A non-existence result for the reinforced membrane problem

Zhiwei Cheng^a, Julian Fernandez Bonder^b, Hayk Mikayelyan^{c,*}

^aSchool of Statistics and Mathemtices, Zhejiang Gongshang University, 18 Xuezheng Street, Qiantang District, Hangzhou 310018, Zhejiang, PR China

 b Departamento de Matemática, FCEyN - Universidad de Buenos Aires and IC - CONICET, Ciudad Universitaria, 0 + ∞ Building (1428) Av. Cantilo s/n. Buenos Aires, Argentina

^c Mathematical Sciences, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, Zhejiang, PR China

Abstract

The paper deals with the minimization problem considered by Henrot and Maillot in [1], known as the reinforced membrane problem:

$$F(E) := \int_{\Omega} f u_E \, dx \mapsto \min$$
 over $E \subset \Omega, |E| = \beta,$

where $u_E \in W_0^{1,2}(\Omega)$ models the displacement of the membrane reinforced on a subset E

$$-\Delta u_E(x) + \chi_E u_E(x) = f(x)$$

and F(E) is the work done by the given loading f. The non-existence of an optimal reinforcement shape $E \subset \Omega$ is proven under rather general conditions.

In addition, a counterexample for the radially symmetric decreasing right-hand side is presented, which rules out the possibility of a simple existence/non-existence alternative depending on the value of $|E| = \beta$ even in the radially symmetric situation.

Keywords: reinforced membrane problem, optimal shape

2020 MSC: 49Q10, 74P05, 35J15

1. Introduction

We consider the following shape optimization problem: let u_E model the displacement of a composite membrane over a domain $\Omega \subset \mathbb{R}^n$, $n \geq 2$, subject to the loading f, which is reinforced on a subset $E \subset \Omega$ of higher stiffness, where the reinforcement is modeled by the following Dirichlet boundary value problem

$$\begin{cases}
-\Delta u_E(x) + \chi_E u_E(x) = f(x) & \text{in } \Omega, \\
u_E(x) = 0 & \text{on } \partial\Omega.
\end{cases}$$
(1)

^{*}Corresponding author.

Email addresses: zhiweicheng@ustc.edu.cn (Zhiwei Cheng), jfbonder@dm.uba.ar (Julian Fernandez Bonder), hayk.mikayelyan@nottingham.edu.cn (Hayk Mikayelyan)

Further, let

$$F(E) = \int_{\Omega} |\nabla u_E|^2 + \chi_E u_E^2 dx = \int_{\Omega} f u_E dx$$

be the work done by the loading f.

The minimization problem

$$F(E) \mapsto \min \quad \text{over} \quad E \subset \Omega, \ |E| = \beta,$$
 (2)

models the optimal shape of the membrane reinforcement problem, where the unknown set E has a given volume.

This problem introduced in [1] is a version of a broader class of optimal shape problems and their relaxed versions considered by various authors (see [2, 3, 4, 5, 6, 7]). This problem is particularly interesting due to the failure of the lower semi continuity of F for the γ -convergence, which makes the application of the classical existence result by Buttazzo and Dal Maso possible (see [8]).

The relaxed version of the problem is the following: let

$$F(l) = \int_{\Omega} |\nabla u_l|^2 + lu_l^2 dx = \int_{\Omega} f u_l dx$$
 (3)

where u_l is the unique solution of the Dirichlet boundary value problem with nonnegative function f(x)

$$\begin{cases}
-\Delta \ u_l(x) + lu_l(x) = f(x) & \text{in } \Omega, \\
u_l(x) = 0 & \text{on } \partial\Omega,
\end{cases}$$
(4)

and l belongs to the set

$$\bar{\mathcal{R}}_{\beta} = \left\{ l \in L^{\infty}(\Omega) \colon 0 \le l \le 1, \int_{\Omega} l \, dx = \beta \right\},$$

where $\bar{\mathcal{R}}_{\beta}$ is the weak*-closure of the rearrangement class

$$\mathcal{R}_{\beta} = \{l = \chi_E \colon E \subset \Omega, |E| = \beta\}.$$

For the minimization problem

$$F(l) \mapsto \min \quad \text{over} \quad \bar{\mathcal{R}}_{\beta},$$
 (5)

Henrot and Maillot in [1] have proven the following two theorems for N=2 and 3. However, one can easily check that same proofs work in higher dimensions, too. One just needs to use different argument to obtain the continuity of function u^* in the Remark 2.4 in [1] (see [9]).

The first theorem establishes a necessary condition on the function f to guarantee the existence of the optimal shape \hat{E} given by $\hat{l} = \chi_{\hat{E}} \in \mathcal{R}_{\beta}$.

Theorem A. Let $f \geq 0$ be bounded and $u_{\infty} \in W_0^{1,2}(\Omega)$ solve the problem

$$-\Delta u_{\infty} = f \text{ in } \Omega.$$

If one of the conditions below holds

- (i) $u_{\infty} \leq f$ in Ω ,
- (ii) $f < -\Delta f$ in Ω ,
- (iii) $\beta > |\{x \in \Omega: u_{\infty}(x) > \alpha\}|$, where $\alpha = \inf\{f(x): x \text{ such that } u_{\infty}(x) > f(x)\}$,

then the minimization problem (5) has a unique minimizer, which is a characteristic function $\chi_E \in \mathcal{R}_{\beta}$.

The second theorem in [1] gives a necessary and sufficient condition for a minimizer.

Theorem B. Let \hat{u} solve (4) with a design function $\hat{l} \in \mathcal{R}_{\beta}$, and

$$\Omega_0 = \left\{x \in \Omega \colon \hat{l}(x) = 0\right\}, \quad \Omega_* = \left\{x \in \Omega \colon 0 < \hat{l}(x) < 1\right\}, \quad \Omega_1 = \left\{x \in \Omega \colon \hat{l}(x) = 1\right\}.$$

Then \hat{l} minimizes J if and only if the following two conditions hold

- $\begin{array}{l} \text{(i)} \ \ \gamma_{\hat{l}} = \sup_{x \in \Omega_0} \hat{u}(x) = \inf_{x \in \Omega_1} \hat{u}(x). \\ \text{(ii)} \ \ \text{If} \ |\Omega_*| > 0, \ \text{then} \ \hat{u}(x) = \gamma_{\hat{l}} \ \text{a.e. in} \ \Omega_*. \end{array}$

Ideally, we would like to find a necessary and sufficient condition on the function f for the existence of an optimal shape (i.e., the minimizer is a characteristic function), and it would be a stronger version of Theorem A above.

In this paper we obtain a negative result in this direction. More precisely, in Section 2 we provide a general non-existence result: under natural conditions the minimizer cannot be characteristic. Then, in Section 3, we construct an explicit counterexample in the radially symmetric case, which shows that even when f is radial and radially decreasing the minimizer may fail to be characteristic for values of β below certain threshold. This indicates that finding a full necessary and sufficient condition on f for the existence of optimal shapes is a highly delicate problem.

2. A non-existence result for the optimal shape

This section is devoted to our main general non-existence result. We show that, under suitable assumptions on f and α , the minimizer of problem (4) cannot be characteristic. The proof relies on a careful comparison between the minimizer of a convex functional and the solution of a normalized obstacle problem.

Let $f \in L^{\infty}(\Omega)$, $f \geq 0$ in Ω and

$$-\Delta u_{\infty} = f, \quad u_{\infty} \in W_0^{1,2}(\Omega).$$

Further, for $0 < \alpha < M = \max u_{\infty}$ let v_{α} solve the normalized obstacle problem

$$\Delta v = \chi_{\{v > 0\}} f,\tag{6}$$

with constant boundary condition $v = \alpha$ on $\partial \Omega$.

Theorem 2.1. If $0 < f < \alpha$ in $\{v_{\alpha} = 0\}$, then the solution to the minimization problem (4) with $\beta = \alpha^{-1} \int_{\{v_{\alpha}=0\}} f(x) dx$ is non-characteristic.

Proof. Inspired by Theorem B let us define the auxiliary function $u_{\alpha} \in W_0^{1,2}(\Omega)$ as the unique minimizer of the convex functional

$$J_{\alpha}(u) = \int_{\Omega} \frac{1}{2} |\nabla u|^2 + H_{\alpha}(u) - fu dx \tag{7}$$

where $H_{\alpha}(t) = \frac{1}{2}\chi_{\{t>\alpha\}}(t^2 - \alpha^2)$. Then u_{α} satisfies the inequalities

$$\chi_{\{u > \alpha\}} u \le \Delta u + f \le \chi_{\{u \ge \alpha\}} u. \tag{8}$$

Let us figure out under which conditions $\alpha - v_{\alpha} = u_{\alpha}$. To this end, let $\tilde{u} = \alpha - v_{\alpha}$, then

$$\Delta \tilde{u} + f = \chi_{\{\tilde{u} > \alpha\}} f,$$

and we will have $\tilde{u} = u_{\alpha}$ if and only if

$$0 = \chi_{\{\tilde{u} > \alpha\}} \tilde{u} \le \chi_{\{\tilde{u} \ge \alpha\}} f \le \chi_{\{\tilde{u} \ge \alpha\}} \tilde{u} = \chi_{\{\tilde{u} = \alpha\}} \alpha. \tag{9}$$

This leads to the condition

$$0 \le \chi_{\{v_{\alpha}=0\}} f \le \chi_{\{v_{\alpha}=0\}} \alpha. \tag{10}$$

For the function u_{α} , we have

$$-\Delta u_{\alpha} + \chi_{\{v_{\alpha}=0\}} f = f$$

or

$$-\Delta u_{\alpha} + \chi_{\{u_{\alpha} = \alpha\}} \frac{f(x)}{\alpha} u_{\alpha} = f.$$

Since the function

$$l(x) = \chi_{\{u_{\alpha} = \alpha\}} \frac{f(x)}{\alpha}$$

satisfies the conditions of Theorem B above, i.e., 0 < l(x) < 1 in $\{u_{\alpha} = \alpha\}$, l(x) = 0 in $\{u_{\alpha} < \alpha\}$, and $\{u_{\alpha} > \alpha\} = \emptyset$. Thus, the non-characteristic function $l(x) \in \overline{\mathcal{R}}_{\beta} \setminus \mathcal{R}_{\beta}$ is the solution of the minimization problem (3)-(4) with $\beta = \alpha^{-1} \int_{\{v_{\alpha} = 0\}} f(x) dx$.

Corollary 2.1. If $0 \le f \le m < M$, in Ω , then the solution of the minimization problem (4) is non-characteristic for all

$$0 < \beta < m^{-1} \int_{\{v_m = 0\}} f(x) dx,$$

where v_m is defined in (6).

3. Radially symmetric case

The result of the previous section shows that non-existence of optimal shapes can occur for small β under pretty general conditions. A natural question is whether such pathologies may be avoided under additional structure, for instance, in the radially symmetric case. In [1], it was proven that in B_1 , if f is radially symmetric and radially decreasing, then the minimizer is characteristic for arbitrary β . One may then wonder whether this result extends to larger radii and specific values of β , and thus the following question becomes natural:

Question. Let u_{α} be the minimizer of (7) in $B_R \subset \mathbb{R}^2$, where $f \geq 0$ is radially decreasing. Is it true that for $0 < \alpha < M$:

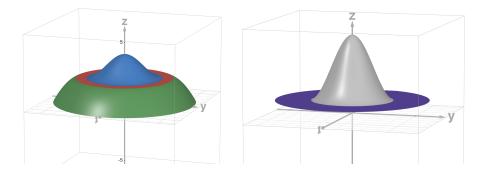


Figure 1: Functions u on the left and f on the right in the construction of the counterexample

- either int $\{u = \alpha\} \neq \emptyset$ and $\{u > \alpha\} = \emptyset$
- or int $\{u = \alpha\} = \emptyset$ and $\{u > \alpha\} \neq \emptyset$?

In this section, we answer this question negatively by constructing an explicit counterexample. Consider a radially symmetric function in $B_{\pi}(0) \subset \mathbb{R}^2$

$$u(x,y) = u(r) = 3 + \cos r.$$

Then

$$-\Delta u + u = -(u'' + \frac{1}{r}u') + u = 3 + 2\cos r + \frac{\sin r}{r} =: f(r)$$

is a decreasing function in $[0, \pi]$.

Let us now choose $R_4 > 4$ such that the solution U_4 of

$$\Delta U = \chi_{\{U>0\}}$$

with boundary values $U_4 = 2$ on ∂B_{R_4} , has the coincidence set $\{U_4 = 0\} = B_4$.

We can now define

$$u(r) = \begin{cases} 3 + \cos r & \text{for } 0 \le r \le \pi \\ 2 & \text{for } \pi \le r \le 4 \\ 2 - U_4(r) & \text{for } 4 \le r \le R_4, \end{cases}$$

and

$$f(r) = \begin{cases} 3 + 2\cos r + \frac{\sin r}{r} & \text{for } 0 \le r \le \pi \\ 1 & \text{for } \pi \le r \le R_4. \end{cases}$$

See Figure 1. One can observe that for f above, the function u is the minimizer of (7), by checking the condition (8).

On the other hand, for the same choice of f, the function

$$l(r) = \begin{cases} 1 & \text{for } 0 \le r \le \pi \\ 1/2 & \text{for } \pi \le r \le 4 \\ 0 & \text{for } 4 \le r \le R_4, \end{cases}$$

and u(r) above satisfy (4), as well as the necessary and sufficient conditions of Theorem B. Thus, l is the non-characteristic minimizer of the functional (3).

Acknowledgments

Julian Fernandez Bonder is partially supported by UBACYT Prog. 2018 20020170100445BA, CONICET PIP 11220210100238CO and ANPCyT PICT 2019-03837 and PICT 2019-00985.

References

- [1] A. Henrot, H. Maillot, Optimization of the shape and the location of the actuators in an internal control problem, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 4 (3) (2001) 737–757.
- [2] J.-L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles, Dunod, Paris; Gauthier-Villars, Paris, 1968, avant propos de P. Lelong.
- [3] G. Buttazzo, G. Dal Maso, Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions, Appl. Math. Optim. 23 (1) (1991) 17–49. doi:10.1007/BF01442391. URL https://doi.org/10.1007/BF01442391
- [4] R. V. Kohn, G. Strang, Optimal design and relaxation of variational problems. I, Comm. Pure Appl. Math. 39 (1) (1986) 113-137. doi:10.1002/cpa.3160390107.
 URL https://doi.org/10.1002/cpa.3160390107
- Z. Cheng, H. Mikayelyan, Optimization of the shape for a non-local control problem, Fract.
 Calc. Appl. Anal. 27 (5) (2024) 2482-2501. doi:10.1007/s13540-024-00318-9.
 URL https://doi.org/10.1007/s13540-024-00318-9
- [6] M. Chipot, G. Dal Maso, Relaxed shape optimization: the case of nonnegative data for the Dirichlet problem, Adv. Math. Sci. Appl. 1 (1) (1992) 47–81.
- [7] A. Henrot, M. Pierre, Variation et optimisation de formes, Vol. 48 of Mathématiques & Applications (Berlin) [Mathematics & Applications], Springer, Berlin, 2005, une analyse géométrique. [A geometric analysis]. doi:10.1007/3-540-37689-5. URL https://doi.org/10.1007/3-540-37689-5
- [8] G. Buttazzo, G. Dal Maso, An existence result for a class of shape optimization problems, Arch. Rational Mech. Anal. 122 (2) (1993) 183-195. doi:10.1007/BF00378167.
 URL https://doi.org/10.1007/BF00378167
- [9] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001, reprint of the 1998 edition.