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Abstract. In this paper we find explicit lower bounds for Dirichlet eigenval-

ues of a weighted quasilinear elliptic system of resonant type in terms of the
eigenvalues of a single p-Laplace equation. Also we obtain asymptotic bounds

by studying the spectral counting function which is defined as the number of

eigenvalues smaller than a given value.

1. Introduction

In this work we will study the following nonlinear eigenvalue problem:

(1.1)

{
−∆pu = λr(x)α|u|α−2u|v|β

−∆qv = λr(x)β|u|α|v|β−2v

in Ω with zero Dirichlet boundary conditions, u = v = 0 on ∂Ω. Here, Ω ⊂ RN

is a bounded open set with smooth boundary ∂Ω, r ∈ L∞(Ω) is a strictly positive
function, r(x) ≥ m > 0 (less regularity conditions on r and ∂Ω are enough, see the
remarks at the end of the paper), λ ∈ R is the eigenvalue parameter, 1 < q ≤ p <
+∞, and α, β are positive constants satisfying

α

p
+
β

q
= 1.

The eigenvalue problem for (1.1) was studied in several works, let us mention
among them Boccardo and de Figueiredo [4], Fleckinger, Manásevich, Stravrakakis,
and De Thélin [18], Manasevich and Mawhin [22], and the references therein.

In particular, the first or principal eigenvalue has deserved a great deal of at-
tention, and several properties were analyzed like existence, unicity, positivity, and
isolation in bounded or unbounded domains, with different boundary conditions
and with or without weights (and for the weighted problem, indefinite and singular
weights were considered). Also, the positivity of both associated eigenfunctions can
be found in the literature. We refer the interested reader to [1], [9], [13], [21], [27],
[30], and [31] among others.

The existence of a sequence of eigenvalues {λk} of problem (1.1) was proved in
[7] by using the abstract theory developed by Amann in [2], and the existence of
generalized eigenvalues was obtained in [8]. Moreover, an upper bound of the first
eigenvalue was obtained in terms of the first eigenvalue of the p-laplacian and, for
the one dimensional problem, upper bounds for all the variational eigenvalues were
obtained, namely
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(1.2) λk ≤
Λ(p),k

p

[
1 +

(
p

q

)q+1 (
mΛ(p),k

)(q−p)/p
]
,

Here, Λ(p),k stands for the kth eigenvalue of the one dimensional p-laplacian, and
m is the lower bound of the weight. By using that Λ(p),k ∼

(
πp/

∫
Ω
r1/p

)p
kp when

k →∞ (see [14]), we obtain the asymptotic upper bound

(1.3) λk ≤
(

πp∫
Ω
r1/p

)p
kp

p
+ ckq ∼

(
πp∫

Ω
r1/p

)p
kp

p

(throughout this work, we will write f ∼ g to denote that limk→∞ f/g = 1). Let
us note that inequality (1.2) is an explicit upper bound of λk, whereas (1.3) is an
asymptotic bound.

It would be desirable to obtain also lower bounds due to several applications to
bifurcation problems, anti-maximum principles, and existence or non-existence of
solutions (see for example [3], [11], [12], [16], [27], [28], [29], [30]). However, the
results in [8] and [13] only gives lower bounds of the first eigenvalue.

Hence, in this paper we give explicit and asymptotic lower bounds for the kth

eigenvalue of a system in Ω ⊂ RN . The asymptotic bounds depend on the smaller
exponent of the system, q, instead of p:

ckq ≤ λk,

when k →∞, and explicit lower bounds depends on a combination of the eigenval-
ues of both the p and q laplacians.

Also, when p = q, we obtain the correct order of growth of the kth eigenvalue of
a system in any dimension N ≥ 1. We have

ckp/N ≤ λk ≤ Ckp/N ,

where the constants c, C depends only on p, r, N and the measure of Ω.
In the one dimensional case we have a better result when α = β,

λk ∼ Ckp.

For a single p-laplacian equation without weight the order of growth of the
eigenvalues was given in [20], ckp/N ≤ Λ(p),k ≤ Ckp/N , and better asymptotic
constants c, C were computed in [19]. A better order of growth was conjectured in
this paper, namely Λ(p),k ∼ Ckp/N . This was achieved for weighted problems only
for N = 1 with different techniques in [14], [23], [24].

In order to prove the asymptotic bounds, we will study the spectral counting
function N(λ) defined as

N(λ) = #{k : λk ≤ λ},
and we will find asymptotic bounds for its growth. Let us note that inequalities
like ckb ≤ λk ≤ Cka, for certain constants c, C and exponents a, b could be stated
equivalently in terms of N(λ) as

(C−1λ)1/a ≤ N(λ) ≤ (c−1λ)1/b.

The main tool used in this work is a generalization of the Dirichlet-Neumann
bracketing together with comparison and variational arguments.
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We will consider first the special case N = 1. In that case, equation (1.1) reads

(1.4)

{
−(|u′|p−2u′)′ = λr(x)α|u|α−2u|v|β

−(|v′|q−2v′)′ = λr(x)β|u|α|v|β−2v

in [0, 1] and the main result is the following theorem:

Theorem 1.1. Let N(λ) be the eigenvalue counting function of problem (1.4) with
Dirichlet boundary conditions.

(1) If q < p, then

c1λ
1/p ≤ N(λ) ≤ C1λ

1/q + C2λ
1/p as λ→∞.

(2) If q = p, then

c2λ
1/p ≤ N(λ) ≤ (C1 + C2)λ1/p as λ→∞.

(3) If q = p, and α = β, then

N(λ) ∼ c2λ
1/p as λ→∞.

Remark 1.2. The constants c1, c2, C1, C2 in Theorem 1.1 can be computed explicitly.
In fact, from the proof of the Theorem, it follows that

c1 :=
p1/p‖r1/p‖L1

πp
, c2 := 21−1/pc1

C1 :=
α1/p‖r1/p‖L1

πp
, C2 :=

β1/q‖r1/q‖L1

πq
.

Of independent interest is the upper bound for N(λ) in Theorem 1.1. We derive
it for a different eigenvalue problem which gives explicit lower bounds for the eigen-
values of the system. We state it separately here, and Subsection 3.1 is devoted to
its proof:

Theorem 1.3. Let Sp = {Λ(p),k/α} and Sq = {Λ(q),k/β} be the sets of variational
eigenvalues of each p and q laplacian equations respectively. Let us introduce the
set S = Sp ∪ Sq, ordered as a sequence {µk} with µ1 ≤ µ2 ≤ . . . ≤ µk ≤ . . .. Then,
µk ≤ λk for every k ∈ N, where {λk} is the set of variational eigenvalues of problem
(1.4).

Let us note that Theorem 1.3 gives explicit lower bounds, which holds for every
k ∈ N.

Similar results are valid for the N -dimensional case. In Section 4 we consider
problem (1.1). The results are slightly worse than the previous ones, and for brevity,
we will consider only the case r ≡ 1. The general case follows by using the Sturm
theory and the bounds m ≤ r ≤M [19].

Theorem 1.4. Let N(λ) be the eigenvalue counting function of problem (1.1).

(1) If q ≤ p, then

c̄1λ
N/p ≤ N(λ) ≤ C̄1λ

N/q + C̄2λ
N/p as λ→∞.

(2) If q = p, then

c̄2λ
N/p ≤ N(λ) ≤ (C̄1 + C̄2)λN/p as λ→∞.
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Remark 1.5. As in Theorem 1.1 the constants c̄1 and c̄2 can be computed explicitly.
In fact,

c̄1 :=
pN/p|Ω|

(πp
pN)N/p

, c̄2 := 21−N/pc̄1.

However, the constants C̄1 and C̄2 depend on the lower bound for the k−th eigen-
value of the p−Laplacian given in [20] (see also [19]) which is not known explicitly.
In particular, the dependence of these constants on p (or q) is not well understood.

The missing item could be proved only when p = q = 2 and α = β = 1, which is
related to the bilaplacian with Navier’s boundary conditions:{

∆∆u = λ2u

u = ∆u = 0.

However, a subtle detail concerning the signs of solutions must be considered. See
Remark 3.6 at the end of the proof of Theorem 1.1.

We close the paper with section 5, where some generalizations and open problems
will be briefly discussed.

2. Some Previous Results

In this Section we recall some previous results which will be needed in the rest
of the paper. The only new result is Proposition 2.7, which has some interest since
it provides an explicit lower bound for the first eigenvalue of the N dimensional
p-laplacian.

2.1. Variational setting. The variational characterization of eigenvalues follows
from the abstract theory developed by Amman (see [2]).

A proof of the existence of infinitely many eigenpairs for problem (1.1) could be
found in [10]. By an eigenpair of problem (1.1), we mean a pair (u, v) ∈W 1,p

0 (Ω)×
W 1,q

0 (Ω) and λ ∈ R such that∫
Ω

|∇u|p−2∇u · ∇ϕ+ |∇u|q−2∇u · ∇ψ = λ

∫
Ω

r(x)(α|u|α−2uφ|v|β + β|u|α|v|β−2vψ)

for any test-function pair (φ, ψ) ∈W 1,p
0 (Ω)×W 1,q

0 (Ω).
It is convenient to work with the variational characterization of the eigenvalues,

defined through the Rayleigh quotient,

(2.1) λk = inf
C∈Ck

sup
(u,v)∈C

1
p

∫
Ω
|∇u|p + 1

q

∫
Ω
|∇v|q∫

Ω
r(x)|u|α|v|β

,

where Ck is the class of compact symmetric (C = −C) subsets of W 1,p
0 (Ω)×W 1,q

0 (Ω)
of (Krasnoselskii) genus greater or equal that k.

This approach is due to Browder [6], and following Riddell [26] it is easy to prove
the equivalence between (2.1) and the characterization of the eigenvalues given by
Amman’s theory, see for example [8].

For the one dimensional p-laplace equation

(2.2) −(|u′|p−2u′)′ = λr(x)|u|p−2u
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in Ω = [a, b] we have:

(2.3) Λ(p),k = inf
C∈Ck

sup
u∈C

∫ b

a
|u′|p∫ b

a
r(x)|u|p

,

where now we work on the space W 1,p
0 (a, b).

2.2. One Dimensional Case. For the one dimensional case and constant weight
r ≡ 1, all the eigenvalues and eigenfunctions could be find explicitly as in [10]. We
state this result in the next lemma:

Lemma 2.1 ([10], Theorem 3.1). The eigenvalues λ(p),k and eigenfunctions u(p),k

of equation (2.2) with r ≡ 1 on an interval of lenght L are given by

Λ(p),k =
πp

pk
p

Lp
,

u(p),k = sinp(πpx/L).

The function sinp(x) is obtained by integrating equation (2.2), its first zero is
πp, given by

πp = 2(p− 1)1/p

∫ 1

0

ds

(1− sp)1/p
.

Moreover, they coincide with the variational eigenvalues. We have:

Lemma 2.2. All the eigenvalues of equation (2.2) are given by (2.3).

See [14] and the references therein for a proof.

2.3. The Spectral Counting Function. We will study the spectral counting
function N(λ) of problem (1.1) defined as

N(λ) = #{k : λk ≤ λ}.

Sometimes we will useNsys(λ), Np(λ), andNq(λ) to denote the eigenvalue count-
ing functions of the system, the p-laplacian and the q-laplacian, respectively. If
confusion could arise, we will write N(λ,Ω) to denote explicitly the set Ω where
the eigenvalue problem is considered, and also ND(λ) and NN (λ) to indicate the
Dirichlet and Neumann boudary conditions, although in this work we will avoid
the Neumann boundary condition.

The main tool in order to obtain the asymptotic expansion of N(λ) is the
Dirichlet-Neumann bracketing. The following proposition could be find in [14]:

Proposition 2.3. Let U1, U2 ∈ RN be disjoint open sets such that (U1 ∪ U2)int = U
and |U \U1∪U2|N = 0, where |A|N stands for the N -dimensional Lebesgue measure
of the set A. Then,

ND(λ,U1) +ND(λ,U2) = ND(λ,U1 ∪ U2) ≤ ND(λ,U)

≤ NN (λ,U) ≤ NN (λ,U1 ∪ U2) = NN (λ,U1) +NN (λ,U2).

The explicit expression of eigenvalues together with Proposition 2.3 gives the
following asymptotic expansion for the eigenvalue counting function N(λ):
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Lemma 2.4. Let r(x) be a bounded continuous function in Ω. Then, when λ→∞,

N(λ,Ω) =
λ1/p

πp

∫
Ω

r1/p + o(λ1/p).

That is,

Λ(p),k ∼
πp

pk
p

(
∫
Ω
r1/p)p

,

For a proof, see [14], [24]. The error term o(λ1/p) denotes that

N(λ,Ω)− λ1/p
∫
Ω
r1/p/πp

λ1/p
→ 0

when λ → ∞. The error term N(λ,Ω) − λ1/p
∫
Ω
r1/p/πp could be improved as

O(λd/p) for regular weights r, where d is the Minkowski dimension of ∂Ω, see [15]
for details. However, in this work we are not interested in error terms, and whenever
we write

cλa ≤ N(λ), N(λ) ≤ cλa,

it must be understood that

1 ≤ lim inf
λ→∞

N(λ)
cλa

, 0 ≤ lim sup
λ→∞

N(λ)
cλa

≤ 1.

2.4. The N-dimensional case. In order to find a lower bound for N(λ) we need
to find an upper bound of Λ(p),1 which enable us to bound the number of eigenvalues
of the system less than a given λ. We will follow the ideas in [19], by fixing a value
of λ and by covering Ω by a grid of squares of side L such that the number of
eigenvalues of the p-laplacian in each square would be equal to one. For example,
we may use the bounds in [19], [20]:

Lemma 2.5. Let Λ(p),k be the kth eigenvalue of the p-laplacian. Then, there exists
cp, Cp ∈ R such that

cpk
p/N ≤ Λ(p),k ≤ Cpk

p/N .

However, the main drawback of this approach is the fact that we ignore the
precise values of the constants cp, Cp.

Hence, we will compute explicit upper and lower bounds of Λ(p),1 by using the
first eigenvalue ν(p),1 of the pseudo p-laplacian on a square QL of side of length L
with a constant coefficient r ≡ 1:

(2.4) −
N∑

i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi

∣∣∣∣p−2
∂u

∂xi

)
= ν|u|p−2u,

that is,

ν(p),1 = inf
u∈W 1,p

0

∫
QL

∑N
i=1

∣∣∣ ∂u
∂xi

∣∣∣p∫
QL

|u|p
,

As in [20], given Ω we consider two squares Q1 ⊂ Ω ⊂ Q2, and the bounds
follows from the following Propositions:
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Proposition 2.6. Let Ω1 ⊂ Ω2. Then, the eigenvalues of Problem (1.1) satisfy

Λ(p),k(Ω2) ≤ Λ(p),k(Ω1).

The proof follows easily from the variational characterization of eigenvalues and
the fact that W 1,p

0 (Ω1) ⊂W 1,p
0 (Ω2).

Proposition 2.7. Let QL ⊂ RN , and Λ(p),1, be the first eigenvalues of the p-
laplacian in QL. Then,

πp
pN

Lp ≤ Λ(p),1 ≤
πp

pNp/2

Lp if 2 < p,
πp

pNp/2

Lp ≤ Λ(p),1 ≤
πp

pN

Lp if p < 2.

Proof. Due to the equivalence of norms in RN , we have

|x|q ≤ Cp|x|p
for any x ∈ RN , where Cp = 1 if p ≤ q, and Cp = N (p−q)/2q if p ≥ q (see, for
instance, [17]).

We fix the set B = {u ∈ W 1,p
0 :

∫
QL

|u|p}, and we have the following charac-
terization of the first eigenvalues Λ(p),1, ν(p),1 of the p-laplacian and the pseudo
p-laplacian in RN respectively:

ν(p),1 = inf
u∈B

‖|∇u|p‖p
p; Λ(p),1 = inf

u∈B
‖|∇u|2‖p

p.

Clearly, the previous norm inequality gives

ν(p),1 ≤ Λ(p),1 ≤ N (p−2)/2ν(p),1 if 2 < p,
N (p−2)/2ν(p),1 ≤ Λ(p),1 ≤ ν(p),1 if p < 2.

Now, we have that

u(p),1 = sinp(πpx1/L) · · · sinp(πpxN/L), ν(p),1 =
πp

pN

Lp

is the first eigenpair of the pseudo p-laplacian on QL. This result follows by sepa-
ration of variables, and u(p),1 is the first eigenfunction since there exists only one
positive eigenfunction of the pseudo p-laplacian (see [5]).

The proof is complete. �

3. One Dimensional Case

We will divide the proof of Theorem 1.1 in several lemmas, finding lower and
upper bounds for N(λ).

3.1. Upper Bounds for the Spectral Counting Function. The most difficult
problem is to find an upper bound for N(λ), since this is equivalent to give lower
bounds for the eigenvalues. Hence, we begin by studying the following system in
[a, b] ⊂ R:

(3.1)

{
−(|u′|p−2u′)′ = µr(x)α|u|p−2u

−(|v′|q−2v′)′ = µr(x)β|v|q−2v

with zero Dirichlet boundary conditions, coupled only on the eigenvalue parameter
µ.
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Lemma 3.1. Let us consider the following variational problem

µk = inf
C∈Ck

sup
(u,v)∈C

1
p

∫ b

a
|u′|p + 1

q

∫ b

a
|v′|q

α
p

∫
∂Ω
r(x)|u|p + β

q

∫ b

a
r(x)|v|q

,

with C ⊂W = W 1,p
0 ×W 1,q

0 ([a, b]), Ck as in Section 2. Then, µk correspond to an
eigenvalue of system (3.1).

Proof. The proof follows as usual, by noting that the equations in system (3.1) are
the Euler Lagrange equations of the functional

1
p

∫ b

a

|u′|p +
1
q

∫ b

a

|v′|q − µ
α

p

∫ b

a

r(x)|u|p − µ
β

q

∫ b

a

r(x)|v|q.

�

It is clear that any eigenvalue of the p and q laplacians corresponds to an eigen-
value of this system, and reciprocally. However, it remains to prove that they are
all the variational eigenvalues.

Let us rename the sequences of eigenvalues of each equation, Sp = {Λ(p),k/α}
and Sq = {Λ(q),k/β}, as {µk}, where µk ∈ Sp ∪ Sq, and µ1 ≤ µ2 ≤ . . . ≤ µk ≤ . . .;
and let us call S = {µk}. Our next task is to prove that µk = µk.

Theorem 3.2. Let µk ∈ S be a variational eigenvalue. Then, µk = µk.

Proof. Suppose that µk is a variational eigenvalue with an associate eigenfunction
(uk, vk). If one of them is identically zero, say vk, then (µk, uk) is an eigenpair
of the p-laplacian, and µk must coincide with one of the eigenvalues µj . Hence,
µk ≥ µk.

Let us note that if both uk, vk are not identically zero in [a, b], then (uk, 0)
and (0, vk) are also eigenfunctions corresponding to µk, and span[(uk, 0), (0, vk)] ∩
B1(W ) where B1(W ) is the unit ball in W has genus 2 and then µk has multiplicity
at least two, µk = µk+1 where µk = µj ∈ Sp, µk+1 = µi ∈ Sq for certain i, j.

Let us show that any eigenvalue µk of one equation is a variational eigenvalue
of the system. Since the first part showed that S ⊂ Sp ∪ Sq, i. e., µk ≥ µk, we
only need to show that there exists a compact symmetric set C of genus greater or
equal than k such that

sup
(u,v)∈C

1
p

∫ b

a
|u′|p + 1

q

∫ b

a
|v′|q

α
p

∫ b

a
r(x)|u|p + β

q

∫ b

a
r(x)|v|q

≤ µk + ε

We can assume without loss of generality that µk = λ(p),j . Hence, there are
at least k − j eigenvalues corresponding to the q-laplacian lower or equal than µk,
and we can take two sets C(p),j ∈ W 1,p

0 ([a, b]) and C(q),k−j ∈ W 1,q
0 ([a, b]) of genus

greater or equal than j and k − j, respectively, such that

sup
u∈C(p),j

1
p

∫ b

a
|u′|p

α
p

∫ b

a
r(x)|u|p

≤ µk + ε,

sup
v∈C(q),k−j

1
q

∫ b

a
|v′|q

β
q

∫ b

a
r(x)|v|q

≤ µk + ε.
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Now, the product set C = C(p),j × C(q),k−j has genus greater or equal than k,
and for any (u, v) ∈ C we have

sup
(u,v)∈C

1
p

∫ b

a
|u′|p + 1

q

∫ b

a
|v′|q

α
p

∫ b

a
r(x)|u|p + β

q

∫ b

a
r(x)|v|q

≤ µk + ε,

since

a1

b1
=

1
p

∫ b

a
|u′|p

α
p

∫ b

a
r(x)|u|p

≤ µk + ε,

a2

b2
=

1
q

∫ b

a
|v′|q

β
q

∫ b

a
r(x)|v|q

≤ µk + ε,

and

min
{
a1

b1
,
a2

b2

}
≤ a1 + a2

b1 + b2
≤ max

{
a1

b1
,
a2

b2

}
.

Hence, we have µk ≤ µk, and the proof is finished. �

Our next Lemma proves Theorem 1.3.

Lemma 3.3. Let λk be the eigenvalues of system (1.4). Then, µk ≤ λk.

Proof. Let us note that, for any (u, v) ∈W , Young’s inequality gives∫ b

a

r(x)|u|α|v|β =
∫ b

a

rα/p(x)rβ/q(x)|u|α|v|β ≤ α

p

∫ b

a

r(x)|u|p +
β

q

∫ b

a

r(x)|v|q,

and the result follows by the variational characterization of eigenvalues of each
system. �

We are ready to prove the upper bounds of N(λ) in Theorem 1.1.

Proposition 3.4. If q ≤ p, then

Nsys(λ) ≤ Np(αλ) +Nq(βλ).

Proof. From Lemmas 3.1 and 3.3, and Theorem 3.2, we have:

Nsys(λ) = #{k : λk ≤ λ}

≤ #{k : µk ≤ λ}
= #{k : µk ≤ λ}
= #{k : Λ(p),k ≤ αλ}+ #{k : Λ(q),k ≤ βλ}
= Np(αλ) +Nq(βλ)

�
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3.2. Lower Bounds of the Spectral Counting Function. A lower bound for
N(λ) depends on upper bounds of eigenvalues, which usually are simpler to find,
by using appropriate test functions.

From [8] we have the following upper bound

λk ≤
Λ(p),k

p

[
1 +

(p
q

)q+1(
mΛ(p),k

)(q−p)/p
]
.

The formulas in Lemmas 2.1 and 2.4 show that the second term is negligible as
k →∞, which gives the asymptotic formula

Proposition 3.5. If q ≤ p, then

Nsys(λ) ≥ Np(pλ).

Proof. From the previous bound we have:

Nsys(λ) = #{k : λk ≤ λ}
≥ #{k : Λ(p),k/p ≤ λ}
= Np(pλ)

�

3.3. Proof of Theorem 1.1. The proof of part (1) follows immediately from
Propositions 3.4, 3.5, and the asymptotic expansion of Lemma 2.4, which give the
bounds

ckq ≤ λk ≤ Ckp.

Clearly, this proves also part (2). We refine the constants c and C by using that

λk ≤
2
p
Λ(p),k

by inequality (1.2).
In order to prove part (3), let us note that

Nsys(λ) ≤ Np(pλ/2) +Np(pλ/2) = 2Np(pλ/2).

On the other hand, inequality (1.2) gives only

λk ≤
2
p
Λ(p),k,

that is,
Nsys(λ) ≥ Np(pλ/2).

The factor 2 to achieve the equality follows from the fact that each eigenpair
(λ, u) of a p-laplacian equation gives two eigenpairs of the system: (pλ/2, u, u) and
(pλ/2, u,−u), and hence we have at least twice the number of eigenvalues of only
one equation.

Remark 3.6. Let us observe that part (3) seems to contradict the well known case
of the bilaplacian with Navier’s boundary conditions. For example, on the interval
[0, 1] we have: 

(u′′)′′ = λ2u

u(0) = u′′(0) = 0
u(1) = u′′(1) = 0
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and its number of eigenvalues is N(λ) ∼
(

1
2λ
)1/2. However, p = 2 and r ≡ 1

correspond to the following system{
−u′′ = λsign(u)|v|
−v′′ = λsign(v)|u|

where the signs of u and v are unrelated, and now the factor 2 could be easily
recovered.

To our knowledge, this is a new derivation of the number of eigenvalues of the
bilaplacian, and we may estimate the eigenvalues of a 2mth-order problem by esti-
mating the ones of a system of lower order in much the same way.

4. Proof of Theorem 1.4

First, let us note that the upper bound for N(λ) follows as in the one dimensional
case, by considering the N -dimensional version of the eigenvalue problem (3.1),
defining

µk = inf
C∈Ck

sup
(u,v)∈C

1
p

∫
Ω
|∇u|p + 1

q

∫
Ω
|∇v|q

α
p

∫
Ω
|u|p + β

q

∫
Ω
|v|q

,

with C ⊂W = W 1,p
0 ×W 1,q

0 (Ω), Ck as in Section 2.
Renaming the sequences of eigenvalues of each equation, Sp = {Λ(p),k/α} and

Sq = {Λ(q),k/β}, as {µk}, where µk ∈ Sp ∪ Sq, and µ1 ≤ µ2 ≤ . . . ≤ µk ≤ . . ., we
have µk = µk.

Now, we can use the lower bounds for Λ(p),k, Λ(q),k given in Lemma 2.5, which
gives the upper bounds (for the eigenvalue counting functions of only one equation)
Np(λ) ≤ (λ/cp)N/p, Nq(λ) ≤ (λ/cq)N/q, and hence

N(λ) ≤ (λ/cp)N/p + (λ/cq)N/q.

On the other hand, inequality (1.2) is valid only for the first eigenvalue in the
N -dimensional case. We have, since r ≡ 1,

λ1 ≤
Λ(p),1

p

[
1 +

(
p

q

)q+1

Λ(q−p)/p
(p),1

]
.

In order to find a lower bound of N(λ), we will cover the set Ω with squares Qj

of side L = πp(N/λ)1/p, and by applying the Dirichlet Neumann bracketing (see
Proposition 2.3), we have

Nsys(λ) ≥ #{j : Ω ⊂ ∪1≤j≤JQj} ≡ J

due to Propositions 2.6 and 2.7. When λ → ∞, the covering approximates the
volume of Ω, and we get

J ∼ |Ω|λN/p

(πp
pN)N/p

.

The upper bound for N(λ) follows from inequality

Ckp/N ≤ Λ(p),k,

that is proved in [20]. The rest of the proof of Theorem 1.4 follows in much the
same way than in the one dimensional case, by using the lower bounds for Λ(q),1

given in Proposition 2.7. �



12 J. FERNÁNDEZ BONDER AND J. P. PINASCO

5. Final Remarks

Clearly, the main open problem in this subject is a complete characterization of
the spectrum of system (1.1). It is not clear that the variational sequence {λk}k

exhausts the spectrum even in the one dimensional case. A partial step in this
direction -i. e., when N = 1- could be a good description of the nodal sets of
eigenfunctions. However, this approach cannot be used for N > 1.

Still, there are many interesting problems about the sequence of variational eigen-
values. It would be desirable to find better bounds that the ones in Part (1) of both
Theorems 1.1 and 1.4, since for a given q the bounds becomes useless when both p
or k growths.

Another question is the role played by α and β. Let us observe that they are not
involved in the upper bounds except in Part (3) of Theorem 1.1, and in that case
they are very particular values related to p. Hence, we may ask how the asymptotic
expansion of N(λ) reflects the general case α 6= β. Also, when p or q is equal to 2,
we can improve the constants and bounds since in this case the eigenvalues of only
one equation are well known.

It is possible to impose less regularity conditions on r and ∂Ω. In the one di-
mensional case, Theorem 1.1 could be extended when α = β = p/2 to more general
sets following the methods in [14] and [15], and also second term of Nsys(λ) could
be found. We omit here this extension. On the N -dimensional case, the regularity
of ∂Ω is not involved, since always we can bound the eigenvalues by considering
interior and exterior sets with regular boundary, and using the monotonicity of
eigenvalues. Also, indefinite weights could be studied as in [15], and the coefficients
involved depend on ‖r±‖1, where r+ (respectively, r−) is the positive (respectively,
negative) part of r.

A different problem arise if we remove the conditions 0 < m ≤ r ≤ M . If m
is allowed to be zero, we may consider a set Ωε ⊂ Ω where r ≥ ε and we obtain
uppers bounds for the eigenvalues on Ω by considering the ones of Ωε. To obtain
lower bounds, it is enough to define a weight r + ε. In the one dimensional case,
this could be improved following the arguments in [8] for a system, or in [25] for
the eigenvalues of only one equation, since it is possible to find lower bounds of
eigenvalues in terms of ‖r‖1.

Also, it is possible to find lower bounds for unbounded r in much the same way
for the one dimensional case provided that ‖r‖1 is finite. However, the previous
approach are not valid for the N -dimensional case. It would be interesting to find
lower bounds for unbounded weights even for the single equation.
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[12] P. Felmer, R. Manásevich, and F.de Thélin, Existence and uniqueness of positive solutions

for certain quasilinear elliptic systems, Commun. Partial Differential Equations, 17 (1992),

2013-2029.
[13] J. Fernández Bonder. Multiple positive solutions for quasilinear elliptic problems with sign-

changing nonlinearities, Abstr. Appl. Anal. 2004, nr. 12 (2004), 1047-1056.

[14] J. Fernández Bonder and J. P. Pinasco. Asymptotic Behavior of the Eigenvalues of the One
Dimensional Weighted p- Laplace Operator, Ark. Mat., 41 (2003), 267-280.

[15] J. Fernández Bonder and J.P. Pinasco. Eigenvalues of the p-laplacian in fractal strings with

indefinite weights, J. Math. Anal. Appl., 308, no. 2 (2005), 764-774.
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