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Abstract

We study the Sobolev trace embedding WP (Q) — L?(99), looking at the de-
pendence of the best constant and the extremals on p and q. We prove that there
exists a uniform bound (independent of (p,q)) for the best constant if and only
if (p, ¢) lies far from (IV,00). Also we study some limit cases, ¢ = oo with p > N
or p=o0 with 1 < ¢ < oo.

2000 Mathematics Subject Classification. 35J65, 35J20, 35P30, 35P15.
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1 Introduction

Sobolev inequalities are very popular in the study of partial differential equations
or in the calculus of variations and have been investigated by a great number of
authors. Among them are the Sobolev trace inequalities. Let €2 be a smooth
bounded domain in RY, N > 2. For any 1 < p < oo, we define the Sobolev trace
conjugate as

p(N —1) :
X _ if p< N,
p = N —p b
0 if p> N.
If 1 < g < p* (with strict second inequality if p = N), we have the immersion
WhP(Q) < L4(09) and hence the following inequality holds:

Sllullaae)y < llullwrr o)

for all u € WHP(Q). This is known as the Sobolev trace embedding Theorem. The
best constant for this embedding is the largest S such that the above inequality

holds, that is,
1/p
(/ |VulP + |u|? dx)
Q

= inf = inf Qp,q(u).

L (/ |u|ng)1/q WEW LR (Q)\W) P (2)
o0

p,q

(1.1)

Moreover, if 1 < g < p* the embedding is compact and as a consequence we

have the existence of extremals, i.e. functions where the infimum is attained, see
[8]. These extremals are weak solutions of the following problem

Apu = |ulP~2u in Q,
(1.2)
\Vu\pfz% = AMul?2%u on 092,

where Apu = div(|Vu[P~2Vu) is the p—Laplacian and % is the outer unit normal
derivative. Using [13] and [14] we can assume that the extremals are positive, u > 0,
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in Q. In the special case p = ¢, problem (1.2) becomes a nonlinear eigenvalue
problem, that was studied in [8], [12]. For p = 2, this eigenvalue problem is known
as the Steklov problem, [1]. From now on, let us call u, , an extremal corresponding
to the exponents (p, q).

The main purposes of this work are to study the possibility of a uniform bound
(independent of (p,q)) on S, 4 and to study the limit behavior of the best Sobolev
trace constants Sy, 4 as p — 400 and as ¢ — 400 and look at the limit cases p = oo,
1<g<o0and N <p < o0, ¢g=o00. Our main result is the following.

Theorem 1.1 Given A a set of admissible (p,q),
Ac{(pg) 1 1<p<oo,1<q=<p’}
there exist constants C1 and Co independent of (p,q) € A such that
Cr <8pq <0y

if and only if A wverifies the following property, there is no sequence (pn,qn) € A
with p, — N and q, — oo.

Notice that Theorem 1.1 says that we can obtain a uniform bound for S, ; on
A as long as (p,q) € A stays away from the point (N, 00). Observe that the upper
bound, S, 4 < Cy, follows easily by taking v = 1 in (1.1) and holds even if we are
close to (N, 00). The main difficulty arises in the proof of the lower bound. As we
will explain below, this is due to the fact that there exist functions in W (Q) that
do not belong to L>(99).

As we mentioned before, one of our concerns is to analyze the case p = co with
1 < ¢ < o0, i.e., the immersion W1 (Q) < L7(9Q). The best constant is given by

i 1Vull oo oy + [|ull Lo ()
ueW.o(2)\{0} lull La(an)

Soo,q =

From this expression it is easy to see that S, , = 1/|02//7 and S, « = 1, with
extremal oo ¢ = Uso,00 = 1 in both cases (we normalize the extremals according to
[%ooqll Lo (99) = |[tioo,00l| Lo (a0) = 1). We prove that S oo = 1 is the limit of S}, 4
as p,q — oo and also S 4 is the limit of S, 4 when p — oo.

Theorem 1.2 Let S, , be the best Sobolev trace constant and u, , be any extremal
normalized such that |[up q| 1@y = 1. Then

lim S,,=S =1
e P 00,00 )

and, for any 1 <r < 0o, as p,q — oo,

Up.g — Uoo,co = 1, weakly in VV”(Q)7
Up.q = Uoo,o0 = 1, strongly in C*(2).
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Moreover, for fired 1 < q < 00,

1
lim Spq = Sec,q =

P00 0Q|1/a
and, for any 1 <1 < 00, as p — 0o,

Up.g — Uoo,q = 1, weakly in W (Q),
Up,q — Uso,g = 1, strongly in C* ().

The limit ¢ — oo with p > N fixed is more subtle since we do not know a priori
which is the extremal for the limit case. However we find an equation for the limit
extremal.

Theorem 1.3 Let p > N, then

qlggo Sp,qa = Spoco;

and, up to subsequences, as ¢ — o0,

Up,qg = Up,o0 weakly in WHP(Q),
Up,g = Up,co strongly in C*(Q).

Moreover, there exists a measure p € C(OQ)* with pu({up,co = 1}) = 1 such that
Up,o 18 a weak solution of

Apu = |u|P~2u in Q,
|Vu|p72% = Sg,oo,uX{uzl} on OS.

We observe that W1 (Q) o« L°°(99Q). Hence we expect that the best constant
Sp.q goes to zero as (p,q) — (N, 00). This is the content of our next result.

Theorem 1.4 The best constant Sp 4 goes to zero as (p,q) — (N, 00) and moreover
for any a < (N —1)/N, there exists a constant C' such that

1 «
Sp,ngmax{(p—N)Jﬁ } .
q

For the dependence of S, 4(€2) with respect to the domain, see [4] and [9] for
a detailed analysis of the behavior of extremals and best Sobolev constants in ex-
panding and contracting domains. In [5] a related problem in the half-space Rf for
the critical exponent is studied. See also [6], [7] for other geometric problems that
lead to nonlinear boundary conditions, like the ones that appear in (1.2). The best
constant in the Sobolev immersion, W, (Q) < L"(), has been studied by many
authors, see for example [10]. More recently in [11] the authors analyze the limit as
p — oo of the related Dirichlet eigenvalue problem for the p—Laplacian.

The paper is organized as follows: first we deal with the limit cases. In sections
2 and 3 we prove Theorem 1.2 and Theorem 1.3 respectively, in section 4 we find
estimates for S, 4 near (N, 00), Theorem 1.4, and finally in section 5 we deal with
the proof of our main result, Theorem 1.1.
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2 Limit as p — +o0
In this section we prove Theorem 1.2.

Proof. First, we study the limit p, ¢ — oo. In this case the natural limit problem is

V]| oo () + (1] Loo ()
u€W > (Q) |l o< (a02)

Soo,oo -

As we mentioned in the introduction S o = 1 and the extremal is Usc,c0 = 1
(normalized such that [|ul| @) = 1). Now, taking u =1 in (1.1), we get

) |Q|1/p
Spvq = ueml/lllf;(g) Qp,q(u) S |8Q|1/q7 (21)
from where it follows that
limsup Spq < 1. (2.2)

p,q—0o0

For p > N, let us denote by u, , one extremal for (1.1) normalized such that
‘Loo(aﬂ) = 1. Hence

[tp,q
up,qllwr@) = Spalltpgllzean) < Sp7q|8Q|1/q <C,
with C independent of p,q. On the other hand, if N < r < p,

ltp.qllwr.r @y < 1917777y, g

lwiry < C.
Hence, there exists u € W17 (Q) such that, up to a subsequence,

Up,q — u weakly in W17 (Q),
up 4 — u strongly in C%(Q).

Observe that we can assume that the limit v does not depend on 7. In fact, we can
choose a sequence r; — oo and in each W17 we can extract a subsequence of Up.q
that converges weakly. By a standard diagonal argument we obtain a subsequence
that converges strongly in C* and weakly in W7 for every j (and hence in Wb
for every r) to a limit function w.

In particular, [Jul|z~@so) =1 and

O ey - (Rt gl

[up,qll La(a) - |01/ a

Sp,q = Qp,q(up,q) >

Hence (p—r)/
. |Q|_ P pTHuanW“(Q)
v N

> Q7" fuflwrr
and therefore, taking the limit as r — oo, we get

1> [Jullwiee(q)-
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We conclude that u € W1>°(Q) and that u is an extremal for Sy, o that satisfies
lul| o (902 = 1, and hence u = 1.

Next, we focus on the case p — 400 with fixed 1 < ¢ < co. We consider the
natural limit problem

IVl oo (@) + |1l Lo ()
u€W->(Q) HUHL‘I(BQ)

Soo,q = 3
and we note that the extremal is %so o = 1 (normalized such that |[uce gL (a0) = 1)
and then the best constant is given by S. , = 1/]0Q|'/9.

Following the same argument given above we get that there exists u € W17 ()
such that, up to a subsequence,

Up,q — u weakly in WHT(€),
upq — u strongly in C%(Q).

Moreover, we have the following inequalities,

|Q|1/p

Q1= PPy gl w0
|01/ > Spg = Qpqltip,q) =

||up,q | La (69)

First we take the limit as p — oo, and then the limit as » — oo, to obtain

1 [ullw.= ()
>S5 _
|aQ|1/q — Moo,q — HUHL‘I({)Q)

Therefore, we can conclude that u € W°°(Q) and that it is an extremal for Seo 4
which satisfies [|u|z= 0y = 1. Hence u = us q = 1 and Ss 4 = 1/[091/9. O

3 Limit as ¢ — +oo for fixed p > N

In this section we fix p > N and consider the limit of S}, ; and v,  when ¢ — oo. In
order to clarify the exposition we divide the proof of Theorem 1.3 in two lemmas.

Lemma 3.1 Let p > N be fized. Then

lim Sp 4 = Sp,oos

q—)OO
and, up to subsequences, as ¢ — oo,

Up g — Upoco weakly in WP (),
Up g — Up,oo strongly in C*()).

Proof. Let uyp 4 be an extremal for (1.1) normalized such that |[u,q|lz=@0) = 1.
Then we have
o _ lwpalwreg)  lupallwee

. = : (3.1)
P up,gllacan) |00/
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Therefore, using (2.1), we have |Jup q|[w1.r(0) < |Q2|*/P. Hence, there exists a func-
tion u € WHP(Q) such that, up to a subsequence,

Upg — U weakly in W1P(Q),
Upg — U strongly in L*°(99).

Hence ||lu|| a0y = 1, and from (3.1) we get

limgf Sp,q = liqrggf H“p,qHWW(Q) 2 ||u||W1’P(Q) > Sp,oo-

q—

Now, let us see that v is an extremal for S, . We argue by contradiction. Assume
that there exists v € W1P(Q) such that

Qp,o00(V) < Qp,oc(u).

Then, for large ¢ we have,

Qp.q(v) < Qpq(u),
but as
g > lupqllwie) _ lullwir@) —&q
Pa = |0Q|1/a = |01/

(||u||Lq(aQ)> llullwir) — &4 - [v]lwir )
0014 1wl e a0 ]l aca0)

for some ¢, that goes to zero as ¢ — oo, we arrive to a contradiction.
To finish the proof of the Lemma, we observe that

Spa < Qpg(u) = Qpoo(u) = Sp 0o
Therefore, limsup,_, ., Sp.q < Sp,co- O

Lemma 3.2 Let p > N be fizred and let up o be an extremal for (1.1) obtained
as limit of a sequence of extremals up 4, as ¢ — oo. Then there exists a measure
p € C(ON)*, with p({up,co = 1}) =1, such that up o is a weak solution of

Apu = |uP~u in Q,
(3.2)
[VulP=2G% = 8P piX{u=1y on .

Proof. Let uy, 4 be as in Lemma 3.1. As u, 4 is a weak solution of (1.2), we have
that for every ¢ € WHP(Q),

/(|VUP7Q‘p72VUP,qV¢ + [tp g PPy g0) do =

Q
(p—q)/q )
Sg,q (/ |tp,ql? do) / |Upqg|" “tup,gp do.
o0 o0
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Let us define ¥, € L>°(9Q)* as

(p—a)/a )
U, (¢) = </6Q |tp,q|? da) /89 |Upqg|" tup g do.

By Holder inequality, we get
Ug(D)] < Nltp,allT 200 18]l Laany < 102/ up.qll7 o0y 10l L= 00) < CllgllLeo0)

with C independent of g. Therefore, || ¥,|| < C' and hence if we call

(p—q)/q )
Vg = (/ |tp,q|? do) [tp,g|" tup,qs
o0

we have that v, is uniformly bounded in L'(9€) and then, up to a subsequence,
Vg X 4 weakly-* in the sense of measures.

In order to finish the proof, we will see that supp(u) C {up.0o = 1}. To prove
this, we consider a point z¢ € 9 such that u, oo(20) < 1 — 2§ for some ¢ small
enough. Hence, for ¢ large enough we have that u, 4(z9) < 1 — 4. On the other
hand, as |[up,00 || (90) = 1, and by the C* convergence of uy, 4 t0 up o there exists
a point 1 € 0Q and r independent of ¢ such that B, (21)N0 C {z € 00 : u, o(x) >
1—4§/2}. Therefore

1/q
Q| > </m |up7q|qczg) > (1—06/2)|By(z1) NOQYY1,

where the first inequality follows from the fact that [|up q|/z~@0) = 1. Now, we
rewrite v, as follows,

(w0) ( Up.q(0) )ql letp.q 7
vg(z0) = | 7—FHr—— Up,
q Hup,q La(09) P,qllLa(6Q)

1-6 -t
<
—(u—MM&wmeWJ
Hence, we conclude that v,(x¢) — 0, and we get that the measure is supported in

{z € 0 : u(x) = 1}. Moreover, if we take up  as test function in the weak form
of (3.2), we get

‘QQ|(P—1)/(1_

/Q(|v“p,00|p + ‘“p,oovj) dx = Sg,m/ dp.

AN {up co=1}

As Uy o is an extremal and verifies [|up ||z (90) = 1 we have that

Awwguwwmmzﬁw

Therefore (02 N {up oo = 1}) = 1. This completes the proof. ad
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4 Estimates for (p,q) near (N, o)

In this section we find an upper bound for the vanishing rate of S, , as (p,q)
approaches (N, 00), that is we prove Theorem 1.4.

Proof. If p < N, using Holder inequality we have that there exist a constant C'
such that
Sp.g < CSnyg, for p < N.

Hence, we can assume that p > N. In order to obtain a upper bound on the decay
rate, we suppose that 0 € 9, a < (N — 1)/N, and we consider the function

ue(z) = <1n(1 + |$|1+E)>a € Whp(Q).

Then we obtain a bound for ||uc||L«a0) as follows, given M < ||uc|| 1= (50),

1/q
luc | Lacan) > (/{ (o201} |u€|q> > M|{z € 00 : u.(z) > M}|1/Q.
S ug ()2

On the other hand, let us compute

1 (a=1)p 1 P
[Vue|P < af [ In(1 4+ ) .

|x| + e x| + e
Hence,
¢ LN-1 1 (a=1)p
/|Vu€|p§ C’/ —_— <1n(1+)> dr
: GEE e
“ N 1 (a—1)
—p— a—1)p
< C/E w (Inw) dw < e
Moreover,

/ | < C.
Q

Sproe < -
Do = ep=NM{x € 00 : u.(x) > M}V

Summing up, we obtain that

If g(p — N) > 1, we take M ~ 1/(p— N)® and & ~ e~ /®P=N) and if ¢(p — N) <1,
M ~ g and € ~ e~9. With this choice, we obtain

Sp,q<C'max{(p_N)+a ;} — 0, as (p,q) — (N, 00).

This ends the proof. |
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5 Uniform bounds for 5,

In this section we prove our main result, Theorem 1.1.

Proof. From Theorem 1.4 we get that the best constant S, , degenerates as (p, ¢) —
(N, 00), hence to obtain uniform bounds we have to stay far from that point.
A uniform upper bound for S, 4 follows from (2.1), namely,

|Q1/P
»q S |aQ|1/q S CQ? (5~1)

for 1 < p,q < oo. The lower bound is more subtle. First we observe that, by
Holder’s inequality, we have

Sp

1 1
llull a1 (90) < (02|71 % |l a2 (50

for 1 < ¢ < ¢, and

1 1
[ullwrz 0y < 19172771 [fullw o ()

for 1 < py < py. Therefore, there exists a constant C' independent of 1 < p < oo
and 1 < ¢ < p* such that
Sp11q1 Z CSPQ,qw (5'2)

for any 1 < ¢1 < g2 and 1 < ps < p;. Inequality (5.2) says that in order to obtain
lower bounds for S, ; we can enlarge ¢ and decrease p. Therefore, in order to get
uniform bounds for S, , in sets A that are far from the point (IV, 00) we can proceed
as follows. From our assumptions on A we have that there exists s < N < r such
that

Ac{(p.q) : p>r}U{(p,g) : 1<p<randl<gqg<min{p*,s*}} =4 UA,,

see Figure 1 below.

Figure 1.



Uniform bounds for Sobolev trace constant 191

From our previous estimate (5.2) we get that
Spq > CSp oo (5.3)

for (p,q) € Ay, and

S,o>C min S, -
pg =& TR Ppp

for (p,q) € As. To estimate the value of the best Sobolev trace constant along the
critical curve (p,p*) with 1 < p < s, we use interpolation theory, see [2], [3]. We
have, for the trace operator T

T:Whi(Q) — LY (09), S11

|Tull L1 (00) < llullwra),

and
T:Wh(Q) = L*(0Q),  SeelTull a0y < [ullwrs()-
Therefore,
T : WHP(Q) — L9(0%), Sp.allTullLaan) < llullwiea),
with 1 -0 1 1-0
,:9+77 , — =0+ : , (5.4)
p s q S
and

Spag > 9715437

5,8%

for any 0 < 6 < 1. We observe that if (p, q) are given by (5.4) we have ¢ = p* hence
there exists a constant C' that only depends on s such that

min Sy, ,« > min{S; 1,5 s+ } > C.
1<p<s

Hence we have a uniform lower bound
Spyq 2 Ca (55)

for (p,q) € Az. From (5.1), (5.3) and (5.5) we conclude the desired result. ]
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