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Abstract. In this paper we study the optimization problem for the first eigen-
value of the p−Laplacian plus a potential V with respect to V , when the

potential is restricted to a bounded, closed and convex set of Lq(Ω).

1. Introduction

Eigenvalue problems for second order elliptic differential equations are one of
the fundamental problems in mathematical physics and, probably, one of the most
studied ones in the past years. See [7].

When studying eigenvalue problems for nonlinear homogeneous operators, the
classical linear theory does not work, but some of its ideas can still be applied and
partial results are obtained. See, for instance, Garćıa Azorero–Peral Alonso [8, 9],
Cuesta [6], Anane [2], etc. Some of these results are described in Section 3.

In the theory for eigenvalues of elliptic operators, a relevant problem is the
optimization of these eigenvalues with respect to the different parameters under
consideration.

We consider Schröedinger operators, that is elliptic operators L under pertur-
bations given by a potential V , in bounded regions. These operators appear in
different fields of applications such as quantum mechanics, stability of bulk matter,
scattering theory, etc.

In Ashbaugh–Harrell [4] the following problem is studied: Let L be a uniformly
elliptic linear operator and assume that ‖V ‖Lq(Ω) is constrained but otherwise the
potential V is arbitrary. Can the maximal value of the first (fundamental) eigen-
value for the operator L + V be estimated? And the minimal value? There exists
optimal potentials? (i.e. potentials V ∗ and V∗ such that the first eigenvalue for
L + V ∗ is maximal and the first eigenvalue for L + V∗ is minimal).

In [4] these questions are answered in a positive way and, moreover, a charac-
terization of these optimal potentials is given.

We arrive then at the purpose of this work that is the extension of the results
of Ashbaugh–Harrell [4] to the nonlinear case. We are also interested in extending
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these results to degenerate/singular operators. As a model of these operators, we
take the p−Laplacian that is defined as

∆pu = div(|∇u|p−2∇u).

This operator has been intensively studied in recent years and is a model for the
study of degenerated operators (if p > 2) and singular operators (if 1 < p < 2).
In the case p = 2 it agrees with the usual Laplacian. This operator also serves
as a model in the study of non-Newtonian fluids. See Arcoya–Diaz–Tello [3] and
Atkinson–Kalli [5].

Here we prove that, if one consider perturbations of the p−Laplacian by a po-
tential V with ‖V ‖Lq(Ω) constrained, then there exists optimal potentials in the
sense described above and a characterizations of these potentials are given.

We want to remark that the proofs are not straightforward extensions of those
in [4] since the proof there are not, in general, variational. Moreover, some new
technical difficulties arise since solutions to a p−Laplace type equation are not
regular and, mostly, since the eigenvalue problem for the p−Laplacian is far from
being completely understood.

The rest of the paper is divided into two sections. Section 2 consists in an
overview of some results for the operator HV := −∆p + V (x) with V ∈ Lq(Ω).
Some of these results are well known to experts, but we decided to include them
in order to make the paper self contained. Finally, in Section 3, we analyze the
existence and characterization problem for optimal potentials.

2. Preliminaries

In this section we review some results regarding solutions of some p−Laplace
type equations. Most of these results are well known, but we include it here for the
sake of completeness.

Given Ω ⊂ RN a smooth bounded domain and V ∈ Lq(Ω) (1 ≤ q < ∞), consider
the operator HV , which has the form

(2.1) HV u := −∆pu + V (x)|u|p−2u.

Suppose that u ∈ W 1,p(Ω) and q > N/p, we say u is a weak solution of HV u = 0
(≥ 0, ≤ 0) in Ω if

D(u, v) :=
∫

Ω

|∇u|p−2∇u∇w dx +
∫

Ω

V (x)|u|p−2uw dx(2.2)

= 0 (≤ 0, ≥ 0),

for each w ∈ C1
0 (Ω). Let f ∈ Lp′(Ω), u ∈ W 1,p(Ω) is a weak solution of the equation

(2.3) HV u = f

in Ω if

(2.4) D(u, w) = G(w) :=
∫

Ω

fw dx ∀w ∈ C1
0 (Ω).

We study the Dirichlet problem for the equation (2.3).
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Definition 2.1. We say u ∈ W 1,p(Ω) is a weak solution of the Dirichlet problem

(2.5)

{
−∆pu + V (x)|u|p−2u = f in Ω
u = 0 on ∂Ω

if u is a weak solution of (2.3) and u ∈ W 1,p
0 (Ω).

Note that

|D(u, w)| ≤ ‖∇u‖p−1
p ‖∇w‖p +

∫
Ω

(|V (x)|
1
p′ |u|p−1)(|V (x)|

1
p |w|) dx

≤ ‖∇u‖p−1
p ‖∇w‖p +

(∫
Ω

|V (x)||u|p dx

) 1
p′
(∫

Ω

|V (x)||w|p dx

) 1
p

≤ ‖∇u‖p−1
p ‖∇w‖p + C‖V ‖q‖u‖p−1

1,p ‖w‖1,p

≤ (1 + C‖V ‖q)‖u‖p−1
1,p ‖w‖1,p.

Here and throughout the paper we use the notations

‖u‖p :=
(∫

Ω

|u|p dx
)1/p

, ‖u‖1,p := ‖u‖p + ‖ |∇u| ‖p,

where |x| denotes the euclidean norm of a point x ∈ RN .

Hence for fixed u ∈ W 1,p(Ω), the mapping w 7→ D(u, w) is a bounded linear func-
tional on W 1,p

0 (Ω). Consequently the validity of the relations (2.2) for w ∈ C1
0 (Ω)

imply their validity for w ∈ W 1,p
0 (Ω). We remark that for fixed u ∈ W 1,p(Ω),

HV u may be defined as an element of the dual space of W 1,p
0 (Ω), W−1,p′(Ω),

HV u(w) = D(u, w), w ∈ W 1,p
0 (Ω), and hence the Dirichlet problem (2.5) can

be studied for f ∈ W−1,p′(Ω).

2.1. Solvability of the Dirichlet problem. We need the following notation:

(2.6) Sq := inf
v∈W 1,p

0 (Ω)

∫
Ω

|∇v|p dx(∫
Ω

|v|q dx
) p

q

.

This constant Sq is positive and is the best (largest) constant in the Sobolev–
Poincaré inequality

S‖ |∇v| ‖p
p ≤ ‖v‖p

q , ∀ v ∈ W 1,p
0 (Ω).

We have the following,

Theorem 2.2. Let V ∈ Lq(Ω) with q > N/p. If ‖V ‖q < S−1
pq′ , or V ≥ −Sp + δ for

some δ > 0, then the Dirichlet problem (2.5) has a unique weak solution for any
f ∈ Lp′(Ω).

Proof. The proof of this theorem is standard. First observe that weak solutions of
(2.5) are critical points of the functional φ : W 1,p

0 (Ω) → R given by

φ(u) =
1
p

∫
Ω

|∇u|p dx +
1
p

∫
Ω

V (x)|u|p dx−
∫

Ω

fu dx.
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Now, it is easy to see that φ is bounded below, coercive, strictly convex and
sequentially weakly lower semi continuous. Therefore it has a unique critical point
which is a global minimum. �

It is proved in [11] that solutions to (2.5) are bounded. We state the Theorem
for future reference.

Theorem 2.3 ([11], Proposition 1.3). Let u ∈ W 1,p
0 (Ω) be a solution to (2.5), with

f ∈ Lq(Ω), q > N/p, p < N . Then u is bounded. Moreover, there exists a constant
C = C(N, p, |Ω|) such that

‖u‖L∞(Ω) ≤ C‖f‖1/(p−1)
Lq(Ω) .

2.2. The Strong Maximum Principle. Here we recall the classical maximum
principles for HV .

Theorem 2.4 (The Weak Maximum Principle). Let V ∈ Lq(Ω), with q > N/p,

f ∈ Lp′(Ω) and let u ∈ W 1,p
0 (Ω) be the weak solution of (2.5). If ‖V ‖q < S−1

pq′ or
V ≥ −Sp + δ for some δ > 0, then f ≥ 0 implies u ≥ 0 in Ω.

Proof. The proof follows using u− as a test function in the weak formulation of
(2.5). See [10] for the case p = 2. Here is analogous. �

For the strong maximum principle, we need the following

Theorem 2.5 (Harnack’s Inequality). Let u be a weak solution of problem (2.5)
in a cube K = K(3ρ) ⊂ Ω, with 0 ≤ u < M in K. Then

max
K(ρ)

u ≤ C min
K(ρ)

u,

where C = C(N,M, ρ).

Proof. See Trudinger [13]. �

Now we can prove the strong maximum principle for weak solutions of (2.5).

Theorem 2.6 (The Strong Maximum Principle). Let u ∈ W 1,p
0 (Ω) be a weak

solution of problem (2.5). Then, if f ≥ 0, f 6= 0,

u > 0 in Ω.

Proof. It follows from Theorems 2.3, 2.4 and 2.5. �

2.3. The Eigenvalue Problem. In this subsection we analyze the (nonlinear)
eigenvalue problem,

(2.7)

{
−∆pu + V (x)|u|p−2u = λ|u|p−2u in Ω
u = 0 on ∂Ω.

The first (lowest) eigenvalue of this problem is

E(V ) := inf

{∫
Ω

|∇u|p dx +
∫

Ω

V (x)|u|p dx : u ∈ W 1,p
0 (Ω), ‖u‖p = 1

}
.
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By standard compactness arguments, we now prove that there exists u0 weak solu-
tion of (2.7) when λ = E(V ). Hence, we will say that u0 is eigenfunction of HV in
W 1,p

0 (Ω) with eigenvalue E(V ). Since |u0| is also an eigenfunction, we can construct
a nonnegative eigenfunction for (2.7) associated to E(V ). By the Strong Maximum
Principle it follows that |u0| > 0 in Ω and hence eigenfunctions associated to E(V )
has constant sign.

We now recall the arguments of the results just mentioned.

Theorem 2.7. If V ∈ Lq(Ω) with q > N/p then there exists u0 ∈ W 1,p
0 (Ω) such

that E(V ) =
∫

Ω

|∇u0|p dx +
∫

Ω

V (x)|u0|p dx

‖u0‖p = 1.

Moreover, u0 is a weak solution of (2.7) with λ = E(V ). Finally, E(V ) is the
lowest eigenvalue of (2.7).

For the proof we need the following Lemma

Lemma 2.8. Let V ∈ Lq(Ω) with q > N/p. Then, given ε > 0, there exists a
constant Dε > 0 such that∣∣∣ ∫

Ω

V (x)|v|p dx
∣∣∣ ≤ ε

∫
Ω

|∇v|p dx + Dε‖V ‖q

∫
Ω

|v|p dx,

for any v ∈ W 1,p
0 (Ω).

Proof. Let us observe that q > N/p implies that pq′ < p∗. Now the Lemma follows
from Hölder’s inequality and the Sobolev embedding. In fact, let us see that if
1 < r < p∗, there exists a constant Mε such that

(2.8) ‖v‖r ≤ ε‖ |∇v| ‖p + Mε‖v‖p, for every v ∈ W 1,p
0 (Ω).

Assume (2.8) does not hold, then there exists ε0 > 0 and a sequence (vn)n∈N ⊂
W 1,p

0 (Ω) such that ‖vn‖r = 1 and

ε0‖ |∇vn| ‖p + n‖vn‖p < 1.

But then (vn)n∈N is bounded in W 1,p
0 (Ω) and ‖vn‖p → 0. Now, by the Rellich–

Kondrashov compactness Theorem, up to a subsequence, un → u in Lr(Ω), and so
‖u‖r = 1. A contradiction.

Now, it is easy to check that (2.8) implies the Lemma since q > N/p. �

Proof of Theorem 2.7. Let V ∈ Lq(Ω) and let (un)n∈N ⊂ W 1,p
0 (Ω) be a mini-

mizing sequence for E(V ), i.e.∫
Ω

|∇un|p dx +
∫

Ω

V (x)|un|p dx → E(V ), ‖un‖p = 1 ∀n ∈ N.

Then there exists C > 0 such that∫
Ω

|∇un|p dx +
∫

Ω

V (x)|un|p dx ≤ C ∀n ∈ N.
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Since q > N/p, by Lemma 2.8, given ε > 0 there exists Dε such that∣∣∣ ∫
Ω

V (x)|un|p dx
∣∣∣ ≤ ε‖ |∇un| ‖p

p + Dε‖V ‖q‖un‖p
p,

for any n ∈ N. Then

(1− ε)
∫

Ω

|∇un|p dx−Dε‖V ‖q ≤
∫

Ω

|∇un|p dx +
∫

Ω

V (x)|un|p dx ≤ C, ∀n ∈ N.

Fixing ε < 1, we get ∫
Ω

|∇un|p dx ≤ C + ‖V ‖qDε

1− ε
, ∀n ∈ N.

Therefore (un)n∈N is bounded in W 1,p
0 (Ω).

Now, as pq′ < p∗, there exists a function u0 ∈ W 1,p
0 (Ω) such that, for a subse-

quence that we still call (un)n∈N,

un ⇀ u0, weakly inW 1,p
0 (Ω),(2.9)

un → u0, strongly inLp(Ω),(2.10)

un → u0, strongly inLpq′(Ω).(2.11)

By (2.10), ‖u0‖p = 1 so u0 6= 0 and by (2.9) and (2.11)

E(V ) = lim
n→∞

∫
Ω

|∇un|p dx +
∫

Ω

V (x)|un|p dx ≥
∫

Ω

|∇u0|p dx +
∫

Ω

V (x)|u0|p dx

It is clear that u0 is an eigenfunction of HV with eigenvalue E(V ).

Finally, let λ be an eigenvalue of problem (2.7) with associated eigenfunction
w ∈ W 1,p

0 (Ω). Then

λ =

∫
Ω

|∇w|p dx +
∫

Ω

V (x)|w|p dx∫
Ω

|w|p dx

≥ E(V ).

This finishes the proof. �

Now, we prove that u0 has constant sign in Ω.

Theorem 2.9. Let u0 ∈ W 1,p
0 (Ω) be an eigenfunction of (2.7) associated to E(V ).

Then |u0| > 0 in Ω.

Proof. Since u0 is a weak solution of (2.7) with eigenvalue E(V ), by the variational
characterization of E(V ), |u0| is also an eigenfunction associated to E(V ).

Since V ∈ Lq(Ω) with q > N/p, by Theorem 2.3, |u0| ∈ L∞(Ω) and then by the
Theorem 2.6 |u0| > 0 in Ω. �

Now, we recall a couple of results regarding the eigenvalue problem (2.7). We
do not use these results in the rest of the paper, but we include them here for
completeness.
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Proposition 2.10. If V ∈ Lq(Ω), with q > N/p, then there exists a increasing,
unbounded sequence of eigenvalues for the problem (2.7).

Proof. It is similar to Garćıa Azorero–Peral Alonso [8, 9]. �

Proposition 2.11. If V ∈ Lq(Ω) with q > N/p, then E(V ) is isolated in the
spectrum.

Proof. It is similar to Cuesta [6]. �

Now we prove the simplicity of E(V ). This is, the only eigenfunctions of HV

associated to E(V ) are multiples of a single one, u0. For this we need the following
lemma.

Lemma 2.12 (Picone’s Identity). Let v > 0, u ≥ 0 be differentiable and let p ≥ 1.
Denote

L(u, v) = |∇u|p + (p− 1)
up

vp
|∇v|p − p

up−1

vp−1
∇u|∇v|p−2∇v

R(u, v) = |∇u|p −∇

(
up

vp−1

)
|∇v|p−2∇v.

Then L(u, v) = R(u, v). Moreover

(1) L(u, v) ≥ 0.
(2) L(u, v) = 0 a.e. Ω if and only if ∇(u

v ) = 0 a.e. Ω, i.e. u = kv for some
constant k in each component of Ω.

Proof. See Allegretto–Huang [1]. �

Theorem 2.13. Let Ω ⊂ RN be a connected smooth bounded domain, V ∈ Lq(Ω)
with q > N/p and let u0 ∈ W 1,p

0 (Ω) be a nonnegative eigenfunction of HV associated
with E(V ) normalized ‖u0‖p = 1.

Then any eigenfunction w ∈ W 1,p
0 (Ω) of HV associated to E(V ) is a scalar

multiple of u0, i.e. there exists k ∈ R+ such that w = ku0 a.e. in Ω.

Proof. We can assume that w is nonnegative. By Theorem 2.3, it follows that w is
bounded.

Now, given n ∈ N, we consider u0 + 1
n > 0. Thus∫

Ω

L(w, u0 +
1
n

) dx =
∫

Ω

R(w, u0 +
1
n

) dx

=
∫

Ω

[
|∇w|p − |∇u0|p−2∇u0∇

(
wp

(u0 + 1
n )p−1

)]
dx.
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As wp

(u0+
1
n )p−1 ∈ W 1,p

0 (Ω),∫
Ω

L(w, u0 +
1
n

) dx =
∫

Ω

[
|∇w|p − |∇u0|p−2∇u0∇

( wp

(u0 + 1
n )p−1

)]
dx

=
∫

Ω

|∇w|p dx− E(V )
∫

Ω

wp up−1
0

(u0 + 1
n )p−1

dx

+
∫

Ω

V (x)wp up−1
0

(u0 + 1
n )p−1

dx.

By the Dominated Convergence Theorem,

lim
n→∞

(∫
Ω

|∇w|p dx− E(V )
∫

Ω

wp up−1
0

(u0 + 1
n )p−1

dx +
∫

Ω

V (x)wp up−1
0

(u0 + 1
n )p−1

dx

)

=
∫

Ω

|∇w|p dx− E(V )
∫

Ω

wp dx +
∫

Ω

V (x)wp dx.

Hence,

lim
n→∞

∫
Ω

L(w, u0 +
1
n

) dx =
∫

Ω

|∇w|p dx− E(V )
∫

Ω

wp dx +
∫

Ω

V (x)wp dx.

By Fatou’s lemma∫
Ω

L(w, u0) dx ≤
∫

Ω

|∇w|p dx− E(V )
∫

Ω

wp dx +
∫

Ω

V (x)wp dx.

Then, since w is an eigenfunction,∫
Ω

L(w, u0) dx ≤ 0.

As L(w, u0) ≥ 0 in Ω, it follows that L(w, u0) = 0 a.e. in Ω, thus there exists
k ∈ R+ such that w = ku0 a.e. in Ω. �

3. Maximal and Minimal Potentials

Let Ω ⊂ RN be a connected smooth bounded domain. We consider the differen-
tial operator

HV u := −∆pu + V (x)|u|p−2u

where V ∈ Lq(Ω) and 1 < p < ∞ and let E(V ) be the lowest eigenvalue of HV in
W 1,p

0 (Ω).

In this section we analyze the following problems: If B ⊂ Lq(Ω) is a convex,
bounded and closed set,

(1) find supB E(V ) and V ∈ B, if any, where this value is attained.
(2) find infB E(V ) and V ∈ B, if any, where this value is attained.

Here we answer these questions positively, following the approach of Ashbaugh–
Harrell’s work for the case p = 2 and 1 ≤ N ≤ 3, [4, 12].
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3.1. Properties of E(·). We begin by proving some important properties of E(·).

Lemma 3.1. E : B → R is concave.

Proof. Let V1, V2 ∈ B and 0 ≤ t ≤ 1. Then

E(tV1 + (1− t)V2) = inf

{
JtV1+(1−t)V2(u) : u ∈ W 1,p

0 (Ω), ‖u‖p = 1

}

= inf

{
tJV1(u) + (1− t)JV2(u) : u ∈ W 1,p

0 (Ω), ‖u‖p = 1

}

≥ inf

{
tJV1(u) : u ∈ W 1,p

0 (Ω), ‖u‖p = 1

}

+ inf

{
(1− t)JV2(u) : u ∈ W 1,p

0 (Ω), ‖u‖p = 1

}
= tE(V1) + (1− t)E(V2),

as we wanted to prove. �

Next we set M for which ‖V ‖q ≤ M for all V ∈ B.

Proposition 3.2. There exists a constant C > 0, depending only on p, q, M and
Ω such that

E(V ) ≤ C for every V ∈ B.

Proof. Let u0 ∈ C1
0 (Ω) be such that ‖u0‖p = 1.

E(V ) ≤
∫

Ω

|∇u0|p dx +
∫

Ω

V (x)|u0|p dx ≤
∫

Ω

|∇u0|p dx + ‖u0‖p
∞

∫
Ω

V (x) dx

≤
∫

Ω

|∇u0|p dx + ‖u0‖p
∞|Ω|1/q′‖V ‖q ≤

∫
Ω

|∇u0|p dx + ‖u0‖p
∞|Ω|1/q′M

= C(p, q,M,Ω).

�

3.2. Maximizing Potentials. In this subsection we prove that there exists an
unique V ∗ ∈ B such that

E(V ∗) = sup{E(V ) : V ∈ B}

and we characterize it.

Theorem 3.3. Let q > N/p. Then there exists V ∗ ∈ B that maximizes E(V ).
Moreover if Vi ∈ B, i = 1, 2, are two maximizing potentials and ui ∈ W 1,p

0 (Ω),
i = 1, 2, are the eigenfunctions of HVi

associated to E(Vi) respectively, then u1 = u2

a.e. in Ω and V1 = V2 a.e. in Ω.

Proof. Let E∗ = sup{E(V ) : V ∈ B} and let (Vn)n∈N ⊂ B be a maximizing
sequence, i.e.

lim
n→∞

E(Vn) = E∗.
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Note that, by Proposition 3.2, E∗ is finite. As (Vn)n∈N ⊂ B and B is bounded,
there exists V ∗ ∈ Lq(Ω) and a subsequence of (Vn)n∈N, which we denote again by
(Vn)n∈N, such that

Vn ⇀ V ∗ weakly in Lq(Ω).

By Mazur’s Theorem (see [14]), V ∗ ∈ B.

Let us see that E∗ = E(V ∗). Given ε > 0, there exists u0 ∈ C1
0 (Ω) such that

E(V ∗) ≥
∫

Ω

|∇u0|p dx +
∫

Ω

V ∗(x)|u0|p dx− ε.

Since Ω is bounded,

lim
n→∞

∫
Ω

Vn(x)|u0|p dx =
∫

Ω

V ∗(x)|u0|p dx.

Therefore,

E(V ∗) + ε ≥
∫

Ω

|∇u0|p dx +
∫

Ω

V ∗(x)|u0|p dx

=
∫

Ω

|∇u0|p dx + lim
n→∞

∫
Ω

Vn(x)|u0|p dx

= lim
n→∞

∫
Ω

|∇u0|p dx +
∫

Ω

Vn(x)|u0|p dx

≥ lim
n→∞

E(Vn) = E∗.

Then, as V ∗ ∈ B, E(V ∗) = E∗.

We just proved existence. Let us now show uniqueness.

Suppose we have V1 and V2 two maximizing potentials and let V3 = V1+V2
2 . Since

B is convex and E(·) is concave, we have V3 ∈ B and

E(V3) ≥
E(V1) + E(V2)

2
= E∗,

therefore V3 is also a maximizing potential.

We denote the associated normalized, positive eigenfunctions by u1, u2 and u3

respectively. If u3 6= u1 or u3 6= u2, since, by Theorem 2.13, there exists only one
normalized nonnegative eigenfunction,

E∗ = E(V3) =
∫

Ω

|∇u3|p dx +
∫

Ω

V3(x)|u3|p dx

=
1
2

(∫
Ω

|∇u3|p dx +
∫

Ω

V1(x)|u3|p dx +
∫

Ω

|∇u3|p dx +
∫

Ω

V2(x)|u3|p dx

)

>
E(V1) + E(V2)

2
= E∗,

a contradiction. Thus u1 = u2 = u3. Now we write,

−∆pu1 + V1(x)|u1|p−2u1 = E∗|u1|p−2u1(3.1)

−∆pu1 + V2(x)|u1|p−2u1 = E∗|u1|p−2u1.(3.2)
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Subtracting (3.2) from (3.1), we get

(V1(x)− V2(x))|u1|p−2u1 = 0 a.e. in Ω,

then V1 = V2 a.e. in Ω. �

Remark 3.4. In the proof of Theorem 3.3 we only used q > N/p to show the
existence of an eigenfunction for the lowest eigenvalue.

Assume now that the convex set B is the ball in Lq(Ω). Then we can prove that
E∗(M) := max{E(V ) : V ∈ Lq(Ω), ‖V ‖q ≤ M} is increasing in M . We will need
this in the sequel.

Theorem 3.5. Let E∗ : R≥0 → R
E∗(M) = max{E(V ) : V ∈ Lq(Ω), ‖V ‖q ≤ M}.

Then E∗(·) increases monotonically.

Proof. Let 0 ≤ M1 < M2. Then, by Theorem 3.3, there exists V1 ∈ B(0,M1) such
that E∗(M1) = E(V1). Since ‖V1‖q ≤ M1 < M2, there exists t ∈ R>0 such that
‖V1 + t‖q ≤ M2.

Now, given u ∈ W 1,p
0 (Ω), with ‖u‖p = 1, we have∫

Ω

|∇u|p dx +
∫

Ω

(V1(x) + t)|u|p dx =
∫

Ω

|∇u|p dx +
∫

Ω

V1(x)|u|p dx + t

≥ E(V1) + t.

Thus
E(V1 + t) ≥ E(V1) + t > E(V1).

As (V1 + t) ∈ B(0,M2),

E∗(M2) ≥ E(V1 + t) > E(V1) = E∗(M1).

Then E∗(·) increases monotonically. �

Remark 3.6. In the proof that E∗(·) increases monotonically, what is actually
proved is that E∗(M) ↗∞ as M ↗∞.

Let q > N/p and consider the case B = B(0,M) ⊂ Lq(Ω), for simplicity we take
M = 1. Observe that B is a convex, closed and bounded set.

Let V ∗ ∈ B be such that E(V ∗) = max{E(V ) : V ∈ B} and V0 = |V ∗|
‖V ∗‖q

∈ S :=
∂B.

Let u0 ∈ W 1,p
0 (Ω) be a normalized eigenfunction of HV0 associated to E(V0), i.e.

‖u0‖p = 1 and

E(V0) =
∫

Ω

|∇u0|p dx +
∫

Ω

|V ∗(x)|
‖V ∗‖q

|u0|p dx.

Then

E(V0) ≥
∫

Ω

|∇u0|p dx +
∫

Ω

V ∗(x)|u0|p dx

≥ E(V ∗) = E∗.

Thus, from uniqueness, V0 = V ∗, from where ‖V ∗‖q = 1 and V ∗ ≥ 0.
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Therefore if we take S = ∂B(0, 1), there exists V0 ≥ 0 in S such that

E(V0) = max{E(V ) : V ∈ S} = max{E(V ) : V ∈ B}.

We now try to characterize V0. For this, we need the following notation: For any
V ∈ S, we denote by TV (S) the tangent space of S at V . It is well known that

TV (S) =
{

W ∈ Lq(Ω)
∣∣ ∫

Ω

|V |q−2V W dx = 0
}

.

Now, let W ∈ TV0(S) and α : (−1, 1) → Lq(Ω) be a differentiable curve such
that

α(t) ∈ S ∀t ∈ (−1, 1), α(0) = V0 and α̇(0) = W.

We denote by Vt = α(t) and λ(t) = E(α(t)).

Let ut ∈ W 1,p
0 (Ω) be the nonnegative normalized eigenfunction of HVt with

eigenvalue λ(t), i.e. ‖ut‖p = 1 and

λ(t) =
∫

Ω

|∇ut|p dx +
∫

Ω

Vt(x)|ut|p dx.

We have the following,

Lemma 3.7. λ(t) is continuos at t = 0, i.e.

lim
t→0

λ(t) = λ(0) = E(V0) = E∗.

Proof. By Proposition 3.2, there exists C = C(Ω, q, p) > 0 such that

C >

∫
Ω

|∇ut|p dx +
∫

Ω

Vt(x)|ut|p dx

and as q > N/p, by Lemma 2.8, given ε > 0 there exists Dε such that∣∣∣∣∣
∫

Ω

Vt(x)|ut|p dx

∣∣∣∣∣ ≤ ε‖∇ut‖p
p + Dε‖ut‖p

p

for any t. Thus if ε < 1

‖∇ut‖p
p ≤

C + Dε

1− ε
.

Then (ut)t∈(−1,1) is bounded in W 1,p
0 (Ω) and therefore it is bounded in Lpq′(Ω).

Since
lim
t→0

Vt = V0 in Lq(Ω),

then

lim
t→0

∫
Ω

(Vt(x)− V0(x))|ut|p dx = 0.

Thus

λ(t) =
∫

Ω

|∇ut|p dx +
∫

Ω

Vt(x)|ut|p dx

=
∫

Ω

|∇ut|p dx +
∫

Ω

V0(x)|ut|p dx +
∫

Ω

(Vt(x)− V0(x))|ut|p dx

≥ λ(0) +
∫

Ω

(Vt(x)− V0(x))|ut|p dx
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and

λ(0) =
∫

Ω

|∇u0|p dx +
∫

Ω

V0(x)|u0|p dx

=
∫

Ω

|∇u0|p dx +
∫

Ω

Vt(x)|u0|p dx +
∫

Ω

(V0(x)− Vt(x))|u0|p dx

≥ λ(t) +
∫

Ω

(V0(x)− Vt(x))|u0|p dx.

Therefore

λ(0) +
∫

Ω

(Vt(x)− V0(x))|u0|p dx ≥ λ(t) ≥ λ(0) +
∫

Ω

(Vt(x)− V0(x))|ut|p dx.

Hence,
lim
t→0

λ(t) = λ(0),

as we wanted to show. �

Lemma 3.8. λ(t) is differentiable at t = 0 and

λ̇(0) =
∫

Ω

W (x)|u0|p dx.

Proof. Let (tn)n∈N be such that limn→∞ tn = 0. As (utn
)n∈N is bounded in

W 1,p
0 (Ω), there exists a subsequence (tnk

)k∈N ⊂ (tn)n∈N and u ∈ W 1,p
0 (Ω) such

that

utnk
⇀ u weakly in W 1,p

0 (Ω),(3.3)

utnk
→ u strongly in Lr(Ω),(3.4)

for any 1 < r < p∗. Let us see that u = u0.

In fact, by (3.4) we have ‖u‖p = 1 and by (3.3), we have

lim inf
k→∞

∫
Ω

|∇utnk
|p dx ≥

∫
Ω

|∇u|p dx.

Again by (3.4) and as, by Lemma 3.7, Vtnk
→ V0 in Lq(Ω), we get

lim
k→∞

∫
Ω

Vtnk
(x)|utnk

|p dx =
∫

Ω

V0(x)|u|p dx.

Therefore,

λ(0) = lim
k→∞

∫
Ω

|∇utnk
|p dx +

∫
Ω

Vtnk
(x)|utnk

|p dx

≥
∫

Ω

|∇u|p dx +
∫

Ω

V0(x)|u|p dx ≥ λ(0).

Hence u is a nonnegative, normalized eigenfunction associated to λ(0). By Theorem
2.13, we have that u = u0. Since the limit u0 is independent of the sequence
(tnk

)k∈N, it follows that (3.3)–(3.4) hold for the limit t → 0.

By the differentiability of Vt and by (3.4) we obtain

lim
t→0

∫
Ω

(
Vt(x)− V0(x)

t

)
|ut|p dx =

∫
Ω

W (x)|u0|p dx.
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In the proof of Lemma 3.7 we have showed that

λ(0) +
∫

Ω

(Vt(x)− V0(x))|u0|p dx ≥ λ(t) ≥ λ(0) +
∫

Ω

(Vt(x)− V0(x))(x)|ut|p dx.

Thus, for t > 0,∫
Ω

(
Vt(x)− V0(x)

t

)
|u0|p dx ≥ λ(t)− λ(0)

t
≥
∫

Ω

(
Vt(x)− V0(x)

t

)
|ut|p dx,

and an analogous inequality for t < 0. Then λ(t) is differentiable at t = 0 and

λ̇(0) =
∫

Ω

W (x)|u0|p dx.

The proof is now complete. �

Remark 3.9. Since λ has maximum at t = 0, we have

(3.5)
∫

Ω

W (x)|u0|p dx = 0 for every W ∈ TV0S.

The following proposition characterize the support of the maximal potential.

Proposition 3.10. Ω ⊆ supp(V0).

Proof. Suppose not. Then, let x ∈ Ω such that x /∈ supp(V0). As supp(V0) is closed
there exists r > 0 such that

B(x, r) ⊂ Ω and B(x, r) ∩ supp(V0) = ∅.
Then W = χB(x,r) ∈ TV0S and by (3.5),∫

B(x,r)

|u0|p dx = 0.

Hence u0 = 0 a.e. in B(x, r), a contradiction. �

Finally we arrive at the following characterization of the maximal potential.

Theorem 3.11. Let V0 be a maximal potential and let u0 be the eigenfunction
associated to E(V0). Then there exists a constant k such that

(3.6) |u0|p = k|V0|q−1 in Ω.

Proof. Let T1 and T2 be subsets of supp(V0). We denote

W (x) =
χT1(x)∫

T1

|V0|q−1 dx

− χT2(x)∫
T2

|V0|q−1 dx

.

Let us see that W ∈ TV0S. In fact, as V0 is a maximal potential, V0 ≥ 0. Then∫
Ω

|V0|q−2V0W dx =
∫

Ω

V q−1
0 W dx

=

∫
T1

V q−1
0 dx∫

T1

V q−1
0 dx

−

∫
T2

V q−1
0 dx∫

T2

V q−1
0 dx

= 0
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thus W ∈ TV0S, as we wanted to see.

By (3.5), we have

0 =
∫

Ω

W |u0|p dx =

∫
T1

|u0|p dx∫
T1

|V0|q−1 dx

−

∫
T2

|u0|p dx∫
T2

|V0|q−1 dx

.

Then ∫
T1

|u0|p dx∫
T1

|V0|q−1 dx

=

∫
T2

|u0|p dx∫
T2

|V0|q−1 dx

.

Thus, there exists a constant k such that∫
T

|u0|p dx∫
T

|V0|q−1 dx

= k

for each T ⊂ supp(V0). In particular, if we take

T = {x ∈ supp(V0) : k|V0(x)|q−1 > |u0(x)|p}

we get ∫
T

|u0|p dx = k

∫
T

|V0|q−1 dx

thus

k

∫
T

|V0|q−1 dx−
∫

T

|u0|p dx = 0.

Since k|V0(x)|q−1 > |u0(x)|p for any x ∈ T , the measure of T is zero. In the same
way, we obtain that

{x ∈ supp(V0) : k|V0(x)|q−1 < |u0(x)|p}

has measure zero. Thus

|u0|p = k|V0|q−1 a.e. in supp(V0).

By Proposition 3.10,
|u0|p = k|V0|q−1 in Ω.

This ends the proof. �

Equation (3.6) gives us purely algebraic relationship between the optimizing
potentials and their associated eigenfunction. Since the eigenvalue equation is ho-
mogeneous of degree p in the eigenfunction, we can choose the constant in (3.6)
to be equal to one, this can be obtained by taking u0

kp as the eigenfunction instead
of u0. Replacing in equation (2.7), we see that the eigenfunction associated to the
maximal eigenvalue satisfies

(3.7) −∆pu + uα = Eup−1

where E is the maximal potential eigenvalue and the equation can be written in
terms of the associated eigenfunction. An interesting consequence of Theorem 3.3
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is, in this context, a proof of existence and certain properties of solution of equation
(3.7). More precisely, we have

Corollary 3.12. Let Ω ⊂ RN be a bounded domain, 1 < p < ∞ and α ∈ R.
For any λ > E(0), where E(0) is the principal eigenvalue of the operator −∆p in
W 1,p

0 (Ω), the nonlinear eigenvalue problem

(3.8)


−∆pu + uα = λup−1 in Ω
u > 0 in Ω
u = 0 on ∂Ω

has a solution in the following cases:

(1) If 1 < p < 2, we take α < max{ 2p−2
2−p , (p−1)N

N−p }.
(2) If p ≥ 2, we take α > 1.

Proof. The existence of a potential V0 maximizing of−∆p+V subject to ‖V ‖q = M ,
for any M > 0 is known from Theorem 3.3, with α = pq−q+1

q−1 . If the maximized
eigenvalue is E∗ = E(V0), then the necessary condition (3.7) becomes (3.8) with
u = u0 and λ = E∗.

The corollary will thus be proved if it is shown that E∗ increases continuously
from E(0) to ∞ as M goes from 0 to ∞. By Remark 3.5, E∗(·) is increases
monotonically from E(0) to ∞ as M ↗∞. It remains to prove the continuity.

We denote with V M
0 the maximal potential associated to E∗(M). If t > 0, then

E(V M+t
0 ) = E∗(M + t) ≥ E∗(M).

Take V = M
M+tV

M+t
0 , note that ‖V ‖q = M , then E(V ) ≤ E∗(M). Given u ∈

W 1,p
0 (Ω), ‖u‖p = 1, we have∫
Ω

|∇u|p dx +
∫

Ω

V (x)|u|p dx =
∫

Ω

|∇u|p dx +
∫

Ω

M

M + t
V M+t

0 (x)|u|p dx

=
M

M + t

(∫
Ω

|∇u|p dx +
∫

Ω

V M+t
0 (x)|u|p dx

)

+(1− M

M + t
)
∫

Ω

|∇u|p dx

≥ M

M + t

(∫
Ω

|∇u|p dx +
∫

Ω

V M+t
0 (x)|u|p dx

)
.

Thus

E(V ) = E(
M

M + t
V M+t

0 ) ≥ M

M + t
E(V M+t

0 ) =
M

M + t
E∗(M + t)

then, as E(V ) ≤ E∗(M),

(3.9)
M

M + t
E∗(M + t) ≤ E∗(M) ≤ E∗(M + t).

Similarly,

(3.10) E∗(M − t) ≤ E∗(M) ≤ M − t

M
E∗(M − t).
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Then, taking limits in (3.9) and (3.10),

lim
t→0

E∗(M + t) = E∗(M).

This completes the proof. �

3.3. Minimizing Potentials. In this subsection we present the results for mini-
mizing potentials. Since the results and the proof are completely analogous to those
of the previous subsection we only state the main results and point out only the
significant differences.

Theorem 3.13. If q > N/p, there exists V∗ ∈ B that minimizes E(V ).

Proof. Is analogous to that of Theorem 3.3. �

As in the previous subsection, we consider the case B = B(0,M) ⊂ Lq(Ω), and
to simplify the computations, we take M = 1.

As a concave function defined over a convex set achieves its minimum at the
extreme points of the convex, there exists V0 ∈ ∂B such that E(V0) = min{E(V ) :
V ∈ ∂B} = min{E(V ) : V ∈ B}. Moreover, since −|V0| ≤ V0 and E(·) is nonde-
creasing we may assume that V0 ≤ 0.

Let us now try to characterize V0. As before, let α : (−1, 1) → Lq(Ω) be a
differentiable curve such that

α(t) ∈ S := ∂B, α(0) = V0 and α̇(0) = W ∈ TV0S.

We denote by Vt = α(t) and λ(t) = E(α(t)). Let ut the normalized, nonnegative
eigenfunction of HVt

associated to λ(t). Observe that Lemmas 3.7 and 3.8 apply.
Hence, as λ has a minimum at t = 0 we have

(3.11)
∫

Ω

W (x)|u0|p dx = 0∀W ∈ TV0S

As for maximizing potential, we have,

Proposition 3.14. Ω ⊆ supp(V0).

Proof. Analogous to that of Lemma 3.10. �

Proposition 3.15. Let V0 be a minimal potential and let u0 be the normalized,
nonnegative eigenfunction of HV0 associated to E(V0). Then, there exists a constant
k ∈ R+ such that

(3.12) |u0|p = k|V0|q−1

in Ω.

Proof. Analogous to that of Lema 3.11. �

As before, from (3.12) we obtain a purely algebraic relationship between min-
imal potential and their associated eigenfunctions. Using the homogeneity of the
equation, we can choose the constant in (3.12) to be 1. Replacing in (2.7) we obtain
that the eigenfunction associated to the minimal potential satisfies

(3.13) −∆pu− uα = Eup−1
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where E is the minimal eigenvalue and α = pq−q+1
q−1 .

Therefore, we obtain the following corollary

Corollary 3.16. Let Ω ⊂ RN be a smooth open and bounded set, 1 < p < ∞ and
α ∈ R. For every λ < E(0), where E(0) is the principal eigenvalue of −∆p in
W 1,p

0 (Ω), the nonlinear eigenvalue problem

(3.14)


−∆pu− uα = λup−1 in Ω
u > 0 en Ω
u = 0 on ∂Ω

has a solution in the cases

(1) If 1 < p < 2, taking α < (p−1)N
N−p .

(2) If p ≥ 2, taking α > 1.

Proof. Analogous to that of Corollary 3.12 �
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