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Abstract. Let Ω ⊂ RN be a bounded domain. We study the best
constant of the Sobolev trace embedding W 1,∞(Ω) ↪→ L∞(∂Ω) for func-
tions that vanish in a subset A ⊂ Ω, which we call the hole. That is, we
deal with the minimization problem ST

A = inf ‖u‖W1,∞(Ω)/‖u‖L∞(∂Ω)

for functions that verify u |A= 0. We find that there exists an opti-
mal hole that minimizes the best constant ST

A among subsets of Ω of
prescribed volume and we give a geometrical characterization of this
optimal hole. In fact, minimizers associated to these holes are cones
centered at some points x∗0 on ∂Ω with respect to the arc-length metric
in Ω and the best holes are of the form A∗ = Ω \ Bd(x∗0, r

∗) where the
ball is taken again with respect of the arc-length metric.

A similar analysis can be performed for the best constant of the
embedding W 1,∞(Ω) ↪→ L∞(Ω) with holes. In this case we also find
that minimizers associated to optimal holes are cones centered at some
points x∗0 on ∂Ω and the best holes are of the form A∗ = Ω \Bd(x∗0, r

∗).

1. Introduction

Sobolev inequalities are relevant for the study of boundary value problems
for differential operators. They have been studied by many authors and it is
by now a classical subject. It at least goes back to [2], for more references see
[6]. In particular, the Sobolev trace inequality has been intensively studied
in [4, 7, 8, 9, 12, 18, 20, 21], etc.

Let Ω be a bounded smooth domain in RN . In this paper we want to study
the best constant and extremals for the embeddings W 1,∞(Ω) ↪→ L∞(∂Ω)
and W 1,∞(Ω) ↪→ L∞(Ω) restricted among functions that vanish in a subset
A of Ω. Note that functions u ∈ W 1,∞(Ω) are Lipschitz and therefore they
have a Lipschitz extension to Ω.

First, we deal with the trace embedding. To this end, for any function
u ∈ W 1,∞(Ω), we define the associated Rayleigh quotient

QT (u) =
‖∇u‖L∞(Ω) + ‖u‖L∞(Ω)

‖u‖L∞(∂Ω)

.
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For A ⊂ Ω we let

ST
A := inf

{
QT (u) : u ∈ W 1,∞(Ω) s.t. u 6≡ 0 on ∂Ω, u = 0 in A

}
.

This constant ST
A is the best Sobolev trace constant for the embedding

W 1,∞(Ω) ↪→ L∞(∂Ω) restricted to functions that vanish on a subset A of Ω.
Since we are dealing with continuous functions we can assume that the set
A is closed (otherwise just consider the closure of A).

Variational problems in L∞ have been recently considered, due to several
mathematical difficulties that are involved and where new phenomena have
been observed, see for example, [1, 3, 17] and references therein. In partic-
ular, L∞ problems have been obtained as limits as p →∞ of Lp problems,
see [10, 15, 17, 19]. In those papers a PDE approach is used and the notion
of viscosity solutions play a key role in most of them. However, in this paper
we will not use any PDE nor take the limit as p → ∞, but we use a more
direct and geometric approach, taking advantage of the fact that the L∞

norm gives pointwise information.
Optimization problems for minima of Rayleigh quotients have been exten-

sively studied in the literature due to many applications in several branches
of applied mathematics and engineering, especially in optimal design prob-
lems, see the survey [16]. Optimal design problems are usually formulated
as problems of the minimization of the energy stored in the design under a
prescribed loading. For applications to engineering of the optimization for
Steklov eigenvalues, see [5].

In view of the above discussion, we consider the following optimization
problem:

For a fixed 0 < α < |Ω|, find a set A∗ of measure α that minimizes
ST

A among all measurable subsets A ⊂ Ω of measure α. That is,

ST (α) := inf
A⊂Ω,|A|=α

ST
A = ST

A∗ .

In this paper we prove that there exist optimal holes A∗ (with their cor-
responding extremals u∗) for this optimization problem.

This optimization problem in W 1,p(Ω) has been considered recently. In
fact, in [13] the existence of an optimal hole for the trace embedding has
been established, see also [11] for numerical computations. Then, in [14],
the interior regularity of optimal holes was analyzed.

Once existence of an optimal hole is proved, a natural question is what
can be said about the extremals u∗ and the optimal holes A∗ = {u∗ = 0}.

Here we prove that minimizers associated to optimal holes are cones cen-
tered at some point x∗0 on ∂Ω with respect to the arc-length metric in Ω and
the best holes are of the form A∗ = Ω \Bd(x∗0, r

∗) where the ball is consid-
ered with respect to the arc-length metric. Moreover, we find a geometrical
characterization of an optimal hole (and its corresponding extremal).
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Recall that the arc-length metric in Ω, that we will call d(x, y), is defined
by the infimum of the lengths of rectificable curves in Ω that join x and y.
Therefore, the cone centered at y with slope 1/t with respect to this metric
is given by

Cy,t(x) := (1− t−1d(x, y))+,

where (z)+ denotes the positive part of z, i.e., (z)+ = z if z > 0 and (z)+ = 0
otherwise. Observe that for convex domains the arc-length metric coincides
with the euclidian metric, d(x, y) = |x−y| and hence the cones are given by

Cy,t(x) :=
(
1− |x− y|

t

)
+
.

To give the geometrical characterization of optimal holes, note that for any
x0 ∈ ∂Ω there exists a unique radius r = r(x0) defined by |Ω\Bd(x0, r)| = α.

Our main result for the trace embedding reads as follows:

Theorem 1.1. There exists an optimal hole A∗ in the sense that it mini-
mizes ST

A among subsets of Ω with measure α.
Moreover, every optimal hole is of the form A∗ = Ω \Bd(x∗0, r

∗), with x∗0
such that

r∗ = r(x∗0) = max
x0∈∂Ω

r(x0),

and the corresponding extremal is the cone

u∗(x) = Cx∗0,r∗(x) = (1− (r∗)−1d(x, x∗0))+.

Note that for any u ∈ W 1,∞(Ω) it holds that

ST (|{u = 0}|)‖u‖L∞(∂Ω) ≤ ‖u‖W 1,∞(Ω)

Remark that this inequality is sharp. The function ST (α) can be computed
using our result. In fact,

ST (α) =
1
r∗

+ 1, r∗ = r∗(α, Ω).

In some cases this r∗ can be computed explicitly. For example, let Ω be the
unit cube in R2, Ω = [0, 1]2. It is clear that the vertex of an optimal cone
must be located at one corner of the square. Then we easily obtain,

r∗ = 2

√
1− α

π
, if α ≥ 1− π

4
,

while r∗ is given implicitly by√
(r∗)2 − 1 +

∫ 1

√
(r∗)2−1

√
(r∗)2 − x2 dx = 1− α, if α < 1− π

4
.

In this case it is also clear that there exist exactly four optimal holes for
each α.
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Now, we can perform a similar analysis for the usual Sobolev embedding
W 1,∞(Ω) ↪→ L∞(Ω) with holes. Let

Q(u) =
‖∇u‖L∞(Ω) + ‖u‖L∞(Ω)

‖u‖L∞(Ω)

.

For A ⊂ Ω we let

SA := inf
{
Q(u) : u ∈ W 1,∞(Ω) s.t. u 6≡ 0 in Ω, u = 0 in A

}
.

This constant SA is the best constant for W 1,∞(Ω) ↪→ L∞(Ω) restricted to
functions that vanish on a subset A of Ω.

Theorem 1.2. There exists an optimal hole A∗ in the sense that it mini-
mizes SA among subsets with measure α.

Moreover, the same conclusion as in Theorem 1.1 holds. The best holes
are complements of balls centered at x∗0 on the boundary and the best func-
tions are cones.

Organization of the paper: In Section 2 we deal with the Sobolev trace
embedding and in Section 3 we briefly explain the main arguments for the
Sobolev embedding.

2. The best Sobolev trace constant

As we have mentioned in the introduction, for u ∈ W 1,∞(Ω) we define

QT (u) =
‖∇u‖L∞(Ω) + ‖u‖L∞(Ω)

‖u‖L∞(∂Ω)

and for A ⊂ Ω,

ST
A := inf

{
QT (u) : u ∈ W 1,∞(Ω) s.t. u 6≡ 0 on ∂Ω, u = 0 in A

}
.

Our first lemma shows that ST
A is attained.

Lemma 2.1. Consider a fixed hole A ⊂ Ω, with |A| = α. Then there exists
u ∈ W 1,∞(Ω) that minimizes ST

A.

Proof. Consider a minimizing sequence un ∈ W 1,∞(Ω). We can assume
that ‖un‖L∞(∂Ω) = 1, if not, just consider the normalized sequence vn =

un
‖un‖L∞(∂Ω)

.

Then our sequence un is bounded in W 1,∞(Ω), as ‖un‖W 1,∞(Ω) ≤ ST
A + 1

for n large. Therefore, using that the embedding W 1,∞(Ω) ↪→ C(Ω) is
compact, we can extract a subsequence (that we still call un) such that

un → u

weakly-* in W 1,∞(Ω) and uniformly in Ω.
By the weak-* convergence we have

‖∇u‖L∞(Ω) ≤ lim inf ‖∇un‖L∞(Ω),
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and by the uniform convergence up to the boundary

‖un‖L∞(Ω) → ‖u‖L∞(Ω) and ‖un‖L∞(∂Ω) → ‖u‖L∞(∂Ω) .

Therefore ‖u‖L∞(∂Ω) = 1, u = 0 in A and

QT (u) ≤ lim inf QT (un).

It follows that u is a minimizer of ST
A. �

Next we want to show the existence of an optimal hole A∗ for ST
A. For

this we define

ST (α) = inf
A⊂Ω,|A|=α

ST
A.(2.1)

Note that ST (α) also has the following variational characterization

ST (α) = inf{QT (u) : u ∈ W 1,∞(Ω), |{u = 0}| ≥ α, u 6≡ 0 on ∂Ω}.

The next result shows that there exists an optimal hole.

Theorem 2.1. There exists a hole A∗ with |A∗| ≥ α such that ST
A∗ = ST (α).

Proof. Our problem is to find extremals for (2.1).
If we consider sets A with |A| ≥ α we only extend our number of test

functions and therefore

ST (α) = inf
{
ST

A with A ⊂ Ω, |A| ≥ α
}
.

Further note that we can always restrict ourselves to nonnegative test func-
tions by replacing u by |u|.

So let An be a minimizing sequence for ST (α) with extremals un nor-
malized with ‖un‖L∞(∂Ω) = 1. Like in the proof of the previous lemma we
can assume that un converges weakly-* in W 1,∞(Ω) and uniformly in Ω to
a function u ∈ W 1,∞(Ω) with ‖u‖L∞(∂Ω) = 1.

Now we have to consider the limiting set of the sequence of holes An. Since
the characteristic functions of An are bounded in L∞(Ω) we can extract a
subsequence such that χAn ⇀? φ with 0 ≤ φ ≤ 1. So that in particular, for
A = {φ > 0} we have

|A| ≥
∫

Ω
φ = lim

∫
Ω

χAn = lim |An| ≥ α.

Since u ≥ 0, φ ≥ 0 and∫
Ω

uφ = lim
∫

Ω
unχAn = 0

we get that u vanishes in A, where A has measure |A| ≥ α. Hence, u vanishes
on A∗ = A with |A∗| ≥ |A| ≥ α. Since u 6≡ 0, {u > 0} is a nonempty open
set and therefore A∗ is a proper subset of Ω.

As before, the convergence of un to u (in different topologies) implies that

lim inf QT (un) ≥ QT (u).
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As u is an admissible function we conclude that A∗ is an optimal set and
that u is an extremal for ST (α). �

Now we want to specify properties of extremals of ST
A. We begin with the

proof of the following lemma.

Lemma 2.2. Let A ⊂ Ω, |A| = α < |Ω| and u an extremal of ST
A. Then u

attains its maximum on the boundary of Ω.

Proof. Let u be an optimal function of ST
A for a hole A ⊂ Ω with |A| = α <

|Ω|. Because u ∈ W 1,∞(Ω), u is Lipschitz continuous and therefore attains
a maximum in Ω. Let x0 ∈ Ω be a point where the maximum is attained

u(x0) = max
x∈Ω

u(x).

As before we assume that u is normalized with u(x0) = 1.
We want to prove that the maximum is attained at the boundary. Assume

not, that is x0 ∈ Ω and

‖u‖L∞(Ω) = 1, ‖u‖L∞(∂Ω) = k < 1.

Define a new function

ū(x) =

{
u(x) if u(x) ≤ k,

k if u(x) > k.

So ū still vanishes on A, ū(x) = u(x) for x ∈ ∂Ω, ‖∇ū‖L∞(Ω) ≤ ‖∇u‖L∞(Ω)

and ‖ū‖L∞(Ω) = k < 1 = ‖u‖L∞(Ω). But then it follows that

QT (ū) =
‖∇ū‖L∞(Ω) + ‖ū‖L∞(Ω)

‖ū‖L∞(∂Ω)

<
‖∇u‖L∞(Ω) + 1

‖u‖L∞(∂Ω)

= QT (u),

which is a contradiction to our assumption that u is an extremal of QT (v).
It follows that u attains its maximum on the boundary of Ω. �

As the problem is posed in W 1,∞(Ω) test functions are Lipschitz contin-
uous in Ω. Therefore cones are natural candidates to evaluate the quotient
QT (u) and then to estimate the infimum ST

A. Moreover, in the next theorem,
we find that cones are extremals for ST

A.
With the knowledge that an extremal of ST

A attains its maximum value
in a point x0 on the boundary of Ω we can further prove that the cone with
center in x0 and radius

dist(x0, A) := min
y∈A

d(x0, y)

is an extremal for ST
A. Recall from the introduction that the cone with

vertex at y and slope 1/t is given by,

Cy,t(x) =
(

1− d(x, y)
t

)
+

.
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Theorem 2.2. Let A ⊂ Ω, |A| = α < |Ω| and u be an extremal for ST
A. Then

the cone Cx0,r with x0 ∈ ∂Ω where u(x0) = maxx∈Ω u(x) and r = dist(x0, A)
is an extremal for ST

A.

Proof. Let u ∈ W 1,∞(Ω) be an extremal of ST
A. From Lemma 2.2 we know

that u attains its maximum in a point x0 ∈ ∂Ω. Without loss of generality
we assume u(x0) = 1. Then it follows that

QT (u) =
‖∇u‖L∞(Ω) + ‖u‖L∞(Ω)

‖u‖L∞(∂Ω)

= ‖∇u‖L∞(Ω) + 1.

Now consider an arbitrary point y ∈ ∂A. By the mean value theorem,
considering paths γ that joins x0 with y with |γ̇| = 1 in the definition of
d(x0, y), we get that

|u(x0)− u(y)|
d(x0, y)

≤ |∇u(ξ)| ≤ ‖∇u‖L∞(Ω) ,

for a point ξ = γ(τ) between x0 and y on the curve γ. As u(x0) = 1 and
u(y) = 0 we get

1
d(x0, y)

≤ ‖∇u‖L∞(Ω) ,

for every y ∈ ∂A, and hence
1
r

=
1

dist(x0, A)
≤ ‖∇u‖L∞(Ω) .

It follows that
1
r

+ 1 ≤ QT (u).(2.2)

On the other hand, choose as a test function v = Cx0,r. Note that v(x0) =
max v(x) = 1. We obtain

QT (u) ≤ QT (v) =
‖∇v‖L∞(Ω) + ‖v‖L∞(Ω)

‖v‖L∞(∂Ω)

.

Since v is a cone it follows that

‖∇v‖L∞(Ω) =
1
r
.

Therefore,

QT (u) ≤
1
r + 1

1
=

1
r

+ 1.(2.3)

Combining (2.2) and (2.3) we get that

QT (u) =
1
r

+ 1 = QT (Cx0,r).

It follows that the cone Cx0,r is an extremal for ST
A. �
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Further we want to prove that the cone defined in Theorem 1.1 is an
extremal for ST (α) and gives an optimal hole A∗ as the complement of a
ball in Ω. As we have mentioned in the introduction for any x0 ∈ ∂Ω there
exists a unique radius r = r(x0) defined by |Ω \ Bd(x0, r)| = α. Observe
that r is a continuous function on ∂Ω.

Now we can proceed with the proof of Theorem 1.1.

Proof of Theorem 1.1. It remains to show that every optimal hole is as de-
scribed in Theorem 1.1.

Let A∗ be an optimal hole with measure |A∗| ≥ α. Then there exists an
extremal for ST

A∗ that is the cone Cx0,r(x) with x0 ∈ ∂Ω and r = dist(x0, A
∗).

Let x∗0 ∈ ∂Ω be a point such that

dist(x∗0, A
∗) = sup{dist(x,A∗) : x ∈ ∂Ω} =: r∗.

Observe that for Cy,t we have

QT (Cy,t) =
1
t

+ 1.

So, among cones, QT (Cy,t) is minimized when the radius t is the largest
possible, that is when y = x∗0 and t = r∗.

Now we remark that the measure of A∗ is exactly α, |A∗| = α. In fact,
assume that |A∗| > α. Then we show that the cone is not optimal, since
there exists r0 > 0 with r∗ < r0 < diam(Ω) such that |Ω \ Bd(x∗0, r0)| = α.
Then

QT (Cx∗0,r0) =
1
r0

+ 1 < QT (Cx∗0,r∗),

violating the minimality of QT (Cx∗0,r∗). Hence |A∗| = α.
Therefore, as A∗ is an optimal hole it must be of the form

A∗ = Ω \Bd(x∗0, r
∗).

Now, to end the proof, consider a normalized extremal u∗ associated to
an optimal hole A∗ = Ω \ Bd(x∗0, r

∗). As u∗ vanishes on A∗, attains its
maximum at x∗0 and ‖∇u∗‖L∞(Ω) = 1/r∗, u∗ restricted to every line that
joins x∗0 and y ∈ ∂A∗ ∩ Ω = ∂Bd(x∗0, r

∗) ∩ Ω is a linear function with slope
1/r∗. Therefore, we conclude that

u∗(x) = Cx∗0,r∗(x),

as we wanted to prove. �

3. The best Sobolev constant

Now we consider the best constant for the usual Sobolev embedding
W 1,∞(Ω) ↪→ L∞(Ω).

Like for the best Sobolev trace constant in the previous section we want to
show that the cone with vertex at a point x∗0 on the boundary that maximizes
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the radius such that |Ω \Bd(x∗0, r)| = α is an extremal for the optimization
problem of minimizing

S(α) = inf
A⊂Ω, |A|≥α

SA.

We just sketch the arguments since they are completely analogous to the
previous ones. Details are left to the reader.

The existence of extremals for SA and the existence of an optimal hole
A∗ can be shown in a completely analogous way as in the previous section,
see Lemma 2.1 and Theorem 2.1.

Next we have that if we consider a fixed hole A ⊂ Ω with |A| = α < |Ω|
and a corresponding extremal u, then there exists an extremal for SA of the
form Cx0,r, with r = dist(x0, A), u(x0) = maxx∈Ω̄ u(x). This plays a key
role in the proof of Theorem 1.2, and is the analogous to Theorem 2.2 with
a similar proof.

Once this result is proved the proof of Theorem 1.2 follows by the same
arguments as used in the proof of Theorem 1.1.
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Departamento de Matemática, FCEyN UBA (1428)
Buenos Aires, Argentina.

E-mail address: jfbonder@dm.uba.ar



BEST CONSTANT AND EXTREMALS 11

Carola-Bibiane Schönlieb
Department of Applied Mathematics and Theoretical Physics (DAMTP),
Centre for Mathematical Sciences,
Wilberforce Road,
Cambridge CB3 0WA, United Kingdom

E-mail address: c.b.s.schonlieb@damtp.cam.ac.uk

Julio D. Rossi
IMDEA Matematicas,
C-IX, Campus UAM,
Madrid, Spain
On leave from Departamento de Matemática,
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