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Abstract

The paper deals with the minimization problem considered by Henrot and Maillot in [1], known
as the reinforced membrane problem:

F (E) :=

∫
Ω

fuE dx 7→ min over E ⊂ Ω, |E| = β,

where uE ∈ W 1,2
0 (Ω) models the displacement of the membrane reinforced on a subset E

−∆uE(x) + χEuE(x) = f(x)

and F (E) is the work done by the given loading f . The non-existence of an optimal reinforcement
shape E ⊂ Ω is proven under rather general conditions.

In addition, a counterexample for the radially symmetric decreasing right-hand side is pre-
sented, which rules out the possibility of a simple existence/non-existence alternative depending
on the value of |E| = β even in the radially symmetric situation.
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1. Introduction

We consider the following shape optimization problem: let uE model the displacement of a
composite membrane over a domain Ω ⊂ Rn, n ≥ 2, subject to the loading f , which is reinforced
on a subset E ⊂ Ω of higher stiffness, where the reinforcement is modeled by the following
Dirichlet boundary value problem{

−∆ uE(x) + χEuE(x) = f(x) in Ω,

uE(x) = 0 on ∂Ω.
(1)
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Further, let

F (E) =

∫
Ω

|∇uE |2 + χEu
2
E dx =

∫
Ω

fuE dx

be the work done by the loading f .

The minimization problem

F (E) 7→ min over E ⊂ Ω, |E| = β, (2)

models the optimal shape of the membrane reinforcement problem, where the unknown set E
has a given volume.

This problem introduced in [1] is a version of a broader class of optimal shape problems
and their relaxed versions considered by various authors (see [2, 3, 4, 5, 6, 7]). This problem is
particularly interesting due to the failure of the lower semi continuity of F for the γ-convergence,
which makes the application of the classical existence result by Buttazzo and Dal Maso possible
(see [8]).

The relaxed version of the problem is the following: let

F (l) =

∫
Ω

|∇ul|2 + lu2
l dx =

∫
Ω

ful dx (3)

where ul is the unique solution of the Dirichlet boundary value problem with nonnegative function
f(x) {

−∆ ul(x) + lul(x) = f(x) in Ω,

ul(x) = 0 on ∂Ω,
(4)

and l belongs to the set

R̄β =

{
l ∈ L∞(Ω): 0 ≤ l ≤ 1,

∫
Ω

l dx = β

}
,

where R̄β is the weak∗-closure of the rearrangement class

Rβ = {l = χE : E ⊂ Ω, |E| = β} .

For the minimization problem

F (l) 7→ min over R̄β , (5)

Henrot and Maillot in [1] have proven the following two theorems for N = 2 and 3. However, one
can easily check that same proofs work in higher dimensions, too. One just needs to use different
argument to obtain the continuity of function u∗ in the Remark 2.4 in [1] (see [9]).

The first theorem establishes a necessary condition on the function f to guarantee the exis-
tence of the optimal shape Ê given by l̂ = χÊ ∈ Rβ .

Theorem A. Let f ≥ 0 be bounded and u∞ ∈ W 1,2
0 (Ω) solve the problem

−∆u∞ = f in Ω.

If one of the conditions below holds
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(i) u∞ ≤ f in Ω,

(ii) f ≤ −∆f in Ω,

(iii) β > |{x ∈ Ω: u∞(x) > α}|, where α = inf {f(x) : x such that u∞(x) > f(x)},

then the minimization problem (5) has a unique minimizer, which is a characteristic function
χE ∈ Rβ .

The second theorem in [1] gives a necessary and sufficient condition for a minimizer.

Theorem B. Let û solve (4) with a design function l̂ ∈ R̄β , and

Ω0 =
{
x ∈ Ω: l̂(x) = 0

}
, Ω∗ =

{
x ∈ Ω: 0 < l̂(x) < 1

}
, Ω1 =

{
x ∈ Ω: l̂(x) = 1

}
.

Then l̂ minimizes J if and only if the following two conditions hold

(i) γl̂ = sup
x∈Ω0

û(x) = inf
x∈Ω1

û(x).

(ii) If |Ω∗| > 0, then û(x) = γl̂ a.e. in Ω∗.

Ideally, we would like to find a necessary and sufficient condition on the function f for the
existence of an optimal shape (i.e., the minimizer is a characteristic function), and it would be a
stronger version of Theorem A above.

In this paper we obtain a negative result in this direction. More precisely, in Section 2 we
provide a general non-existence result: under natural conditions the minimizer cannot be char-
acteristic. Then, in Section 3, we construct an explicit counterexample in the radially symmetric
case, which shows that even when f is radial and radially decreasing the minimizer may fail to be
characteristic for values of β below certain threshold. This indicates that finding a full necessary
and sufficient condition on f for the existence of optimal shapes is a highly delicate problem.

2. A non-existence result for the optimal shape

This section is devoted to our main general non-existence result. We show that, under suitable
assumptions on f and α, the minimizer of problem (4) cannot be characteristic. The proof relies
on a careful comparison between the minimizer of a convex functional and the solution of a
normalized obstacle problem.

Let f ∈ L∞(Ω), f ≥ 0 in Ω and

−∆u∞ = f, u∞ ∈ W 1,2
0 (Ω).

Further, for 0 < α < M = maxu∞ let vα solve the normalized obstacle problem

∆v = χ{v>0}f, (6)

with constant boundary condition v = α on ∂Ω.

Theorem 2.1. If 0 < f < α in {vα = 0}, then the solution to the minimization problem (4)
with β = α−1

∫
{vα=0} f(x) dx is non-characteristic.
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Proof. Inspired by Theorem B let us define the auxiliary function uα ∈ W 1,2
0 (Ω) as the unique

minimizer of the convex functional

Jα(u) =

∫
Ω

1

2
|∇u|2 +Hα(u)− fudx (7)

where Hα(t) =
1
2χ{t>α}(t

2 − α2). Then uα satisfies the inequalities

χ{u>α}u ≤ ∆u+ f ≤ χ{u≥α}u. (8)

Let us figure out under which conditions α− vα = uα. To this end, let ũ = α− vα, then

∆ũ+ f = χ{ũ≥α}f,

and we will have ũ = uα if and only if

0 = χ{ũ>α}ũ ≤ χ{ũ≥α}f ≤ χ{ũ≥α}ũ = χ{ũ=α}α. (9)

This leads to the condition
0 ≤ χ{vα=0}f ≤ χ{vα=0}α. (10)

For the function uα, we have
−∆uα + χ{vα=0}f = f

or

−∆uα + χ{uα=α}
f(x)

α
uα = f.

Since the function

l(x) = χ{uα=α}
f(x)

α

satisfies the conditions of Theorem B above, i.e., 0 < l(x) < 1 in {uα = α}, l(x) = 0 in {uα < α},
and {uα > α} = ∅. Thus, the non-characteristic function l(x) ∈ R̄β \ Rβ is the solution of the
minimization problem (3)-(4) with β = α−1

∫
{vα=0} f(x)dx.

Corollary 2.1. If 0 ≤ f ≤ m < M, in Ω, then the solution of the minimization problem (4) is
non-characteristic for all

0 < β < m−1

∫
{vm=0}

f(x)dx,

where vm is defined in (6).

3. Radially symmetric case

The result of the previous section shows that non-existence of optimal shapes can occur for
small β under pretty general conditions. A natural question is whether such pathologies may
be avoided under additional structure, for instance, in the radially symmetric case. In [1], it
was proven that in B1, if f is radially symmetric and radially decreasing, then the minimizer is
characteristic for arbitrary β. One may then wonder whether this result extends to larger radii
and specific values of β, and thus the following question becomes natural:

Question. Let uα be the minimizer of (7) in BR ⊂ R2, where f ≥ 0 is radially decreasing.
Is it true that for 0 < α < M :

4



Figure 1: Functions u on the left and f on the right in the construction of the counterexample

• either int{u = α} ̸= ∅ and {u > α} = ∅

• or int{u = α} = ∅ and {u > α} ̸= ∅?

In this section, we answer this question negatively by constructing an explicit counterexample.
Consider a radially symmetric function in Bπ(0) ⊂ R2

u(x, y) = u(r) = 3 + cos r.

Then

−∆u+ u = −(u′′ +
1

r
u′) + u = 3 + 2 cos r +

sin r

r
=: f(r)

is a decreasing function in [0, π].

Let us now choose R4 > 4 such that the solution U4 of

∆U = χ{U>0}

with boundary values U4 = 2 on ∂BR4
, has the coincidence set {U4 = 0} = B4.

We can now define

u(r) =


3 + cos r for 0 ≤ r ≤ π

2 for π ≤ r ≤ 4

2− U4(r) for 4 ≤ r ≤ R4,

and

f(r) =

{
3 + 2 cos r + sin r

r for 0 ≤ r ≤ π

1 for π ≤ r ≤ R4.

See Figure 1. One can observe that for f above, the function u is the minimizer of (7), by
checking the condition (8).

On the other hand, for the same choice of f , the function

l(r) =


1 for 0 ≤ r ≤ π

1/2 for π ≤ r ≤ 4

0 for 4 ≤ r ≤ R4,
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and u(r) above satisfy (4), as well as the necessary and sufficient conditions of Theorem B. Thus,
l is the non-characteristic minimizer of the functional (3).
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Dunod, Paris; Gauthier-Villars, Paris, 1968, avant propos de P. Lelong.

[3] G. Buttazzo, G. Dal Maso, Shape optimization for Dirichlet problems: relaxed formulation
and optimality conditions, Appl. Math. Optim. 23 (1) (1991) 17–49. doi:10.1007/BF01442391.
URL https://doi.org/10.1007/BF01442391

[4] R. V. Kohn, G. Strang, Optimal design and relaxation of variational problems. I, Comm.
Pure Appl. Math. 39 (1) (1986) 113–137. doi:10.1002/cpa.3160390107.
URL https://doi.org/10.1002/cpa.3160390107

[5] Z. Cheng, H. Mikayelyan, Optimization of the shape for a non-local control problem, Fract.
Calc. Appl. Anal. 27 (5) (2024) 2482–2501. doi:10.1007/s13540-024-00318-9.
URL https://doi.org/10.1007/s13540-024-00318-9

[6] M. Chipot, G. Dal Maso, Relaxed shape optimization: the case of nonnegative data for the
Dirichlet problem, Adv. Math. Sci. Appl. 1 (1) (1992) 47–81.

[7] A. Henrot, M. Pierre, Variation et optimisation de formes, Vol. 48 of Mathématiques &
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