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Abstract. In this work, our interest lies in proving the existence of critical
values of the following Rayleigh-type quotients

Qp(u) =
‖∇u‖p
‖u‖p

, and Qs,p(u) =
[u]s,p

‖u‖p
,

where p = (p1, . . . , pn), s = (s1, . . . , sn) and

‖∇u‖p =

n∑
i=1

‖uxi‖pi

is an anisotropic Sobolev norm, [u]s,p is a fractional version of the same

anisotropic norm, and

‖u‖p =

∫
R

(
. . .

(∫
R
|u|p1dx1

) p2
p1

dx2 . . .

)pn/pn−1

dxn

1/pn

is an anisotropic Lebesgue norm.
Using the Ljusternik-Schnirelmann theory, we prove the existence of a se-

quence of critical values and we also find an associated Euler-Lagrange equa-

tion for critical points. Additionally, we analyze the connection between the
fractional critical values and its local counterparts.

1. Introduction

Eigenvalue problems are a well-established and widely studied subject that spans
across various fields, including analysis and partial differential equations (PDEs).
In the context of PDEs, the Laplacian eigenvalue problem involves finding the
eigenvalues and corresponding eigenfunctions that satisfy the equation

∆u+ λu = 0.

Solving this problem provides valuable insights into the behavior of functions
within a given domain. The eigenvalues offer information about the Laplacian’s
spectrum, while the eigenfunctions reveal spatial patterns associated with different
frequencies or modes.

Another well-known eigenvalues problem arises with the p-Laplacian, a nonlinear
generalization of the Laplacian defined by

∆pu = div(|∇u|p−2∇u).
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The eigenvalue problem of the p-Laplacian, characterized by the nonlinearity in-
troduced through power exponentiation, is both intriguing and demanding, as it
entails solving the equation

−∆pu = λ|u|p−2u

Many authors have extensively explored this problem, as seen in [12, 17, 14, 2].
Even more, in recent decades, there has been a growing interest in fractional

operators due to their applications in various natural sciences models [9, 16, 21].
One prominent exponent of this family of fractional operators is the fractional p-
Laplacian, defined as

(−∆p)su(x) = p.v.(1− s)Kn,p

∫
Rn

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|n+sp
dy,

where Kn,p is a constant that depends only on n and p.
The eigenvalue problem associated with this fractional operator,

(−∆p)su(x) = λ|u|p−2u,

has also been studied extensively by several authors [5, 10, 22, 15].
The aim of this paper is to introduce an anisotropic feature to these eigenvalue

problems. This choice is motivated by the substantial attention dedicated to in-
vestigating this phenomenon in signal processing and diffusion studies [8, 24]. For
those not familiar with the term, anisotropy can be described as the characteristic
of displaying directional dependence, where various attributes or qualities manifest
differently in distinct directions. This stands in opposition to the isotropic nature
of the Laplacian, p−Laplacian, and fractional p−Laplacian, where these properties
remain uniform regardless of the direction.

On one hand, a strategy to address anisotropy involves emphasizing the inte-
grability of individual partial derivatives of a function u by employing the sum of
standard Lp norms,

‖∇u‖p =

n∑
i=1

‖uxi
‖pi

,

see [19, 20, 23]. Hence, we naturally arrive at the following anisotropic pseudo-
laplace operator

−∆̃pu := −div

(
n∑

i=1

|uxi |pi−2uxi

)
On the other hand, Benedek & Panzone [3] present the anisotropic Lp (p =
(p1, . . . , pn)) space with a special norm to address the anisotropy of a function
u. The mixed Lebesgue space is constructed by considering different exponents for
each coordinate in the norm

‖u‖p =

∫
R

(
. . .

(∫
R
|u|p1dx1

) p2
p1

dx2 . . .

)pn/pn−1

dxn

1/pn

.

By considering different exponents for each coordinate, the mixed Lebesgue norm
accounts for the anisotropy of the function u. It allows for a more flexible and
nuanced characterization of the integrability and decay properties across different
coordinates.

By combining this two perspective we can state the following eigenvalue problem

−∆̃pu = λFp(u),
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where Fp is a suitable functional related to ‖u‖p. See (3.3).
Unfortunately, this problem is hindered by its lack of homogeneity. It’s important

to observe that if v is an eigenfunction associated with λ, there’s a possibility that
tv may not qualify as an eigenfunction of λ.

Note that a crucial approach to solving the Laplacian, p−Laplacian and frac-
tional p−Laplacian eigenvalue problems involves finding the critical points of the
Rayleigh quotient associated with each one, namely

Q2(u) =
‖∇u‖22
‖u‖22

, Qp(u) =
‖∇u‖pp
‖u‖pp

and Qsp(u) =
[u]psp
‖u‖pp

.

Therefore, it is recommended to explore the following homogeneous Rayleigh
quotient

(1.1) Qp(u) =
‖∇u‖p
‖u‖p

.

As we will observe in Section 3, the associated Euler-Lagrange equation of Qp(u)
is the following homogeneous eigenvalue problem,

(1.2) − Lpu = −div

(
n∑

i=1

∣∣∣∣ uxi

‖uxi
‖pi

∣∣∣∣pi−2
ux1

‖u‖pi

)
= λFp(u).

In [7] fractional anisotropy is introduced through the utilization of integrabil-
ity parameters p = (p1, . . . , pn), 1 < pi < ∞, and fractional parameters s =
(s1, . . . , sn), 0 < si < 1, and the subsequent norm,

[u]s,p =

n∑
i=1

(∫
Rn

∫
R
(1− si)

|u(x+ hei)− u(x)|pi

|h|1+sipi
dh dx

)1/pi

.

As in the non-fractional case, combining this perspective with the Benedek &
Panzone’s norm we arrive to the following eigenvalue problem

(−∆̃p)su(x) = λFp(u),

where (−∆̃p)s it the fractional pseudo p-Laplacian operator defined as

(−∆̃p)su(x) =

n∑
i=1

∫
Rn

(1− si)
pi

|u(x+ hei)− u(x)|pi−2(u(x+ hei)− u(x))

|h|1+sp
dh dx.

Again, this is not an homogeneous problem, therefore we study the homogeneous
Rayleight quotient

(1.3) Qs,p(u) =
[u]s,p
‖u‖p

.

As we will see in Section 3 the Euler-Lagrange equation is

(1.4) − Ls.pu = λFp(u),

where Ls,p is the fractional version of Lp.
To address the problem of find criticals points of (1.1), and (1.3) and solve the

eigenvalues problems (1.2) and (1.4), the Ljusternik-Schnirelman theory serves as a
powerful framework for exploring critical point theory and the existence of critical
points for functionals as we will see in Section 5. See [18].
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The rest of the paper is organized as follows: In Section 2, we dive into anisotropic
Sobolev spaces and fractional anisotropic Sobolev spaces, explaining them in more
detail and discussing some interesting properties like the Poincaré inequality and
a Rellich-Kondrashov type theorem. Then, in Section 3, we figure out the Euler-
Lagrange equations associated with the corresponding Rayleight-type quotients.
In Section 4 we study the asymptotic behavior of the sequence of eigenvalues as
s → (1, . . . , 1) and finally in Section 5 we use Ljusternik-Schnirelman theory to
prove the existence of eigenvalues.

2. Mixed, anisotropic and fractional spaces

In this section, our objective is to establish the definition of the mixed Lebesgue
space, as introduced by [3]. This space will serve as a fundamental building block
for our analysis. Furthermore, we will define a suitable anisotropic Sobolev space,
W 1,p

0 (Ω), and a fractional anistropic Sobolev space W s,p
0 (Ω).

2.1. Mixed space. Let p = (p1, p2, . . . , pn) with 1 < pi < ∞ for i = 1, . . . , n be
integral parameters. Without loss of generality, we can assume that

(2.1) 1 < p1 ≤ p2 ≤ · · · ≤ pn <∞.

We define the mixed Lebesgue space as

Lp(Rn) = {u measurable such that ‖u‖Lp(Rn) <∞}.

Where

‖u‖p =

∫
R

(
. . .

(∫
R
|u|p1dx1

) p2
p1

dx2 . . .

)pn/pn−1

dxn

1/pn

.

Furthermore, given Ω an open bounded subset of Rn, we define

Lp(Ω) = {u ∈ Lp(Rn) such that u = 0 in Rn \ Ω}.

Observe that Lp(Ω) is a closed subspace of Lp(Rn). This space Lp(Ω) turns out to
be a reflexive Banach space and its properties were studied in [3, 1].

Remark 2.1. The ‖.‖p norm can be defined by recurrence as

I1(u) =

(∫
R
|u|p1 dx1

)1/p1

I2(u) =

(∫
R
I1(u)p2 dx2

)1/p2

...

Ij(u) =

(∫
R
Ij−1(u)pj dxj

)1/pj

...

In(u) =

(∫
R
In−1(u)pn dxn

)1/pn

I(u) = In(u) = ‖u‖p
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Remark 2.2. Observe that, given u ∈ Lp(Rn), Ij(u) is a function of (xj+1, . . . , xn).
Moreover, for almost every (yj+2, . . . , yn) ∈ Rn−j−2, the function Ij(u) (as a

function of xj+1), belongs to Lpj+1(R).
Also, observe that if {uk}k∈N ⊂ Lp(Rn) is such that uk → u ∈ Lp(Rn) as

k → ∞ then Ij(uk)(·, yj+2, . . . , yn) → Ij(u)(·, yj+2, . . . , yn) in Lpj+1(R) for a.e.
(yj+2, . . . , yn) ∈ Rn−j−2.

2.2. Anisotropic Sobolev spaces. Our interest lies in functions whose partial
derivatives have different integrability. With this fact in mind, given p = (p1, . . . , pn)
with 1 < pi <∞, the anisotropic Sobolev space is defined as follows:

W 1,p(Rn) := {u ∈ Lp(Rn) : uxi ∈ Lpi(Rn), i = 1, . . . , n} ,

equipped with the following norm

‖u‖1,p = ‖u‖p +

n∑
i=1

‖uxi‖pi
= ‖u‖p + ‖∇u‖p.

It is easy to prove that W 1,p(Rn) is a separable, reflexive Banach space.

Now, given a bounded domain Ω ⊂ Rn we define W 1,p
0 (Ω) as the closure of

C∞c (Ω) in W 1,p(Rn).

2.3. Fractional space. Next we present the fractional anisotropic Sobolev space.
First, given i = 1, . . . , n, s ∈ (0, 1] and p ∈ (1,∞), for any u : Rn → R measurable

we define the quantity

[u]s,p,i =

(∫
Rn

∫
R

|u(x+ hei)− u(x)|p

|h|1+sp
dhdx

) 1
p

,

where ei is the ith−canonical vector base in Rn.
Now, given p = (p1, . . . , pn) and s = (s1, . . . , sn) with 1 < pi <∞ and 0 < si <

1, for i = 1, . . . , n, we define the anisotropic fractional order Sobolev space as

W s,p(Rn) := {u ∈ Lp(Rn) : [u]si,pi,i <∞, i = 1, . . . , n} .

This space has a natural norm defined as

‖u‖s,p := ‖u‖p +

n∑
i=1

[u]si,pi,i = ‖u‖p + [u]s,p.

It is easy to see that W s,p(Rn) is a separable and reflexive Banach space. See [6, 7].
As before, given Ω ⊂ Rn a bounded domain, we define W s,p

0 (Ω) as the closure
of C∞c (Ω) in W s,p(Rn).

The following two theorems represent analogs to the classical Poincaré inequal-
ity and the Rellich-Kondrashov type theorem within the context of Lp(Ω) and
anisotropic fractional Sobolev space.

Proposition 2.3 (Poincaré). Given Ω an open bounded subset on Rn, there exists

constants C1(Ω,p, n) > 0 and C2(Ω,p, s, n) > 0 such that for every u in W 1,p
0 (Ω),

the following inequality holds

(2.2) ‖u‖p ≤ C1‖∇u‖p,

and for every u in W s,p
0 (Ω), the following inequality holds:

(2.3) ‖u‖p ≤ C2[u]s,p.
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Proof. Let u be a function in W 1,p
0 (Ω). On one hand, observe that since pi ≤ pn for

every i = 1, . . . , n − 1 and |Ω| < ∞, it follows by Hölder’s inequality that Lpn(Ω)
is continuously embedded in Lp(Ω), that is, there exists a positive constant C > 0
such that

‖u‖p ≤ C‖u‖Lpn .

On the other hand, the Poincaré inequality for functions in W 1,pn

0 (Ω)

‖u‖Lpn (Ω) ≤ C‖uxn‖Lpn (Ω) ≤ C
n∑

i=1

‖uxi‖Lpi (Ω)

Therefore, by combining these results, we obtain (2.2).
For the second inequality, let u be a function in W s,p

0 (Ω), we can assume that
there exist R > 0 such that suppu ⊂ QR = [−R,R]n. Hence,

[u]p1

s1,p1,1
=

∫
Rn

∫
R

|u(x+ he1)− u(x)|p1

|h|1+s1p1
dh dx

≥
∫
QR

∫
R

|u(x+ he1)− u(x)|p1

|h|1+s1p1
dh dx

≥
∫
Q′R

∫
|x1|≤R

∫
|x1+he1|≥R

|u(x)|p1

|h|1+s1p1
dh dx1 dx

′

≥
∫
Q′R

∫
|x1|≤R

|u(x)|p1

∫
|h|≥2R

1

|h|1+s1p1
dh dx1 dx

′

≥ C‖u‖p1
p1
,

where Q′R = [−R,R]n−1 and dx′ = dx2 · · · dxn.
Arguing in a similar fashion we conclude that there exists Ci(Ω, si, pi) such that

Ci[u]si,pi,i ≥ ‖u‖pi .

Therefore taking K = maxi{Ci} we have that

K

n∑
i=1

[u]s,p,i ≥
n∑

i=1

‖u‖pi
≥ ‖u‖pn

≥ C‖u‖p.

This fact concludes the proof of (2.3). �

The following notation will be used. Given a vector q = (q1, . . . , qn) with qi > 0
for i = 1, . . . , n, we denote by q̄ the harmonic mean of the vector q, i.e.

q̄ :=

(
1

n

n∑
i=1

1

qi

)−1

.

Next, given two vectors q = (q1, . . . , qn) and r = (r1, . . . , rn) with qi, ri > 0 for
i = 1, . . . , n we define the product qr as

qr = (q1r1, . . . , qnrn),

the coordinate by coordinate multiplication.

Proposition 2.4 (Rellich-Kondrashov). Let p = (p1, . . . , pn) with 1 < pi < ∞,
i = 1, . . . , n and be such that

(2.4) p̄ < n.
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Define the critical exponent p∗ as

(2.5) p∗ :=
np̄

n− p̄
.

Then W 1,p
0 (Ω) ⊂ Lq(Ω), for all 1 ≤ q ≤ p∗. Even more W 1,p

0 (Ω) ⊂⊂ Lq(Ω) if

1 ≤ q < p∗. In particular W 1,p
0 (Ω) ⊂⊂ Lp(Ω).

Now, let s = (s1, . . . , sn) with 0 < si < 1, for i = 1, . . . , n and p be as before.
Assume that

(2.6) sp < n

and define the fractional critical exponent

(2.7) p∗s =
n sp

s̄

n− sp
.

Moreover, assume that

(2.8) pn < p∗s .

Then W s,p
0 (Ω) ⊂ Lq(Ω), for all 1 ≤ q ≤ p∗s . Even more, W s,p

0 (Ω) ⊂⊂ Lq(Ω) for
1 ≤ q < p∗s . In particular W s,p

0 (Ω) ⊂⊂ Lp(Ω).

Proof. The proof of W 1,p
0 (Ω) ⊂⊂ Lq for all 1 < q < p∗ is studied in the previous

references [23, 11]. To prove that W 1,p
0 (Ω) ⊂⊂ Lp(Ω) observe that as pn < p∗ then

Lpn(Ω) ⊂ Lp(Ω) continuously.
The proof of fractional case is immediate of [7, Theorem 2.1] and the previous

idea. �

Without loss of generality, we can always assume that (2.1) is satisfied.
In the rest of the paper, it will always be assumed that conditions (2.4), (2.6)

and (2.8) hold.

3. The Euler-Lagrange equation

3.1. Non-fractional case. In this subsection we will establish the Euler-Lagrange
equation associated to the Rayleigh-type quotient Qp defined in (1.1). In fact,
following ideas from [14] (see also [13]), we show that the EL equation turns out to
be the following

(3.1)

{
−Lpu := λFp(u) in Ω

u = 0 in Rn \ Ω,

where

(3.2) − Lpu := −div

(
n∑

i=1

∣∣∣∣ uxi

‖uxi
‖pi

∣∣∣∣pi−2
uxi

‖uxi
‖pi

)
and

(3.3) Fp(u) =

n∏
i=1

Ii(u)pi+1−pi |u|p1−2u,

where pn+1 = 1.
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Definition 3.1. Let u be a function in W 1,p
0 (Ω), then u is a weak solution of (3.1)

if and only if u verifies∫
Ω

n∑
i=1

∣∣∣∣ uxi

‖uxi‖pi

∣∣∣∣pi−2
uxi

‖uxi‖pi

vxi dx = λ

∫
Ω

Fp(u)v dx,

for all v ∈W 1,p
0 (Ω).

We will need the following lemma regarding the behavior of the functional Fp.

Lemma 3.2. Let p = (p1, . . . , pn) be such that 1 < pi < ∞ and let p′ =
(p′1, . . . , p

′
n). Let Fp be the functional defined in (3.3).

Then Fp : Lp(Rn)→ Lp′(Rn) is continuous.

Proof. To see that it is well defined, just observe that if u ∈ Lp(Rn), then(∫
R
|Fp(u)|p

′
1 dx1

)1/p′1

=

n∏
i=1

Ii(u)pi+1−p1

(∫
R
|u|(p1−1)p′1 dx1

)1/p′1

=

n∏
i=1

Ii(u)pi+1−p1I1(u)p1/p
′
1

=

n∏
i=2

Ii(u)pi+1−p1I1(u)p2−1.

Iterating this procedure, one easily conclude that

‖Fp(u)‖p′ = ‖u‖p.

In order to see the continuity of Fp, let {uk}k∈N ⊂ Lp(Rn) be such that uk → u
in Lp(Rn). Then, define

Ĩ1(k) :=

(∫
R
|Fp(uk)−Fp(u)|p

′
1 dx1

)1/p′1

Ĩi+1(k) :=

(∫
R
Ĩi(k)p

′
i+1 dxi+1

)1/p′i+1

, i = 1, . . . , n− 1.

Observe that ‖Fp(uk) − Fp(u)‖p′ = Ĩn(k), so it is enough to show that, up to a
subsequence,

Ĩi(k)→ 0 as k →∞ a.e. (xi+1, . . . , xn), i = 1, . . . , n

and

a.e. (xi+2, . . . , xn), Ĩi(k)(xi+1) ≤ hi(xi+1), with h ∈ Lp′i+1(R).

(3.4)

In fact, let us see (3.4) for i = 1 and the rest will follow by induction.
By Remark 2.2, it is easy see that Fp(uk)→ Fp(u) a.e. So in order to see that

Ĩ1(k) → 0 for a.e. x′ = (x2, . . . , xn) we need to find an integrable majorant for

|Fp(uk)−Fp(u)|p′1 for a.e. x′ ∈ Rn−1.
Hence,

|Fp(uk)−Fp(u)|p
′
1 ≤ C

(
n∏

i=1

Ii(uk)(pi+1−pi)p
′
1 |uk|p1 +

n∏
i=1

Ii(u)(pi+1−pi)p
′
1 |u|p1

)
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As, by Remark 2.2 Ii(uk)(·, xi+2, . . . , xn) → Ii(u)(·, xi+2, . . . , xn) in Lpi+i(R) for
a.e. (xi+2, . . . , xn), using [4, Theorem 4.9], there exists hi = hi(·, xi+2, . . . , xn) ∈
Lpi+1(R) such that

Ii(uk)(x1, xi+2, . . . , xn) ≤ hi(x1, xi+2, . . . , xn).

Moreover, since uk(·, x′) → u(·, x′) in Lp1(R) we obtain the existence of h0(x),
h0(·, x′) ∈ Lp1(R) such that

|uk(x)| ≤ h0(x).

Hence

|Fp(uk)−Fp(u)|p
′
1 ≤ C

(
n∏

i=1

h
(pi+1−pi)p

′
1

i hp1

0 +

n∏
i=1

Ii(u)(pi+1−pi)p
′
1 |u|p1

)
=: Φ(x1, x

′).

Since Φ(·, x′) ∈ L1(R) for a.e. x′ ∈ Rn−1 we obtain that Ĩ1(k)→ 0.
The proof of (3.4) now follows by induction and the details are left to the reader.

�

Knowing the definition of weak solution we can state our main result of this
section.

Theorem 3.3. Let u be a function in W 1,p
0 (Ω). Then u is a critical point of (1.1)

if and only if u is a weak solution of (3.1).

To prove this theorem we will use the following notation

(3.5) H(u) = ‖∇u‖p and I(u) = ‖u‖p
and we need to establish some lemmas that will facilitate the proof.

First, we have to show that the functionals H and I are Fréchet differentiable.

Lemma 3.4. I : Lp(Ω) → R and H : W 1,p
0 (Ω) → R are Gateaux differentiable

away from zero and its derivatives are given by

(3.6)
d

dt
I(u+ tv)|t=0 = 〈I ′(u), v〉 =

∫
Rn

n∏
i=1

Ii(u)pi+1−pi |u|p1−2uv dx,

where pn+1 = 1 and

(3.7)
d

dt
H(u+ tv)|t=0 = 〈H ′(u), v〉 =

n∑
i=1

∫
Rn

∣∣∣∣ uxi

‖uxi
‖pi

∣∣∣∣pi−2
uxi

‖uxi
‖pi

vxi
dx.

That is, H ′ = Lp and I ′ = Fp.

Proof. To prove (3.6), let u, v ∈ Lp(Ω) and t ∈ R. Then, recalling Remark 2.1, we
compute

d

dt
I1(u+ tv)

∣∣∣∣
t=0

= I1(u)1−p1

∫
R
|u|p1−2uv dx1.

Next,

d

dt
I2(u+ tv)

∣∣∣∣
t=0

= I2(u)1−p2

∫
R
I1(u+ tv)p2−1 d

dt
I1(u+ tv)

∣∣∣∣
t=0

dx2

=

∫
R2

I2(u)1−p2I1(u)p2−p1 |u|p1−2uv dx1dx2
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Therefore, by induction, we arrive at

d

dt
In(u+ tv)

∣∣∣∣
t=0

=

∫
Rn

n∏
i=1

Ii(u)pi+1−pi |u|p1−2uv dx,

where pn+1 = 1 and the proof of (3.6) follows observing that In = I.
The proof of (3.7) is standard and the details are left to the reader. �

Theorem 3.5. The functionals I and H given in (3.5) are Fréchet differentiable.

Proof. The proof follows easily from Lemma 3.4 just observing that I ′ = Fp and
H ′ = Lp are continuous. In fact, the continuity of Fp is proved in Lemma 3.2 and
the continuity of Lp is an easy excercise. �

At this point we can give a rigorous proof of Theorem 3.3.

Proof of Theorem 3.3 . Recall that, since

Qp(u) =
H(u)

I(u)
,

using Lemma 3.4, one obtain that, if u 6= 0,

〈Q′p(u), v〉 =
1

I(u)
(〈H ′(u), v〉 − Qp(u)〈I ′(u), v〉) .

Hence, u ∈W 1,p
0 (Ω) is a critical point of Qp if and only if

〈H ′(u), v〉 = Qp(u)〈I ′(u), v〉.
But this is the same as saying that u is a weak solution to (3.1) with λ = Qp(u). �

3.2. The fractional case. Now, we will analyze the fractional case. So, we con-
sider the Rayleigh-type quotient Qs,p defined in (1.3), and look for the Euler-
Lagrange equation associated to it.

The main result of this section is to show that the E-L equation is given by

(3.8)

{
−Ls,pu = λFp(u) in Ω

u = 0 in Rn \ Ω,

where Fp is given by (3.3) and

Ls,pu = p.v.

n∑
i=1

∫
Rn

∫
R

∣∣∣∣∣Dsi,i
h u(x)

[u]si,pi,i

∣∣∣∣∣
pi−2

Dsi,i
h u(x)

[u]si,pi,i

dh

|h|1+si
dx,

= lim
ε→0

n∑
i=1

∫
Rn

∫
|h|>ε

∣∣∣∣∣Dsi,i
h u(x)

[u]si,pi,i

∣∣∣∣∣
pi−2

Dsi,i
h u(x)

[u]si,pi,i

dh

|h|1+si
dx

and

Ds,i
h u(x) =

u(x+ hei)− u(x)

|h|s
.

It is shown in [6] that the operator Ls,p is the fractional version of Lp. This
operator Ls,p has to be understood in the weak sense, i.e. given u, v ∈W s,p

0 (Ω),

〈−Ls,pu, v〉 =

n∑
i=1

∫
Rn

∫
R

∣∣∣∣∣Dsi,i
h u(x)

[u]si,pi,i

∣∣∣∣∣
pi−2

Dsi,i
h u(x)

[u]si,pi,i
Dsi,i

h v(x)
dh

|h|
dx.

Again, we have to give a definition of weak solution.
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Definition 3.6. Let u be a function in W s,p
0 (Ω), then u is a weak solution of (3.8)

if u verifies

n∑
i=1

∫
Rn

∫
R

∣∣∣∣∣Dsi,i
h u(x)

[u]si,pi,i

∣∣∣∣∣
pi−2

Dsi,i
h u(x)

[u]si,pi,i
Dsi,i

h v(x)
dh

|h|
dx = λ

∫
Rn

Fp(u)v dx,

for all v ∈W s,p
0 (Ω).

Again, we introduce the notation

(3.9) Hs(u) = [u]s,p

and in an analogous form as in Lemma 3.4 we have the following lemma, whose
proof is left to the reader.

Lemma 3.7. The functional Hs : W s,p
0 (Ω) → R is Gateaux differentiable away

from zero and its derivative is given by

〈H ′s(u), v〉 =

n∑
i=1

∫
Rn

∫
R

∣∣∣∣∣Dsi,i
h u(x)

[u]si,pi,i

∣∣∣∣∣
pi−2

Dsi,i
h u(x)

[u]si,pi,i
Dsi,i

h v(x)
dh

|h|
dx.

That is H ′s = Ls,p.

Finally, we can state the Euler-Lagrange Theorem for the fractional case, and
its proof is analogous to the non-fractional case and therefore is ommitted.

Theorem 3.8. Let u be a function in W s,p
0 (Ω). Then u is a critical point of (1.3)

if and only if u is a weak solution of the Euler Lagrange equation (3.8)

4. General properties of eigenvalues

After having derived the Euler-Lagrange equation for each case, it becomes evi-
dent that these are eigenvalue problems, for which we can explore some properties.

We say that λ ∈ R is an eigenvalue of Lp under Dirichlet boundary conditions

in the domain Ω, if problem (3.1) admits a nontrivial weak solution u ∈ W 1,p
0 (Ω).

Then u is called an eigenfunction of Lp corresponding to λ. We will denote Σp the
collection of these eigenvalues.

Similarly, we say that λ ∈ R is an eigenvalue of Ls,p under Dirichlet boundary
conditions in the domain Ω, if problem (3.8) admits a nontrivial weak solution
u ∈ W s,p

0 (Ω). Then u is called an eigenfunction of Ls,p corresponding to λ. We
will denote Σs,p the collection of these eigenvalues.

We begin this section by collecting some simple properties for the eigensets Σp

and Σs,p.

Proposition 4.1. Σp,Σs,p ⊂ (0,∞) are closed sets.

Proof. As we have done throughout the article, we will only provide the proof for
the non-fractional case, leaving the fractional case for the reader.

First, let λ ∈ Σp and u ∈W 1,p
0 (Ω) be an associated eigenfunction. So, if we take

the same u as a test function in the weak formulation of (3.1), we obtain that

‖∇u‖p = λ‖u‖p.

Therefore, λ > 0
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Next, let us see that Σp is closed. To this end, let {λk} be a sequence of

eigenvalues such that λk → λ ∈ R as k → ∞ and {uk}k∈N ⊂ W 1,p
0 (Ω) be a

corresponding sequence of Lp-normalized eigenfunctions. Observe that

‖∇uk‖p = λk‖uk‖p = λk,

from where it follows that {uk}k∈N is a bounded sequence in W 1,p
0 (Ω). Hence,

passing to a subsequence, we get that

uk ⇀ u in W 1,p
0 (Ω) and uk → u in Lp(Ω).

From Lemma 3.2, Fp is continuous and we get that

〈Lpuk, v〉 = λk〈Fp(uk), v〉 → λ〈Fp(u), v〉.
As each uk is an Lp-normalized eigenfunction, then

〈Lpuk, uk〉 = λk → λ.

Now, we make use of Lemma 5.3, that is proved in the next section, to obtain that
uk → u in W 1,p

0 (Ω).
Hence, we can pass to the limit k →∞ in the weak formulation

〈Lpuk, v〉 = λk〈Fp(uk), v〉
and get that

〈Lpu, v〉 = λ〈Fp(u), v〉
for any v ∈ W 1,p

0 (Ω). That is, u is eigenfunction associated to λ and the proof is
complete. �

Now, we arrive at the main point of this section, that is the asymptotic behavior
of the eigenset Σs,p as the fractional parameters s = (s1, . . . , sn) verify that si → 1,
i = 1, . . . , n.

To this end, we will make use of the following result which is a particular case
of [6, Theorem 3.3].

Proposition 4.2. [6, Theorem 3.3] Let {sk}k∈N be a sequence of fractional param-
eters sk → (1, . . . , 1) as k →∞. Let p = (p1, . . . , pn) be such that 1 < pi <∞ for
each i = 1, . . . , n and for each k ∈ N let uk ∈W sk,p

0 (Ω) be such that

(4.1) sup
k∈N
‖uk‖sk,p <∞.

Then, there exists a function u ∈ W 1,p
0 (Ω) and a subsequence {ukj}j∈N ⊂

{uk}k∈N such that

ukj → u in Lp(Ω) and ‖∇u‖p ≤ lim inf
k→∞

[uk]sk,p.

Moreover, we also need to borrow a Lemma from [6].

Lemma 4.3. [6, Lemma 5.7] Let {sk}k∈N be a sequence of fractional parameters
satisfying that sk → (1, . . . , 1) as k → ∞ and let vk ∈ W sk,p

0 (Ω). Assume that

{vk}k∈N satisfy (4.1), and let u ∈W 1,p
0 (Ω) be fixed.

Without loss of generality, we can assume that there existes v ∈ W 1,p
0 (Ω) such

that vk → v in Lp(Ω) as k →∞.
Then

〈Lsk
p u, vk〉 → 〈Lpu, v〉 as k →∞.

Hence we can state and prove the following theorem.



ANISOTROPIC EIGENVALUES 13

Theorem 4.4. Let {sk}k∈N be a sequence of fractional parameters sk → (1, . . . , 1)
as k → ∞. Let p = (p1, . . . , pn) be such that 1 < pi < ∞ for each i = 1, . . . , n.
Let λk ∈ Σsk,p be an eigenvalue of (3.8) such that λk → λ as k → ∞. Then
λ ∈ Σp. Moreover, if uk ∈ W sk,p

0 (Ω) is a normalized eigenfunction associated
to λk then any Lp(Ω)−accumulation point u of the sequence {uk}k∈N, satisfy that

u ∈W 1,p
0 (Ω) and is an eigenfunction associated to λ.

Proof. Let {sk}k∈N be sequence of fractional parameters such that sk → (1, . . . , 1)
as k → ∞ and et {λsk}k∈N be a sequence of eigenvalues that converge to λ as
k → ∞. For each λsk there is a eigenfunction uk, that we can assume to be
Lp-normalized.

Note that since ‖uk‖p = 1 and λsk is convergent, and therefore bounded, the
sequence {uk}k∈N satisfy (4.1). Therefore we can apply Proposition 4.2 and obtain

a subsequence, that we still denote {uk}k∈N and a function u ∈W 1,p
0 (Ω) such that

uk → u in Lp(Ω).
Now, using Lemma 4.3, the proof follows by using a classical monotonicity ar-

gument. �

5. Existence of eigenvalues

In this section, we establish the existence of eigenvalues using the Ljusternik-
Schnirelman theory. This is the main part of the article.

First we recall some abstract results from critical point theory that will be es-
sential in our proof of the existence of eigenvalues.

Let X be a reflexive Banach space and maps φ, ψ ∈ C1(X,R). We will assume
that φ, ψ verify the assumptions (H1)–(H4) below:

(H1) φ, ψ ∈ C1(X,R), are even maps with φ(0) = ψ(0) = 0 and the level set

M = {u ∈ X : ψ(u) = 1}

is bounded.
(H2) φ′ is completely continuous. Moreover, for any u ∈ X it holds that

〈φ′(u), u〉 = 0 ⇐⇒ φ(u) = 0,

where 〈·, ·〉 denote the duality brackets for the pair (X,X∗).
(H3) ψ′ is continuous, bounded and, as k →∞, it holds that

uk ⇀ u,ψ′(uk) ⇀ v and 〈ψ′(uk), uk〉 → 〈v, u〉 ⇒ uk → u in X.

(H4) For every u ∈ X \ {0} it holds that

〈ψ′(u), u〉 > 0, lim
t→∞

ψ(tu) =∞ and inf
u∈M
〈ψ′(u), u〉 > 0.

Now, for any n ∈ N, we define

Kn = {K ⊂M : K is symmetric, compact, with φ|K > 0 and γ(K) ≥ n},

where γ(K) is the Krasnoselskii genus of the set K.
Finally, let

cn =

{
supK∈Kn

minu∈K φ(u) if Kn 6= ∅
0 if Kn = ∅

The following general abstract result is proved in [25] (see also [18, Theorem
9.27]).
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Theorem 5.1. Let X be a reflexive Banach space and φ, ψ ∈ C1(X,R). Assume
that φ, ψ satisfy (H1)–(H4). Then

(1) c1 <∞ and cn → 0 as n→∞.
(2) If c = cn > 0, then we can find an element u ∈M that is a solution of

(5.1) µψ′(u) = φ′(u), (µ, u) ∈ R×M,

for an eigenvalue µ 6= 0 and such that φ(u) = c.
(3) More generally, if c = cn = cn+k > 0 for some k ≥ 0, then the set of

solutions u ∈M of (5.1) such that φ(u) = c has genus ≥ k + 1.
(4) If cn > 0 for all n ≥ 1, then there is a sequence {(µn, un)}n∈N of solutions

of (5.1) with φ(un) = cn, µn 6= 0 for all n ≥ 1, and µn → 0 as n→∞.
(5) If we further require that

〈φ′(u), u〉 = 0 if and only if φ(u) = 0 if and only if u = 0,

then, cn > 0 for all n ≥ 1, and there is a sequence {(µn, un)}n∈N of solutions
of (5.1) such that φ(un) = cn, µn 6= 0, µn → 0, and un ⇀ 0 in X as
n→∞.

Now we will apply Theorem 5.1 in the case where X = W 1,p
0 (Ω), (φ, ψ) = (I,H)

and in the case where X = W s,p
0 (Ω) and (φ, ψ) = (I,Hs), where the operators I,H

and Hs where introduced in (3.5) and (3.9).
For enhanced readability of the work, we will demonstrate the properties of H

and Hs through a series of lemmas.

Lemma 5.2. Let H : W 1,p
0 (Ω) → R be defined in (3.5) and Hs : W s,p

0 (Ω) → R be
defined in (3.9).

Then H ′ : W 1,p
0 (Ω) → W−1,p′(Ω) and H ′s : W s,p

0 (Ω) → W−s,p
′
(Ω) are bounded

and monotone.

Proof. Let us first demonstrate that H ′ is bounded. In fact

|〈H ′(u), v〉| =

∣∣∣∣∣
n∑

i=1

1

‖uxi
‖pi−1
pi

∫
R
|uxi
|pi−2uxi

vxi
dx

∣∣∣∣∣
≤

n∑
i=1

1

‖uxi
‖pi−1
pi

∫
R
|uxi
|pi−1|vxi

| dx

≤
n∑

i=1

‖uxi
‖pi/p

′
i

pi ‖vxi
‖pi

‖uxi
‖pi−1
pi

≤
n∑

i=1

‖vxi
‖pi

= ‖∇v‖p.

Therefore, H ′ is a bounded operator. Moreover, from this result we can obtain the
monotonicity of it.

〈H ′(u), v〉+ 〈H ′(v), u〉 ≤ |〈H ′(u), v〉|+ |〈H ′(v), u〉| ≤ ‖∇v‖p + ‖∇u‖p.
Hence,

〈H ′(u)−H ′(v), u− v〉 = 〈H ′(u), u〉+ 〈H ′(v), v〉 − (〈H ′(u), v〉+ 〈H ′(v), u〉)
= ‖∇u‖p + ‖∇v‖p − (〈H ′(u), v〉+ 〈H ′(v), u〉) ≥ 0.

The proof for H ′ is complete.
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The proof for H ′s is analogous and the details are left to the reader. �

Lemma 5.3. The operators H and Hs given in (3.5) and (3.9) respectively, verify
hypothesis (H3).

That is H ′ : W 1,p
0 (Ω)→ W−1,p′(Ω) and H ′s : W s,p

0 (Ω)→ W−s,p
′
(Ω) are contin-

uous and bounded operator, and moreover, as k →∞, it holds that

uk ⇀ u, H ′(uk) ⇀ v and 〈H ′(uk), uk〉 → 〈v, u〉 ⇒ uk → u in W 1,p
0 (Ω)(5.2)

uk ⇀ u, H ′s(uk) ⇀ v and 〈H ′s(uk), uk〉 → 〈v, u〉 ⇒ uk → u in W s,p
0 (Ω).(5.3)

Proof. In view of Lemma 5.2 it remains to see that H ′ and H ′s are continuous and
that verify (5.2) and (5.3) respectively.

First we claim that H ′ is a continuous operator. In fact just observe that we can
rewrite H ′ as

H ′(u) =

n∑
i=1

Jpi
(uxi

)

‖uxi
‖pi−1
pi

,

where Jp(u) := |u|p−2u.

Since Jp : Lp(Rn)→ Lp′(Rn) is continuous, the claim follows

To verify (5.2) let {uk}k∈N be a sequence in W 1,p
0 (Ω) such that uk ⇀ u in

W 1,p
0 (Ω), H ′(uk) ⇀ v in W−1,p′(Ω) and 〈H ′(uk), uk〉 → 〈v, u〉 then we need to

show that uk → u in W 1,p
0 (Ω).

Given w ∈ W 1,p
0 (Ω) arbitrary, by the monotonicity of H ′ (Lemma 5.2) we get

that
0 ≤ 〈H ′(w)−H ′(uk), w − uk〉.

Taking the limit as k →∞, we arrive at

0 ≤ 〈H ′(w), w − u〉 − 〈v, w − u〉.
Now we can take w = u+ tz with t > 0 and we find that

0 ≤ 〈H ′(u+ tz)− v, tz〉

Dividing by t and taking limit t→ 0+ we get that for all z ∈W 1,p
0 (Ω),

0 ≤ 〈H ′(u)− v, z〉.
Therefore H ′(u) = v. Moreover

‖∇uk‖p = 〈H ′(uk), uk〉 → 〈v, u〉 = 〈H ′(u), u〉 = ‖∇u‖p.

As the space W 1,p
0 (Ω) is uniformly convex, weak convergence and norm conver-

gence implies that uk → u strongly as desired.
The proof for H ′s is analogous. �

The upcoming theorem is the main important result of this section, as it assures
the existence of eigenvalues.

Theorem 5.4. There exist a sequence {uk}k∈N ⊂ W 1,p
0 (Ω) of critical points of

Qp with associated critical values {λk}k∈N ⊂ R such that λk → ∞ as k → ∞.
Moreover, these critical values have the following variational characterization

(5.4) λk = inf
K∈Kk

sup
u∈K

H(u)

where, for any k ∈ N
Kk = {K ⊂M compact, symmetric with H ′(u) > 0 on K and γ(K) ≥ k}
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M = {u ∈W 1,p
0 (Ω) : I(u) = 1}

and γ is the Krasnoselskii genus of K.
In particular, uk is a weak solution to (3.1) with eigenvalue λk.

Proof. We must confirm that the functionals I and H satisfy the hypotheses of
Theorem 5.1.

Note that conditions (H1) and (H3) are direct consequences of Lemmas 3.4 and
5.3, respectively. Condition (H4) follows directly from the definition of H ′(u).

In order to show that (H2) holds, just observe that if uk ⇀ u in W 1,p
0 (Ω), by

the compactness of the immersion W 1,p
0 (Ω) ⊂⊂ Lp(Ω), it follows that uk → u in

Lp(Ω) and using Lemma 3.2, we get that I ′(uk)→ I ′(u) in Lp′(Ω) ⊂W−1,p′(Ω).
Finally observe that 〈I ′(u), u〉 = I(u) = ‖u‖p. Therefore each one is zero if and

only if u = 0.
We then apply the Ljusternik-Schnirelman theory, Theorem 5.1, to the function-

als I and H on the level set M = {u ∈W 1,p
0 (Ω): H(u) = 1}.

By Theorem 5.1 there exist a sequence of numbers {µk}k∈N ↘ 0 and functions

{uk}k∈N ∈W 1,p
0 (Ω) normalized such that H(uk) = 1, and

(5.5) µk〈H ′(uk), v〉 = 〈I ′(uk), v〉 ∀v ∈W 1,p
0 (Ω)

and I(uk) = ck with

(5.6) ck = sup
K⊂Kk

min
u∈K

I(u).

Using that 〈H ′(u), u〉 = H(u) and 〈I ′(u), u〉 = I(u) one immediately obtain that
ck = µk.

So, if we denote λk = µ−1
k , using (5.5), we have that uk is a weak solution to

(3.1) with eigenvalue λk and from (5.6) one also obtain the validity of (5.4). �

Remark 5.5. The eigenvalues obtained in Theorem 5.4 are commonly called the
Ljusternik-Schnirelman eigenvalues or simply the LS-eigenvalues and are denoted
by Σp

LS .

Similarly, we state a Theorem for the fractional counterpart. The proof is a
slight variation of Theorem 5.4 and is omitted.

Theorem 5.6. There exist a sequence {usk}k∈N ⊂ W s,p
0 (Ω) of critical points of

Qs,p with critical values {λsk}k∈N ⊂ R such that λsk → ∞ as k → ∞. Moreover,
this critical values have the following variational characterization

(5.7) λsk = inf
K∈Ks

k

sup
u∈K

Hs(u)

where, for any k ∈ N

Ks
k = {K ⊂Ms compact, symmetric with H ′s(u) > 0 on K and γ(K) ≥ k}

Ms = {u ∈W s,p
0 (Ω) : I(u) = 1}

and γ is the Krasnoselskii genus of K.

This eigenvalues related to the fractional problem will be denoted by Σs,p
LS .
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