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Abstract. In this paper we consider the following problem arising in combustion theory{
∆uε − uε

t = vεfε(uε) in D,
∆vε − vε

t = vεfε(uε) in D,

where D ⊂ RN+1, fε(s) = 1
ε2 f( s

ε ) with f a Lipschitz continuous function with support
in (−∞, 1].

Here vε is the mass fraction of some reactant, uε the rescaled temperature of the
mixture and ε is essentially the inverse of the activation energy. This model is derived
in the framework of the theory of equidiffusional premixed flames for Lewis number 1.

We prove that, under suitable assumptions on the functions uε and vε, we can pass
to the limit (ε → 0) – the so called high activation energy limit – and that the limit
function u = lim uε = lim vε is a solution of the following free boundary problem

∆u− ut = 0 in {u > 0}

|∇u| =
√

2M(x, t) on ∂{u > 0}
(0.1)

in a pointwise sense at regular free boundary points and in a viscosity sense. Here
M(x, t) =

∫ 1

−w0(x,t)
(s + w0(x, t))f(s)ds and −1 < w0 = limε→0

vε−uε

ε .
Since vε − uε is a solution of the heat equation it is fully determined by its initial-

boundary datum. In particular, the free boundary condition only (but strongly) depends
on the approximation of the initial-boundary datum.

Moreover, if D ∩ ∂{u > 0} is a Lipschitz surface, u is a classical solution to (0.1).

1. Introduction

In this paper we consider the following problem arising in combustion theory

{
∆uε − uε

t = vεfε(u
ε) in D,

∆vε − vε
t = vεfε(u

ε) in D,(1.1)

where D ⊂ RN+1.

This model appears in combustion theory in the analysis of the propagation of curved
flames. It is derived in the framework of the theory of equidiffusional premixed flames
analyzed in the relevant limit of high activation energy for Lewis number 1. In this
application, vε represents the fraction of some reactant (and hence it is assumed to be
nonnegative), and uε its temperature (more precisely, uε = λ(Tf − T ε) where Tf is the
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flame temperature and λ is a normalization factor). Observe that the term vεfε(u
ε) acts

as an absorption term in the equation (1.1). Since T ε = Tf − (uε/λ), it is in fact a
reaction term for the temperature. In the flame model, such a term represents the effect
of the exothermic chemical reaction and f has accordingly a number of properties: it
is a nonnegative Lipschitz continuous function which is positive in an interval (−∞, ε)
and vanishes otherwise (i.e., reaction occurs only when T > Tf − ε

λ
). The parameter ε

is essentially the inverse of the activation energy of the chemical reaction. For the sake
of simplicity we will assume that fε(s) = 1

ε2f( s
ε
), where f is a nonnegative, Lipschitz

continuous function with support in (−∞, 1].

For the derivation of the model, we cite [3].

Here we are interested in high activation energy limits (i.e. ε → 0). These limits,
are currently the subject of active investigation, specially in the case uε = vε. This is a
natural assumption in the case of traveling waves.

The study of the limit as ε → 0 was proposed in the 30’s by Zeldovich and Frank-
Kamenetski [13] and has been much discussed in the combustion literature. In the case
uε = vε the reaction function uεfε(u

ε) tends to a Dirac delta, M0δ(u) where M0 =∫ 1
0 sf(s)ds. In this way the reaction zone where uεfε(u

ε) acts is reduced to a surface,
the flame front, and a free boundary problem arises. The fact that M0 > 0 ensures that
a nontrivial combustion process takes place so that a non-empty free boundary actually
appears.

Although the convergence of the most relevant propagation modes, i.e. the travel-
ing waves, was already discussed by Zeldovich and Frank-Kamenetski, and an enormous
progress in this direction has been made, a rigorous mathematical investigation of the
convergence of general solutions is still in progress. Berestycki and his collaborators have
rigorously studied the convergence problem for traveling waves and, more generally in the
elliptic stationary case, cf. [2] and its references. See also [12]. The study of the limit
in the general evolution case for the heat operator has been performed in [7] for the one
phase case (this is, with uε ≥ 0) and in [4, 5, 6] for the two-phase case, where no sign
restriction on uε is made.

In [7] the authors show that, under certain assumptions on the initial datum and its
approximations, for every sequence εn → 0 there exists a subsequence εnk

and a limit
function u = limuεnk which solves the following free boundary problem∆u− ut = 0 in D ∩ {u > 0}

|∇u+| =
√

2M0 on D ∩ ∂{u > 0}
(1.2)

in a weak integral sense. Here M0 =
∫ 1
0 sf(s)ds.

In [5] and [6] the authors show that the free boundary condition for the two phase case
(when it is assumed that no reaction takes place if uε ≤ 0) is

|∇u+|2 − |∇u−|2 = 2M0
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and that the limit function is a solution of the free boundary problem in a pointwise
sense at regular free boundary points when {u = 0} has zero “parabolic density” and in
a viscosity sense in the absence of a zero phase (i.e. when {u = 0}◦ ∩ D = ∅)

On the other hand, in [10] it was shown for the one phase problem in a cylinder
with Neumann boundary conditions, that when a classical solution to the free boundary
problem (1.2) exists, it is the limit of the whole family uε, not just of a subsequence.
Moreover, this classical solution is the limit of uε independently of the choice of the
approximate initial data uε(x, 0). A similar result has been obtain for the two phase case
in [11].

So that a natural question is if a classical solution to the free boundary problem (1.2)
is also the limit of uε if (uε, vε) is the solution to the system (1.1) and both uε(x, 0) and
vε(x, 0) converge to u(x, 0) but uε(x, 0) 6= vε(x, 0).

Or we may ask a more elementary question: Will a sequence of uniformly bounded
solutions (uε, vε) with (vε − uε) → 0 as ε → 0 be such that uε converges to a solution of
the free boundary problem (1.2)? This is, will the asymptotic limit for activation energy
going to infinity, in the case in which (vε−uε) → 0 but uε 6= vε, be a solution of the same
free boundary problem as in the case in which uε = vε?

In order to understand the relation between both assertions it is important to point
out that in the case under consideration this is, when Lewis number is 1, the function
wε = vε−uε is a solution of the heat equation. So that it is fully determined by its initial-
boundary datum. Moreover, the system (1.1) may be rewritten as a single equation for
uε, namely

∆uε − uε
t = (uε + wε)fε(u

ε).(1.3)

In this paper we consider the case in which wε/ε converges to a function w0 (so that in
particular, vε − uε → 0). In this way, at least formally, the reaction term still converges
to a delta function and a free boundary problem appears. But we prove that the free
boundary condition strongly depends on the limit function w0, so that it is different for
different approximations of the initial-boundary datum of u.

In fact, we prove that for every sequence εn → 0 there exists a subsequence εnk
and a

limit function u = limuεnk which is a solution of the following free boundary problem∆u− ut = 0 in D ∩ {u > 0}

|∇u+| =
√

2M(x, t) on D ∩ ∂{u > 0}
(1.4)

where M(x, t) =
∫ 1
−w0(x,t)

(
s+ w0(x, t)

)
f(s)ds.

The presence of the function w0 in the limit of integration gives the necessary positive
sign of the function M(x, t).

In conclusion, the combustion problem is very unstable in the sense that the asymptotic
limit for activation energy going to infinity depends on order ε perturbations of the initial-
boundary data.
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In this paper we prove that the limit function u is a “viscosity” solution to (1.4), so
that, as a consequence of our results and of the regularity results for viscosity solutions
to (1.4) of [8], we deduce that, when the free boundary of a limit function u is given by
x1 = g(x′, t), x = (x1, x

′) with g Lipschitz continuous, u is a classical solution.

We want to stress, that because of our assumption that vε − uε → 0 and since vε ≥ 0,
the limit function u must be nonnegative, so our result is new even in the case uε = vε.

In particular, as a consequence of our results we see that limit functions u with uε(x, 0)
constructed as in [7], and vε(x, 0) small perturbations of uε(x, 0) are viscosity solutions
to (1.4). In this construction, w0 is any constant such that w0 ≥ −η where η > 0 is small
enough.

Notation, hypotheses and outline of the paper

Throughout this paper N will denote the spatial dimension and, in addition, the fol-
lowing notation will be used:

For any x0 ∈ RN , t0 ∈ R and τ > 0

Bτ (x0) ≡ {x ∈ RN/ |x− x0| < τ},
Bτ (x0, t0) ≡ {(x, t) ∈ RN+1/ |x− x0|2 + |t− t0|2 < τ 2},
Qτ (x0, t0) ≡ Bτ (x0)× (t0 − τ 2, t0 + τ 2),

Q−
τ (x0, t0) ≡ Bτ (x0)× (t0 − τ 2, t0],

and for any set K ⊂ RN+1

Nτ (K) ≡
⋃

(x0,t0)∈K

Qτ (x0, t0),

N−
τ (K) ≡

⋃
(x0,t0)∈K

Q−
τ (x0, t0).

When necessary, we will denote points in RN by x = (x1, x
′), with x′ ∈ RN−1. Also,

〈·, ·〉 will mean the usual scalar product in RN . Given a function v, we will denote
v+ = max(v, 0), v− = max(−v, 0).

In addition, the symbols ∆ and ∇ will denote the corresponding operators in the space
variables; the symbol ∂p will denote parabolic boundary.

Finally, we will say that a function v is in the class Liploc(1, 1/2) in a domain D ⊂ RN+1,
if for every D′ ⊂⊂ D, there exists a constant L = L(D′) such that

|v(x, t)− v(y, s)| ≤ L(|x− y|+ |t− s|1/2)

for every (x, t), (y, s) ∈ D′. If the constant L does not depend on the set D′, we will say
that v ∈ Lip(1, 1/2) in D.
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For the existence of a limit function for a subsequence uεnk we only need the weaker
condition that for every compact K ⊂ N−

τ (K) ⊂ D,

‖vε − uε‖L∞(N−
τ (K)) = O(ε).(1.5)

Then, we have (see [9])

‖vε − uε‖C2,1(K) = O(ε).(1.6)

Under this assumption, we are able to apply the results of [4] and get the uniform
Lipschitz estimates needed to pass to the limit in (1.1). This is done in §2 where we also
prove some technical lemmas that are used throughout the paper.

In §3 and §4 we assume that uε → 0 in {u = 0} fast enough. This is an essential condi-
tion that was already considered in [7]. This assumption is a natural one in applications,
roughly speaking it means that the mixture temperature reaches the flame temperature
only if some combustion is taking place.

We also assume that there exists limε→0(v
ε − uε)/ε =: w0 and, as a consequence of the

hypothesis that uε → 0 in {u = 0} fast enough, we show that necessarily w0 > −1 in
{u ≡ 0}◦. So that, in §3 and §4 we assume that for every K ⊂ N−

τ (K) ⊂ D compact

vε − uε

ε
→ w0 uniformly in N−

τ (K).(1.7)

Thus, ∥∥∥vε − uε

ε
− w0

∥∥∥
C2,1(K)

→ 0.(1.8)

And, for the sake of simplicity, we assume that w0 > −1 in D.

In §3, we show that the limit function u is a solution to the free boundary problem
(1.4) in a pointwise sense.

Finally, in §4 we prove that the limit function u is in fact a viscosity solution of the
free boundary problem (1.4) under a nondegeneracy assumption on the limit function u.
We also prove some results that give the necessary nondegeneracy of u.

Our presentation is of a local nature, so that our hypotheses are stated in terms of the
solution (uε, vε). As can be seen in the example treated in Corollary 4.3 it is possible to
deduce our hypotheses on (uε, vε) from conditions on its initial-boundary datum.

2. Uniform estimates

In this section we consider a family uε, vε of solutions to (1.1) in a domain D which
are uniformly bounded in L∞ norm in D. We show that the functions uε, vε are locally
uniformly bounded in the seminorm Lip(1, 1/2). Then, we get further local uniform
estimates and pass to the limit as ε → 0. We also show that the limit function u is
a solution to the free boundary problem (1.4) in a very weak sense. Finally, we prove
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an approximation lemma that will be used throughout the rest of the paper and some
lemmas concerning particular limit functions. Also, we prove a proposition that justifies
the hypothesis we make in the following sections.

For convenience, let us define the following function

wε(x, t) = vε(x, t)− uε(x, t),(2.1)

then, wε is a caloric function with ‖wε‖C2,1(K) = O(ε) for every compact set K ⊂ D.

We begin with a proposition (which is a consequence of [4]) that gives us the uniform
control on the gradients of solutions of (1.1).

Proposition 2.1. Let (uε, vε) be solutions of (1.1) such that ‖uε‖∞ ≤ A, vε ≥ 0 and
verify (1.5). Let K ⊂ D compact and τ > 0 such that N−

τ (K) ⊂ D. Then, there exists
L = L(τ,A) such that

|∇uε(x, t)| ≤ L, |∇vε(x, t)| ≤ L.

Proof. Let us start by making the following observation

uε = vε − wε ≥ −wε ≥ −Cε.

Then, let zε = 1
C+1

(uε + Cε) and we define, for (x0, t0) ∈ K

zε
τ (x, t) =

1

τ
zε(x0 + τx, t0 + τ 2t).

In B1(0)× [−1, 0], zε
τ verifies (with B ≥ ‖f‖∞)

0 ≤ ∆zε
τ −

∂zε
τ

∂t
≤ τ

C + 1
(Cε+ |uε|) 1

ε2
f(
uε

ε
)

≤ Bτ
1

ε
X[−Cε,ε](u

ε) =
B

ε/τ
X[0,ε/τ ](z

ε
τ ).

On the other hand

|zε
τ (x, t)| ≤

|uε(x, t)|+ C

τ(1 + C)
≤ 1

τ

A+ C

1 + C
.

Therefore, by Theorem 2 of [4] it follows that

|∇zε
τ (x, t)| ≤ L̄ = L̄(τ,A) in B1/2(0)× (−1/2, 0].

In particular,

|∇uε(x0, t0)| = (C + 1)|∇zε(x0, t0)| = (C + 1)|∇zε
τ (0, 0)| ≤ (C + 1)L̄,

|∇vε(x0, t0)| ≤ |∇uε(x0, t0)|+ |∇wε(x0, t0)| ≤ (C + 1)L̄+ C.

The proof is finished �

As is usual in parabolic theory, Lipschitz regularity in space, gives Hölder 1/2 regularity
in time. We follow here ideas in [5] and [7].
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Proposition 2.2. Let (uε, vε) be solutions of (1.1) such that ‖uε‖∞ ≤ A, vε ≥ 0, and
verify (1.5). Let K ⊂ D compact and τ > 0 such that Nτ (K) ⊂ D. Then there exists
C = C(τ,A) such that

|uε(x, t+ ∆t)− uε(x, t)| ≤ C|∆t|1/2, |vε(x, t+ ∆t)− vε(x, t)| ≤ C|∆t|1/2,

for every (x, t), (x, t+ ∆t) ∈ K.

Proof. As in Proposition 2.1 we define zε = 1
C+1

(uε + Cε) and

zε
λ(x, t) =

1

λ
zε(x0 + λx, t0 + λ2t),

for 0 < λ < τ and (x0, t0) ∈ K.

By a simple computation we get, as in Prop. 2.1

0 ≤ ∆zε
λ −

∂zε
λ

∂t
≤ B

ε/λ
X[0,ε/λ](z

ε
λ).

Now, zε
λ ≥ 0, and in {zε

λ > 1} we have

|∆zε
λ −

∂zε
λ

∂t
|
{
≤ B if ε/λ ≥ 1
= 0 if ε/λ < 1.

Moreover, we have that

|∇zε
λ(x, t)| =

1

C + 1
|∇uε(x0 + λx, t0 + λ2t)| ≤ L̄

in Bτ/λ(0)× [0, τ 2/λ2]. Then, by Proposition 2.2 of [5], we have

|zε
λ(0, t)− zε

λ(0, 0)| ≤ C(L̄) ∀ 0 ≤ t ≤ 1

4N +B

which, in terms of uε, is

|uε(x0, t0 + λ2t)− uε(x0, t0)| ≤ C(L̄)λ.

In particular

|uε(x0, t0 +
λ2

4N +B
)− uε(x0, t0)| ≤ C(L̄)λ.

Let (x0, t0 + ∆t) ∈ K. If 0 < ∆t < τ2

4N+B
, we take λ = ∆t1/2

√
4N +B < τ to get

|uε(x0, t0 + ∆t)− uε(x0, t0)| ≤ C(L̄)
√

4N +B∆t1/2.

If ∆t ≥ τ2

4N+B
, we have

|uε(x0, t0 + ∆t)− uε(x0, t0)| ≤ 2A ≤ 2A
τ

√
4N +B∆t1/2.

The analogous inequality for vε is an immediate consequence of (1.6). �
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Remark 2.1. Under the hypothesis of the previous propositions, we have that

uε ∈ Liploc(1, 1/2).

Proposition 2.3. Let (uε, vε) be solutions of (1.1) such that ‖uε‖∞ ≤ A, vε ≥ 0 and
verify (1.5). Then, for every sequence εn → 0, there exists εn′ → 0 a subsequence and
u ∈ Liploc(1, 1/2) such that

(1) uεn′ → u uniformly on compacts subsets of D.
(2) ∇uεn′ → ∇u in L2

loc.

(3) ∂uεn′

∂t
→ ∂u

∂t
weakly in L2

loc.

(4) ∆u− ∂u
∂t

= 0 in {u > 0}
(5) For every compact K ⊂ D, exists CK > 0 such that∥∥∥∥∥∂uε

∂t

∥∥∥∥∥
L2(K)

≤ CK

for every ε > 0.

Proof. The proof is similar to lemma 3.1 of [5].

Let K ⊂ D be a compact set, and τ > 0 such that N3τ (K) ⊂ D. Let L = L(K) such
that

|uε(x, t)− uε(y, s)| ≤ L
(
|x− y|+ |t− s|1/2

)
,

where (x, t), (y, s) ∈ Nτ (K).

Then, by Arzela-Ascoli’s theorem, there exists εn′ → 0 and u ∈ Lip(1, 1/2) in Nτ (K)
such that uεn′ → u uniformly in Nτ (K). By a standard diagonal argument, (1) follows.

Let us now find uniform bounds for ∂uε

∂t
in L2

loc(D). In fact, uε verifies

∆uε − ∂uε

∂t
= vεfε(u

ε).

Now, let (x0, t0) ∈ K and let us multiply the equation by uε
tψ

2 where ψ ≥ 0, ψ =
ψ(x) ∈ C∞

c (Bτ (x0)), ψ ≡ 1 in Bτ/2(x0). Then, integrating by parts, we get

∫∫
Qτ (x0,t0)

(uε
t)

2ψ2dxdt+
1

2

∫∫
Qτ (x0,t0)

(|∇uε|2)tψ
2dxdt+ 2

∫∫
Qτ (x0,t0)

∇uεuε
tψ∇ψdxdt

= −
∫∫

Qτ (x0,t0)
vεfε(u

ε)uε
tψ

2dxdt.

Now we use Young’s inequality to obtain
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1

2

∫∫
Qτ (x0,t0)

(uε
t)

2ψ2dxdt+
1

2

∫
Bτ (x0)

|∇uε(x0, t0 + τ 2)|2ψ2dx ≤

1

2

∫
Bτ (x0)

|∇uε(x0, t0 − τ 2)|2ψ2dx−
∫∫

Qτ (x0,t0)
vεfε(u

ε)uε
tψ

2dxdt

+ C
∫∫

Qτ (x0,t0)
|∇uε|2|∇ψ|2dxdt.

Then, by Proposition 2.1∫
Bτ/2(x0)

∫ t0+τ2

t0−τ2
(uε

t)
2dxdt ≤

∫
Bτ (x0)

|∇uε(x0, t0 − τ 2)|2ψ2dx

+ 2

∣∣∣∣∣
∫∫

Qτ (x0,t0)
vεfε(u

ε)uε
tψ

2dxdt

∣∣∣∣∣+ C
∫∫

Qτ (x0,t0)
|∇uε|2|∇ψ|2dxdt

≤ C(τ) + 2

∣∣∣∣∣
∫∫

Qτ (x0,t0)
vεfε(u

ε)uε
tψ

2dxdt

∣∣∣∣∣ .
Hence, it only remains to get bounds on∫∫

Qτ

ψ2uε
tv

εfε(u
ε)dxdt = I.

Let

Gε(u, x, t) =
∫ u

0
(wε(x, t) + s)fε(s)ds,

then
∂

∂t
(Gε(u

ε, x, t)) =
∂uε

∂t
vεfε(u

ε) +
∂Gε

∂t
(uε, x, t),

so that we get

I =
∫∫

Qτ

ψ2 ∂

∂t
(Gε(u

ε, x, t)) dxdt−
∫∫

Qτ

ψ2∂Gε

∂t
(uε, x, t)dxdt = A−B.

Let us first get bounds on A:

A =
∫ t0+τ2

t0−τ2

∫
Bτ (x0)

ψ2 ∂

∂t
(Gε(u

ε, x, t)) dxdt =
∫

Bτ (x0)
ψ2

[∫ t0+τ2

t0−τ2

∂

∂t
(Gε(u

ε, x, t)) dt

]
dx

=
∫

Bτ (x0)
ψ2
[
Gε(u

ε(x, t0 + τ 2), x, t0 + τ 2)− Gε(u
ε(x, t0 − τ 2), x, t0 − τ 2)

]
dx.

Since uε ≥ −Cε, fε(s) = 0 if s ≥ ε and |wε| = O(ε), we have

|Gε(u
ε, x, t)| ≤ Cε

∫ ε

−Cε
fε(s)ds+

∫ ε

−Cε
sfε(s)ds ≤ C,

so that

|A| ≤ C(τ).
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It only remains to get bounds on B. For that purpose, let us first make the following
observation: ∣∣∣∣∣∂Gε

∂t
(uε, x, t)

∣∣∣∣∣ =
∣∣∣∣∣∂wε

∂t
(x, t)

∫ uε

0
fε(s)ds

∣∣∣∣∣ ≤ C

ε

∣∣∣∣∣∂wε

∂t
(x, t)

∣∣∣∣∣ .
By (1.6), ∣∣∣∣∣∂wε

∂t

∣∣∣∣∣ ≤ Cε for (x, t) ∈ Nτ (K).

Therefore, using the fact that 0 ≤ ψ ≤ 1, we get

B ≤ C

ε

∫∫
Qτ

∣∣∣∣∣∂wε

∂t
(x, t)

∣∣∣∣∣ dxdt ≤ C

ε
|Qτ |

∣∣∣∣∣∂wε

∂t

∣∣∣∣∣ ≤ C(K, τ).

Thus, ∫
Bτ/2(x0)

∫ t0+τ2

t0−τ2
(uε

t)
2dxdt ≤ C,

with C independent of ε and (x0, t0) ∈ K. Now, as K is compact,∫∫
K

(uε
t)

2dxdt ≤ C,

so that, for a subsequence, ∂
∂t
uεn′ → ∂

∂t
u weakly in L2(K) and by a standard diagonal

argument, (3) follows.

Let us see that u is a solution of the heat equation in {u > 0} . In fact, from the fact that
uε → u uniformly on compact subsets of D, we deduce that every point (x0, t0) ∈ {u > 0}
has a neighborhood V such that uε(x, t) ≥ λ > 0 for some λ > 0. Therefore, for ε < λ,
fε(u

ε(x, t)) = 0 in V . Thus uε is caloric in V for every ε < λ, and then, the same fact
holds for u.

Let us finally analyze the convergence of the gradients. We already know that
‖∇uε‖L∞(Nτ (K)) ≤ L. So we can assume that ∇uε → ∇u weakly in L2(Nτ (K)). In
particular ∫∫

Nτ (K)
φ|∇u|2 ≤ lim inf

ε→0

∫∫
Nτ (K)

φ|∇uε|2,

for every nonnegative φ ∈ L∞(D).

We follow here ideas from [2] and [7] in order to prove that we have strong convergence.

Since ∆u−ut = 0 in {u > 0}, if we take δ > 0 and multiply this equation by (u−δ)+ψ(x)
with ψ ∈ L∞(D) and nonnegative, we get after integration by parts in Qτ (x0, t0),∫∫

{u>δ}
|∇u|2ψ = −

∫∫
{u>δ}

u∇u∇ψ + δ
∫∫

{u>δ}
∇u∇ψ

− 1

2

∫
{u>δ}

(u− δ)2(x, t0 + τ 2)ψ(x) +
1

2

∫
{u>δ}

(u− δ)2(x, t0 − τ 2)ψ(x).
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Now, letting δ → 0, we get∫∫
{u>0}

|∇u|2ψ =−
∫∫

{u>0}
u∇u∇ψ −

− 1

2

∫
{u>0}

u2(x, t0 + τ 2)ψ(x) +
1

2

∫
{u>0}

u2(x, t0 − τ 2)ψ(x).

On the other hand, since ψ ≥ 0, fε ≥ 0 and uε ≥ −Cε, multiplying (1.1) by (uε +Cε)ψ
and integrating by parts we get∫∫

Qτ (x0,t0)
|∇uε|2ψ ≤ −

∫∫
Qτ (x0,t0)

uε∇uε∇ψ − Cε
∫∫

Qτ (x0,t0)
∇uε∇ψ

− 1

2

∫
Bτ (x0)

(uε + Cε)2(x, t0 + τ 2)ψ(x) +
1

2

∫
Bτ (x0)

(uε + Cε)2(x, t0 − τ 2)ψ(x).

Thus,

lim sup
ε→0

∫∫
Qτ (x0,t0)

|∇uε|2ψ ≤
∫∫

Qτ (x0,t0)
|∇u|2ψ,

so that
‖ψ1/2∇uε‖L2(Qτ (x0,t0)) → ‖ψ1/2∇u‖L2(Qτ (x0,t0)).

Since, in addition,

ψ1/2∇uε → ψ1/2∇u weakly in L2(Qτ (x0, t0)),

it follows that
ψ1/2∇uε → ψ1/2∇u in L2(Qτ (x0, t0)).

Therefore, as ψ ≡ 1 in Bτ/2(x0),

∇uε → ∇u in L2(Qτ/2(x0, t0))

and since K is compact, this implies that

∇uε → ∇u in L2(K).

By the same standard diagonal argument used before, the assertion of the theorem follows.
�

Next we show that the limit function u is a solution of the free boundary problem in a
very weak sense.

Proposition 2.4. Let (uεj , vεj) be a family of solutions of (1.1) in a domain D ⊆ RN+1

such that uεj → u uniformly on compact subsets of D, vεj ≥ 0 and verify (1.5). Then,
there exists a locally finite measure µ supported on the free boundary D ∩ ∂{u > 0} such
that vεjfεj

(uεj) → µ weakly in D and therefore

∆u− ∂u

∂t
= µ in D,

that is ∀ φ ∈ C∞
c (D) ∫∫

D
(uφt −∇u∇φ)dxdt =

∫∫
D
φ dµ.
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Proof. The proof follows as that of proposition 3.1 of [5] �

Now we state an approximation lemma that will be used throughout the rest of the
paper.

Lemma 2.1. Let (uεj , vεj) be a family of solutions of (1.1) in a domain D ⊆ RN+1 such
that uεj → u uniformly on compact subsets of D, vεj ≥ 0 and verify (1.5). Let (x0, t0) ∈
D∩∂{u > 0} and let (xn, tn) ∈ D∩∂{u > 0} be such that (xn, tn) → (x0, t0) as n→∞. Let
λn → 0, uλn(x, t) = 1

λn
u(xn +λnx, tn +λ2

nt) and (uεj)λn(x, t) = 1
λn
uεj(xn +λnx, tn +λ2

nt).

Assume that uλn → U as n→∞ uniformly on compact sets of RN+1. Then, there exists
j(n) →∞ such that for every jn ≥ j(n) there holds that εjn

λn
→ 0 and

(1) (uεjn )λn → U uniformly on compact sets of RN+1,
(2) ∇(uεjn )λn → ∇U in L2

loc(R
N+1),

(3) ∂
∂t

(uεjn )λn → ∂
∂t
U weakly in L2(RN+1).

Also, we deduce that
(4) ∇uλn → ∇U in L2(RN+1),
(5) ∂

∂t
uλn → ∂

∂t
U weakly in L2(RN+1).

Proof. The proof is a straightforward adaptation of lemma 3.2 of [5] �

Now we state some lemmas on special limits of solutions to Pε that will be used through-
out the paper.

Lemma 2.2. Let (uεj , vεj) be a solution to (1.1) in a domain D ⊂ RN+1 such that vεj ≥ 0,
and verify (1.7) in D with w0 = constant. Let (x0, t0) ∈ D and assume that uεj converges
to u = α(x− x0)

+
1 uniformly on compact subsets of D, with α ∈ R and εj → 0. Then,

0 ≤ α ≤
√

2M.(2.2)

where M =
∫ 1
−w0

(s+ w0)f(s) ds.

Proof. The proof is an adaptation of Proposition 5.2 of [5].

Without loss of generality we may assume that (x0, t0) = (0, 0).

First we see that necessarily α ≥ 0 since u is subcaloric in D and u(0, 0) = 0. If α = 0
there is nothing to prove. So let us assume that α > 0.

Let ψ ∈ C∞
c (D). Multiplying (1.1) by uε

x1
ψ and integrating by parts we get∫∫

D
u

εj

t u
εj
x1
ψ =

1

2

∫∫
D
|∇uεj |2ψx1 −

∫∫
D
uεj

x1
∇uεj∇ψ∫∫

D
Bεj

(uεj , x, t)ψx1 +
∫∫

D
wεj

x1

( ∫ uεj

−w0

fεj
(s)ds

)
ψ,

(2.3)

where Bε(u, x, t) =
∫ u
−w0ε(s+ wε)fε(s)ds.

In order to pass to the limit in (2.3) we observe that, by Proposition 2.3

(uεj)t → 0 weakly in L2
loc(D),
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∇uεj → αX{x1>0}e1 in L2
loc(D).

On the other hand,

∇wεj

εj

→ 0 uniformly on compact subsets of D.

Therefore, in order to pass to the limit in (2.3) we only need to analyze the limit of
Bεj

(uεj , x, t). On one hand, it is easy to see that

Bεj
(uεj(x, t), x, t) →M(2.4)

for every (x, t) such that x1 > 0. In fact,

Bεj
(uεj , x, t) =

∫ u
εj

εj

−w0

(
s+

wεj

εj

)
f(s)ds =

∫ 1

−w0

(
s+

wεj

εj

)
f(s)ds

if j is large enough. Since |Bεj
(uεj , x, t)| ≤ C there holds that (2.4) holds in L1

loc({x1 ≥ 0}.

On the other hand, there exists M̄(x, t) ∈ L∞(D) such that Bεj
(uεj , x, t) → M̄(x, t)

weakly in L2
loc(D). Clearly, M̄(x, t) = M in {x1 > 0}. Let us see that M̄(x, t) = M̄(t) in

{x1 < 0}. In fact,

∇(Bεj
(uεj(x, t), x, t)) =

∂Bεj

∂u
(uεj , x, t)∇uεj +∇Bεj

(uεj , x, t)

= (uεj + wεj)fεj
(uεj)∇uεj +∇wεj

∫ uεj

−w0εj

fεj
(s)ds

= vεjfεj
(uεj)∇uεj +

∇wεj

εj

∫ u
εj

εj

−w0

f(s)ds.

Since vεjfεj
(uεj) → 0 in L1

loc({x1 < 0}), ∇uεj is uniformly bounded in L∞(D′) if D′ ⊂⊂ D
and ∇wεj

εj
→ 0 uniformly on compact subsets of D, there holds that

∇(Bεj
(uεj(x, t), x, t)) → 0 in L1

loc({x1 < 0}).

So that, passing to the limit in (2.3) we get

α2

2

∫∫
{x1>0}

ψx1 = M
∫∫

{x1>0}
ψx1 +

∫
{x1<0}

M̄(t)ψx1 .

Thus, integrating in the variable x1 we get∫
{x1=0}

(α2

2
−M + M̄(t)

)
ψ = 0.

Since ψ is arbitrary, we conclude that

α2

2
−M + M̄(t) = 0.
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Finally, we notice that M̄(t) ≥ 0. In fact,

Bεj
(uεj , x, t) =

∫ u
εj

εj

−w
εj

εj

(
s+

wεj

εj

)
f(s)ds+

∫ −w
εj

εj

−w0

(
s+

wεj

εj

)
f(s)ds

≥
∫ −w

εj

εj

−w0

(
s+

wεj

εj

)
f(s)ds→ 0

since wεj

εj
→ w0 uniformly on compact subsets of D.

Thus,

α =
√

2(M − M̄(t)) ≤
√

2M

and the proof is complete. �

Lemma 2.3. Let (uεj , vεj) be a solution to (1.1) in a domain D ⊂ RN+1 such that vεj ≥ 0
and verify (1.7) with w0 = constant in D. Let (x0, t0) ∈ D and assume that uεj converges
to u = α(x − x0)

+
1 + ᾱ(x − x0)

−
1 uniformly on compact subsets of D, with α, ᾱ > 0 and

εj → 0. Then,

ᾱ = α ≤
√

2M(2.5)

where M =
∫ 1
−w0

(s+ w0)f(s) ds.

Proof. We argue in a similar way as in Proposition 5.3 of [5].

We will denote Qr = Qr(0, 0). Without loss of generality we will assume that (x0, t0) =
(0, 0) and that Q2 ⊂⊂ D.

As before, uε satisfies∫∫
D
uε

tu
ε
x1
ψ =

1

2

∫∫
D
|∇uε|2ψx1 −

∫∫
D
uε

x1
∇uε∇ψ

+
∫∫

D
Bε(u

ε, x, t)ψx1 +
∫∫

D
wε

x1

(∫ uε

0
fε(s)ds

)
ψ.

We want to pass to the limit. By Proposition 2.3 and the fact that uεj converge to
αx+

1 + ᾱx−1 we have that

u
εj

t → 0 weakly in L2
loc(D),

∇uεj → αX{x1>0}e1 − ᾱX{x1<0}e1 in L2
loc(D).

Clearly, as α, ᾱ > 0, B(uεj , x, t) →M in L1
loc(D).

So, passing to the limit in the latter equation for the subsequence εj, we get

−α
2

2

∫∫
{x1>0}

ψx1 −
α2

2

∫∫
{x1<0}

ψx1 +M
∫∫

ψx1 = 0.

Integrating in the x1 variable, we conclude that

α = ᾱ.
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Next, we will assume that α >
√

2M and arrive at a contradiction.

First, let us consider zεj , defined in Q2, the solution to

∆zεj − z
εj

t =
(
βεj

(zεj) +Wεj
fεj

(zεj)
)
ρεj

(zεj/εj) in Q2(2.6)

with boundary conditions

zεj = u− bεj on ∂pQ2

where βε(s) = sfε(s), Wε = supQ2
wε, bεj = supQ2

|uεj − u| and ρεj
is a smooth cutoff

function with support in [−(w0 +2Cεj
), 2] and ρεj

≡ 1 in [−(w0 +Cεj
), 1] (Here Cεj

→ 0+

is such that
∣∣∣wεj/εj − w0

∣∣∣ ≤ Cεj
in Q2 so that uεj/εj ≥ −(w0 + Cεj

) in Q2).

Observe that zεj(x1, x
′, t) = zεj(−x1, x

′, t) in Q2.

It is easy to see that the proofs of Propositions 2.1 and 2.2 can be adapted to zεj so that,
for a subsequence, that we still call εj, there holds that zεj → z uniformly on compact
sets of Q2. We will show that z = u.

First,

∆uεj − u
εj

t = vεjfεj
(uεj) = (uεj + wεj)fεj

(uεj) ≤ βεj
(uεj) +Wεj

fεj
(uεj)

=
(
βεj

(uεj) +Wεj
fεj

(uεj)
)
ρεj

(uεj/εj) in Q2.

From the fact that zεj ≤ uεj on ∂pQ2, we deduce that zεj ≤ uεj in Q2 and therefore
z ≤ u.

In order to see that u ≤ z, we consider aεj ∈ C2(R) such that

a
εj
ss =

(
β(aεj) +

Wεj

εj
f(aεj)

)
ρεj

(aεj), s ∈ R
aεj(0) = 1, a

εj
s (0) = α

Integrating the equation we get, for every s ∈ R, that

0 < γ − κεj
≤ aεj

s (s) ≤ α

where 1
2
γ2 ≡ 1

2
α2 −M > 0 and κεj

→ 0 when j →∞.

It follows that there exists sεj
< 0 such that

aεj(s) =

{
1 + αs s ≥ 0
(γ − κεj

)(s− sεj
) s ≤ sεj

and it is easy to see that sεj
are uniformly bounded by below and moreover, there exists

s < 0 such that sεj
→ s.

Now let

ãεj(x) = εja
εj

(x1

εj

− bεj

(γ − κεj
)εj

+ sεj

)
.
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Using that ãεj(0, x′, t) = −bεj and the bounds on a
εj
s , we deduce that

ãεj ≤ u− bεj in Q2.

Now, since ãεj ≤ zεj on ∂pQ2, and ãεj is a one dimensional stationary solution to (2.6),
we have that ãεj ≤ zεj in Q2. Since ãεj → u uniformly on compact subsets of {x1 > 0},
we deduce that u ≤ z in Q2 ∩ {x1 > 0}.

Finally, we notice that zεj(x1, x
′, t) = zεj(−x1, x

′, t), so we conclude that u ≤ z in Q2.

Now, the proof of the Lemma follows as in [5] where it is shown, for the case in which
wε ≡ 0, that if zεj → αx+

1 + αx−1 uniformly on compact subsets of Q2, where zεj are
solutions to (2.6) which are symmetric in the x1 variable, and α > 0, there holds that

α ≤
√

2M . So that we arrive at a contradiction since we have assumed that α >
√

2M .
Here we use again that wεj

εj
→ w0 and liminfBεj

(uεj , x, t) ≥ 0. The proof is finished. �

Lemma 2.4. Let (uεj , vεj) be a solution to (1.1) in a domain Dj such that vεj ≥ 0
and satisfies (1.7) in Dj with w0 = constant. Here Dj is such that Dj ⊂ Dj+1 and
∪jDj = RN+1. Let us assume that uεj → U uniformly on compact subsets of RN+1 as
j →∞ and εj → 0, with U ≥ 0, U ∈ Lip(1, 1/2) and ∂{U > 0} 6= ∅. Then,

|∇U | ≤
√

2M in RN+1(2.7)

with M =
∫ 1
−w0

(s+ w0)f(s)ds.

Proof. The proof is similar to that of Theorem 6.2 in [5]. Here we use Lemmas 2.2 and
2.3 instead of Propositions 5.2 and 5.3 in [5]. �

3. The free boundary condition

In this section, we find the free boundary condition for the limit problem and we show
that the limit function u is a solution to the free boundary problem (1.4) in a pointwise
sense, under the assumption that the free boundary admits an inward spatial normal in
a parabolic measure theoretic sense (Definition 3.1).

Throughout this section we will assume that (1.7) holds and that for every K ⊂ {u ≡
0}◦ compact there exists 0 < η < 1 and ε0 > 0 such that, for ε < ε0

uε

ε
≤ η in K.(3.1)

This assumption is a natural one in applications, roughly speaking it means that the
mixture temperature reaches the flame temperature only if some combustion is taking
place.
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As a consequence there holds that

w0 = lim
ε→0

vε − uε

ε
≥ − lim sup

ε→0

uε

ε
≥ −η > −1 in K.

So that, for the sake of simplicity we will assume from now on that w0 > −1 in D.

We start this section with a lemma that is the essential ingredient in the subsequent
proofs.

Lemma 3.1. Let (uεk , vεk) be a solution to (1.1) in a domain D ⊂ RN+1 such that
vεk ≥ 0 and (1.7) and (3.1) are satisfied with w0 > −1. Let u = limuεk , with εk → 0, and

Bεk
(u, x, t) =

∫ u
−w0εk

(
s+ wεk)fεk

(s)ds. Then,

Bεk
(uεk , x, t) →M(x, t)X{u>0}, in L1

loc(D).

where M(x, t) =
∫ 1
−w0(x,t)(s+ w0(x, t))f(s)ds.

Proof. First, let us observe that∫ ε

−w0ε
(wε + s)fε(s)ds =

∫ ε

−w0ε
(wε + s)

1

ε2
f
(
s

ε

)
ds

=
∫ 1

−w0

(wε

ε
+ s

)
f(s)ds.

Therefore,

lim
εk→0

∫ εk

−w0εk

(wεk + s)fεk
(s)ds = M(x, t).

Let us now see that Bεk
(uεk , x, t) →M(x, t) uniformly on compact subsets of {u > 0}.

Let K ⊂⊂ {u > 0}, then there exists λ > 0 and ε0 such that uεk(x, t) > λ ∀εk <
ε0 , (x, t) ∈ K. Thus, we have

lim
k→∞

Bεk
(uεk(x, t), x, t) = lim

k→∞

∫ uεk (x,t)

−w0εk

(wε + s)fεk
(s)ds

= lim
k→∞

∫ εk

−w0εk

(wε + s)fεk
(s)ds = M(x, t).

Since |Bεk
(uεk , x, t)| ≤ C on every compact subset of D, there holds, for a subsequence

that we still call εk that

Bεk
(uεk , x, t) → M̄(x, t) weakly in L2

loc(D).

Clearly, M̄(x, t) = M(x, t) in {u > 0}. Let us see that M̄(x, t) = 0 in {u ≡ 0}◦. In fact,
let K be a compact subset of {u ≡ 0}◦. For every ε1, ε2 > 0 there holds that, for k large
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enough

|{(x, t) ∈ K /ε1 < Bεk
(uεk , x, t) < M(x, t)− ε2}|

≤ |{(x, t) ∈ K /
uεk

εk

(x, t) > −w0(x, t) ,
ε1

2
<
∫ uεk

εk

−w0

(s+ w0)f(s)ds < M − ε2

2
}|

≤ |{(x, t) ∈ K / − w0(x, t) + µ ≤ uεk

εk

≤ 1− µ}|

≤ |{(x, t) ∈ K /
vεk

εk

≥ µ

2
,
uεk

εk

≤ 1− µ}|

≤ |{(x, t) ∈ K /vεkfεk
(uεk) ≥ Cµ

2εk

}|.

Since vεkfεk
(uεk) → 0 as measures in K and vεk ≥ 0, fεk

≥ 0 there holds that

vεkfεk
(uεk) → 0 in L1(K).

Therefore,

|{(x, t) ∈ K /ε1 < Bεk
(uεk , x, t) < M(x, t)− ε2}| → 0.

On the other hand, let 1 > η > supK(−w0) be the constant in (3.1) in K, there holds
that

Bεk
(uεk , x, t) =

∫ uεk
εk

−wεk
εk

(
s+

wεk

εk

)
f(s)ds+

∫ −wεk
εk

−w0

(
s+

wεk

εk

)
f(s)ds

≤
∫ η

−wεk
εk

(
s+

wεk

εk

)
f(s)ds+

∫ −wεk
εk

−w0

(
s+

wεk

εk

)
f(s)ds

=
∫ η

−w0

(
s+

wεk

εk

)
f(s)ds→

∫ η

−w0

(s+ w0)f(s)ds < M(x, t)

since −wεk

εk
≤ uεk

εk
≤ η in K. Therefore,

lim supBεk
(uεk , x, t) ≤

∫ η

−w0

(s+ w0)f(s)ds < M(x, t).

So that, for ε2 > 0 small we get

|{(x, t) ∈ K /ε1 < Bεk
(uεk , x, t)}| = |{(x, t) ∈ K /ε1 < Bεk

(uεk , x, t) < M − ε2}| → 0.

Let us now see that M̄(x, t) = 0 in K. As in Lemma 2.2 we see that M̄(x, t) ≥ 0. Now
assume that for some ε1 > 0 we have |{M̄(x, t) > ε1}| > 0. Then, there exists m such
that |{M̄(x, t) > ε1 + 1

m
}| := |Am| > 0.

Now, ∫
Am

Bεk
(uεk , x, t) →

∫
Am

M̄(x, t) >
(
ε1 +

1

m

)
|Am|
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but, ∫
Am

Bεk
(uεk , x, t) =

∫
Am∩{Bεk

(uεk ,x,t)>ε1}
Bεk

(uεk , x, t)

+
∫

Am∩{Bεk
(uεk ,x,t)≤ε1}

Bεk
(uεk , x, t).

Since the first term in the right hand side goes to zero and the second is bounded by
ε1|Am|, we get a contradiction.

The proof is finished. �

Let us give the definition of regular point.

Definition 3.1. We say that ν is the interior unit spatial normal to the free boundary
∂{u > 0} at a point (x0, t0) ∈ ∂{u > 0} in the parabolic measure theoretic sense, if
ν ∈ RN , |ν| = 1 and

lim
r→0

1

rN+2

∫∫
Qr(x0,t0)

|X{u>0} −X{(x,t)/ 〈x−x0,ν〉>0}|dxdt = 0.

Definition 3.2. We say that (x0, t0) is a regular point of ∂{u > 0} if there exists an
interior unit spatial normal to ∂{u > 0} at (x0, t0) in the parabolic measure theoretic
sense.

We can now prove the main result of this section.

Theorem 3.1. Let (uεj , vεj) be a family of uniformly bounded solutions of (1.1) in a
domain D ⊂ RN+1 such that uεj → u uniformly on compact subset of D, vεj ≥ 0 and
verify (1.7) and (3.1), with w0 > −1. If (x0, t0) is a regular point of D ∩ ∂{u > 0}, then
u has the asymptotic development

u(x, t) = α〈x− x0, ν〉+ + o(|x− x0|+ |t− t0|1/2)

with α =
√

2M(x0, t0), where M =
∫ 1
−w0

(s+w0)f(s) ds. Here ν is the interior unit spatial

normal to the free boundary at (x0, t0) in the parabolic measure theoretic sense.

Proof. We assume, without loss of generality, that (x0, t0) = (0, 0) and ν = e1 = (1, 0, ..., 0).

Let ψ ∈ C∞
c (D). We proceed as in Lemma 2.2. Let us multiply the equation for uε by

uε
x1
ψ and integrate by parts. We have∫∫

D
uε

tu
ε
x1
ψ =

1

2

∫∫
D
|∇uε|2ψx1 −

∫∫
D
uε

x1
∇uε∇ψ

+
∫∫

D
Bε(u

ε, x, t)ψx1 +
∫∫

D

(
wε

ε
− w0

)
f(−w0)(w0)x1ψ

+
∫∫

D

wε
x1

ε

(∫ uε

ε

−w0

f(s)ds

)
ψ
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Since

Bεj
(uεj , x, t) =

∫ u
εj

εj

−w0

(s+ w0)f(s)ds+
∫ u

εj

εj

−w0

(wεj

εj

− w0

)
f(s)ds,

and Bεj
(uεj , x, t) → 0 weakly in L1(K) for every K ⊂ {u ≡ 0}◦ compact, there holds that

Fεj
(x, t) :=

∫ u
εj

εj

−w0

(s+ w0)f(s)ds→ 0 weakly in L1(K).

Since Fεj
is nonnegative there holds that

Fεj
→ 0 in L1(K).

So that, for a subsequence that we still call εj there holds that

Fεj
→ 0 a.e. K.

Thus,
uεj

εj

→ −w0 a.e. K.

Therefore, ∫ u
εj

εj

−w0

f(s)ds→
(∫ 1

−w0

f(s)ds
)
X{u>0} a.e. D.(3.2)

By using Proposition 2.3, Lemma 3.1 and (3.2) we can pass to the limit (for the sequence
εj → 0) in the latter equation and get

∫∫
D
utux1ψ =

1

2

∫∫
D
|∇u|2ψx1 −

∫∫
D
ux1∇u∇ψ +

∫∫
{u>0}

M(x, t)ψx1

+
∫∫

{u>0}
(w0)x1

(∫ 1

−w0

f(s)ds
)
ψ

(3.3)

for every ψ ∈ C∞
c (D).

Now, let ψλ(x, t) = λψ(x−x0

λ
, t−t0

λ2 ). Replacing ψ by ψλ in (3.3) and changing variables,

we get for uλ(x, t) = 1
λ
u(x0 + λx, t0 + λ2t),∫∫

(uλ)t(uλ)x1ψ =
1

2

∫∫
|∇uλ|2ψx1 −

∫∫
(uλ)x1∇uλ∇ψ

+
∫∫

{uλ>0}
M(λx, λ2t)ψx1 +

∫∫
{u>0}

(w0)x1

(∫ 1

−w0

f(s)ds
)
ψλ.

(3.4)

Let r > 0 be such that Qr(x0, t0) ⊂⊂ D. We have that uλ ∈ Lip(1, 1/2) in Qr/λ(0, 0)
uniformly in λ, and uλ(0, 0) = 0. Therefore, for every λn → 0, there exists a subsequence
λn′ → 0 and a function U ∈ Lip(1, 1/2) in RN+1 such that uλn′

→ U uniformly on compact
sets of RN+1.

By our assumption on (x0, t0), we can easily see that for every k > 0

|{uλ > 0} ∩ {x1 < 0} ∩Qk(0, 0)| → 0 as λ→ 0,(3.5)
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and

|{uλ = 0} ∩ {x1 > 0} ∩Qk(0, 0)| → 0 as λ→ 0.(3.6)

Now, using lemma 2.1 and the fact that ψλ → 0 uniformly in D and suppψλ ⊂ suppψ,
we can pass to the limit in (3.4) and get∫∫

{x1>0}
UtUx1ψ =

1

2

∫∫
{x1>0}

|∇U |2ψx1 −
∫∫

{x1>0}
Ux1∇U∇ψ +M(0, 0)

∫∫
{x1>0}

ψx1 .
(3.7)

Our aim is to prove that U = αx+
1 . First, by (3.5) and (3.6), we deduce that U = 0 in

{x1 < 0}. On the other hand, U is a solution to the heat equation in {U > 0} ⊂ {x1 > 0}.
By Corollary A.1 in [5], for every x̄′ ∈ RN−1, t̄ ∈ R there exists α ≥ 0 such that

U(x, t) = αx+
1 + o(|(x1, x

′)− (0, x̄′)|+ |t− t̄|1/2) in {x1 > 0} ∩ {t < t̄}.

Replacing the test function ψ by Φλ(x, t) = λΦ(x1

λ
, x′−x̄′

λ
, t−t̄

λ2 ) with Φ ∈ C∞
c ({t < 0}) and

proceeding as above we get

− α2

2

∫∫
{x1>0}

Φx1 +M(0, 0)
∫∫

{x1>0}
Φx1 = 0.(3.8)

In order to pass to the limit for a sequence λn → 0 we have used Lemma 2.1. (See [6],
Theorem 3.1 for the details).

Thus, α =
√

2M(0, 0).

In order to see that U = αx+
1 we use Lemma 2.4. In fact, by Lemma 2.1 there exists a

sequence jn →∞ such that

uδn :=
1

λn

uεjn (λnx, λ
2
nt) → U(x, t)

uniformly on compact subsets of RN+1. We recall that (uδn , vδn) is a solution to (1.1) with
ε replaced by δn. Moreover,

wδn

δn
=
wεjn (λnx, λ

2
nt)

εjn

→ w0(0, 0)

uniformly on compact sets of RN+1.

Moreover, U ≥ 0 and ∂{U > 0} 6= ∅. By Lemma 2.4 we have that |∇U | ≤ α(=√
2M(0, 0). Since U ≡ 0 in {x1 = 0} we deduce that

U ≤ αx1 in {x1 > 0}.
By Hopf’s Principle, we deduce that

U = αx1 in {x1 > 0}.

The theorem is proved. �
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Remark 3.1. It is clear from the proof that the result is still true if we replace condition
(3.1) by the following property: uεj

εj
→ −w0 a.e. {u ≡ 0}◦.

4. Viscosity solutions

In this section we prove that, under suitable assumptions, the limit function u is a
viscosity solution of the free boundary problem (1.4).

For the sake of completeness, we state here the definition of viscosity solution that was
introduced in [6] for the two phase case of this problem when w0 = 0.

Definition 4.1. Let Q be a cylinder in RN × (0, T ) and let v ∈ C(Q). Then v is called
a classical subsolution (supersolution) of (1.4) in Q if v ≥ 0 and

(1) ∆v − vt ≥ 0 (≤ 0) in Ω+ ≡ Q ∩ {v > 0}.
(2) v ∈ C1(Ω+).
(3) For any (x, t) ∈ ∂Ω+ ∩Q, ∇v(x, t) 6= 0, and

|∇v(x, t)| ≥
√

2M (≤
√

2M).

We say that v is a classical solution in Q if it is both a classical subsolution and a
classical supersolution.

Definition 4.2. Let u be a continuous nonnegative function in Q; u is called a viscosity
subsolution (supersolution) of (1.4) in Q if, for every subcylinder Q′ ⊂⊂ Q and for every
classical supersolution (subsolution) v in Q′,

u ≤ v on ∂pQ
′ (u ≥ v on ∂pQ

′) and

v > 0 on {u > 0} ∩ ∂pQ
′ (u > 0 on {v > 0} ∩ ∂pQ

′)

implies that u ≤ v (u ≥ v) in Q′.

The function u is called a viscosity solution if it is both a viscosity subsolution and a
viscosity supersolution.

Definition 4.3. Let u be a continuous nonnegative function in D and let (x0, t0) ∈ ∂{u >
0} ∩ D. We say that (x0, t0) is a regular point from the nonpositive side, if there exists
a regular nonnegative function v in D such that v > u in {u > 0} for t < t0 and
v(x0, t0) = u(x0, t0).

Finally we need the following definition on nondegeneracy.

Definition 4.4. Let u be a continuous nonnegative function in D. Let (x0, t0) ∈ D be
such that u(x0, t0) = 0. We say that u does not degenerate at (x0, t0) if there exist r0 > 0
and C > 0 such that

sup
∂pQ−r (x0,t0)

u ≥ C r for 0 < r ≤ r0.

We now prove that, under suitable assumptions on the limit function u, there holds
that u is a viscosity solution to the free boundary problem.
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Theorem 4.1. Let u = limuεk , where (uεk , vεk) are uniformly bounded solutions to (1.1)
with vεk ≥ 0, satisfying (1.7) in D, with w0 > −1, and such that uεk either satisfies (3.1)
of uεk

t ≤ 0 in D.

If u+ does not degenerate at every point of the free boundary which is regular from the
nonpositive side, then u is a viscosity solution of (1.4).

Proof. By Proposition 2.3 and Lemma 2.1, Theorem 4.1 of [6] can be stated for our system,
thus u is a viscosity supersolution.

In order to see that it is a viscosity subsolution, let v be a classical supersolution such
that

u ≤ v in ∂pQ and v > 0 in {u > 0} ∩ ∂pQ

we want to see that u ≤ v in Q.

If not, we define

t0 = sup{0 < s < T : v > 0 in {u > 0} ∩Q ∩ {0 ≤ t < s}}

From the definition of t0, it follows that t0 > 0 and, from our hypotheses we deduce that
v ≥ u in Q∩ {0 ≤ t < t0}. In addition, there exists a sequence (x(s), t(s)) → (x0, t0) ∈ Q
such that v(x(s), t(s)) = 0, (x(s), t(s)) ∈ {u > 0} ∩ Q. Clearly, u(x0, t0) = v(x0, t0) = 0
and (x0, t0) ∈ ∂{u > 0} ∩Q. If (x0, t0) ∈ {v = 0}◦ then, for τ small we have u ≤ v = 0 in
Bτ (x0, t0) ∩ {t < t0} and therefore, u ≡ 0 there, which contradicts our hypothesis. Thus

v ≥ u in Q ∩ {0 ≤ t ≤ t0},

(x0, t0) ∈ ∂{u > 0} ∩ ∂{v > 0} ∩Q.

We may assume, without loss of generality, that (x0, t0) = (0, 0) and Q1(0, 0) = Q1 ⊂ Q
(consider instead of u the function 1

λ0
u(x0 + λ0x, t0 + λ2

0t) for certain λ0 > 0 small, and

analogously with v). Let us take

vλ(x, t) =
1

λ
v(λx, λ2t), uλ(x, t) =

1

λ
u(λx, λ2t).

It is easy to see that there exists a sequence λn → 0 and functions u0, v0 such that
vλ → v0, uλ → u0.

Since v is regular, we have that v0(x, t) = βx+
1 with 0 ≤ β ≤

√
2M(0, 0) (for some

system of coordinates).

Let us see that also u0(x, t) = αx+
1 for some α ≥ 0,

We may think that in Q1, ∂{v > 0} is the graph of some function ψ(x′, t) = x1, x =
(x1, x

′) with ψ ∈ Lip(1, 1/2), where ψ(0, 0) = 0 and {v > 0} = {x1 > ψ(x′, t)}.
Hence, we have that

|ψ(x′, t)| ≤ C
(
|x′|+ |t|1/2

)
.
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Let R =
{
(x, t) ∈ Q1 : x1 < −C

(
|x′|+ |t|1/2

)}
. Then R ∩ {v > 0} = ∅ and let w be

the caloric function in O = Q−
1 \ R with w = 0 in ∂pR and w = L ≥ ‖u‖∞ in the rest of

∂pO.

Since u is globally subcaloric and u ≤ w on ∂pO, then u < w in O.

Now, w−u is supercaloric in O, w−u > 0 in the interior and w−u = 0 at (0, 0), then,
by lemma A.1 of [5], we have that w − u = δx+

1 + o(|x| + |t|1/2) and, since by the same
lemma, w has an asymptotic development at (0, 0),

u(x, t) = αx+
1 + o(|x|+ |t|1/2), with α ≥ 0.

Since by hypothesis u+ does not degenerate, there follows that α > 0.

On the other hand, since v is regular, v admits an asymptotic development at the origin
in the form v(x, t) = βx+

1 + o(|x|+ |t|1/2). Clearly, β ≥ α.

Now, let h be the caloric function in Õ := Q−
1 ∩{v > 0}∩{−µ < t < 0} for some small

µ > 0, with h = v − u on ∂pÕ. And, let g be the caloric function in Õ with g = v on

∂pÕ. Then, h = g = 0 in Q−
1 ∩ ∂{v > 0} ∩ {−µ < t < 0} and h > 0, g > 0 in Õ.

Therefore, by [1], there exists σ > 0 such that h ≥ σg in Q−
1/2∩{v > 0}∩{−µ

2
< t < 0}.

Since u is subcaloric in Q−
1 and u ≤ v in Q−

1 we deduce that v− u ≥ σu in Q−
1/2 ∩ {v >

0} ∩ {−µ
2
< t < 0}. In particular β − α ≥ σα > 0.

The theorem will be finished if we show that α =
√

2M(0, 0).

Case 1: uεk verifies (3.1).

As in Theorem 3.1, we obtain∫∫
D
utux1ψ =

1

2

∫∫
D
|∇u|2ψx1 −

∫∫
D
ux1∇u∇ψ

+
∫∫

D∩{u>0}
M(x, t)ψx1 +

∫∫
D∩{u>0}

(w0)x1

(∫ 1

−w0

f(s)ds
)
ψ

for every test function ψ. Then, taking ψλ(x, t) = λψ(x
λ
, t

λ2 ) and changing variables, we
get ∫∫

D
(uλ)t(uλ)x1ψ =

1

2

∫∫
D
|∇uλ|2ψx1 −

∫∫
D
(uλ)x1∇uλ∇ψ

+
∫∫

D∩{uλ>0}
M(λx, λ2t)ψx1 +

∫∫
D∩{u>0}

(w0)x1

(∫ 1

−w0

f(s)ds
)
ψλ

By Lemma 2.1, we get (for some sequence λk → 0)

0 = −1

2
α2
∫∫

D∩{x1>0}
ψx1 + lim

k→∞

∫∫
D∩{uλk

>0}
M(λkx, λ

2
kt)ψx1 .

We want to check that X{uλk
>0} → X{x1>0} a.e. or, equivalently,
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(1) {x1 > 0} ⊂ ∪∞n=1 ∩k≥n {uλk
> 0} = lim inf{uλk

> 0} a.e.
(2) ∩∞n=1 ∪k≥n {uλk

> 0} = lim sup{uλk
> 0} ⊂ {x1 > 0} a.e.

Let us see (1). If x1 > 0, we get that αx1 > 0 and since uλk
(x, t) → αx1 it follows that

uλk
(x, t) > 0 ∀k ≥ k0.

Let us see (2). If exists kj →∞ with uλkj
(x, t) > 0 then it must be x1 ≥ 0, because if

x1 < 0, we have that vλkj
(x, t) = 0 for j ≥ j0 (because as v is regular, {vλk

> 0} → {x1 >

0}). Since uλkj
≤ vλkj

we get a contradiction.

Therefore,

0 = −1

2
α2
∫∫

D∩{x1>0}
ψx1 +M(0, 0)

∫∫
D∩{x1>0}

ψx1 .

So that,

0 =
∫
D∩{x1=0}

(
1

2
α2 −M(0, 0)

)
ψdx′dt.

Since ψ is arbitrary, 1
2
α2 = M(0, 0), so that,

α =
√

2M(0, 0)

and the proof is finished

Case 2: uεk
t ≤ 0

We already now that, if we consider uλ(x, t) = 1
λ
u(λx, λ2t), then it follows that

uλ(x, t) → u0(x, t) ≡ αx+
1

uniformly on compact subsets of RN+1.

As before∫∫
D
uεk

t u
εk
x1
ψ =

1

2

∫∫
D
|∇uεk |2ψx1 −

∫∫
D
uεk

x1
∇uεk∇ψ +

∫∫
D
Bεk

(uεk , x, t)ψx1

+
∫∫

D
wεk

x1

(∫ uεk

−w0εk

fεk
(s)ds

)
ψ +

∫∫
D
(w0)x1

(wεk

εk

− w0

)
f(−w0)ψ

Now, as in the previous case, if we consider first ψλ(x, t) = λψ(x
λ
, t

λ2 ) and change
variables, we obtain∫∫

(uεk
λ )t(u

εk
λ )x1ψ =

1

2

∫∫
|∇uεk

λ |2ψx1 −
∫∫

(uεk
λ )x1∇u

εk
λ ∇ψ

+
∫∫

Bλ
εk/λ(u

εk
λ , x, t)ψx1 +

∫∫
D

(wεk)x1

εk

∫ uε
k

εk

−w0

f(s)ds

ψλ

+
∫∫

D
(w0)x1

(wεk

εk

− w0

)
f(−w0)ψ

λ

(4.1)

where Bλ
ε (u, x, t) =

∫ u
−w0(λx,λ2t)ε(s+wε(x, t))fε(s)ds. We want to pass to the limit as both
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εk and λ go to zero.

Using Lemma 2.1, we see that for every sequence λn → 0 there exists a sequence
kn →∞ such that δn := εkn/λn → 0 and uδn := (uεkn )λn → u0 uniformly on compact sets
of RN+1. By Proposition 2.3 we see that we can pass to the limit in the first three terms
of (4.1) (with ε = εkn and λ = λn).

Let us study the limit of Bλn
δn

(uδn(x, t), x, t).

It is easy to see that in {x1 > 0}, Bλn
δn

(uδn(x, t), x, t) → M(0, 0) uniformly on compact
sets. Now, let K ⊂ {x1 < 0} be compact. We will show that

∇(Bλn
δn

(uδn(x, t), x, t)) → 0 in L1(K)

In fact,

∇(Bλn
δn

(uδn(x, t), x, t)) = vδnfδn(uδn)∇uδn

+ λn∇w0(λnx, λ
2
nt)
(wδn

δn
(x, t)− w0(λnx, λ

2
nt)
)
f(−w0(λnx, λ

2
nt))

+
∇wδn

δn

∫ uδn

δn

−w0(λnx,λ2
nt)
f(s)ds

Since vδnfδn(uδn) → 0 as measures in K and is nonnegative, we deduce that the conver-
gence takes place in L1(K). On the other hand, ∇uδn is uniformly bounded. Therefore,
the first term goes to zero in L1(K).

In order to see that the second and third terms go to zero uniformly in K we only need
to observe that

uδn

δn
(x, t) =

uεkn

εkn

(λnx, λ
2
nt)

and a similar formula holds for wδn

δn
. So that

∣∣∣wδn

δn
(x, t)− w0(λnx, λ

2
nt)| → 0 uniformly on compact sets of RN+1,

uδn

δn
≥ −w

δn

δn
≥ −C,

|∇wδn|
δn

(x, t) = λn
|∇wεkn |
εkn

(λnx, λ
2
nt) → 0 uniformly on compact sets of RN+1.

On the other hand, |Bλn
δn

(uδn(x, t), x, t)| ≤ CK , so that we have,

Bλn
δn

(uδn(x, t), x, t) → M̄(t) weakly in L2(K).

Let us now see that, actually, the convergence takes place in L1(K).
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There holds that

∂

∂t

(
Bλn

δn
(uδn(x, t), x, t)

)
= vδnfδn(uδn)(uδn)t +

∂

∂t
Bλn

δn
(uδn , x, t)

≤ ∂

∂t
Bλn

δn
(uδn , x, t) ≤ CK in K.

On the other hand, for every (x0, t0) ∈ K, and Qτ (x0, t0) ⊂ {x1 < 0}∫∫
Qτ (x0,t0)

∂

∂t

(
Bλn

δn
(uδn(x, t), x, t)

)
=
∫

Bτ (x0)
Bλn

δn
(uδn(x, t0 + τ 2), x, (t0 + τ 2)) dx

−
∫

Bτ (x0)
Bλn

δn
(uδn(x, t0 − τ 2), x, (t0 − τ 2)) dx

≥ −Cτ

since |Bλn
δn

(uδn(x, t), x, t)| ≤ CK for every compact set K.

Therefore there exists CK > 0 such that ‖Bλn
δn

(uδn(x, t), x, t)‖W 1,1(K) ≤ CK . Hence the
convergence takes place in L1(K) (for a subsequence).

Now arguing as in Lemma 3.1, we get that M̄(t) = 0 or M̄(t) = M(0, 0).

We can now take the limit in (4.1) for the sequences εkn and λn and we obtain

0 = −1

2
α2
∫∫

D∩{x1>0}
ψx1 +M(0, 0)

∫∫
D∩{x1>0}

ψx1 +
∫∫

D∩{x1<0}
M̄(t)ψx1 .

So that,

0 =
∫
D∩{x1=0}

(
1

2
α2 −M(0, 0)− M̄(t)

)
ψ dx′dt.

Since ψ is arbitrary we get 1
2
α2 = M(0, 0) − M̄(t). So that, in particular, M̄(t) is

constant and then we have that M̄(t) ≡ 0 or M̄(t) ≡ M(0, 0). Since α > 0 we deduce
that M(t) ≡ 0 and

α =
√

2M(0, 0).

The proof is finished. �

Now we prove a proposition that says that, under suitable assumptions, u+ does not
degenerate on the free boundary. The proof is similar to theorem 6.3 in [5], where the
nondegeneracy of u+ was proved in the strictly two phase case. Here we assume, instead
of (3.1) the somewhat stronger condition that for every K ⊂ D compact, there exist
0 < η < 1 and ε0 > 0 such that for every 0 < ε ≤ ε0

uε

ε
≤ η in K ∩ {u ≡ 0}◦.(4.2)

Proposition 4.1. Let u = limuεk , where (uεk , vεk) are uniformly bounded solutions to
(1.1) satisfying (1.7) with w0 > −1, such that vεk ≥ 0 and the functions uεk satisfy (4.2).
Let (x0, t0) ∈ ∂{u > 0}.
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Let us assume that there exists ν ∈ RN , with |ν| = 1 such that

lim inf
r→0+

|{u > 0} ∩ {〈x− x0, ν〉 > 0} ∩Q−
r (x0, t0)|

|Q−
r (x0, t0)|

> α1

and

lim inf
r→0+

|{u = 0}◦ ∩ {〈x− x0, ν〉 < 0} ∩Q−
r (x0, t0)|

|Q−
r (x0, t0)|

> α2

with α1 +α2 >
1
2
, then there exists a constant C > 0 and r0 > 0 which depends on N and

f such that, if 0 < r ≤ r0,

sup
∂pQ−r (x0,t0)

u ≥ Cr.

Proof. Without loss of generality, we may assume that (x0, t0) = (0, 0) and that ν = e1 =
(1, 0, ..., 0).

We will note Q−
r = Q−

r (0, 0) and

(uε)r(x, t) =
1

r
uε(rx, r2t), (vε)r(x, t) =

1

r
vε(rx, r2t), ur(x, t) =

1

r
u(rx, r2t).

Let us see that there exists r0 > 0 and a constant c such that if r < r0 and ε < ε0 =
ε0(r), then ∫∫

Q−1

(vε)rfε/r((u
ε)r)dx ≥ c.

Following [5], there exists γ > 0 small such that, for some λ > 0,

|{ur > γ} ∩ {x1 > 0} ∩Q−
1 |

|Q−
1 |

+
|{ur = 0}◦ ∩ {x1 < 0} ∩Q−

1 |
|Q−

1 |
≥ 1

2
+ λ

Let us now define

Ar = {ur > γ} ∩ {x1 > 0} ∩Q−
1 , Br = {ur = 0}◦ ∩ {x1 < 0} ∩Q−

1

and −Br = {(x1, x
′, t)/ (−x1, x

′, t) ∈ Br}.
Then, we have

|Ar ∩ (−Br)| ≥ λ|Q−
1 | = λ̃.

Once again, following [5] we have for 0 < ρ < 1 fixed, that there exists 0 < xr
1 < 1 such

that

|Λr| = |{(x′, t)/ (xr
1, x

′, t) ∈ Ar ∩ (−Br)}| > ρλ̃

Let η > 0 be the constant in (4.2) in Q1(0, 0), let 0 < δ′ < δ, 0 < b < b′ < 1 be such
that

η < −w0(0, 0) + δ < b.

Let κ > 0 be such that

f(s) > κ > 0 for s ≤ b′.
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Then, for (x′, t) ∈ Λr we have

1

ε/r
(uε)r(x

r
1, x

′, t) >
γ

2(ε/r)
> b,

1

ε/r
(uε)r(−xr

1, x
′, t) < −w0(0, 0) + δ

if εk < ε1 = ε1(r) is small. So that, for every (x′, t) ∈ Λr there exists x̃r
1 ∈ (−1, 1) such

that −w0(0, 0) + δ ≤ 1
ε/r

(uε)r(x̃
r
1, x

′, t) ≤ b.

Now, by the uniform Lipschitz regularity of (uε)r and (vε)r, and (1.7), we have that for
ε ≤ ε0(≤ ε1) and r ≤ r0,

(uε)r

ε/r
(x1, x

′, t) ≤ b′ and
(vε)r

ε/r
(x1, x

′, t) ≥ δ′ if |x1 − x̃r
1| < C

ε

r

where C depends on δ, δ′, b, b′, on the Lipschitz constant of uε and vε in Q−
1 and r0 depends

only w0.

Finally we have∫∫
Q−1

(vε)rfε/r((u
ε)r) =

∫∫
Q−1

(vε)r

ε/r

1

ε/r
f
((uε)r

ε/r

)
≥ δ′

κ

ε/r

∣∣∣∣∣
{

(x, t) ∈ Q−
1 /

(vε)r

ε/r
≥ δ′ and f

((uε)r

ε/r

)
≥ κ

}∣∣∣∣∣
≥ δ′

κ

ε/r
|Λr|2C

ε

r
≥ 2Cδ′κρδ̃ ≡ c.

The rest of the proof follows as in [5] �

Remark 4.1. Proposition 4.1 remains true if we change the hypothesis that uεk satisfies
(4.2) by

uεk

εk

→ −w0 a.e. {u ≡ 0}◦.(4.3)

In fact, as in the proof of Prop. 4.1 we consider for each 0 < r < 1 the sets Ar and Br.
So that, for some 0 < λ < 1

|Ar ∩ (−Br)| ≥ λ|Q−
1 |.

Since Br ⊂ {ur ≡ 0}◦, there holds that

(uε)r

ε/r
(−x1, x

′, t) → −w0(−rx1, rx
′, r2t) a.e. Ar ∩ (−Br).

Let 0 < µ < 1. There exists Cr ⊂
(
Ar ∩ (−Br)

)
such that |Cr| = µ|Ar ∩ (−Br)| and

(uε)r

ε/r
(−x1, x

′, t) → −w0(−rx1, rx
′, r2t) uniformly in Cr.

Let δ > 0. There exists ε1 = ε1(r) such that

(uε)r

ε/r
(−x1, x

′, t) ≤ −w0(−rx1, rx
′, r2t) +

δ

2
≤ −w0(0, 0) + δ in Cr
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if ε < ε1 and r < r0 = r0(δ). Now, the proof follows as in Prop. 4.1 by taking λ̃ = µλ|Q−
1 |

and

Λr := {(x′, t) / (xr
1, x

′, t) ∈ Cr}.
Remark 4.2. Proposition 4.1 remains true if we change condition (4.2) by condition
(3.1). In fact, as in the proof of Theorem 3.1 we see that condition (3.1) implies that

Bεk
(uεk , x, t) → 0 L1

loc({u ≡ 0}◦).

As in Theorem 3.1 we deduce that uεk satisfies (4.3).

Using Remark 4.1, Remark 4.2 and Theorem 4.1 we get the following Corollaries.

Corollary 4.1. Let u = limuεk where (uεk , vεk) are unifomly bounded solutions to (1.1)
in a domain D ⊂ RN+1 with vεk ≥ 0, which verify (1.7) with w0 > −1 and such that
uεk satisfies (3.1). If the free boundary D ∩ ∂{u > 0} is given by x1 = g(x′, t) with
g ∈ Lip(1, 1/2), then, u is a viscosity solution of the free boundary problem (1.4).

Corollary 4.2. Let u = limuεk where (uεk , vεk) are unifomly bounded solutions to (1.1)
in a domain D ⊂ RN+1 with vεk ≥ 0, which verify (1.7) with w0 > −1 and such that uεk

satisfies (4.3) and uεk
t ≤ 0. If, for every (x0, t0) ∈ D ∩ ∂{u > 0}, {x ∈ RN / (x, t0) ∈

D ∩ {u > 0}} is given by x1 > Φ(x′) with Φ, Lipschitz continuous then, u is a viscosity
solution of the free boundary problem (1.4).

Proof. We only need to see that u does not degenerate at points of the free boundary
which are regular from the zero side. Let (x0, t0) be any such point. We see that we can
apply Remark 4.1 at that point. In fact, since uεk

t ≤ 0, u is decreasing in time. Therefore,

{(x, t) / x1 > Φ(x) , t ≤ t0} ⊂ {u > 0}

and the parabolic density of this set is positive. �

In particular, Corollary 4.2 can be applied to solutions of (1.1) with uε
0 constructed as

in [7] and vε
0 a small perturbation of uε

0.

Corollary 4.3. Let u0 ∈ C(RN)∩C2({u0 > 0}) be such that ||u0||C2({u0>0}) <∞, ∆u0 ≤ 0

and (u0)x1−λ|∇u0| ≥ 0 in {u0 > 0} with λ > 0. Assume, moreover that 0 < a2 ≤ |∇u0| ≤
a1 <

√
2M0 in a neighborhood of the free boundary: {x ∈ {u0 > 0} / dist(x, {u0 = 0}) ≤

γ}, and M0 =
∫ 1
0 sf(s). Then, there exists a sequence (uε

0, v
ε
0) ∈

(
C1(RN)

)2
with uε

0 → u0

uniformly in RN (so that uε
0 are uniformly bounded) and, moreover, they satisfy

1) ∆uε
0 − vε

0fε(u
ε
0) ≤ 0

2) (uε
0)x1 − λ|∇uε

0| ≥ 0

3)
vε

0 − uε
0

ε
→ w0 uniformly on compact sets, with w0 > −1.

(4.4)

w0 ∈ R is any constant such that w0 ≥ −η with η > 0 small enough.
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Let (uε, vε) be the solution to (1.1) with initial datum (uε
0, v

ε
0) (so that, in particular, uε

and vε are uniformly bounded). For every sequence εj → 0 there exists a subsequence εjk

such that there exists

u = lim
k→∞

uεjk

and u is a viscosity solution to the free boundary problem (1.4).

Proof. Let uε
0 be the approximations constructed in [7]. The approximations are con-

structed in the following way. First we extend u0 to a neighborhood of {u0 > 0}:
S := {x ∈ RN / dist (x, {u0 > 0}) ≤ γ} in such a way that ||u0||C2(S) < ∞. For ε
small enough we define

uε
0(x) = εF

(
1√
2M0

(
1− u0(x)

ε

))
in {−Cε ≤ u0 ≤ ε}.

where F ∈ C2(R) is such that

F ′′ ≤ (1 + δ)Ff(F ) + αF ′, F (0) = 1, F ′(0) = −
√

2M0.

Here δ > 0, α > 0 are such that F has a strict minimum at a finite point s̄ such that
s̄
√

2M0 > 1. (s̄→ +∞ as δ → 0), and F is decreasing for s < s̄.

The constant C is taken as C = s̄
√

2M0 − 1.

We define

uε
0 = u0 in {u0 > ε}
uε

0 = εF (s̄) in RN \ {u0 > −Cε}.

As in [7], we see that uε
0 ∈ C1(RN).

Let w0 ∈ R be such that w0 ≥ −η > −F (s̄) with η > 0 to be fixed later and let

vε
0 = uε

0 + εw0.

Then, vε
0 ≥ 0. It is immediate to verify that (4.4) 1) is satisfied in {u0 > ε} and

RN \ {u0 > −Cε}. Let us see that it is satisfied in {−Cε ≤ u0 ≤ ε}. In fact,

∆uε
0 − vε

0fε(u
ε
0) =

1

2M0ε
F ′′|∇u0|2 −

1√
2M0

F ′∆u0 −
1

ε
Ff(F )− w0

ε
f(F )

≤ 1 + δ

2M0ε
Ff(F )|∇u0|2 +

α

2M0ε
F ′|∇u0|2 −

a√
2M0

F ′ − 1

ε
Ff(F )− w0

ε
f(F )

where a > 0 is such that |∆u0| ≤ a.

Let 0 < µ < 1 be such that a1 ≤ (1 − µ)1/2A
√

2M0 with 0 < A < 1, and let δ
in the definition of F be such that (1 + δ)A2 ≤ 1. Then, if ε is small enough so that
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αa2
2/
√

2M0 > aε there holds that

∆uε
0 − vε

0fε(u
ε
0) ≤

1

ε

[
[(1 + δ)(1− µ)A2 − 1]Ff(F ) +

( αa2
2

2M0

− aε√
2M0

)
F ′ − w0f(F )

]

≤ 1

ε
[−µF − w0]f(F ) ≤ 1

ε
[−µF (s̄)− w0]f(F ) ≤ 0

if η = µF (s̄).

Clearly, (4.4) 3) holds. Let us see that (4.4) 2) also holds. We only need to verify this
property in the set {−Cε < u0 < ε} and this is clear from the fact that

∇uε
0 = − 1√

2M0

F ′
(

1√
2M0

(
1− u0

ε

))
∇u0.

Now, by the results of Section 2, for every sequence εj → 0 there exists a subsequence
and a continuous function u such that uεjk → u uniformly on compact subsets of RN ×
(0,∞).

On the other hand, uε
t is a solution to the following equation

∆U − Ut = β′ε(u)U.

Here βε(s) = sfε(s). Since, for ε small enough uε
t(x, 0) ≤ 0 we conclude that

uε
t ≤ 0 in RN × (0,∞).(4.5)

In a similar way we see that ux1 − λuxi
≥ 0 for every i. So that

uε
x1
− λ

N
|∇uε| ≥ 0 in RN × (0,∞).(4.6)

Clearly (4.5) and (4.6) imply that

ut ≤ 0 and ux1 −
λ

N
|∇u| ≥ 0 in {u > 0}.

In particular, the free boundary is Lipschitz in space.

So that, in order to apply Corollary 4.2 we only need to verify that uεk satisfies (4.3).
On one hand, given K ⊂ {u0 ≡ 0}◦ compact, there exists ε0 such that for ε < ε0

Bε(u
ε
0, x, 0) =

∫ uε
0
ε

(x)

−w0

(s+ w0)f(s) =
∫ F (s̄)

−w0

(s+ w0)f(s).

On the other hand,
∂

∂t

(
Bε(u

ε, x, t)
)

= vεfε(u
ε)uε

t ≤ 0.

Therefore,

Bε(u
ε, x, t) ≤

∫ F (s̄)

−w0

(s+ w0)f(s) for x in K , t > 0.
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As in the proof of Theorem 4.1 we see that, since uε
t ≤ 0, there holds that Bε(u

ε, x, t) →
M̄(x, t) in L1

loc({u ≡ 0}◦) and, for almost every (x, t) we either have M̄(x, t) = 0 or
M̄(x, t) = M =

∫ 1
−w0

(s+ w0)f(s). Since

∇
(
Bε(u

ε, x, t)
)

= vεfε(u
ε)∇uε → 0 in L1

loc({u ≡ 0}◦)

there holds that M̄(x, t) = M̄(t) in {u ≡ 0}◦. Therefore,

M̄(t) ≤
∫ F (s̄)

−w0

(s+ w0)f(s) a.e. {u ≡ 0}◦.

Since F (s̄) < 1, there holds that M̄(t) ≡ 0.

Thus, for every sequence εk → 0∫ uεk
εk

−w0

(s+ w0)f(s) → 0 a.e. {u ≡ 0}◦

and we deduce that uεk satisfies (4.3). �

Combining the regularity results for viscosity solutions of [8], Corollary 4.1 and Corol-
lary 4.2 we have the following regularity result for limit functions.

Corollary 4.4. Let u as in Corollary 4.1 or Corollary 4.2. If, moreover, the free boundary
D ∩ ∂{u > 0} is given by x1 = g(x′, t) with g Lipschitz continuous, then, u is a classical
solution of the free boundary problem (1.4).
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