 0.

Moreover, the set of parameters (µ, q) such that there is no radial extremal is open.

Proof. From now on we use the notation

Q(v, µ, q) =

∫
B(0,1)

µ−2|∇v|2 + |v|2 dx(∫
∂B(0,1)

|v|q dσ

)2/q
,

for v ∈ H1(B(0, 1)) \H1
0 (B(0, 1)), µ > 0 and 1 < q ≤ 2∗.

Let us look at the linear part of the problem near any positive solution v of (1.4).
The kernel of the linear part are the solutions of

(3.4)


∆z = µ2z in B(0, 1),

∂z
∂η = µ2 Sµ

µβ (q − 1)vq−2z on ∂B(0, 1),

with ∫
∂B(0,1)

z dσ = 0.

Let us look for a bound on the value µ̃ such that (3.4) has a nontrivial solution.
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This value µ̃ can be estimated as follows, multiply by z (3.4) and integrate by
parts to get∫

B(0,1)

|∇z|2 dx + µ2

∫
B(0,1)

z2 dx = µ2 Sµ

µβ
(q − 1)

∫
∂B(0,1)

vq−2z2 dσ.

Now, by Hölder’s inequality,∫
B(0,1)

|∇z|2 dx + µ2

∫
B(0,1)

z2 dx ≤ µ2 Sµ

µβ
(q − 1)‖v‖q−2

Lq(∂B(0,1))‖z‖
2
Lq(∂B(0,1)).

We define c1 = c1(q) as

c1(q) = inf


∫

B(0,1)

|∇v|2 dx

‖v‖2Lq(∂B(0,1))

: v ∈ H1(B(0, 1)),
∫

∂B(0,1)

v dσ = 0,

 ,

and we get

c1(q) ≤ µ2 Sµ

µβ
(q − 1).

Also we have that, by [6] and Remark 2.2,

Sµ

µβ
≤ |B(0, 1)|
|∂B(0, 1)|2/q

.

Then, if

c1(q) > µ2 |B(0, 1)|
|∂B(0, 1)|2/q

(q − 1),

we can not have a nontrivial solution v. Therefore we get that

µ̃ ≥ |∂B(0, 1)|1/q

|B(0, 1)|1/2

√
c1(q)
q − 1

.

We observe that c1(q) ≥ c1(2∗) = c̄1.

To finish the proof of the estimate it remains to show that µ̃ ≤ µ0.

Assume that µ0 < µ̃. Then, there exists a sequence µn ∈ R and vn ∈ H1(B(0, 1))
such that µn → µ0 < µ̃, vn is an extremal for Sµn with ‖vn‖Lq(B(0,1)) = 1. Then,
it follows that ‖vn‖H1(B(0,1)) ≤ C and so, there exists a subsequence (that we still
call vn) and a function v ∈ H1(B(0, 1)) such that

vn ⇀ v weakly in H1(B(0, 1)),(3.5)

vn → v in L2(B(0, 1)),(3.6)

vn → v in Lq(∂B(0, 1)).(3.7)

Let us see that v is an non-radial extremal for Sµ0 . By (3.7), ‖v‖Lq(∂B(0,1)) = 1 so
v 6= 0.

Now, if v is a radial function, as there exists a unique radial solution of (1.4),
(v, µ0) must be a bifurcation point from the branch that starts with (v0, 0) which
contradicts the definition of µ̃, then v is not a radial function.

By (3.5)-(3.6), we have

Q(v, µ0, q) =
∫

B(0,1)

µ−2
0 |∇v|2 + |v|2 dx ≤ lim inf Q(vn, µn, q).
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Also, if there exists a function ṽ ∈ H1(B(0, 1)) with Q(ṽ, µ0, q) < Q(v, µ0, q), we
get a contradiction from the fact that Q(ṽ, µn, q) < Q(vn, µn, q). Therefore, the
limit v must be a non-radial extremal.

By the implicit function theorem, and by our assumption µ̃ < µ0 there exists
a branch of non-radial solutions, vµ, of (2.1) that passes through v and verify
‖vµ‖Lq(∂B(0,1)) = 1. Therefore, ‖vµ‖H1(B(0,1)) is uniformly bounded, hence the
branch cannot go to infinity for µ < µ̃ and cannot go to zero. The only possibility
that remains is that for every 0 < µ < µ0 there exists a nonradial solution of (2.1),
but this is a contradiction with the results of section 2 that proves that the unique
solution of (2.1) must be radial for µ small enough.

To finish the proof of the Theorem, it remains to show that the set of parameters
where the extremals are non-radial functions is open.

Let us define the set

A = {(µ, q) : there is no radial extremal of (1.1)}
We denote by H1

rad(B(0, 1)) the set of radial functions in H1(B(0, 1)). Let
(µ0, q0) ∈ A. We have that

inf
v∈H1(B(0,1))

Q(v, µ0, q0) < inf
v∈H1

rad(B(0,1))
Q(v, µ0, q0).

Now, if (µ, q) is close to (µ0, q0) by continuity of Q, we get that

inf
v∈H1(B(0,1))

Q(v, µ, q) < inf
v∈H1

rad(B(0,1))
Q(v, µ, q).

Hence (µ, q) ∈ A for every (µ, q) close to (µ0, q0) and the result follows. �

4. Extremals for the critical exponent.

In this section we focus on the existence of extremals for the critical exponent
2∗ = 2(N − 1)/(N − 2).

Theorem 4.1. For every µ small enough there exists a radial extremal for the
immersion

H1(B(0, µ)) → L2∗(∂B(0, µ)).

Proof. From (3.2) we get that there exists µ1 such that for every µ < µ1 the
extremals are radial for every 2 < q < 2∗. In order to prove existence of extremals
in the critical case, the main idea is to take the limit as q ↗ 2∗ of a sequence of
radial extremals for H1(B(0, µ)) ↪→ Lq(∂B(0, µ)).

Let µ < µ1 be fixed, qj < 2∗ be any sequence such that qj ↗ 2∗ and let vj a
radial extremal defined in B(0, 1). These vj are solutions of

(4.1)


∆vj = vj in B(0, 1),

vj = |∂B(0, 1)|−1/qj on ∂B(0, 1).

As the boundary values converges uniformly

vj |∂B(0,1)= |∂B(0, 1)|−1/qj → |∂B(0, 1)|−1/2∗

we get that the sequence vj converges strongly in H1(B(0, 1)) and uniformly to
some function v∗.

We claim that v∗ is an extremal for 2∗. In fact, assume that there exists w ∈
H1(B(0, 1)) such that Q(w, µ, 2∗) < Q(v∗, µ, 2∗). We arrive at a contradiction
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noticing that, vj → v∗ and qj → 2∗ imply, by the continuity of Q, Q(w, µ, qj) <
Q(vj , µ, qj) for j large enough. �

5. Symmetry of extremals for 1 < q ≤ 2.

Let us see that if there exists a radial extremal for some q1 then there exists a
radial extremal for every 1 < q < q1.

Theorem 5.1. If there exists a radial extremal of the embedding H1(B(0, µ)) ↪→
Lq1(∂B(0, µ)) and 1 < q ≤ q1, then there exists a radial extremal for H1(B(0, µ)) ↪→
Lq(∂B(0, µ)). Moreover, these extremals are multiples of each other.

Proof. From Hölder’s inequality(∫
∂Ω

|u|q1 dσ

)1/q1

≤ |∂Ω|
1

q1
− 1

q2

(∫
∂Ω

|u|q2 dσ

)1/q2

for 1 < q1 < q2, we get that Sq2 ≤ Sq1 |∂Ω|
1

q1
− 1

q2 .
Now assume that there exists a radial extremal, ur, for q = q2. Using that ur is

constant on the boundary ∂B(0, µ)

Sq2 =

∫
B(0,µ)

|∇ur|2 + |ur|2 dx(∫
∂B(0,µ)

|ur|q2 dσ

)2/q2

= |∂B(0, µ)|
1

q1
− 1

q2

∫
B(0,µ)

|∇ur|2 + |ur|2 dx(∫
∂B(0,µ)

|ur|q1 dσ

)2/q1
≤ |∂B(0, µ)|

1
q1
− 1

q2 Sq1 .

Therefore ∫
B(0,µ)

|∇ur|2 + |ur|2 dx(∫
∂B(0,µ)

|ur|q1 dσ

)2/q1
≤ Sq1 .

This finishes the proof. �

Now we prove that for every µ the extremal is radial for q = 2, see also [8] for a
proof of this fact for the immersion W 1,p(B(0, µ)) ↪→ Lp(∂B(0, µ)).

Lemma 5.1. Let q = 2, then for every µ > 0 there exists a radial extremal for the
immersion H1(B(0, µ)) ↪→ Lq(∂B(0, µ)).

Proof. It follows easily from the fact that the eigenfunctions of

(5.2)


∆u = u in B(0, µ),

∂u
∂η = λu on ∂B(0, µ),

can be expanded in terms of spherical harmonics. In fact, the eigenfunctions are
given by

ukj(x) = Ckj |x|1−
N
2 Ik+N/2−1(|x|)Ykj

(
x

|x|

)
,
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where Ckj is a constant; Iν and Ykj stand for the modified Bessel function of first
kind and order ν and for any spherical harmonic of degree k. Here j labels the
spherical harmonics of degree k. For a review on special functions, see [2, 9].

The eigenvalues of (5.2) are given by

λk =
1−N/2

µ
+

I ′k+N/2−1(µ)

Ik+N/2−1(µ)
.

The eigenfunctions ukj belongs to the eigenvalue λk.
As I ′ν(a)/Iν(a) increases when ν increases, the smallest eigenvalue is λ0 that has

associated a radial eigenfunction. �

Hence we get the following result.

Corollary 5.1. For every q ≤ 2 and every µ > 0 there exists a radial extremal for
the embedding H1(B(0, µ)) ↪→ Lq(∂B(0, µ)).
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