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ABSTRACT. We consider the optimization problem of minimizing [, |[Vu|? dz with a constrain
on the volume of {u > 0}. We consider a penalization problem, and we prove that for small
values of the penalization parameter, the constrained volume is attained. In this way we prove
that every solution w is locally Lipschitz continuous and that the free boundary, d{u > 0} N Q,
is smooth.

1. INTRODUCTION

In the seminal paper [2], Aguilera, Alt and Caffarelli study an optimal design problem with
a volume constrain by introducing a penalization term in the energy functional (the Dirichlet
integral) and minimizing without the volume constrain. For fixed values of the penalization
parameter, the penalized functional is very similar to the one considered in the paper [4]. So
that, regularity results for minimizers of the penalized problem follow almost without change
as in [4]. The main result in [2] that makes this method so useful is that the right volume is
already attained for small values of the penalization parameter. In this way, all the regularity
results apply to the solution of the optimal design problem.

This method has been applied to other problems with similar success. In all those cases, the
differential equation satisfied by the minimizers is nondegenerate, uniformly elliptic. See, for
instance, [3, 9, 13, 16].

In this article we want to show that the same kind of results can be obtained for some nonlinear
degenerate or singular elliptic equations. As an example, we study here the following problem
which is a generalization of the one in [2] for 1 < p < co:

We take 2 a smooth bounded domain in RY and ¢y € WHP(Q), a Dirichlet datum, with
0o > co > 0in A, where A is a nonempty relatively open subset of 9€) such that AN 0N is C2.
Let

Ko={uecW(Q)/[{u>0} =a,u=ypy ondQ}.

Our problem is to minimize J(u) = [ [Vul? dz in K,.

Problems similar to the one considered here appear in shape optimization. For instance, in
optimization of torsional rigidity [13], insulation of pipelines for hot liquids [10], minimization
of the current leakage from insulated wires and coaxial cables [1], minimization of the capacity
of condensers and resistors, etc.
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Although the existence of a minimizer is not difficult to establish by variational techniques,
the regularity properties of such minimizers and their free boundaries 9{u > 0}, are not easy
to obtain since it is hard to make enough volume preserving perturbations without the previous
knowledge of the regularity of 0{u > 0}.

In order to solve our original problem in a way that allows us to perform non volume preserving
perturbations we consider instead the following penalized problem: We let

K={ueW"(Q)/u=yy ondQ}

and
(1.1) 7.(u) —/Q\Vu]pda:—i-Fe(\{u > 0})),

where

Then, the penalized problem is
(P) Find u. € £ such that J.(u.) = in,fC T (v).
ve

The existence of minimizers follows easily by direct minimization. Their regularity and the
regularity of their free boundaries d{u. > 0} follow as in [5] where a very similar problem was
studied, namely, to minimize

(1.2) Ta(v) = / Vol da + | fo > 0},
Q
where A > 0 is a constant. In particular, u. is a solution of the following free boundary problem
Apu=0 in{u>0}NQ,
0
8—32/\5 on 0{u>0}NQ,
where ). is a positive constant and Ayu = div(|Vu[P~2Vu) is the p—laplacian.
In [9] the authors study a problem closely related to [2]. The problem in [9] is to minimize
the best Sobolev trace constant from H!(Q) into L(9) for subcritical ¢, among functions that
vanish in a set of fixed measure. We will sometimes refer to some of the proofs in [9] for the

different treatment of the penalization term (which is piecewise linear in the measure of the
positivity set) with respect to [4] and [5] where the function is linear in the measure.

As in [2], the reason why this penalization method is so useful is that there is no need to pass
to the limit in the penalization parameter ¢ for which uniform, in e, regularity estimates would
be needed. In fact, we show that for small values of € the right volume is already attained. This
is, [{ue > 0}| = a for € small. It is at this point where the main changes have to be made since
the perturbations used in [2] and [9] make strong use of the linearity of the underlying equation.

In particular, the fact that, for small e, any minimizer of J. satisfies |{u. > 0}| = a implies
that any minimizer of our original optimization problem is also a minimizer of J. so that it is
locally Lipschitz continuous with smooth free boundary.
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We include at the end of the paper a couple of appendices where some properties of p—sub-
harmonic functions are established. We use these results in Section 2. We believe that these
results have independent interest.

The paper is organized as follows: In Section 2 we begin our analysis of problem (P;) for fixed
€. First we prove the existence of a minimizer, local Lipschitz regularity and nondegeneracy
near the free boundary (Theorem 2.1) and with these results we have the regularity of the free
boundary by adapting the results of [5].

The main results of this paper appear in Section 3 where we prove that for small values of
we recover our original optimization problem.

The appendices are included at the end of the paper.

2. THE PENALIZED PROBLEM

In this section we look for minimizers of the functional J. and a representation theorem for
solutions of J; as in [4] Theorem 4.5.

Observe that a solution to (F:) satisfies that

Apu=0 in {u>0}°.
In fact, let B be a ball such that u > 0 in B. Let v be the solution to
Ay =0 1in B, v=wu on JB.

Let v € WHP(Q), o(z) = v(z) for x € B, v(x) = u(z) if z ¢ B. Then, v € K so that

(2.3) 0< / VolP da — / VP da + Fo([{o > 0}]) = Fo(|{u > 0}]) = / VolP — [VulP da,
Q Q B
and (see [5], Section 3),

(2.4) / |VolP — |[VulP de < —c/ V(v —u)|Pdz if p>2,
B B

(2.5) / |VolP — |VulP de < —c/ |V (v— u)|2(|VU\ + ]Vu|)p72 dx ifl<p<2,
B B

where ¢ is a positive constant that depends on p. In any case, combining (2.3) and (2.4) — (2.5)
we get |V(v —u)| =0in B. Thus, v = v in B. So that, Ayu =0 in B.

We begin by discussing the existence of extremals.

Theorem 2.1. Let Q C RY be bounded and 1 < p < co. Then there exists a solution to the
problem (P.). Moreover, any such solution u. has the following properties:

(1) we is locally Lipschitz continuous in €.
(2) For every D CC €, there exist constants C,c > 0 such that for every x € D N{u. > 0},
cdist(z, 0{u: > 0}) < u.(x) < Cdist(x, 0{us > 0}).

(3) For every D CC (, there exists a constant ¢ > 0 such that for x € d{u > 0} and
B, (z) C D,

1B e > 0}

< <l-ec
| By (2)|
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The constants may depend on €.

Proof. The proof of existence is standard. We state it here for the reader’s convenience.

Take ug with |[{ug > 0}| < «, then J:(up) < C (uniformly in €), also J. > —a. Therefore a
minimizing sequence (uy,) C K exists. Then J:(uy) is bounded, so ||Vu,|, < C. As u, = ¢ in
09, there exists a subsequence (that we still call u,,) and a function u. € W1?(Q) such that

U, — ue  weakly in WhHP(Q),

Uy — Ue  a.€. .
Thus,
Ue =g on 0f),
{us > 0} < hnrr_li)réﬂ{un >0} and

/ |Vue|Pdx < liminf/ |Vuy, P dz.
Q n—ee Ja

Hence u. € K and
Je(ue) < liminf T (uy,) = in}fcja(v),
ve

n—oo

therefore u. is a minimizer of 7; in K.

The proof of (1), (2) and (3) follow as Theorem 3.3, Lemma 4.2 and Theorem 4.4 in [5]. The
only difference being that the functional they analyze is linear in |[{u. > 0}| and ours is piecewise
linear. The different treatment of this term is similar to the one in [9]. O

From now on we denote by u instead of u. a solution to (Px).

Lemma 2.1. Let uw € K be a solution to (P:). Then u satisfies for every ¢ € C5°(2) such that
supp() C {u >0},

(2.6) / IVulP~2VuVe = 0.
Q

Moreover, the application
M) = —/ |Vu|P2VuVp dz
Q

from C§°(R2) into R defines a nonnegative Radon measure with support on QN O{u > 0}.

Proof. See Theorem 5.1 in [5] O
Theorem 2.2 (Representation Theorem). Let u € K be a solution to (P:). Then,

(1) HN =YD N o{u > 0}) < o< for every D CC Q.
(2) There exists a Borel function q, such that

Apu = g, HN 71 0{u > 0}.

(3) For D CC Q there are constants 0 < ¢ < C' < oo depending on N,Q, D and € such that
for By(z) C D and x € 0{u > 0},

c<qu(z) <O, eV <HN B (x) N o{u > 0}) < CrVTL
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(4) for HN"'-a.e. 2o € Orea{u > 0},
u(zo + x) = qu(zo)(z - v(x0))” +0(|x]) for = —0
with v(xg) the outward unit normal de 0{u > 0} in the measure theoretic sense.
(5) HN=1(0{u > 0} \ Orea{u > 0}) = 0.
Proof. The proof of (1), (2) and (3) follow exactly as that of Theorem 4.5 in [4].

Observe that D N d{u > 0} has finite perimeter, thus, the reduce boundary Oeq{u > 0} is
defined as well as the measure theoretic normal v(z) for € Oreq{u > 0} (see [8]). For the proof
of (4) see Theorem 5.5 in [5].

Finally, (5) is a consequence of Theorem 2.1 and (3) (see [8]). O

Theorem 2.3. Let u € K be a solution to (P:) and g, the function in Theorem 2.2. Then there
exists a constant A\, such that

(2.7) lim sup |Vu(z)| = Ay, for every xzp € QN O{u > 0}
w(z)>0
(2.8) qu(T0) = A, HNY —a.e zg € QN O{u > 0}.
Moreover, if B is a ball contained in {u = 0} touching the boundary 0{u > 0} at z¢. Then
u(x
(2.9) lignjclolp dlst((x,)B) = A\y-
u(z)>0

To prove this theorem, we have to prove first the following lemma,

Lemma 2.2. Let zg,2z1 € 0{u > 0} and p — 0. Fori = 0,1 let z;, — x; with u(z;x) =0
such that B, (x; ) C  and such that the blow-up sequence

1

uik(z) = —u(@ik + pr)

Pk
has a limit u;(z) = X\i(x - v;)~, with 0 < \; < 00 and v; a unit vector. Then \g = A1.
Proof. Assume that A\; < Ag then we will perturb the minimizer u near xg and z; and get

an admissible function with less energy. To this end, we take a nonnegative Cg° function ¢
supported in the unit interval. For k large, define

,

xr—x
T+ pi¢(”#0’k>yo for z € Bpk (xo,k)a

(@) = - picﬁ(m_p#

)ul for z € By, (z1k),

T elsewhere,
\

which is a diffeomorphism if & is big enough. Now let

ve(z) = u(ryt (2)),

that are admissible functions. Let us also define

(2.10) ni(y) = (=1)'¢(ly|)vi.
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We have
(2.11) Fo([{ve > 0}]) — Fo(I{u > 0}]) = o(pp ).

To estimate the other term in J; we make a change of variables and then
i [ (Ve - V) o
Bpk ()

= / Pk [!V’ui,k\p div(n;) — p [V x[P~2(Vui ) DiVui g | + o(pr) dy.
B1(0)n{u; x>0}

On the other hand, by Lemma B.1, we have

B1(0) n{u;r >0} — B1(0)N{y-v; <0}, as p— 0, and
Vg — Vu; = =AiviX{y, <0y a-e in Bi(0).

Therefore
N (vl - (Fup) ds N (div(ng) — pot D) dy
By, (z:) B1(0)n{y-v;>0}
Using that
N T PR A (1'1)) NN N i
div(n;) —pv; Dnivi = (=1)'(1 — p) o] (y-vi) = (=1)"(1 = p)div(n;),
we obtain
i [ (Ve = V) de — (-0 - o(lyl) dHY 1 (y)
Bpk x; Bl(O)m{y-w:O}
Hence
/\Vvk|pdaz—/|Vug|pdx:
(2.12) ¢ ¢

:pkN+1(A’1’—A’5)/ (p — De(lyl) dHN " (y) + o(pp ).
B1(0)N{y1=0}

If we take k large enough we get
Te(vr) < Te(u),

a contradiction. OJ

Proof of Theorem 2.3. Now, the Theorem follows as in steps 2 and 3 of Theorem 5.1 in [13],
using Lemma 5.4 in [5], Theorem A.1 and properties (1)—(8) of Lemma B.1. We sketch the proof
here for the reader’s convenience.

Let zp € 2N 0{u > 0} and let
A = A(xp) = limsup |Vu(x)|.

CL‘A?.’;CO
u(x)>0
Then there exists a sequence zp — g such that

u(z) > 0, |Vu(zi)| — A
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Let yi be the nearest point to zx on QN o{u > 0} and let dy, = |z — y|. Consider the blow up

sequence with respect to By, (yx) with limit ug, such that there exists
Yk — %k

v := lim
k—o00 dg, ’

and suppose that v = ey. Using the results of Appendix B, we can proceed as in [5] p.13 to
prove that 0 < A < oo and
up(z) = —Aay in {zy < 0}.

Finally by Lemma B.1(8) we have that 0 € 0{up > 0} and then, using Lemma B.1(6) we
see that wug satisfies the hypotheses of Theorem A.1. Therefore ug = 0 in {xxy > 0}. Then
ug = Amax(—z - ,0).

To complete the proof, we follow the lines in step 3 of Theorem 5.1 in [13]. This is, we apply
Lemma 2.2 to this blow up sequence and to a blow up sequence centered at a regular point of
the free boundary.

A similar argument proves (2.9). O

Summing up, we have the following theorem,

Theorem 2.4. Let u € K be a solution to (P.). Then u is a weak solution to the following free
boundary problem

Apu=0 in {u>0}NQ,
ou
5_)\” on Hu>0}NQ,

where A, is the constant in Theorem 2.3. More precisely, HN '—a.e. point xg € H{u > 0}
belongs to Opeq{u > 0} and

w(xo +2) = My(z - v(20))” +0(|z])  for x— 0.

Finally, we get an estimate of the gradient of u that will be needed in order to get the regularity
of the free boundary.

Theorem 2.5. Let u € K be a solution to (P:). Given D CC €, there exist constants C' =
C(N,e,D) rg = ro(N,D) > 0 and v = v(N,e,D) > 0 such that, if zg € D N o{u > 0} and
r < rg, then

sup |Vu| < A, (14 Cr7).
B,«(mo)

Proof. The proof follows the lines of the proof of Theorem 7.1 in [5]. O

As a corollary we have the following regularity result for the free boundary 9{u > 0}.
Corollary 2.1. Let u. € K be a solution to (P.). Then Opeq{u: > 0} is a CYP surface locally
in Q and the remainder of the free boundary has HN ™' —measure zero.

Proof. See [5] Corollary 9.2. O

Remark 2.1. In dimension 2, D. Danielli and A. Petrosyan (see [6]) proved the full regularity
of the free boundary of the minimizers of (1.2) if 2 —§ < p < oo for a small 6 > 0. Also, a
similar result was proved by A. Petrosyan in dimension 3 for p close to 2 (see [15]).
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3. BEHAVIOR OF THE MINIMIZER FOR SMALL €.

In this section, since we want to analyze the dependence of the problem with respect to € we
will again denote by u. a solution to problem (F).

To complete the analysis of the problem, we will now show that if € is small enough, then
H{ue > 0} = a.

To this end, we need to prove that the constant A\; := A, is bounded from above and below by
positive constants independent of €. We perform this task in a series of lemmas.

Lemma 3.1. Let u. € K be a solution to (P-). Then, there exists a constant C' > 0 independent
of € such that
Ae i =Ny < C.
Proof. The proof is similar to the one in [2], Theorem 3.
First we will prove that there exist C, ¢ > 0, independent of e, such that
c < H{ue >0} < Ce +a.

In fact, as in Theorem 2.1 we have that F.(|{us > 0}|) < C thus obtaining the bound from above.
On the other hand, taking ¢ < p, using the Sobolev trace Theorem, the Holder inequality and
the fact that [luc|ly1p) < C (see Theorem 2.1) we have

_ P—q pP—gq
bt < e > 017 Jullfy ) < e > 011

and thus we obtain the bound from below.
Take D CC Q smooth, such that § = |D| > « and |2\ D| < ¢ then,
IDN{u: >0}| <a+Ce< ¥
for € small enough. On the other hand
DA {ue > 0} = [{ue > 0} = |2\ D| = ¢ — 2\ D| > 0,

Therefore by the relative isoperimetric inequality we have
N—-1

H¥"Y(D N 9{u. > 0}) > cmm{m N {ue > 0}],|D N {ue = o}|}T > > 0.
Now let w be the p—harmonic function in §2 with boundary data equal to ¢g. Using Theorem
2.2 and Theorem 2.3 we have,

C> / Ve P 2Vu.V(u. — w)de = / whe dHN 7L > / w. dHN !
Q QNO{us>0} DNo{us>0}
> /\g(i%fw)HNfl(D N o{u: > 0}) > ..
Now the result follows. O

Lemma 3.2. Let u. € K be a solution to (P.), B, CC Q and v a solution to
Ay =0 in By, v=1u. ondB,.

1 1/ 4
/ IV (ue —v)|9dz > C|B, N {u: =0} | - (][ u) dac)
B " \J B,

then
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for all ¢ > 1 and for any v < %jp}) ifp<N,vy<ooifp>N, andC is a constant independent
of €.

Proof. The idea of the proof is similar to Lemma 3.2 in [4]. We include the details since there
are differences due to the fact that we are dealing with the p-laplacian instead of the laplacian.

First let us assume that B, = Bi(0). For [z|] < 1 we consider the change of variables

from By into itself such that z becomes the new origin. We call u.(z) = u((1 — |z])z + =),
vs(z) = v((1 — |z|)z + x) and define

1
re = inf{r/g <r<1 and wuy(ré§) = O},
if this set is nonempty. Observe that this change of variables leaves the boundary fixed.

Now, for almost every £ € 9By we have
1y 1 1/q
B el = [ e dr< (- ( [ 19t - vz><r£>|qdr> .
re 3

Let us assume that the following inequality holds

(3.2) v2(re€) > C(N,Q)(1 — r¢) (][

By

1/y
u’ dm) .
Then, using (3.1) and (3.2), integrating first over dB; and then over |z| < 1/2 we obtain as
/ [V(u—v)|9dz > C|By N {u = 0} (7[
B

in [4],
q/v
u” da:) .
By

If we take u,(z) = Lu(zg + rz) (where zg is the center of the ball B,) then

/ V(= 0p) |7 d = N / IV (u— )| dy,
By

i

BN {u, =0} =r"YB,n{u=0} and

1/~ 1 1/~
(7[ u) dac> =- <][ u? dy) )
By r .

so we have the desired result.
Therefore we only have to prove (3.2). If [(1 — r¢)z + r¢€| < 2, by Harnack inequality,

vz (1¢&) > Cnv(0).
By Theorem 1.2 in [17] we have

(3.3) v(0) > a(N, Q) <][B v dx>w > a(N, Q) <][B " dx>w.

If|[(1 —re)z +reg] > % we prove by a comparison argument that inequality (3.2) also holds.
In fact, again by Theorem 1.2 in [17],

1/
v > Cna <][ u” d:n) in By y.
By
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Let w(z) = e N* — ¢, There exists A = A\(IV, a) such that

pr Z 0 in Bl \ B3/47
w < Cya  on 0By,
w =10 on 0B,

1/ 1/~
v>w <][ u daz) >C(1—|x|) <][ u dx) in B\ Byy.
Bl Bl

1/ 1/
u” d:c> > C(1—1¢) <][ u” da:)
B1 Bl

wn(re6) = C(1-10 = r)z 4 vt (f

since |z| < 3. So that (3.2) holds for every r¢ > 1.

so that,

Therefore

This completes the proof. O

Lemma 3.3. Let u. € K be a solution to (P:), then
Ae > ¢ >0,

where ¢ is independent of €

Proof. We proceed as in Lemma 6 in [2]. We will use the following fact that we prove in Lemma
3.4 bellow: For every ¢ > 0 there is a neighborhood of A in 2 where u. > 0.

Let yg € A and let D, with 0 <t < 1 be a family of open sets with smooth boundary and
uniformly (in ¢ and t) bounded curvatures such that Dy is an exterior tangent ball at yy, D
contains a free boundary point, Dy CC Dy for t > 0 and D; N9 C A.

Let t € (0, 1] be the first time such that D touches the free boundary and let zy € 9DNO{u. >
0} N Q. Now, take w such that Ayw = 0 in D; \ Dy with w = ¢p on 90Dy and w = 0 on 0D.
Thus w < u. in D;NQ and 0_,w(xg) > cco with ¢ > 0 independent of . Therefore, for r small
enough,

1/v

1/~
(3.4) ][ ul dx > ][ w” dzx > rcco,
Br(ivf)) Br(ﬂ»‘o)

with ¢ is independent of e.

If vy is the solution to
Apvg =0 in By (zo)
Vg = Ug on 0By (xp),

then, by Lemma 3.2, we have
P

1 1/~
/ |V (ue — v9)|P dz > C|B, N {ue = 0} (r <][ uldw) ) , forp>2
r B,

1/7\ 2
/ |V (u: —vo)|* dz > C|B, N {u. = 0} (i <][ u?dw) > , for 1 <p<2.
B

T



AN OPTIMIZATION PROBLEM WITH VOLUME CONSTRAIN 11

Then using (2.4) we obtain,

(35) [ Vel = (9P do > €15, 0 fue = 03] (1 (f,, =) />

for p > 2.

By Theorem 2.3 and Lemma 3.1 we have that, near zg, |Vuc| is bounded from above by a
constant independent of . Then by (2.5) we obtain that (3.5) also holds for 1 < p < 2 if r is
small enough (depending on €). Then by (3.4)

(3.6) / (Vul — [VoolP) do > ¢5,
Byr(xg

where §, = |B;(z9) N {us: = 0}| and ¢ is a constant independent of ¢.
Consider now a free boundary point x; away from zg. We can choose x; to be regular.

Let us take

x— po <|3j —px1|> Vu.(z1)  for x € By(x1),

T elsewhere,
where ¢ € C§°(—1,1) with ¢/(0) =0
Now choose p such that

5 = p2/ ¢ <|x—me> AHN L
By(z1)Nd{us>0} P

Take v,(7,(2)) = ue(x) and

mp(z) =

vo  in By(zg)
v=1(v, inB,(x1)
us  elsewhere.
Thus, we have that

(3.7) [{v > 0} = |[{us > 0}].

On the other hand as in Lemma 2.2, we have

[ 9o = vy ay= | Vol dy- [ 9P o
Bp(z1) To(Bp(w1))N{vp>0} Bp(z1)

P

- / p(| Ve Pdivey — p|Veue P>V D) + o(p) de
B (a1)N{u>0}

where 1(y) = —¢(|y|)v(z1). Using the fact that n is bounded from above by a constant k
independent of p and ¢, and that |Vu:| = A. + O(p?) in B,(z1) we have

[ 90l = [Vuc)dy < N+ o)
Bp(ﬂﬁl
but, &, has the same order of pV ! then

(3.8) / (VP — [Vauel?) dy < kAZS, + o(5,).
B,,(m)
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Therefore by (3.6), (3.8) and (3.7) we have
0 S ja(v) - ja(ua) < _657" + k)\%r + 0(51”)

and then A\, > ¢ > 0. O

Now we prove the positivity result that was used in the previous Lemma.

Lemma 3.4. For every € > 0 there exists a neighborhood of A in Q such that u. > 0 in this
neighborhood.

Proof. Let yo € A and let B;(z) be an exterior tangent ball to 99 at yo such that QN B = {yo}.
Let us take 0 small enough so that Bas(z9) N9 CC A. Let w. be a minimizer of

(3.9) T(w) = /R VP do + é|{w > 0}NR|

in {w € WYP(R), w=0on dBas(2), w = cy on dBs(zy)}. Here R = Bas(20) \ Bs(20)-

Every minimizer of (3.9) is radially symmetric and radially decreasing with respect to zy. This
is seen by using Schwartz symmetrization after extending we to Bjs(2g) as the constant function
co (see [12]). This symmetrization preserves the distribution function and strictly decreases the
LP norm of the gradient unless the function is already radially symmetric and radially decreasing.
Moreover, these minimizers are ordered and their supports are nested. Let us take as w. the
smallest minimizer.

By the properties of w. there holds that w, is strictly positive in a ring around Bj(zp). Also
we 18 continuous in R. Recall that u. is continuous in ). Let us see that u. > w. in R N Q.
This will prove the statement.

Assume instead that {w. > u.} # 0.

Let us first consider the function v = min{u.,w.} in R N Q. Since us > ¢y > we on INNR
and u. > 0 = w. on 2N IR there holds that v = w, on (R N Q). Therefore, the function
v=vin RNQ, v=w:in R\ is an admissible function for the minimization problem (3.9).
Since w, is the smallest minimizer and, by assumption v < we and v # we, there holds that
Je(v) > Jo(we). Since v = we in R\ 2 and in RN QN {w. < u:} and equal to u. outside those
sets there holds that (with D =R N QN {w: > u}),

1 1
(3.10) /|Vu€]pdx+gl{u€>0}ﬁ7)\>/ [Vael? da + |{we > 0} D).
D D

Let now v = max{us, w:} in RN, v = u. in 2\ R. This function is admissible for (P:) so
that

/ IVo|P dz + F-([{v > 0}]) > / \Vue|P de + F.(|{us > 0}/).
Q Q
Since ¥ = w, in D and v = u. in Q\ D,

/D Vewel? de + Fo(|{ue > 0}] + [{we > 0} N D| - [{us > 0} N D)

(3.11)

2/ Vuel do + Fx(|{ue > 0}]).
D
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By (3.10) and (3.11) (with Cy, = [{w: > 0} ND| and C,, = [{u: > 0} N D|) we have,
1
/ VP dz > / VP dz + 2 (C — C)
D D 2

1
z/ VP i+ F(l{ue > 0)]) — Fo(({u > 0} + G — Cu) 4 2(Cu — Cu).
D

Thus,
1
F.({ue > 0} + Cy — Cy) — Fo([{ue > 0}) > E(Cw —Cy)
which is a contradiction since F.(A) — F.(B) < 1(A—B) if A> B and C,, > C,, by assumption.

Therefore, u. > w. in R N2 and the lemma is proved. O

With these uniform bounds on A;, we can prove the desired result.
Theorem 3.1. There exists eg > 0 such that if ue € K is a solution to (P:) and ¢ < ¢ there
holds that |{ue > 0}| = a. Therefore, u. is a minimizer of J in K.

Proof. Arguing by contradiction, assume first that [{u. > 0}| > a. Let 21 € d{u. > 0} N Q be
a regular point. We will proceed as in the proof of Lemma 3.3. Given ¢ > 0, we perturb the
domain {u. > 0} in a neighborhood of x, decreasing its measure by 6. We choose ¢ small so
that the measure of the perturbed set is still larger than «. Take v,(7,(z)) = us(x), and let

b U in B,(z1)
ue.  elsewhere,

where 7, is the function that we have considered in the previous lemma.

We have
0< T.(v) — Jo(ue) = /Q VolP de — /Q VP dz + F.(|{v > 0})) — Fo(|{ue > 0}])

< kXS + 0.(5) — éa < (kcp - i) 5+ 0:(8) <0,

if e < g and then § < dp(g). A contradiction.

Now assume that [{u. > 0}| < «. This case, is a little bit different from the other. First,
we proceed as in the previous case but this time we perturb in a neighborhood of z; the set
{ue > 0} increasing its measure by 0. That is, take

z+ po <|:C—p;1:1|> Vu.(z1)  for x € By(x1),

T elsewhere,

Tp(x) =

where ¢ € C5° supported in the unit interval, take v,(7,(x)) = uc(x) and
v, in By(x1)
v =
ues  elsewhere.

For p small enough we have |{v > 0}| < a and
[{v > 0} = [{ue > 0} = Cp" T +o(p" ),
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therefore
(3.12) Fe(|{v > 0})) — Fo(|{ue > 0}]) < Cep™ ' + 0-(p" ).

In order to estimate the other term, we will make use of a blow up argument as in Lemma
2.2. In fact, we take u,(y) = %u(xl + py) and we change variables to obtain,

o [ (TP Vup) ds
Bp xl)

pl[Vu,[Pdiv(n) — p]Vup|p_2(Vup)tDnVup] + o(p) dy

/Bl(O)ﬂ{up>0}
where n(y) = ¢(|y|)v(z1). Now, as in Lemma 2.2 we get,

pN1 / (Vo l? — [Vuel?) dz — (1 — p)A2 / o(lyl) dHY 1 (y).
Bp(z1) B1(0)n{y-v=0}

Therefore

(3.13) [ 90l = [Vul?) do = Cp¥ 0= p)2 + o).
B,(z1)
Finally, combining (3.12) and (3.13) we have

0< Jo(v) — Je(ue) = /Q Vol? dz — /Q Vel dz + F(|{v > 0}]) — Fu(|{uz > 0}])
<Ol —p)NS+ 0-(0) + Ced < C(—cP +¢€)d + 0-(8) <0,
if ¢ < 7 and then § < Jp(e). Again a contradiction that ends the proof. O

As a corollary, we have the desired result for our problem

Corollary 3.1. For € small any minimizer u of J in Ky is a locally Lipschitz continuous
function and Oreg{u > 0} is a CY# surface locally in Q and the remainder of the free boundary
has HN ! —measure zero.

Proof. If w is minimizer of J in Ky, by Theorem 3.1 we have that for small ¢ there exists a
solution u. to (P:) such that [{u. > 0}| = «a, then u is a solution to (P.), therefore the result
follows. O

APPENDIX A. A RESULT ON Pp-HARMONIC FUNCTIONS WITH LINEAR GROWTH

In this section we will prove some properties of p-subharmonic functions. From now on, we
note B;" = B,(0) N {zx > 0}.
Theorem A.l. Let u be a Lipschitz function in RY such that

(1) u>0in RN, Apu=0 in {u>0}.
(2) {zn <0} C{u >0}, u=0in {zny =0}.

—0}NB
(3) There exists 0 < Ao < 1 such that [{u =0} N Br(0)]
|Br(0)]

> A\g, VR > 0.

Then u =0 in {xy > 0}.
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In order to prove this theorem we follow ideas from [13]. To this end, we need to prove a
couple of lemmas.

Lemma A.1l. Let u be a p—subharmonic function in B," such that, 0 < u < axy in B,
u < dpaxy on OB N B, (Z) with T € 0BT, Ty >0 and 0 < §p < 1.

Then there exists 0 < v < 1 and 0 < € < 1, depending only on r and N, such that u(x) <
yaxy in BF.
Proof. By homogeneity of the p—laplacian we can suppose that r = 1.

Let 1 be a p-harmonic function in Bf , with smooth boundary data, such that

V=N on OB \ By, (%)
boxy <Y <zy on 8BTQBTO(J7)
1 = SN on OB N B, /2(7).

Therefore, by comparison u < a1 in Bf . Let us see that there exist 0 < v < 1 and € > 0,
independent of «, such that 1 < yrx in BZ.

First, ¢ € C’l’ﬁ(Bifr) for some > 0. Then, (cf. [11]) 9 is a viscosity solution of

N
VeI VOPAG + (0= 2) D Yurtn, i, } = 0.
ij=1
If [V4| > 1 > 0 in some open set U, we have that v is a solution of the linear uniformly elliptic
equation
N
(Al) Z aiijixj =0 in U,
ij=1

where

N

min{1,p — I}|Vy*[§* < aij&ig; < max{1,p — 1}V ¢

i,J

Therefore, 1) € C>P(U) and is a classic solution of (A.1).

Let w = xy — % then w € C’lﬂ(Bif) and is a solution of

N
Lw = Z AjjWez; =0
ij=1
in any open set U where |Vi| > p > 0.

On the other hand, as ¢ < xn in E)Bfr and both functions are solutions of the p—laplacian
we have, by comparison, that ¢ < xy in Bfr . Therefore w > 0 in Bf' .

Moreover, we have w > 0 in Bfr . In fact, suppose that there exists zg such that ¢ (z¢) = zo N
As ¢ < z, we have that Vi)(zo) = ey. Then |Vip(zo)| = 1 and by continuity, [Ve)| > 2 >0
in a neighborhood U of zy. Therefore w > 0, w(zp) = 0 and Lw = 0 in U with £ uniformly
elliptic in U. Then by the strong maximum principle, w =0 in U.

So, we have that the set
A={zx e By [/ ¥(x) =an},
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is a relative open and close subset of Bf . Then if there exists zg such that ¢ (zg) = zon, we
have that ¢ = z. Since this is not the case in some part of 8Bfr , we arrive at a contradiction.
Therefore ¢ < xp, and this implies that w > 0.

On the other hand, since ¢ < xx and 1 = 0 on Bj" N {zx = 0}, we have that 1., < 1 on
Bf Nn{zy = 0}. Let us see that ¢, < 1 in Bf N {zy = 0}.

Assume that there exists 29 € Bf N {zy = 0} such that v, (z¢) = 1 (so that wy (z¢) = 0).
Then, |V¢)| > 1/2 in a neighborhood of z¢. But w is a positive solution of Lw = 0in B NB,,(x0)
for some rg > 0, with £ uniformly elliptic and w = 0 on {zy = 0}. Thus, by Hopf’s Lemma,
Wz (z0) > 0, a contradiction.

Therefore 1, < 1 in Bf N {zy = 0}. This implies that there exists 0 < v < 1 and € > 0
such that ., < v in BI. From this, ¥ < vyaxy in B, and then we have u < yazy in B,

g

where € and v only depend on 2. O
Lemma A.2. Let w be a function that satisfies,
(1) w is a Lipschitz function in RN with constant L.

(2) w>0inRY, Apw =0 in {w > 0}.

(3) {zny <0} C {w >0}, w=0in {xy =0}.
(

(

= B
4) There exists 0 < Ao < 1 such that [t |g}£)’ 1(0) > Ao-
1

5) There exists 0 < a < L such that w(z) < axy in B1(0) N {zy > 0}.

Then there exists 0 < v < 1 and 0 < € < 1 depending only on Ao and N, such that w(z) < yaxy
in B:(0) N {zy > 0}.

Proof. Let 3 = 216,‘% < 1, then by (3) and (4) there exists zy € B1(0), with zox > [ such
that w(zg) = 0. By (1), w(z) < L|x — x|, then if we take rg = %, we have w(x) < Ol—ﬂ for
|z — x0| < 1. As a/L <1, in that set there holds that zn > %. Then we have that

QTN

w(zr) < in OB;" N By (z0),

where r = |zg| > (. Taking in Lemma A.1 o = 1/3 and T = z¢ we have that there exists
0<vy<1land0<e<1,depending on r and N, such that w(z) < yaxy in BI.
As r > (§ what we obtain is that v and € only depend on Ag. Therefore the result follows. [J

Now we are ready to proceed with the proof of the theorem.

Proof of Theorem A.1. Once we have proved Lemma A.2 we consider the same iteration as
in Theorem A.1, step 2 in [13] and the result follows. O

As a remark we mention that with Lemma A.1 we can also prove the asymptotic development
of p—harmonic functions. This result was originally proved in [7].

Lemma A.3. Let u be Lipschitz continuous in Bif', u >0 in By, p—harmonic in {u > 0} and
vanishing on anr N{xy =0}. Then, in Bf, u has the asymptotic development

u(x) = axy + o(|x|),
with o > 0.
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Proof. Let
aj = inf{l / u <lz, in B} ,}.
Let a = limj_wo ay.

Given g9 > 0 there exists jp such that for j > jo we have a; < a + 9. From here, we have
u(z) < (a+ep)zy in B;[k so that

u(z) < axy + o(|z|) in Bf.
If o = 0 the result follows. Assume that o > 0 and let us suppose that u(z) # axy + o(|z]).
Then there exists x;, — 0 and § > 0 such that
u(zg) < o N — S|zl

Let 1 = |xg| and ug(z) = r,;lu(rka:). Then, there exists ug such that, for a subsequence that
we still call ug, up — ug uniformly in Bfr and

uk(fk) < Oéfka — 5

ug(z) < (a+ep)zy in BfL,

where Z;, = f—:, and we can assume that T, — xg.

In fact, u(z) < (o +¢go)zy in B;,jo, therefore ug(z) < (a+¢o)zn in B;Z Ja-io? and if k is big
enough 7 /2770 > 1.
If we take & = o + ¢9 we have
Apug, >0 in Bf
up =0 on {zy =0}

0<ur <ary on BBI+
up < o N on 83? N B;(f),
for some z € B, Zx > 0 and some small 7 > 0.

In fact, as u; are continuous with uniform modulus of continuity, we have

) _
ug(xo) < o N — 2 if k> k.

Moreover there exists g > 0 such that ug(z) < axy —% in Boy(z0). If zo,y > 0 we take T = zo,
if not, we take T € Bay,(xo) with Zy > 0 and

ug(r) < axy — -, in By () CC {xy > 0}.

=

As B, (z) cC {xy > 0} there exists dp such that axy — g < dpaxy < dpaxy in Br(Z) for some
small 7, and the claim follows.

Now, by Lemma A.1, there exists 0 < v < 1, ¢ > 0 independent of g9 and k, such that
ug(z) < vy(a+ep)zy in BF. As v and ¢ are independent of k and ¢, taking g — 0, we have
up(r) < yaxy in B .

So that,

+
TLE"®

u(xz) < yazxy in B
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Now if j is big enough we have ya < «j and 277 < rge. But this contradicts the definition of
«j. Therefore,

u(z) = axy + o(|z|),

as we wanted to prove. O

APPENDIX B. BLOW-UP LIMITS

Now we give the definition of blow-up sequence, and we collect some properties of the limits
of these blow-up sequences for certain classes of functions that are used throughout the paper.

Let u be a function with the following properties,

(B1) w is Lipschitz in © with constant L > 0, v > 0 in Q and A,u =0 in QN {u > 0}.
(B2) Given 0 < Kk < 1, there exist two positive constants C and r, such that for every ball
B,(xg) CQand 0 <7 < 71y,

1/~
1
- ][ uw dz < Cy, implies that u = 0 in By, (x9).
r Br(z0)

(B3) There exist constants 79 > 0 and 0 < A; < A9 < 1 such that, for every ball B,(xzg) C Q
zoon O{u >0} and 0 <r < rg

| By (z0) N {u > 0}
| By (o)

Definition B.1. Let B, (xz;) C Q be a sequence of balls with p, — 0, x, — xo € Q and
u(xg) =0. Let

A1 < < Xo.

1
ug(zx) == Eu(:ck + pr).

We call ug, a blow-up sequence with respect to B, (x).
Since u is locally Lipschitz continuous, there exists a blow-up limit ug : RV — R such that
for a subsequence,
Up — Uy in C’fgc(RN) for every 0 < a <1,
Vauy — Vug  * —weakly in = LS, (RY),
and ug is Lipschitz in RV with constant L.
Lemma B.1. If u satisfies properties (B1), (B2) and (B3) then,
1) ug >0 in Q and Apug =0 in {ug > 0}
2) H{ug > 0} — O{ug > 0} locally in Hausdorff distance,

4) If K CC {up =0}, then up =0 in K for big enough k,

(1)

(2)

(3) X{ur>0} = X{uo>0} in Lig (RY),

(4)

(5) If K CC {ug > 0} U{ug = 0}°, then Vuy — Vug uniformly in K,
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(6) There ezists a constant 0 < X\ < 1 such that,

|Br(y0) N {uo = 0}
|Br(yo)|

> A, VR>0,Vyp € d{up > 0}

(7) Vug — Vug a.e in ,

(8) If x € 0{u > 0}, then 0 € d{uy > 0}

Proof. As uy, are p-harmonic and uj — ug uniformly in compacts subsets of RY then (1) holds.

For

the proof of (2)—(8) see [13]. O
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