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Abstract. We prove that perturbing the reaction–diffusion equation
ut = uxx + (u+)p (p > 1), with time–space white noise produces that
solutions explodes with probability one for every initial datum, opposite
to the deterministic model where a positive stationary solution exists.

1. Introduction

In this paper we study the following parabolic SPDE with additive noise

(1.1) ut = uxx + f(u) + σẆ (x, t),

in an interval (0, 1), complemented with homogeneous Dirichlet boundary
conditions. Here W is a 2−dimensional Brownian sheet, σ is a positive
parameter and f is a locally Lipschitz real function.

We restrict ourselves to one space dimension since for higher dimensions
the solution to (1.1) (if it exists) it is not expected to be a function valued
process and have to be understood in a distributional sense. But in this case
there is no natural way to define f(u), see [13] for more on this.

This type of problems appear naturally in several branches of pure and ap-
plied mathematics such as population dynamics, chemical reactions, chemo-
taxis in biological systems, etc.

This equation, in the deterministic case (i.e. σ = 0), have been widely
studied in the literature. One problem that has drawn the attention to the
PDE community is the appearance of singularities in finite time, no matter
how smooth the initial data is. This phenomena is known as blow-up. What
happens is that solutions go to infinity in finite time, that is, there exists a
time T < ∞ such that

lim
t↗T

‖u(·, t)‖∞ = ∞.
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2 JULIAN FERNÁNDEZ BONDER AND PABLO GROISMAN

A well known condition on the nonlinear term f that assures this phenomena
is when f is a nonnegative convex function with

∫ ∞ 1
f

< ∞.

For a general reference of these facts and much more on blow-up problems,
see the book [14] and the surveys [1, 5].

For a large class of nonlinearities f (for instance, for the model problems
f(s) = (s+)p, with p > 1), problem (1.1) with σ = 0 admits a stationary
positive solution v and hence, since the comparison principle holds for this
equation, for every initial datum u0 ≤ v the solution to (1.1) is global in
time.

Surprisingly, the situation changes drastically for σ > 0. We prove that,
in this case, there is no global solution. In fact, for every initial nonnegative
datum u0, the solution to (1.1) blows up with probability one.

Stochastic partial differential equations with blow-up has been considered
by C. Mueller in [10, 11] and C. Mueller and R. Sowers in [12]. In those
papers, a linear drift with a nonlinear multiplicative noise is considered and
the explosion is due to this latter term.

A similar result, but in some sense in the opposite direction, was proved
by Mao, Marion and Renshaw in [9]. There, the authors prove for a system
of ODEs that arise in population dynamics and that have blow-up solutions,
that perturbing some coefficients of the system with a small Brownian noise,
global solutions a.s. are obtained for every initial data.

In other problem, a common way to interpret the asymptotic behavior
of u is the following: consider first the deterministic case σ = 0. In this
case there is some kind of competition between the diffusion, which diffuses
the zero boundary condition to the interior of the domain and the nonlinear
source f(u) that induces u to grow very fast.

Again in the deterministic case, it was proved in [3] that for small initial
datum u0, u → 0 as t → +∞ while for u0 large, there exist a finite time T
such that ‖u(·, t)‖∞ ↗ +∞ as t ↗ T . More precisely, it is proved that for
every data u0, there exists a critical parameter λ∗ such that if we solve the
PDE with initial data λu0, for λ < λ∗ the solution converges to 0 uniformly,
for λ > λ∗ the solution blows-up in finite time and for λ = λ∗ the solution
converges uniformly to the unique positive steady state.

For small noise σ ¿ 1 one could expect a similar behavior. Of course we
can not expect convergence to the zero solution as t →∞ since in this case
v ≡ 0 is not invariant for (1.1), but it is reasonable to suspect the existence
of an invariant measure close to the stationary solution of the deterministic
PDE and convergence to this invariant measure for small initial datum as
t →∞.
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However, that is not the case. We prove in Section 3 that for every initial
datum u0 solutions to (1.1) blow-up in finite time with probability one.

Numerical simulations, as well as heuristical arguments, suggest that,
for small initial data u0, metastability could be taking place in this case.
Metastability appears here since, while the noise remains relatively small,
the solution stays in the domain of attraction of the zero solution of the
deterministic problem. But, as soon as the noise became large, the solution
escapes this domain of attraction and hence the reaction term begins to
dominate and pushes forward the solution until ultimately explosion cannot
be prevented by the action of the noise.

Organization of the paper. The paper is organized as follows. In Section
2 we give the rigorous meaning of (1.1) and give the references where the
foundations for the study of this kind of equation were laid. Section 3 deals
with the proof of the main result of this paper: the explosion of the solutions
of (1.1). Finally, in Section 4 we show some numerical simulations for this
equation.

2. Formulation of the problem

We begin this section discussing the rigorous meaning of (1.1), the refer-
ences for this being [2, 7, 13, 15]. There are two alternatives: the integral
and the weak formulation as described in [2, 13, 15]. The last being more
suitable for our purposes. Both formulations are equivalent as is shown in
[15].

Let (Ω,F , (Ft)t≥0,P) be a probability space equipped with a filtration
(Ft)t≥0 which is supposed to be right continuous and such that F0 contains
all the P−null sets of F . We are given a space-time white noise on R+×[0, 1]
defined on (Ω,F , (Ft)t≥0,P) and u0 ∈ C0([0, 1]).

Assume for a moment that f is globally Lipschitz, multiply (1.1) by a test
function ϕ ∈ C2((0, 1)) ∩ C0([0, 1]) and integrate to obtain

(2.1)

∫ 1

0
u(x, t)ϕ(x) dx−

∫ 1

0
u0(x)ϕ(x) dx =

∫ t

0

∫ 1

0
u(s, x)ϕxx(x) dx ds +

∫ t

0

∫ 1

0
f(u(s, x))ϕ(x) dx ds

+ σ

∫ t

0

∫ 1

0
ϕ(x) dW (x, s).

Alternatively, the integral formulation of the problem is constructed by
means of the function G, the fundamental solution of the heat equation for
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the domain (0, 1).

u(x, t)−
∫ 1

0
Gt(x, y)u0(y) dy =

−
∫ t

0

∫ 1

0
Gt−s(x, y)f(u(y, s)) dyds + σ

∫ t

0

∫ 1

0
Gt−s(x, y)dW (y, s).

As a solution to (1.1) we understand an Ft−adapted process with values
in C0([0, 1]) that verifies (2.1) for every ϕ ∈ C∞((0, 1)) ∩ C0([0, 1]).

In [2, 15] it is proved that there exists a unique solution to this problem
and that the integral and weak formulations are equivalent.

For f locally Lipschitz globally defined solutions do not exist in gen-
eral. Nevertheless, existence of local in time solutions is proved by stan-
dard arguments: consider for each n ∈ N the globally Lipschitz function
fn(x) = f(−n)1(−∞,−n] + f(x)1(−n,n) + f(n)1[n,+∞) and un, the unique
solution of (1.1) with f replaced by fn. Let Tn be the first time at which
‖un(·, t)‖∞ reaches the value n. Then (Tn)n is an increasing sequence of stop-
ping times and we define the maximal existence time of (1.1) as T := lim Tn.
It is easy to see that un+11{t<Tn} = un1{t<Tn} a.s. and hence there exist
the limit u(x, t) = limun(x, t) for t < T which verifies

(2.2)

∫ 1

0
u(x, t ∧ T )ϕ(x) dx−

∫ 1

0
u0(x)ϕ(x) dx =

∫ t∧T

0

∫ 1

0
u(s, x)ϕxx(x) dx ds +

∫ t∧T

0

∫ 1

0
f(u(s, x))ϕ(x) dx ds

+ σ

∫ t∧T

0

∫ 1

0
ϕ(x) dW (x, s).

So we say that u solves (1.1) up to the explosion time T . We also say
that u blows up in finite time if P(T < ∞) > 0. Observe that if T (ω) < ∞
then

lim
t↗T (ω)

‖u(·, t, ω)‖∞ = ∞.

3. Explosions

In this section, we show that equation (1.1) blows-up in finite time with
probability one for every initial datum u0 ∈ C0([0, 1]).

In order to prove the blow-up of u, we define the function

Φ(t) :=
∫ 1

0
φ(x)u(x, t) dx.

Here φ(x) > 0 is the normalized first eigenfunction of the Dirichlet Laplacian
in (0, 1). That is, φ(x) = π

2 sin(πx) and hence we can use it as a test function
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in (2.1) to obtain

Φ(t) = −λ1

∫ t

0
Φ(s) ds+

∫ t

0

∫ 1

0
φ(x)f(u(x, s)) dxds+σ

∫ t

0

∫ 1

0
φ(x) dW (x, s).

We denote by z0 := Φ(0) =
∫ 1
0 φ(x)u0(x) dx.

Now, as f is convex, by Jensen’s inequality, we get
∫ 1

0
φ(x)f(u(x, s)) dx ≥ f

(∫ 1

0
φ(x)u(x, s) dx

)
= f(Φ(s)).

Moreover, since φ is a positive function with L1−norm equal to 1, it is easy
to see that

B(t) :=
∫ t

0

∫ 1

0
φ(x) dW (x, s),

is a Brownian motion.

Combining all these facts, we obtain that Φ verifies the (one dimensional)
stochastic differential inequality

dΦ(t) ≥ (− λ1Φ(t) + f(Φ(t))
)
dt + σdB(t).

Define z(t) to be the one-dimensional process that verifies

dz = (−λ1z + f(z)) dt + σdB,

with initial condition z(0) = z0. Then, e(t) = Φ(t)− z(t) verifies

de ≥
(
− λ1e +

f(Φ)− f(z)
Φ− z

e
)

dt.

Observe that e verifies a deterministic differential inequality. Hence, as
e(0) = 0 it is easy to check that e(t) > 0 as long as it is defined.

Therefore, φ(t) ≥ z(t) as long as φ is defined.

The following lemma proves that z explodes with probability one.

Lemma 3.1. Let z be the solution of

(3.1) dz = (−λ1z + f(z)) dt + σdB, z(0) = 0.

Then z explodes in finite time with probability one.

Proof. The proof is just an application of the Feller Test for explosions ([8],
Chapter 5). Using the same notation as in [8] we obtain the scale function
for (3.1) to be

p(x) =
∫ x

0
exp

(
− 2

σ2

∫ s

0
b(ξ) dξ

)
ds

Here b(ξ) = −λ1ξ + f(ξ).

It is easy to see that, as
∫∞ 1/f < ∞,

p(−∞) = −∞, p(+∞) < +∞,
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and hence the Feller Test implies that, if S is the explosion time of z, we get

P
(

lim
t↗S

z(t) = +∞
)

= 1

To prove that P(S < +∞) = 1 we have to consider the function

v(x) = 2
∫ x

0

p(x)− p(y)
σ2p(y)

dy.

The behavior of v at +∞ is given 1/f and hence v(+∞) < +∞, which
implies that

P(S < ∞) = 1.
This completes the proof. ¤

These facts all together, imply that there exists a (random) time T =
T (ω) < ∞ a.s. such that

lim
t↗T

‖u(·, t)‖∞ = ∞ a.s.

So we have proved the following Theorem.

Theorem 3.2. Let f be a nonnegative, convex locally Lipschitz function
such that ∫ ∞ 1

f
< ∞.

Then, for every nonnegative initial datum u0 ≥ 0 the solution u to (1.1)
blows-up in finite (random) time T with

Pu0(T < ∞) = 1.

4. Numerical simulations

In this section we show some numerical simulations of (1.1). We perform
all the simulations with the reaction f(u) = (u+)2, σ = 6.36 and initial
datum u0 ≡ 0.

To perform the simulations we discretize the space variables with second
order finite differences in a uniform mesh of size h = 0.02 (i.e.: n = 50
nodes). With this discretization we obtain a system of SDE that reads

dui =
1
h2

(ui+1 − 2ui + ui−1)dt + f(ui)dt +
σ√
h

dwi, 2 ≤ i ≤ n− 1.

accompanied with the boundary conditions u1 = un = 0, ui(0) = u0(ih),
1 ≤ i ≤ n. The Brownian motions wi are obtained by space integration of
the Brownian sheet in the interval [(i− 1/2)h, (i + 1/2)h).

To integrate this system we use an adaptive procedure similar to the one
developed in [4] for the one dimensional case. Here we adapt the time step
as in that work replacing the value of the solution (which is a real number)
by the L1−norm of u, as is done in [6] for the deterministic case.
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Figure 1. Profiles of a sample solution at different times.

Snapshot Time ‖u(·, t, ω)‖∞
1 1.0000 5.6159
2 50.0000 3.3863
3 72.0202 15.5104
4 72.4202 18.2885
5 72.4802 38.5848
6 72.5002 82.8705
7 72.5012 203.0799
8 72.5068 2.2695× 103

9 72.5076 1.8128× 1012

Table 1. The maximum of the solution at differen times

We want to remark that adaptivity is esencial in this case since a fixed
time step procedure gives rise to globally defined approximations.
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Figure 2. The evolution of the maximum of a sample solu-
tion with initial data u0 ≡ 0

On the other hand, we want to remark that convergence of this numer-
ical scheme and/or the explosion times is not proved. Neither that the
asymptotic behavior of the numerical approximations agrees with that of
the continuous solutions in some sense. That is the subject of a forthcoming
paper.

In spite that in Theorem 3.2 we prove that solutions to (1.1) blow up with
probability one for every σ > 0 and every initial data, we want to remark
that it is not possible to observe that in numerical simulations since for small
σ, the explosion time is exponentially large when the initial datum is small.

Essentially, in order to blow-up, the solution needs to be greater than the
positive stationary solution of the deterministic problem (i.e. the solution
of vxx = −f(v), which is of size 12 when f(v) = (v+)2) plus the order of
the noise σ. Once the solution is in that range of values, the noise can not
prevent the explosion.

The probability that such an event occurs in a finite fixed time interval
depends on σ and is exponentially small.

So, to show the explosive behavior we choose to do the simulations with
σ = 6.36 and initial datum u0 ≡ 0. We ran the code with σ ≤ 5 until time
t = 1000 and we did not observe explosions but a meta-stable behavior.

The features of a particular sample path are shown in Figure 1.
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Figure 3. The graph of a sample solution with initial datum
u0 ≡ 0
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Figure 4. The kernel density estimator of the explosion
time for σ = 6.36 and the corresponding box–plot.

Table 1 shows the times at where the solution is drawn and the L∞−
norm of the solution at that time.

In Figure 2 we show the evolution of the L∞ norm and in Figure 3 is the
whole picture as a function of x and t of a sample path.
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Finally, Figure 4 shows some statistics: we perform 832 simulations of the
solution with σ = 6.36 to obtain a sample of the explosion time. Actually,
we stop the simulation when the maximum of the solution reaches the value
1013. The kernel density estimator of the data obtained by the simulation
and the corresponding box–plot are shown. The sample mean is 46.8834
and the sample standard deviation 43.8857.
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