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ON NUMERICAL BLOW-UP SETS

JULIÁN FERNÁNDEZ BONDER, PABLO GROISMAN, AND JULIO D. ROSSI

(Communicated by David S. Tartakoff)

Abstract. In this paper we study numerical blow-up sets for semidicrete
approximations of the heat equation with nonlinear boundary conditions. We
prove that the blow-up set either concentrates near the boundary or is the
whole domain.

Introduction

In this paper we address the localization problem of blow-up points for semidis-
cretizations in the space of positive solutions for the following parabolic problem:

ut(x, t) = uxx(x, t), (x, t) ∈ (0, 1)× [0, T ),
ux(1, t) = f(u(1, t)), t ∈ [0, T ),
ux(0, t) = 0, t ∈ [0, T ),
u(x, 0) = ϕ(x), x ∈ [0, 1],

(1)

where f(s) and ϕ(x) are positive and regular enough to guarantee existence and
uniqueness of solutions. For this type of problem, if the initial datum satisfies a
compatibility condition, the solution is smooth (see [2], [10]).

The purpose of this article is to show that blow-up sets for semidiscrete approxi-
mations of (1) (by the finite element method) either concentrate near the boundary
or are the whole [0, 1]; that is, regional blow-up does not exists for these schemes.

Parabolic reaction-diffusion problems like (1) or of a more general form, allowing
for example source terms or with different boundary conditions, appear in several
branches of applied mathematics. They have been used to model, for example,
chemical reactions, heat transfer, or population dynamics, and have been studied
by several authors. See [12] and the references therein.

For many differential equations or systems the solutions can become unbounded
in finite time (a phenomenon that is known as blow-up). Typical examples where
this phenomenon is observed are problems involving reaction terms in the equation
(see for example [9], [12]). When the nonlinear term appears at the boundary, as
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in (1), it is known that if f is convex and satisfies
∫ +∞ 1

f(s)f ′(s)
ds < +∞,(2)

one has this blow-up phenomenon (see [13]). Moreover, if f is increasing and
∫ +∞ 1

f(s)
ds < +∞,(3)

then the blow-up set is localized at the boundary. In this case B(u) = {1}, which
is called single point blow-up.

However, when f satisfies (2) but not (3), the blow-up set can be larger than
a single point. It can be the whole interval [0, 1] (this is called global blow-up), or
it can be a subinterval [l, 1] with 0 < l < 1 (this is called regional blow-up). For
example, this phenomenon of global blow-up or regional blow-up is obtained when
one considers f(s) = s logp(s) with 1/2 < p < 1 or p = 1 respectively.

On the other hand, some papers deal with the numerical approximation of the
blow-up time and the blow-up profile (see for example the survey [3] and the work
[4]), but there is a lack of information about numerical blow-up sets.

Now we describe our numerical scheme. The numerical semidiscrete version of
(1) proposed here, a first degree finite element approximation on the variable x
keeping t continuous, is well known to coincide with a classical finite difference
second order scheme on x. The mass lumping technique simplifies the scheme and
preserves the maximum principle, allowing us to use comparison arguments (see
Lemma 1).

Let xi = i
N , 0≤i≤N , be a partition of the interval [0, 1] into subintervals Ii =

[xi, xi+1], of length h = 1
N . Let Vh the set of continuous functions which are

affine on each Ii. We consider the basis functions of Vh, taking as usual ψi, with
ψi(xj) = δj

i . Now let

uh(x, t) =
N∑

i=0

ui(t)ψi(x).(4)

For a fixed t, uh(x, t) belongs to H1(0, 1), so in order to construct an approximate
solution of (1) we proceed as follows: replacing (4) in the weak formulation of (1),
we get a system of ordinary differential equations for U = (u0(t), ..., uN (t)):

MU ′ = −AU + f(U),(5)

where M is the mass matrix, A is the stiffness matrix, and f(U) = f(uN )eN with
eN = (0, ..., 1).

Mass lumping upon the matrix M in (5) gives

u′0(t) =
2
h2

(−u0(t) + u1(t)),

u′i(t) =
1
h2

(ui+1(t)− 2ui(t) + ui−1(t)),

u′N (t) =
2
h2

(−uN (t) + uN−1(t)) +
2
h

f(uN (t)).

(6)

So, from now on, we will assume that M is diagonal with mi = h if 1 ≤ i ≤ N − 1
and m0 = mN = h/2.
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For this scheme it is known that uh converges uniformly to u provided that u
is smooth, see [5]. Also it is proved there that solutions blow up if and only if f
satisfies (3), so there exist nonlinearities f such that the continuous solution blows
up while the numerical solutions does not (for example for f(s) = s ln(s)p with
1/2 < p ≤ 1).

In [1] the authors studied numerical approximations for (1) in the special case
f(s) = sp, proving that numerical blow-up sets approximate the continuous one
when the mesh parameter h is small. See also [8] for a similar result in the semilinear
case.

In this work, we show that regional blow-up can never be reproduced for our
scheme, and this is a big difference in the behavior between solutions of (1) and
their numerical approximations that was never pointed out before.

The difference in the asymptotic behavior between solutions of differential equa-
tions and their numerical approximations has been observed by several authors in
recent years (see for example [6], [7]) and is a phenomenon that has to be taken
into consideration when performing simulations.

Statement of the results

Now we can state our main results:

Theorem 1. Assume that f satisfies (3) and is increasing. Then, the number of
blow-up nodes for solutions of (6) depends only on f and is independent of h. That
is, either the numerical blow-up is global or it is localized in a small neighborhood
of {x = 1} for h small enough. Moreover, the propagation of blow-up is given by
the following mechanism:

Let Th be the blow-up time of U and let

F(z) =
∫ +∞

z

1
f(y)

dy; G0(t) = F−1(Th − t); Gk+1(t) =
∫ t

0

Gk(s) ds.

Then uN−k blows up if and only if Gk does, and in this case the blow-up rate is
given by

uN−k(t) ∼
∫ t

0

uN−k+1(s) ds.

Also we prove the monotonicity of the blow-up set in terms of the nonlinearity
f .

Theorem 2. Under the hypotheses of Theorem 1, the number of blow-up nodes
for solutions of (6) is monotone decreasing with the nonlinear term f . That is, if
f1(s) ≥ f2(s), then Bh(U1) ⊂ Bh(U2).

Finally we show that the blow-up rate of the blowing up nodes is strictly de-
creasing.

Theorem 3. The blow-up rate for the blowing up nodes xi is strictly monotone in
the sense that

lim
t↗Th

ui(t)
ui+1(t)

= 0.
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Let us now present some examples.
(I) f(s) = sp.
Numerical solutions blow up if and only if p > 1. The blow-up rate for different

nodes is given by uN−k(t) ∼ (Th−t)−1/(p−1)+k for 0 ≤ k < 1/(p−1). If 1/(p−1) =
k, an integer, then the node uN−k ∼ − ln(Th − t). The blow-up set is composed of
exactly K nodes, where K = [1/(p− 1)] ([x] stands for the integer part of x).

In this case, the blow-up condition p > 1 is the same as in the continuous problem
(1), and the blow-up set satisfies

B(uh) = [1−Kh, 1] = B(u) + [−Kh, 0].

This case has been considered in [1].
(II) f(s) = s(ln s)p.
Numerical solutions blow up if and only if p > 1. The blow-up rate is given by

max
i

ui(t) ∼ exp
(

1
(Th − t)1/(p−1)

)
.

As a consequence of (I) and Theorem 2, the blow-up set is the whole interval [0, 1].
In this case, the blow-up condition p > 1 is different from the condition in the

continuous problem (1), p > 1/2. The blow-up set for the continuous problem is a
single point, B(u) = {1}, if p > 1; a bounded interval if p = 1; and the whole [0, 1]
if 1/2 < p < 1. In this case, we remark that the behavior of the continuous problem
is radically different from the numerical one, since not only do we have different
blow-up cases, but also in the cases where both problems blow up, the numerical
solution has global blow-up while the continuous problem has single-point blow-up.
This is the first example of such phenomena.

(III) f(s) = es.
In this case numerical solutions blow up at a single point B(uh) = {1}. The

blow-up rate is given by uN (t) ∼ − ln(Th − t).
For this nonlinearity, the blow-up sets and the blow-up rates of both problems

(the continuous and the discrete ones) coincides.

Some technical lemmas

In order to study the asymptotic behaviour of (6) we need the following results.

Lemma 1 (Maximum principle). Let h > 0 be fixed, and let U = (u0, ..., uN ) be a
solution of

u′0 ≤
2
h2

(−u0 + u1),

u′i ≤
1
h2

(ui+1 − 2ui + ui−1),

u′N ≤ 2
h2

(−uN + uN−1 + hf(uN )).

(7)

Then

max
k=0,...,N

uk(t) ≤ max{ max
k=0,...,N

uk(0); sup
0<τ<t

uN (τ)}.

Proof. Let us first suppose that U = (u0, ..., uN ) satisfies (7) with strict inequalities.
Now, if the maximum is attained in an interior node, say 0 < j < N , let t0 be the
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first time when this happens; then we have

u′j(t0) ≥ 0 and uj(t0) ≥ uk(t0), 0 ≤ k ≤ N.

On the other hand, by our assumption on U we get u′j(t0) < 0, which leads to a
contradiction. Also, it is easy to see that the maximum cannot be reached at u0,
and so the “maximum principle” follows.

To complete the proof, we just observe that if Z = h2(0, ..., k2, ..., N2), then
Uε(t) ≡ U(t) + εZ satisfies (7) with strict inequalities whenever U satisfies (7). As
ε > 0 is arbitrary, the lemma follows.

Lemma 2. Let U be a blowing-up solution of (6). Then there exists a time t0 < Th

such that

max
0≤i≤N

ui(t) = uN (t),(8)

for t0 < t < Th.

Proof. First, observe that from our assumptions on f , it follows that

lim
s→+∞

f(s)
s

= +∞.(9)

Now, by the maximum principle, it follows that if max{ui(t)} is large then it
coincides with sup0<s<t uN (s). Now, from (6) it follows that

u′N ≥ − 2
h2

uN +
2
h

f(uN ) ≥ 2
h

f(uN )
(

1− uN

hf(uN )

)
.(10)

As uN (t) is blowing up and (9) holds, uN (t) is an increasing function for t near the
blow-up time Th, and hence we conclude that (8) holds for t close to Th.

Proof of the theorems

In this section we denote by C a constant that may depend on h but not on t
and may change from one line to another. Let us begin with the proof of Theorem
1. For the proof, we need the following lemma.

Lemma 3. There exists a constant C (that may depend on h) such that the blow-up
rate for uN (t) (and hence for U(t)) is given by

max
k

uk(t) = uN (t) ∼ F−1(C(Th − t)),

where F(z) is defined as

F(z) =
∫ +∞

z

1
f(y)

dy.

Proof. Integrating (10), we obtain

uN (t) ≤ c1F−1(C(Th − t)).

For the other inequality, we observe that for t close to Th, by Lemma 2, we obtain

u′N (t) =
2
h2

(uN−1 − uN ) +
2
h

f(uN ) ≤ 2
h

f(uN ).

Hence by integrating this inequality we get

uN (t) ≥ F−1(C(Th − t)),

and the lemma follows.
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Proof of Theorem 1. Now, using the preceding lemma, we look for the behaviour
of the node uN−1,

u′N−1(t) =
uN (t)− 2uN−1(t) + uN−2(t)

h2
≥ 1

h2
(uN (t)− 2uN−1(t)).

So,

(e
2t
h2 uN−1(t))′ ≥ e

2t
h2

h2
uN (t),

and integrating we get

uN−1(t) ≥ C

∫ t

t0

uN (s) ds + C.

On the other hand, by (8) we get

u′N−1(t) ≤
2
h2

(uN (t)− uN−1(t)),

and therefore

uN−1(t) ≤ C

∫ t

t0

uN (s) ds + C.

Using Lemma 3, we get

uN−1(t) ∼
∫ t

t0

uN (s) ds ∼
∫ t

t0

F−1(C(Th − s)) ds.

Recall that G0(t) = F−1(Th − t), and

G1(t) =
∫ t

t0

F−1(Th − t) ds =
∫ Th−t0

Th−t

F−1(w) dw.

Since
∫ t

t0

F−1(C(Th − s)) ds =
∫ C(Th−t0)

C(Th−t)

F−1(w) dw,

we have that uN−1(t) blows up if and only if G1(t) does. Repeating this procedure,
one can check that uN−k blows up if and only if Gk(t) does, so the number of
nodes that blow up depends only on f but not on h. This fact implies the desired
result.

Proof of Theorem 2. To prove Theorem 2 we just have to observe that, if we set
Fi(z) =

∫ +∞
z

1
fi(y) dy, i = 1, 2, then we have that

f1(s) ≥ f2(s) ⇒ F1(z) ≤ F2(z),

and the result follows.

Proof of Theorem 3. Finally, we prove Theorem 3. First we consider uN (t)
uN−1(t)

. From
the asymptotic behavior found in Theorem 1, we have

uN (t)
uN−1(t)

∼ uN (t)∫ t

t0
uN (s) ds

.
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Now by L’Hôpital’s rule and (9), we obtain

lim
t↗Th

uN (t)∫ t

t0
uN (s) ds

= lim
t↗Th

u′N (t)
uN (t)

= lim
t↗Th

Cf(uN (t))
uN (t)

= +∞,

and the result follows by induction.
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