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ABSTRACT. In this paper we consider the following problem arising in combustion theory

Auf —uf = v°f.(uf) in D,
Ave —vf = vof.(u) in D,

where D C RN*L) f.(s) = E%f(g) with f a Lipschitz continuous function with support
in (—oo,1].

Here v® is the mass fraction of some reactant, u® the rescaled temperature of the
mixture and ¢ is essentially the inverse of the activation energy. This model is derived
in the framework of the theory of equidiffusional premixed flames for Lewis number 1.

We prove that, under suitable assumptions on the functions v and v®, we can pass
to the limit (¢ — 0) — the so called high activation energy limit — and that the limit
function u = limu® = lim v° is a solution of the following free boundary problem

Au—u; =0 in{u> 0}

|[Vu| = /2M(z,t) on d{u > 0}

in a pointwise sense at regular free boundary points and in a viscosity sense. Here
1 . £__, €
M(z,t) = [, @n(s+wo(z,t))f(s)ds and —1 < wp = lim.o ="
Since v — uf is a solution of the heat equation it is fully determined by its initial-
boundary datum. In particular, the free boundary condition only (but strongly) depends
on the approximation of the initial-boundary datum.

Moreover, if D N d{u > 0} is a Lipschitz surface, u is a classical solution to (0.1).

(0.1)

1. INTRODUCTION

In this paper we consider the following problem arising in combustion theory

(1.1) Auf —uj v f-(uf) in D,
' Ave —v; = v°f.(uf) in D,

where D C RV,

This model appears in combustion theory in the analysis of the propagation of curved
flames. It is derived in the framework of the theory of equidiffusional premixed flames
analyzed in the relevant limit of high activation energy for Lewis number 1. In this
application, v® represents the fraction of some reactant (and hence it is assumed to be
nonnegative), and u° its temperature (more precisely, u* = A\(Ty — T°) where T is the
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flame temperature and A is a normalization factor). Observe that the term v f.(u®) acts
as an absorption term in the equation (1.1). Since 7° = Ty — (u/A), it is in fact a
reaction term for the temperature. In the flame model, such a term represents the effect
of the exothermic chemical reaction and f has accordingly a number of properties: it
is a nonnegative Lipschitz continuous function which is positive in an interval (—oo,¢)
and vanishes otherwise (i.e., reaction occurs only when 7' > Ty — $). The parameter ¢
is essentially the inverse of the activation energy of the chemical reaction. For the sake
of simplicity we will assume that f.(s) = 6% f(2), where f is a nonnegative, Lipschitz
continuous function with support in (—oo, 1].

For the derivation of the model, we cite [3].

Here we are interested in high activation energy limits (i.e. ¢ — 0). These limits,
are currently the subject of active investigation, specially in the case u® = v*. This is a
natural assumption in the case of traveling waves.

The study of the limit as ¢ — 0 was proposed in the 30’s by Zeldovich and Frank-
Kamenetski [13] and has been much discussed in the combustion literature. In the case
u® = v° the reaction function u®f.(u°) tends to a Dirac delta, Myd(u) where M, =
J3 sf(s)ds. In this way the reaction zone where u®f.(u®) acts is reduced to a surface,
the flame front, and a free boundary problem arises. The fact that My > 0 ensures that
a nontrivial combustion process takes place so that a non-empty free boundary actually
appears.

Although the convergence of the most relevant propagation modes, i.e. the travel-
ing waves, was already discussed by Zeldovich and Frank-Kamenetski, and an enormous
progress in this direction has been made, a rigorous mathematical investigation of the
convergence of general solutions is still in progress. Berestycki and his collaborators have
rigorously studied the convergence problem for traveling waves and, more generally in the
elliptic stationary case, cf. [2] and its references. See also [12]. The study of the limit
in the general evolution case for the heat operator has been performed in [7] for the one
phase case (this is, with u® > 0) and in [4, 5, 6] for the two-phase case, where no sign
restriction on u® is made.

In [7] the authors show that, under certain assumptions on the initial datum and its
approximations, for every sequence €, — 0 there exists a subsequence ¢,, and a limit
function u = lim u®** which solves the following free boundary problem

Au—u; =0 in DN {u> 0}
(1.2)

IVut| =+/2My on DNo{u> 0}

in a weak integral sense. Here My = [y sf(s)ds.

In [5] and [6] the authors show that the free boundary condition for the two phase case
(when it is assumed that no reaction takes place if u® < 0) is

|Vu+|2 - |VU_|2 = 2M()
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and that the limit function is a solution of the free boundary problem in a pointwise
sense at regular free boundary points when {u = 0} has zero “parabolic density” and in
a viscosity sense in the absence of a zero phase (i.e. when {u =0}°ND = 0)

On the other hand, in [10] it was shown for the one phase problem in a cylinder
with Neumann boundary conditions, that when a classical solution to the free boundary
problem (1.2) exists, it is the limit of the whole family u®, not just of a subsequence.
Moreover, this classical solution is the limit of v independently of the choice of the
approximate initial data u®(x,0). A similar result has been obtain for the two phase case
in [11].

So that a natural question is if a classical solution to the free boundary problem (1.2)
is also the limit of u® if (u®,v®) is the solution to the system (1.1) and both u®(x,0) and
v¥(x,0) converge to u(xz,0) but u(z,0) # v°(x,0).

Or we may ask a more elementary question: Will a sequence of uniformly bounded
solutions (u®,v®) with (v — u®) — 0 as € — 0 be such that u® converges to a solution of
the free boundary problem (1.2)? This is, will the asymptotic limit for activation energy
going to infinity, in the case in which (v® —u®) — 0 but u® # v, be a solution of the same
free boundary problem as in the case in which u® = v*?

In order to understand the relation between both assertions it is important to point
out that in the case under consideration this is, when Lewis number is 1, the function
w® = v® —u® is a solution of the heat equation. So that it is fully determined by its initial-
boundary datum. Moreover, the system (1.1) may be rewritten as a single equation for
u®, namely

(1.3) Auf —uf = (u® + w®) fo(uf).

In this paper we consider the case in which w® /e converges to a function wy (so that in
particular, v* — u® — 0). In this way, at least formally, the reaction term still converges
to a delta function and a free boundary problem appears. But we prove that the free
boundary condition strongly depends on the limit function wqy, so that it is different for
different approximations of the initial-boundary datum of u.

In fact, we prove that for every sequence ¢, — 0 there exists a subsequence ¢,, and a
limit function v = lim v+ which is a solution of the following free boundary problem

{Au—ut:0 in DN{u> 0}

(1.4)
|Vut| =+/2M(z,t) on DNo{u >0}

where M(z,t) = [1, .0 (s + wo(x, 1)) f(5)ds.

The presence of the function wy in the limit of integration gives the necessary positive
sign of the function M (z,1t).

In conclusion, the combustion problem is very unstable in the sense that the asymptotic
limat for activation energy going to infinity depends on order € perturbations of the initial-
boundary data.
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In this paper we prove that the limit function w is a “viscosity” solution to (1.4), so
that, as a consequence of our results and of the regularity results for viscosity solutions
o (1.4) of [8], we deduce that, when the free boundary of a limit function w is given by
xy = g(a,t), x = (x1,2") with g Lipschitz continuous, u is a classical solution.

We want to stress, that because of our assumption that v* — u®* — 0 and since v¢ > 0,
the limit function u must be nonnegative, so our result is new even in the case u® = v°.

In particular, as a consequence of our results we see that limit functions u with u®(zx, 0)
constructed as in [7], and v*(z,0) small perturbations of u®(z,0) are viscosity solutions
to (1.4). In this construction, wy is any constant such that wy > —n where n > 0 is small
enough.

Notation, hypotheses and outline of the paper

Throughout this paper N will denote the spatial dimension and, in addition, the fol-
lowing notation will be used:

For any 2o € RV, t € Rand 7 > 0
Bo(xg) = {z € RN/ |z — 20| < 7},
B, (w0, t0) = {(x,t) € RN/ |z — xo|* + |t — to]* < 72},
Q- (z0,t0) = B (o) X (tg — 7%, tg + 72),
Q7 (z0,t0) = By (z0) X (to — 72, to),

and for any set K ¢ RNV+!

N-(K) = U Q- (o, to),

(Z‘o,to)GK

N(K)= U Q- (xo,to)

(Io,to)EK

When necessary, we will denote points in RY by z = (z1,2'), with 2/ € RV~ Also,
(-,-) will mean the usual scalar product in RY. Given a function v, we will denote
vT = max(v,0), v~ = max(—v,0).

In addition, the symbols A and V will denote the corresponding operators in the space
variables; the symbol 0, will denote parabolic boundary.

Finally, we will say that a function v is in the class Lipy,.(1,1/2) in a domain D C RV+1,
if for every D' CC D, there exists a constant L = L(D’) such that

[o(x,t) —v(y, s)| < L(lx —y| + |t — 5'/?)

for every (z,

t), (y,s) € D'. If the constant L does not depend on the set D', we will say
that v € Lip(1,1

,1/2) in D.
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For the existence of a limit function for a subsequence u®*+ we only need the weaker
condition that for every compact K C N (K) C D,

(1.5) [v° = u|| Lo (= (1)) = Ofe).
Then, we have (see [9])
(1.6 o = leaaaey = O(e).

Under this assumption, we are able to apply the results of [4] and get the uniform
Lipschitz estimates needed to pass to the limit in (1.1). This is done in §2 where we also
prove some technical lemmas that are used throughout the paper.

In §3 and §4 we assume that u* — 0 in {u = 0} fast enough. This is an essential condi-
tion that was already considered in [7]. This assumption is a natural one in applications,
roughly speaking it means that the mixture temperature reaches the flame temperature
only if some combustion is taking place.

We also assume that there exists lim._(v® — u®)/e =: wy and, as a consequence of the
hypothesis that u* — 0 in {u = 0} fast enough, we show that necessarily wy > —1 in
{u =0}°. So that, in §3 and §4 we assume that for every K C N (K) C D compact

13 3

(1.7) vov wo uniformly in N (K).
£
Thus,
V& — us
(1.8) | = 0] 1 g0y O

And, for the sake of simplicity, we assume that wy > —1 in D.

In §3, we show that the limit function w is a solution to the free boundary problem
(1.4) in a pointwise sense.

Finally, in §4 we prove that the limit function u is in fact a viscosity solution of the
free boundary problem (1.4) under a nondegeneracy assumption on the limit function w.
We also prove some results that give the necessary nondegeneracy of w.

Our presentation is of a local nature, so that our hypotheses are stated in terms of the
solution (u®,v%). As can be seen in the example treated in Corollary 4.3 it is possible to
deduce our hypotheses on (u®,v°) from conditions on its initial-boundary datum.

2. UNIFORM ESTIMATES

In this section we consider a family u®,v® of solutions to (1.1) in a domain D which
are uniformly bounded in L* norm in D. We show that the functions u®, v® are locally
uniformly bounded in the seminorm Lip(1,1/2). Then, we get further local uniform
estimates and pass to the limit as ¢ — 0. We also show that the limit function u is
a solution to the free boundary problem (1.4) in a very weak sense. Finally, we prove
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an approximation lemma that will be used throughout the rest of the paper and some
lemmas concerning particular limit functions. Also, we prove a proposition that justifies
the hypothesis we make in the following sections.

For convenience, let us define the following function
(2.1) w(x,t) = v (z,t) — u(x,t),
then, w® is a caloric function with [|w®||c2.1(x) = O(e) for every compact set K C D.

We begin with a proposition (which is a consequence of [4]) that gives us the uniform
control on the gradients of solutions of (1.1).

Proposition 2.1. Let (u®,v°) be solutions of (1.1) such that ||uf|w < A, v* > 0 and
verify (1.5). Let K C D compact and T > 0 such that N7 (K) C D. Then, there exists
L = L(r, A) such that

|Vu(z,t)| < L, |Vo(z,t)| < L.

Proof. Let us start by making the following observation

u® =0 —w* > —w* > —Ce.

Then, let z¢ = C%rl(us + C¢) and we define, for (zg,y) € K

1
25 (x,t) = =25 (20 + T, to + TL).
T

In B1(0) x [—1,0], 2 verifies (with B > || f]|c)
0z¢ T 1
< A 1) _ T < 13 _
0< Az ot _C+1(C€+]u |)€2f(
B

1
< BT-X_ceq(u®) = ——
=27 (~ceel () e/T

)

u
E
Xo,e/r(25).

On the other hand

ut(x,t cC 1A+C
s Mt o1
Therefore, by Theorem 2 of [4] it follows that
IVzi(z,t)] < L = L(1, A) in By/2(0) x (—1/2,0].
In particular,
VU (20, to)| = (C + 1)|V 25 (20, to)| = (C + 1)|V25(0,0)| < (C + 1)L,
(Ve (0, t0)| < |V (zo, to)| + |V (0, )| < (C+ 1)L+ C.
The proof is finished ([l

As is usual in parabolic theory, Lipschitz regularity in space, gives Holder 1/2 regularity
in time. We follow here ideas in [5] and [7].
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Proposition 2.2. Let (u,v%) be solutions of (1.1) such that ||uf||.c < A, v > 0, and
verify (1.5). Let K C D compact and 7 > 0 such that N;(K) C D. Then there exists
C =C(t,A) such that

[uf(z,t + At) — us(z,t)| < C|AHY?,  |[o°(x,t + At) — v (z, 1) < C|At|V?,
for every (x,t), (z,t + At) € K.

Proof. As in Proposition 2.1 we define 2° = 55 (u 4+ Ce) and

1
25(z,t) = Xz‘s(aso + Az, to + A%t),

for 0 < A <7 and (z9,t) € K.

By a simple computation we get, as in Prop. 2.1

025 B

0< Az - T (C:T)\X[O,s/ﬂ(zi)-

Now, 25 > 0, and in {z§ > 1} we have
. 05, [ <B ife/a>1
A2 = |{ =0 ife/A<1.

Moreover, we have that

1 _
V25 (z,t)] = 07“|Vu5(x0 + Az, to + A2t < L

in B;/\(0) x [0,7%/A?]. Then, by Proposition 2.2 of [5], we have

250,6) = %5(0,0)| < C(I)  VO<t<

AN + B
which, in terms of u?, is

|u® (o, to + A*t) — u (20, to)] < C(L)A.

In particular
2

4N + B

|u€(x0,t0 + ) - u€($0,t0)| S O(I/))\

Let (zo,to+ At) € K. If 0 < At < 4N+B, we take A = AtY2\/AN + B < 7 to get
[uf (20, to + At) — us(z0,t0)| < C(L)VAN + BAtY2,

If At > 4N+B, we have

2
[u®(xg, to + At) — u(x0,t0)| <24 < —A\/4N + BAtY2,
T

The analogous inequality for v is an immediate consequence of (1.6). O
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Remark 2.1. Under the hypothesis of the previous propositions, we have that

u® € Lipy,.(1,1/2).

Proposition 2.3. Let (u®,v) be solutions of (1.1) such that ||uf|le < A, v* > 0 and
verify (1.5). Then, for every sequence €, — 0, there exists e, — 0 a subsequence and
u € Lip;,.(1,1/2) such that

(1) u™" — u uniformly on compacts subsets of D.
(2) thln’ — Vu in L%oc‘
(3) 2 — % weakly in Li .
(4) Au— 2 =0 in {u> 0}
(5) For every compact K C D, exists Cx > 0 such that
8 €
2., <
I 2y

for every € > 0.

Proof. The proof is similar to lemma 3.1 of [5].

Let K C D be a compact set, and 7 > 0 such that N3, (K) C D. Let L = L(K) such
that

[ (z,8) — w(y, )| < L (|l —y| + |t — s['?),

where (z,t), (y,s) € N.(K).

Then, by Arzela-Ascoli’s theorem, there exists €, — 0 and u € Lip(1,1/2) in N, (K)
such that u®» — u uniformly in NV, (K). By a standard diagonal argument, (1) follows.

Let us now find uniform bounds for 2% in L? (D). In fact, u® verifies

ot loc
ous
Auf — :Ea €Y.
u - S = L)

Now, let (wg,t9) € K and let us multiply the equation by u$y? where ¢» > 0, ¢ =
P(x) € CF(Br(20)), ¥ =1 in B;ja(x0). Then, integrating by parts, we get

1
W 2dadt + ~ / / Vil [2) 2 dwdt + 2 / / Ve Vipdadt
// RO 3 /] oo (T P) o, VUV

=— // v° fo(uf uSep dadt.
Qr(@o,to)

Now we use Young’s inequality to obtain
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1 2,2 1 2112, 2
- " dxdt + = Vus (g, t dr <
3 [ o 0w [t )P <
1
- Ve t—222d—// 56552ddt
2 ~/BT($0)| B (Q:O’ o )| Ve Qf(wo,to)v J (U >utw !
+(J// V2|V | ddt.
QT(I(JatU)
Then, by Proposition 2.1

to+7? 2 c 2412,/,2
/ ooy o (W) et < |Vu (o, to — 7°) [ *dw
T/2 J)o

0—72 Br(x0)

+2

/ / Uafa(ua)ui¢2dxdt| e / / V||V Pdadt
Q-+ (zo,to) Q-+ (zo,to)

v fo(uf ) uS i dadt] .
[ sy St 0200

Hence, it only remains to get bounds on

/ st o (uf)dadt = 1.

<C(1)+2

Let
Gou,2.t) = [ (0 (a,8) + ) .(s)ds
then
0 . Cow ., . 06
o7 (G0 2.1)) = T () + (),

so that we get

_ 29 € . 28g€ c B B
I_//QTQﬂ BN (G:(u®, 2, t)) dadt //QTw 5 (u®,z,t)dedt = A — B.

Let us first get bounds on A:

to+72

0 to+7° 9
A= 27 € — 2
A /BT(wo)lﬂ By (Ge(u®, @, t)) dadt /BT(:CO)w l/to B (G-(u, x t))dt] dx
= / ( )¢2 [Qs(ue(m,to + 72,2, t0 + 7)) — G (uf(z,tg — T%), 2, t0 — 7'2)} dzx.
Br(xzo
Since u® > —Ce, f.(s) =01if s > ¢ and |w®| = O(¢g), we have
e < € £ <
G0 < C [ flslds+ [ sh(s)ds < C.

so that
Al < C(r).
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It only remains to get bounds on B. For that purpose, let us first make the following
observation:

ags e . ow® C ow*

et =[Gt [ o] < €| ).
By (1.6),

aaué < Ce for (z,t) € N (K).
Therefore, using the fact that 0 < <1, we get
8w
< — < —
B //QT (z,1)| dzdt ]QT] 875 < O(K, 7).

Thus,
to-i-‘l' 2
/ (u$)2dzdt < C,
7‘/2 270

to—72

with C' independent of ¢ and (zo, %) € K. Now, as K is compact,

// (u)*dzdt < C,

0 0

so that, for a subsequence, Su®' — Su weakly in L?(K) and by a standard diagonal

argument, (3) follows.

Let us see that u is a solution of the heat equation in {u > 0} . In fact, from the fact that
u® — u uniformly on compact subsets of D, we deduce that every point (z¢,%y) € {u > 0}
has a neighborhood V' such that u®(x,t) > A > 0 for some A > 0. Therefore, for e < A,
fe(uf(z,t)) = 0 in V. Thus v is caloric in V' for every ¢ < A, and then, the same fact
holds for w.

Let us finally analyze the convergence of the gradients. We already know that
VU] o v, (k) < L. So we can assume that Vu® — Vu weakly in L*(N-(K)). In

particular
Vu|? <1iminf// Vusl|?,
//./\/'T(K) oIVal” < e—0 N-(K) d |

for every nonnegative ¢ € L>°(D).
We follow here ideas from [2] and [7] in order to prove that we have strong convergence.

Since Au—wu; = 0in {u > 0}, if we take 6 > 0 and multiply this equation by (u—0)*(x)
with ¢ € L*°(D) and nonnegative, we get after integration by parts in Q. (o, o),

//{ Ly |Vl = //{w}uVuV@/)Jré// Vuvi

1 ) )
2 {u>5}(u_5> (37 to+ 7 )dj( )+ 5 {u>5}(u—6) (x,to — T )Q/J(SC)
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Now, letting 6 — 0, we get

/ / oy |V = = / / gy VUV
1

1
— = Y(w,tg 4 77 +—/ (w,tg — 7)Y ().
5 {M}u(:v, 0+ 7)Y(a) + 5 {M}u(:v, 0= 7 )(x)

On the other hand, since ¢ > 0, f. > 0 and u® > —Ce, multiplying (1.1) by (u®+ Ce))
and integrating by parts we get

// VP < — // WEVUEVY — Ce // VuEVep
Q~(zo,to) Q~ (z0,t0) Qr(z0,t0)

1 1
- (U + Ce)*(x, to + T2)0(2) + = (W 4 Ce)?(z, to — T2)U(x).
2 BT(Io) 2 BT(IO)
Thus,
limsup// |Vus |2y < // V|,
e—0 QT(xO7tO) QT(w07t0)
so that

1912V | 2@+ (o to)) = 1912V L2 (wo.t0))-
Since, in addition,
VY2VuE — P2 Vu weakly in L2(Q;(z0, 1)),
it follows that
RTEA VAV VL VAT L*(Q+ (w0, t0)).
Therefore, as ¢ = 1 in B, s(z0),

Vu' — Vu in L*(Q/2(0, to))
and since K is compact, this implies that
Vuf — Vu in L*(K).

By the same standard diagonal argument used before, the assertion of the theorem follows.
OJ

Next we show that the limit function wu is a solution of the free boundary problem in a
very weak sense.
Proposition 2.4. Let (u®,v%) be a family of solutions of (1.1) in a domain D C RN*!
such that u® — w uniformly on compact subsets of D, v > 0 and verify (1.5). Then,
there exists a locally finite measure p supported on the free boundary D N O{u > 0} such
that v¥i f. (u*) — p weakly in D and therefore
ou

Au—a:u in D,

//D(u@ — VuVe)drdt = //D & dy.

that isV ¢ € C°(D)
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Proof. The proof follows as that of proposition 3.1 of [5] O

Now we state an approximation lemma that will be used throughout the rest of the
paper.
Lemma 2.1. Let (u¥,v%) be a family of solutions of (1.1) in a domain D C RN such
that u® — u uniformly on compact subsets of D, v¥5 > 0 and verify (1.5). Let (xo,ty) €
Dno{u > 0} and let (x,,t,) € DNO{u > 0} be such that (v,,t,) — (xo,to) asn — oo. Let
A — 0, uy, (x,t) = /\%u(mn + A, by + A2E) and (u)y, (z,t) = ﬁuei (T + Ap, by + N2E).
Assume that uy, — U as n — oo uniformly on compact sets of RN+, Then, there exists
j(n) — oo such that for every j, > j(n) there holds that E/\J—" — 0 and

(1) (usin)y, — U uniformly on compact sets of RN T
(2) Vo, — VU in L, (R4,
(3) 2(um)y, — 2U weakly in L*(RN*1).
Also, we deduce that
(4) Vuy, — VU in L*(RN '),

(5) 2uy, — 2U weakly in L*(RN*Y).

Proof. The proof is a straightforward adaptation of lemma 3.2 of [5] O

Now we state some lemmas on special limits of solutions to P. that will be used through-
out the paper.

Lemma 2.2. Let (u,v%) be a solution to (1.1) in a domain D C RNT! such that v¥i > 0,
and verify (1.7) in D with wy = constant. Let (xg,to) € D and assume that u® converges
to u = a(z — x0){ uniformly on compact subsets of D, with o« € R and e; — 0. Then,

(2.2) 0<a< VoM.
where M = f_lwo(s + wp) f(s)ds.

Proof. The proof is an adaptation of Proposition 5.2 of [5].
Without loss of generality we may assume that (zo,t) = (0,0).

First we see that necessarily o > 0 since u is subcaloric in D and u(0,0) =0. If « =0
there is nothing to prove. So let us assume that o > 0.

Let ¢ € C2°(D). Multiplying (1.1) by u; ¢ and integrating by parts we get

//p ; W_Q// Ve P, - // EJWE]VI/JE.
I, s ff i [ 1o

where B.(u,z,t) = [*, (s +w°) fe(s)ds

In order to pass to the limit in (2.3) we observe that, by Proposition 2.3
(u9)y — 0 weakly in L7 (D),

(2.3)
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Vus — aXg o1 in L} (D).
On the other hand,
v — 0 uniformly on compact subsets of D.
€

Therefore, in order to pass to the limit in (2.3) we only need to analyze the limit of
B.,(u¥,x,t). On one hand, it is easy to see that

(2.4) B, (v (z,t),2,t) — M

for every (x,t) such that z; > 0. In fact,

£

Baj(uaj,m,t):/ugj (3—|—w6j)f(s)ds:/l (s—l—wsj)f(s)ds

wo €j wo Ej

if j is large enough. Since |B.,(u®, z,t)| < C there holds that (2.4) holds in L.({z1 > 0}.

On the other hand, there exists M(z,t) € L>(D) such that Be, (v, z,t) — M(x,t)
weakly in L2 (D). Clearly, M(x,t) = M in {x; > 0}. Let us see that M(x,t) = M(t) in
{z1 < 0}. In fact,

OB. .
V(B (u (x,t),z,t)) = 8u] (u, 2,t)Vu™ + VB, (u¥, z,1)

= (u¥ +w9) fe, (u)Vus + Vwaj/ fe,(s)ds

€5 €5 €5 Vw J
= v fo (uT)Vu + . /_ f(s)ds.

J wo

Since v% f., (u%) — 0 in Ly, ({z1 < 0}), Vu% is uniformly bounded in L>(D') if D' cC D

and v%;j — 0 uniformly on compact subsets of D, there holds that

V(B., (v (x,t),z,t)) — 0 in L ({1 < 0}).

So that, passing to the limit in (2.3) we get

a? _
Yy Sy
{z1>0} {z1>0} {z1<0}

Thus, integrating in the variable z; we get

2

/{zl_o} (? — M+ (1)) =0,

Since v is arbitrary, we conclude that
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Finally, we notice that M () > 0. In fact,

£

o Wi weI
B.. (u¥,x,t :/ s+ s+ s)ds
il )= [ ( 5]) 5 5])f<>
>/ s—l— J)f(s)ds—>0
wo
since “;jj — wy uniformly on compact subsets of D.
Thus,

a=1/2(M — M(t)) < V2M

and the proof is complete. 0

Lemma 2.3. Let (u®,v%) be a solution to (1.1) in a domain D C RN such that v¥i > 0

and verify (1.7) with wy = constant in D. Let (xg,to) € D and assume that u® converges

tou = a(z — x0);] + alz — xg); uniformly on compact subsets of D, with a,a > 0 and
i — 0. Then,

(2.5) a=a<V2M
where M = [1, (s + wo)f(s) ds.

Proof. We argue in a similar way as in Proposition 5.3 of [5].

We will denote @, = @Q,(0,0). Without loss of generality we will assume that (xg,t) =
(0,0) and that Q2 CC D.

As before, u® satisfies

// Rl w—Z// Vs 2y, — // ViV
#ff Bt ff i ([ n0s)

We want to pass to the limit. By Proposition 2.3 and the fact that u® converge to
ax] + ar] we have that
u;” — 0 weakly in L7, (D),
Vu' — aX,soye1 — X <oper  in Li, (D).

Clearly, as o,a > 0, B(u®,x,t) — M in L} (D).

S0, passing to the limit in the latter equation for the subsequence ¢;, we get

2 —2
/A S
2 {z1>0} 2 {z1<0}

Integrating in the x; variable, we conclude that

o= Q.
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Next, we will assume that a > v/2M and arrive at a contradiction.

First, let us consider 2%, defined in (05, the solution to

(26) D25 2 = (0, (25) 4 Wey £ (7)) 0 (5 25) i Qs
with boundary conditions
2 =u—b" on 0,Qs
where 3.(s) = sf.(s), We = supg, w®, b% = supg, [u¥ — u| and p., is a smooth cutoff
function with support in [—(w +2C;,), 2] and p.;, = 1 in [—(wo + C.,), 1] (Here C., — 0F
is such that ’wsj/zsj - wo‘ < (., in Qg so that v /e; > —(wy + C;,) in Q2).
Observe that z% (z1, 2, t) = 25 (—xq, 2/, t) in Qs.

It is easy to see that the proofs of Propositions 2.1 and 2.2 can be adapted to z% so that,
for a subsequence, that we still call €;, there holds that 29 — 2z uniformly on compact
sets of (2. We will show that z = u.

First,
Au — ug’ = v feo, (W) = (u% +w9) fo, (u¥) < B, (u) + W, fe, (u)
= (B, (u) + We, £, (u) ) e, (u® ) in Qs.
From the fact that 2% < u% on 0,(Q2, we deduce that 2% < u% in () and therefore
z < u.

In order to see that u < z, we consider a® € C*(R) such that

i@ = (B(7) + (@) poy(a®), s € R
a®(0) =1, a5’ (0) = «

Integrating the equation we get, for every s € R, that
0<y—he,; <ai(s) <a

where 7% = 20> — M > 0 and k., — 0 when j — oo.

It follows that there exists 5., < 0 such that

“i(s) = 1+ as 5s>0
VTN (v - k) (s —5.,) s<3.,

and it is easy to see that 5., are uniformly bounded by below and moreover, there exists
5 < 0 such that 5., — 3.

Now let
. el bei .
€j — s - - ).
a‘i(z) =¢€ja (Ej e /iaj)%?j + SEJ)
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Using that a%(0,2',t) = —b% and the bounds on as’, we deduce that

@ < u— b9 in Q.

Now, since a% < 2% on 0,()3, and a% is a one dimensional stationary solution to (2.6),
we have that @ < 2% in (). Since @ — wu uniformly on compact subsets of {z; > 0},
we deduce that u < z in Q2 N {z; > 0}.

Finally, we notice that 2% (zq,2',t) = 2% (—x1,2/,t), so we conclude that u < z in Q.

Now, the proof of the Lemma follows as in [5] where it is shown, for the case in which
w® = 0, that if 2% — axf + ax] uniformly on compact subsets of Q,, where 2% are
solutions to (2.6) which are symmetric in the x; variable, and a > 0, there holds that
o < V2M. So that we arrive at a contradiction since we have assumed that o > V2M.
Here we use again that wij — wp and liminf B, (u%, z,t) > 0. The proof is finished. [

Lemma 2.4. Let (u%,v%) be a solution to (1.1) in a domain D; such that v > 0
and satisfies (1.7) in D; with wy = constant. Here D; is such that D; C Dji1 and
U;D; = R¥* Let us assume that u¥ — U uniformly on compact subsets of RN as

j— o0 ande; — 0, withU >0, U € Lip(1,1/2) and 0{U > 0} # 0. Then,
(2.7) VUl <V2M  in RVH!
with M = fiwo (s 4+ wp) f(s)ds.

Proof. The proof is similar to that of Theorem 6.2 in [5]. Here we use Lemmas 2.2 and
2.3 instead of Propositions 5.2 and 5.3 in [5]. O

3. THE FREE BOUNDARY CONDITION

In this section, we find the free boundary condition for the limit problem and we show
that the limit function u is a solution to the free boundary problem (1.4) in a pointwise
sense, under the assumption that the free boundary admits an inward spatial normal in
a parabolic measure theoretic sense (Definition 3.1).

Throughout this section we will assume that (1.7) holds and that for every K C {u =
0}° compact there exists 0 < 7 < 1 and gy > 0 such that, for e < g

(3.1) <n in K.

,LLE
B
This assumption is a natural one in applications, roughly speaking it means that the

mixture temperature reaches the flame temperature only if some combustion is taking
place.
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As a consequence there holds that

13 3 3

wp = lim > —limsup— > —n > —1 in K.
e—0 13 e—0 g

vV —Uu

So that, for the sake of simplicity we will assume from now on that wy > —1 in D.

We start this section with a lemma that is the essential ingredient in the subsequent
proofs.

Lemma 3.1. Let (u®, v°) be a solution to (1.1) in a domain D C RN*L such that
v >0 and (1.7) and (3.1) are satisfied with wy > —1. Let w = lim u®*, with ¢y — 0, and
B, (u,z,t) = [*c. (s +w) f., (s)ds. Then,

ng (Uak, x, t) - M(..'lf, t)‘)({u>0}7 imn Llloc(D)'

where M (z,t) = fiwo(m)(s + wo(x, 1)) f(s)ds.

Proof. First, let us observe that

/E (U}E+S>f5<8)d8:/s (w5—|—3)12f<s>ds

—woe —wpe g g

= /1w0 (lf + s)f(s)ds.

Therefore,
€k

lim (W™ + s) fe, (s)ds = M (x,t).

er—0 —WOEL

Let us now see that B;, (u,x,t) — M(x,t) uniformly on compact subsets of {u > 0}.

Let K CC {u > 0}, then there exists A\ > 0 and ¢y such that u(z,t) > A Ve, <
€0, (z,t) € K. Thus, we have

u®k (z,t)
Jim B., (u*(z,t),x,t) = Jim (w® + 5) fe (5)ds
—00 —00 J —wopey,

ek

= lim (w® + 8) fe, (8)ds = M(z,t).

k=00 J —woey,

Since | B, (u, z,t)| < C on every compact subset of D, there holds, for a subsequence
that we still call ¢ that

B., (u™,2,t) — M(z,t)  weakly in Lj,.(D).

k

Clearly, M (z,t) = M(x,t) in {u > 0}. Let us see that M(z,t) = 0 in {u = 0}°. In fact,
let K be a compact subset of {u = 0}°. For every 1,9 > 0 there holds that, for k large
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enough

H{(x,t) € K /ey < B, (u*,x,t) < M(x,t) — ey}
k
utk

<t € K /) > —wolt), 5 < [ (s wohp(s)ds < M~ Z)

usk

rUak /1/ u‘sk
<H@tek/ o>k U oq
S e Y
C
< H(.t) € K /vt fo (u™) 2 5},
k

Since v°¢ f., (u*) — 0 as measures in K and v** > 0, f., > 0 there holds that
vk fo (u™) — 0 in L'(K).
Therefore,
{(z,t) € K /e1 < B, (u*,x,t) < M(x,t) —ea}| — O.

On the other hand, let 1 > 7 > supy(—wp) be the constant in (3.1) in K, there holds
that

uk - Wk -
B., (v, x,t) = /ﬂik (s+ - )f(S)der/w:’“ <s+ U;k )f(S)ds

€k

< /_n@ (s+ 7“Zj)f(s)cls4—/_10:5'9 <s+ - )f(s)ds

_ /_7; (s+ wzk)f(s)ds . /_"wo(s +wp) f(s)ds < M(z,t)

3

. ek ek .
since —%¥—= < “= < pin K. Therefore,
ek ek

limsup B, (u®*, x,t) < /n (s 4+ wp)f(s)ds < M(z,t).

—wo

So that, for €5 > 0 small we get

H(z,t) € K /ey < B, (u*,z,t)} = [{(z,t) € K /ey < B, (u"*,x,t) < M —eo}| — 0.
k k

Let us now see that M(z,¢) = 0 in K. As in Lemma 2.2 we sce that M (z,¢) > 0. Now
assume that for some €; > 0 we have [{M(x,t) > e1}| > 0. Then, there exists m such
that [{M(z,t) > e + =} == [An] > 0.

Now,

/Am B., (u*, x,t) — /mM(x,t) > (61 —|—;)|Am|
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but,

B u€k71‘7t :/ B usk,x)t
/Am gk( ) Amﬂ{Bak(uEk7x’t)>€1} 5k< )

+/ Bsk(uak,x,t).
Amﬂ{Bek (usk,z,t)<ei}

Since the first term in the right hand side goes to zero and the second is bounded by

e1|An|, we get a contradiction.

The proof is finished. O

Let us give the definition of regular point.

Definition 3.1. We say that v is the interior unit spatial normal to the free boundary
H{u > 0} at a point (zo,ty) € O{u > 0} in the parabolic measure theoretic sense, if
veRY v =1 and

7’—)0 TN+2 //Q (zo0 |X{u>0} - X{(m,t)/ (m—mo,u>>0}|dxdt = 0.

Definition 3.2. We say that (:L'o,to) is a regular point of 0{u > 0} if there exists an
interior unit spatial normal to O{u > 0} at (xo,to) in the parabolic measure theoretic
sense.

We can now prove the main result of this section.

Theorem 3.1. Let (u%,v%) be a family of uniformly bounded solutions of (1.1) in a
domain D C RN such that v — w uniformly on compact subset of D, v¥ > 0 and
verify (1.7) and (3.1), with wy > —1. If (xg,t9) is a reqular point of D N O{u > 0}, then
u has the asymptotic development

u(z,t) = alz — xo, V)" + o(|x — xo| + |t — to|*/?)
with o = \/2M (o, to), where M = [1 (s+wp)f(s)ds. Here v is the interior unit spatial

normal to the free boundary at (xo,to) in the parabolic measure theoretic sense.

Proof. We assume, without loss of generality, that (zg, %) = (0,0) and v = e; = (1,0, ...,0).

Let ¢ € C°(D). We proceed as in Lemma 2.2. Let us multiply the equation for u® by
uz, v and integrate by parts. We have

[[ v =2 [ o, = [ o vwwo
—i—// (u®, x, t)1hy, +// ( —wo> f(—wo) (wo)z, ¥

u®

+// (/ f(s)ds>¢
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Since

u

ng(usf,x,t):/aj (s +wo)f ds+/
_ wo
and B, (u,z,t) — 0 weakly in L'(K) for every K C {u = O} compact, there holds that

(S)dsa

e
u J

F. (x,t) := / T (s4wo)f(s)ds — 0  weakly in L'(K).

J
—wo

Since F; is nonnegative there holds that
F., -0 inL'(K).
So that, for a subsequence that we still call €; there holds that
F., —0 ae. K.

Thus,
Ui
— —Wp ae. K.
&j
Therefore,
u’ 1
(3.2) / cj f(S)dS — </ f(S)dS) X{u>0} a.e. D.
—wo —wo

By using Proposition 2.3, Lemma 3.1 and (3.2) we can pass to the limit (for the sequence
g; — 0) in the latter equation and get

(3.3)
J[ uset =5[] 1Vul e = [ un Vv [f e,
+ //{u>0} o), (/—wo /s )ds) v

for every ¢ € C°(D).
Now, let 9 (x,t) = Mp(25%e, 5ho) Replacing ¢ by ¥ in (3.3) and changing variables,

)\’/\2

we get for uy(z,t) = Tu(zg + Az, to + \*t),

//(ux) (Ux)e, ¥ =5 /|VUA| Pz — // ) g, VUr Vb

Let 7 > 0 be such that Q,(zo,t0) CC D. We have that u) € Lip(1,1/2) in @Q,/1(0,0)
uniformly in A\, and u,(0,0) = 0. Therefore, for every A, — 0, there exists a subsequence
Aw — 0 and a function U € Lip(1,1/2) in R¥*! such that uy , — U uniformly on compact
sets of RN+,

(3.4)

By our assumption on (z,ty), we can easily see that for every k > 0
(3.5) s > 030 {1 < 0} N Qu(0,0) — 0 as A — 0,
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and
(3.6) H{uy =0} N{z; >0} NQr(0,0)] — 0 as A — 0.

Now, using lemma 2.1 and the fact that ¢* — 0 uniformly in D and supp ¢* C supp,
we can pass to the limit in (3.4) and get

[, o
{z1>0}

;//{x1>0} VU - //{9:1>0} Ve VUVY + M(0,0) //{z1>0} Ve

Our aim is to prove that U = az{. First, by (3.5) and (3.6), we deduce that U = 0 in
{z1 < 0}. On the other hand, U is a solution to the heat equation in {U > 0} C {x; > 0}.
By Corollary A.1 in [5], for every 7 € RV~ t € R there exists a > 0 such that

Uz, t) = axf + o(|(z1,2') — (0, )| + |t — #?) in {z; >0} N {t < T}

Replacing the test function ¢ by ®*(z,t) = A®(%4L, 257, t/\;j) with ® € C°({t < 0}) and
proceeding as above we get

OéQ
3.8 —f// ®, + M(0,0 // -
(3.8) 2 (z1>0} (0,0) (z1>0)

In order to pass to the limit for a sequence A, — 0 we have used Lemma 2.1. (See [6],
Theorem 3.1 for the details).

Thus, a = 1/2M (0, 0).

(3.7)

In order to see that U = ax] we use Lemma 2.4. In fact, by Lemma 2.1 there exists a

sequence j, — oo such that

1
u’r = /\—uejn(/\nx, Nt) — Uz, t)
uniformly on compact subsets of R¥+1. We recall that (u",v°") is a solution to (1.1) with
¢ replaced by 9,,. Moreover,
wo  win (A\,x, A2t)

n

uniformly on compact sets of RV*+1,
Moreover, U > 0 and 0{U > 0} # (). By Lemma 2.4 we have that |VU| < a(=
\/m. Since U = 0 in {x; = 0} we deduce that
U < ar in {z; > 0}.
By Hopf’s Principle, we deduce that
U= amn in {z; > 0}.

The theorem is proved. O
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Remark 3.1. It is clear from the proof that the result is still true if we replace condition
(3.1) by the following property: > — —wy a.e. {u=0}°.
J

4. VISCOSITY SOLUTIONS

In this section we prove that, under suitable assumptions, the limit function u is a
viscosity solution of the free boundary problem (1.4).

For the sake of completeness, we state here the definition of viscosity solution that was
introduced in [6] for the two phase case of this problem when wy = 0.

Definition 4.1. Let Q be a cylinder in RY x (0,T) and let v € C(Q). Then v is called
a classical subsolution (supersolution) of (1.4) in @ if v >0 and

(1) Av—v,>0 (£0) in Q=@ nN{v>0}.
(2) v e CHOQT).
(3) For any (z,t) € 02T NQ, Vu(x,t) #0, and

\Vo(z,t)| > V2M (< V2M).

We say that v is a classical solution in Q) if it is both a classical subsolution and a
classical supersolution.
Definition 4.2. Let u be a continuous nonnegative function in Q; u is called a viscosity
subsolution (supersolution) of (1.4) in Q if, for every subcylinder Q" CC @ and for every
classical supersolution (subsolution) v in @',

u<wv on 0,Q (u>v ond,Q') and
v>0o0n{u>0}Nd,Q (u>0on{v>0}NJQ)
implies that w < v (u > wv) in Q.

The function u is called a viscosity solution if it is both a viscosity subsolution and a
viscosity supersolution.

Definition 4.3. Let u be a continuous nonnegative function in D and let (zo, o) € O{u >
0} ND. We say that (xo,to) is a reqular point from the nonpositive side, if there exists
a reqular nonnegative function v in D such that v > w in {u > 0} for t < ty and
U(QZ’Q, to) = u<$0, to)

Finally we need the following definition on nondegeneracy.

Definition 4.4. Let u be a continuous nonnegative function in D. Let (xo,ty) € D be
such that u(xo,to) = 0. We say that u does not degenerate at (xo,to) if there exist ro > 0
and C' > 0 such that
sup u>Cr for 0 <r <.
OpQs (z0,t0)

We now prove that, under suitable assumptions on the limit function u, there holds
that u is a viscosity solution to the free boundary problem.
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Theorem 4.1. Let u = limu®*, where (u®*, v°*) are uniformly bounded solutions to (1.1)
with v¥& > 0, satisfying (1.7) in D, with wy > —1, and such that u®* either satisfies (3.1)
of u;* <0 in D.

If u™ does not degenerate at every point of the free boundary which is reqular from the
nonpositive side, then u is a viscosity solution of (1.4).

Proof. By Proposition 2.3 and Lemma 2.1, Theorem 4.1 of [6] can be stated for our system,
thus u is a viscosity supersolution.

In order to see that it is a viscosity subsolution, let v be a classical supersolution such
that

u <wvin 0,Q and v > 0 in {u > 0} N J,Q

we want to see that u < v in Q).

If not, we define

to=sup{0<s<T:v>0in{u>0}NQRN{0<t<s}}

From the definition of ¢, it follows that ¢ > 0 and, from our hypotheses we deduce that
v>uin QN{0 <t < ty}. In addition, there exists a sequence (x(s),t(s)) — (zg,ty) € Q
such that v(z(s),t(s)) = 0, (z(s),t(s)) € {u >0} N Q. Clearly, u(xg,ty) = v(xg,ty) =0
and (xo,tg) € H{u >0} NQ. If (xg,tg) € {v = 0}° then, for 7 small we have v < v =0 in
B (zg,t9) N {t < to} and therefore, u = 0 there, which contradicts our hypothesis. Thus

v>uin @QN{0 <t <t}
(20,t0) € H{u>0}No{v>0}NAQ.
We may assume, without loss of generality, that (xg,t9) = (0,0) and @1(0,0) = Q1 C @

consider instead of u the function u(xg + Aoz, to + A2t) for certain Ao > 0 small, and
o 0
analogously with v). Let us take

1 1
oz, t) = XU(/\$7)\2?5), up(z,t) = Xu()\a:, N2t).

It is easy to see that there exists a sequence A, — 0 and functions ug, vy such that
Ux — Vg, Uy — UQ.

Since v is regular, we have that vg(z,t) = Bxf with 0 < 8 < /2M(0,0) (for some
system of coordinates).
Let us see that also ug(z,t) = ax{ for some a > 0,

We may think that in ¢y, O{v > 0} is the graph of some function ¥ (2',t) = z1, = =
(x1,2") with ¥ € Lip(1,1/2), where ¥(0,0) = 0 and {v > 0} = {z1 > ¥(2/,1)}.

Hence, we have that

[, 0)] < C (o] +[t]'?) .
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Let R = {(x,t) €Qr: 1 <—-C (!x’| + ]t\lﬂ)}. Then RN {v > 0} = 0 and let w be
the caloric function in O = Q7 \ R with w =0 in J,R and w = L > ||ul|s in the rest of
0,0.

Since u is globally subcaloric and u < w on 9,0, then u < w in O.

Now, w — u is supercaloric in O, w —u > 0 in the interior and w —u = 0 at (0, 0), then,
by lemma A.1 of [5], we have that w — u = dz] + o(|z| + [t|'/?) and, since by the same
lemma, w has an asymptotic development at (0, 0),

u(x,t) = azxi + o(|z| + |t|?), with a > 0.

Since by hypothesis u™ does not degenerate, there follows that a > 0.

On the other hand, since v is regular, v admits an asymptotic development at the origin
in the form v(x,t) = Baf + of|z| + [t|'/?). Clearly, 8 > a.

Now, let h be the caloric function in O := Q7 N{v > 0}N{—p <t < 0} for some small
>0, with h = v —wuon 0, O. And, let ¢ be the caloric function in O with ¢ = v on
9,0. Then, h=g=0in Qy Nd{v >0} N{—pu<t<0}and h >0, g>0in O.

Therefore, by [1], there exists o > 0 such that h > og in @y ,N{v > 0}N{-4 <t <0}.

Since u is subcaloric in @7 and u < v in ()7 we deduce that v —u > ou in QI/Q N{v >
0} N{—% <t < 0}. In particular § —a > oa > 0.

The theorem will be finished if we show that o = /20 (0, 0).
Case 1: u* verifies (3.1).

As in Theorem 3.1, we obtain

// Ui ) = 5 // [ Vul*hy, — // U, VUV
+ //Dn{u>0} x t wml + //Dm{u>0} O o </ wo f(s)ds> ¢

for every test function 1. Then, taking *(z,t) = A¢(%, %) and changing variables, we
get
// U)\ U)\ xl 2 // |VU)\| ¢$1 // u)x x1vu>\vw
+// MO, Xt} + (10)., </ F(s)ds) o
Dn{ux>0} Dn{u>0} —wp

By Lemma 2.1, we get (for some sequence Ay — 0)

1
2a 'Dﬂ{d?1>0} dj 1 + kLI& 'Dﬂ{u,\k >0} ( kT k )¢ 1

We want to check that X{uxk>0} — Xiz,>0) a.e. or, equivalently,
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(1) {z1 >0} C U2, Nisn {uy, > 0} = liminf{u,, > 0} a.e.
(2) N2 Upsn {un, > 0} = limsup{u,, > 0} C {z; > 0} a.e.

Let us see (1). If 23 > 0, we get that ax; > 0 and since uy, (x,t) — ax; it follows that
uy, (x,t) >0 Vk > k.

Let us see (2). If exists k; — oo with uy, (x,t) > 0 then it must be z; > 0, because if
J
1 < 0, we have that vy, (x,t) = 0 for j > jo (because as v is regular, {vy, > 0} — {21 >
0}). Since uy, < w,, we get a contradiction.
J J

Therefore,

1
0= 102 // ey + M(0,0) // b
2 DN{z1>0} DN{z1>0}

1
0= / (a2 — M, 0)) wda'dt.
D{z1=0} \2
Since ) is arbitrary, %OzZ = M (0,0), so that,

So that,

a =4/2M(0,0)
and the proof is finished

Case 2: u;* <0

We already now that, if we consider uy(z,t) = su(Az, A%t), then it follows that
ur(z,t) — uo(w,t) = axf
uniformly on compact subsets of RV+!,

As before

//D ugtug, —2// Ve, — // a’“Vua’“VL/wl—//Dng(ua’“,x,t)q/Jxl
el ([ o) o ] ma( s

t

5z) and change

Now, as in the previous case, if we consider first ¢*(z,t) = AY(F,
variables, we obtain

J[ @i = 5 [f 190 P, - //u%
(4.1) +//B§/A u/\,mthlJr// (/iif( )ds)wx

] e (" )f<—wo>w

where BX(u, x,t) = [", u2ee (s +w(2,1)) f(s)ds. We want to pass to the limit as both
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g, and A\ go to zero.

Using Lemma 2.1, we see that for every sequence A\, — 0 there exists a sequence
k, — oo such that 4, := &;, /A, — 0 and u’ := (u=)y — g uniformly on compact sets
of RN*1. By Proposition 2.3 we see that we can pass to the limit in the first three terms
of (4.1) (with e = ¢, and A = \,,).

Let us study the limit of By" (u’"(x, 1), z,1).
It is easy to see that in {@1 > 0}, By" (u’"(z,t),z,t) — M(0,0) uniformly on compact
sets. Now, let K C {x; < 0} be compact. We will show that
V(B3 (u'(z,t),2,t)) — 0 in LY(K)
In fact,

V(B;s» (u‘s"(:v, t),x,t)) = U‘S"fgn(u‘s")Vu‘S"
67l

+ A Vg (A, A22) (“;
dn

§'n u
+ Vuw /5n f(s)ds

5n wo (Anz,A21t)

(2, t) = wo(Anz, A2t)) f(—wo(An, A21))

Since v f5, (u°") — 0 as measures in K and is nonnegative, we deduce that the conver-
gence takes place in L'(K). On the other hand, Vu’» is uniformly bounded. Therefore,
the first term goes to zero in L'(K).

In order to see that the second and third terms go to zero uniformly in K we only need

to observe that

6n €k
u u-"n
—(z,t) =
(sn ( Y ) gkn

(Anz, A2t)

and a similar formula holds for %. So that

0.

‘lg (z,t) — wo(Apz, A2t)| — 0 uniformly on compact sets of RV,
5 5

u'n wr
> — > -C

L

v On v €kn

| ;U |(:1c, t) = )\n| o | (Anz, A2t) — 0 uniformly on compact sets of RV,
n €k,

On the other hand, |B(’5\: (u’(x,t),2,t)| < Ck, so that we have,

B (uP (w,t),2,t) — M(t)  weakly in L*(K).

Let us now see that, actually, the convergence takes place in L'(K).
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There holds that

9 n(,0n — 20 On On 9 n(s,0n
&(Bén (U (i’,t),I,t)) =v f5n(u )(U, )t_l_&B(Sn (U ,l’,t)
< ;B(g:(u‘s",x,t) <Ckg inK.

On the other hand, for every (zo,ty) € K, and Q. (x¢,ty) C {z1 < 0}
0
— (B (W (z,t), z,t :/ B (ul (x, t Dz, (t ) d
//QT(IU,t0)8t< On (U (CL’ ) o )) Br(z0) on (u (x 0orT ) v (O+T )) v
= [ Byt = 7)., (tg — 7)) da
Br(z0) "
2 _CT

since | By (u’ (z,t), x,t)| < Ok for every compact set K.

Therefore there exists Cx > 0 such that ||By" (u®(z,t), z,t)|lwrix) < Ck. Hence the
convergence takes place in L!'(K) (for a subsequence).

Now arguing as in Lemma 3.1, we get that M(¢) =0 or M(t) = M(0,0).

We can now take the limit in (4.1) for the sequences €5, and A, and we obtain

1 _
0= a2 // ey 4+ M(0,0) // . +// N ()b,
2 DN{z1>0} DN{z1>0} DN{z1<0}
So that,

0=/ _— (;oﬂ — M(0,0) - M(t)) o dadt.

Since 1 is arbitrary we get ta? = M(0,0) — M(t). So that, in particular, M(¢) is

I =

constant and then we have that M(t) = 0 or M(t) = M(0,0). Since a > 0 we deduce
that M(t) =0 and

a =4/2M(0,0)
The proof is finished. O

Now we prove a proposition that says that, under suitable assumptions, u* does not
degenerate on the free boundary. The proof is similar to theorem 6.3 in [5], where the
nondegeneracy of u™ was proved in the strictly two phase case. Here we assume, instead
of (3.1) the somewhat stronger condition that for every K C D compact, there exist
0 <n < 1and ey > 0 such that for every 0 < € < g

/U/E
(4.2) —<n in KNn{u=0}°.

€
Proposition 4.1. Let u = limu®, where (u®,v°*) are uniformly bounded solutions to
(1.1) satisfying (1.7) with wy > —1, such that v* > 0 and the functions u®* satisfy (4.2).
Let (zg,t9) € 0{u > 0}.
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Let us assume that there exists v € RY | with |v| = 1 such that

lim |{u>0}ﬂ{<x—mo, v) >0} NQ, (zo,to)] o
T—>0+ |Q; (0, t0)|

and
=0}°N — <0}NQ; t
= 01 0 (= 0,0 < 0} N @ ()]
r—0t Q; (w0, t0)]
with ap + ag > %, then there exists a constant C > 0 and ro > 0 which depends on N and
f such that, if 0 < r < rq,

(8%

sup  u > Cr.
OpQr (zo,t0)

Proof. Without loss of generality, we may assume that (zo,%y) = (0,0) and that v = e; =
(1,0,...,0).

We will note @, = @, (0,0) and

1 1 1
(u¥)(z,t) = fua(rx,rjt), (V) (x,t) = —0°(re, T2t), up(z,t) = fu(rx,r2t).
r r r

Let us see that there exists ro > 0 and a constant ¢ such that if » < ry and ¢ < gy =

go(r), then
//Q1 )rfepr((U%)y)dx > c.

Following [5], there exists v > 0 small such that, for some A > 0,

H{ur >4} 0 {1 > 030 Q1| | Hur =03 N{an <0} N QY|

A
or GH t

AV
N[ —

Let us now define
A ={u, >~v}N{z; >0} NQ;, B, ={u,=0}’N{x; <0} NQy

and — B, = {(xy,2',t)/ (—x1,2',t) € B, }.

Then, we have

|4, (=B,)| = A@r| = A
Once again, following [5] we have for 0 < p < 1 fixed, that there exists 0 < 2} < 1 such
that

A = [{(@,0)/ (21,2, t) € A, N (=B,)}| > pA
Let 7 > 0 be the constant in (4.2) in Q1(0,0), let 0 < ¢ < 6§, 0 < b < b < 1 be such
that
n < —wy(0,0) + 6§ < b.

Let x > 0 be such that

f(s)>k>0 fors<V.
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Then, for (2/,t) € A, we have
1 , 0 1
—(u), (2], 2" t) > —— >b, —
o T D) > 5 e/r

if e < €1 = e1(r) is small. So that, for every (z/,t) € A, there exists Z} € (—1,1) such
that —w(0,0) +6 < ﬁ(u‘g)r(iq,x’,t) <b.

(u®) (=, 2’ t) < —wp(0,0) + 0

Now, by the uniform Lipschitz regularity of (u), and (v°),, and (1.7), we have that for
e <eg(<ep) and r < ry,

(u )r(xl,x',t) <V and (v )r(xl,x',t) >0 if |xy — 27| < C’;

e/r e/r
where C depends on 6, ', b, b/, on the Lipschitz constant of u* and v* in ()7 and ry depends
only wy.

Finally we have

//Ql rfepr((u //Q; 5/7’ 8/7’ (5/3“ )

) K W) g (u)r
255/7"‘{@’75)6@1/ r >5adf(€/r)2m}‘

> 5’L\AT]207 > 206 kpd = c.
e/r r

The rest of the proof follows as in [5] O
Remark 4.1. Proposition 4.1 remains true if we change the hypothesis that u®* satisfies
(4.2) by

uk
(4.3) — — —wp a.e. {u=0}°.
€k

In fact, as in the proof of Prop. 4.1 we consider for each 0 < r < 1 the sets A, and B,.
So that, for some 0 < A < 1

|Ar 0 (=B,)] = M@y .

Since B, C {u, = 0}°, there holds that
(u),
e/r
Let 0 < pu < 1. There exists C,. C (AT N (—BT)) such that |C,| = plA,. N (=B,)| and
(u)s
e/r
Let 6 > 0. There exists 1 = e1(r) such that
(u),
e/r

(=21, 2/, t) — —wo(—rxy,ra’, r’t) a.e. AN (=B,).

(=1, 2, t) — —wo(—rxy,ra’,r*t)  uniformly in C,.

IR

(=1, 2, t) < —wo(—rzy, o’ r°t) + —wp(0,0) +4d in C,
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ife <ep andr <rg=re(d). Now, the proof follows as in Prop. 4.1 by taking A= LA Q7 |
and

A= {(2',t) ) (2,2, t) € C,}.

Remark 4.2. Proposition 4.1 remains true if we change condition (4.2) by condition
(3.1). In fact, as in the proof of Theorem 3.1 we see that condition (3.1) implies that

B., (u™, x,t) — 0 L ({u=0}°).
As in Theorem 3.1 we deduce that u®* satisfies (4.3).

Using Remark 4.1, Remark 4.2 and Theorem 4.1 we get the following Corollaries.

Corollary 4.1. Let u = limu® where (u®t, v°*) are unifomly bounded solutions to (1.1)
in a domain D C RN*Y with v > 0, which verify (1.7) with wy > —1 and such that
ut satisfies (3.1). If the free boundary D N 0{u > 0} is given by x1 = g(a’,t) with
g € Lip(1,1/2), then, u is a viscosity solution of the free boundary problem (1.4).
Corollary 4.2. Let v = limu®* where (u*,v°F) are unifomly bounded solutions to (1.1)
in a domain D C RN with v¥ > 0, which verify (1.7) with wy > —1 and such that u®*
satisfies (4.3) and ui* < 0. If, for every (zo,t9) € DN I{u > 0}, {x € RN /(x,ty) €
Dn{u > 0}} is given by x1 > ®(a') with ®, Lipschitz continuous then, u is a viscosity
solution of the free boundary problem (1.4).

Proof. We only need to see that u does not degenerate at points of the free boundary
which are regular from the zero side. Let (x¢,%y) be any such point. We see that we can
apply Remark 4.1 at that point. In fact, since u;* < 0, u is decreasing in time. Therefore,

{(z,t) /21 > ®(x), t <to} C {u>0}

and the parabolic density of this set is positive. O]

In particular, Corollary 4.2 can be applied to solutions of (1.1) with u§ constructed as
in [7] and v§ a small perturbation of u.

Corollary 4.3. Let ug € C(RY)NC?({ug > 0}) be such that ol o agsoy) < 00, Aug <0
and (ug)z, —A|Vuo| > 0 in {ug > 0} with A > 0. Assume, moreover that 0 < ay < |Vug| <
a1 < v/2My in a neighborhood of the free boundary: {z € {ug > 0} / dist(x,{uo = 0}) <

v}, and My = [y sf(s). Then, there exists a sequence (ug,v) € (C’l (RN))2 with uf — g
uniformly in RN (so that u§ are uniformly bounded) and, moreover, they satisfy

1) Aug — v fe(ug) <0

2) (ug)ay — AlVug| = 0

(4.4)
UG — UG

3) — wy  uniformly on compact sets, with —wy > —1.

wy € R is any constant such that wy > —n with n > 0 small enough.
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Let (u®,v°) be the solution to (1.1) with initial datum (uf,v§) (so that, in particular, u®
and v are uniformly bounded). For every sequence €; — 0 there exists a subsequence €,
such that there exists

u = lim u
k—oo

and u is a viscosity solution to the free boundary problem (1.4).

Proof. Let u§ be the approximations constructed in [7]. The approximations are con-
structed in the following way. First we extend wuy to a neighborhood of {u, > 0}:
S = {z € RY /dist (z,{ug > 0}) < ~} in such a way that ||ug||cz(sy < oo. For ¢
small enough we define

ug(z) =eF < 21M0 (1 - uoix))> in {—Ce <up<e}.

where F' € C?*(R) is such that
F' < (14 6)Ff(F) +aF, F(0)=1, F(0)=—/2M,.

Here 6 > 0, a > 0 are such that F' has a strict minimum at a finite point § such that
5v2My > 1. (5§ — 400 as 6 — 0), and F' is decreasing for s < s.

The constant C'is taken as C' = 5v/2M, — 1.

We define

Uy = Ug in {ug > e}

uy =eF(5) in RY\ {ug > —Ce}.
As in [7], we see that u§ € C1(RY).
Let wy € R be such that wg > —n > —F(5) with n > 0 to be fixed later and let
vy = Uy + EWp.

Then, v§ > 0. It is immediate to verify that (4.4) 1) is satisfied in {uy > e} and
N\ {ug > —Ce}. Let us see that it is satisfied in {—Ce < ug < e}. In fact,

~ FA(F) - " p(F)

a
2M,

1
Aug — v fe(ug) = —— F"|Vuo|* —

1
2Mye V2M,
1496

- 2 Rty nl 2
—2M Ff(F)|Vul +2M F'|Vu|

/ 1 Wo
F'— ZFf(F) - 2 f(F)

where a > 0 is such that |Aug| < a.

Let 0 < g < 1 be such that a; < (1 — p)Y2Ay/2M, with 0 < A < 1, and let ¢
in the definition of F' be such that (1 + §)A? < 1. Then, if € is small enough so that
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aa/\/2M; > ae there holds that

A~ 15.005) < £ [0+ 91 = 0~ ) + (2~ <2 )F - wnd (F)
< [HF — wlf(F) < [-pF(3) — wlf(F) <0
if n = uk(s).

Clearly, (4.4) 3) holds. Let us see that (4.4) 2) also holds. We only need to verify this
property in the set {—Ce < ug < £} and this is clear from the fact that

1 1 Uo
6= — F’ 1—— .
VUO 2M0 ( 2Mg( € )> VUO

Now, by the results of Section 2, for every sequence €; — 0 there exists a subsequence
and a continuous function u such that u®» — u uniformly on compact subsets of RY x

(0, 00).
On the other hand, u; is a solution to the following equation

AU — Uy, = BL(u)U.

Here 5.(s) = sf-(s). Since, for € small enough u(x,0) < 0 we conclude that
(4.5) ui <0 in RY x (0,00).

In a similar way we see that u,, — Au,, > 0 for every 7. So that
(4.6) ug, — ])\\TW'Lﬂ >0  inRY x(0,00).
Clearly (4.5) and (4.6) imply that
up <0 and  u,, — ]>\>|Vu] >0 in {u > 0}.

In particular, the free boundary is Lipschitz in space.

So that, in order to apply Corollary 4.2 we only need to verify that u®* satisfies (4.3).

On one hand, given K C {up = 0}° compact, there exists gy such that for e < g
() F(3)

(s+wo)f(s) = [ (s +wo)f(s)

—wo

B. (4, z,0) :/

—wo

On the other hand,
a 15 e € €
En (Bs(u ,x,t)) =0 f.(u)u; <0.

Therefore,

F(3)
uyct</ (s 4+ wp) f(s) for z in K|t > 0.
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As in the proof of Theorem 4.1 we see that, since u§ < 0, there holds that B.(u®, z,t) —

M(z,t) in L. ({u = 0}°) and, for almost every (x,t) we either have M(z,t) = 0 or

loc

M(z,t) =M = [1, (54 wp)f(s). Since
V(Bs(ug,x, t)) = v f.(u)Vuf — 0 in L}, ({u=0}°)
there holds that M (z,t) = M(t) in {u = 0}°. Therefore,

W < [ Z(OS)(s+wg) £(s) ae. {u=0)°.

Since F(5) < 1, there holds that M(t) = 0.

Thus, for every sequence €, — 0
uk

"(s+wo)f(s) =0  ae {u=0}°

—wo

and we deduce that u®* satisfies (4.3). O

Combining the regularity results for viscosity solutions of [8], Corollary 4.1 and Corol-
lary 4.2 we have the following regularity result for limit functions.

Corollary 4.4. Let u as in Corollary 4.1 or Corollary 4.2. If, moreover, the free boundary
DN o{u > 0} is given by 1 = g(a',t) with g Lipschitz continuous, then, u is a classical
solution of the free boundary problem (1.4).
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