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Abstract. In this paper we study the first (nonlinear) Steklov eigenvalue, λ,

of the following problem: −∆pu + |u|p−2u + αφ|u|p−2u = 0 in a bounded

smooth domain Ω with |∇u|p−2 ∂u
∂ν

= λ|u|p−2u on the boundary ∂Ω. We

analyze the dependence of this first eigenvalue with respect to the weight φ

and with respect to the parameter α. We prove that for fixed α there exists
an optimal φα that minimizes λ in the class of uniformly bounded measurable

functions with fixed integral. Next, we study the limit of these minima as

the parameter α goes to infinity and we find that the limit is the first Steklov
eigenvalue in the domain with a hole where the eigenfunctions vanish.

1. Introduction

Given a domain Ω ⊂ RN (bounded, connected, with smooth boundary), α > 0
and E ⊂ Ω a measurable set, we want to study the eigenvalue problem

(1.1)

{
−∆pu + |u|p−2u + αχE |u|p−2u = 0 in Ω
|∇u|p−2 ∂u

∂ν = λ|u|p−2u on ∂Ω,

here ∆pu = div(|∇u|p−2∇u) is the usual p−laplacian, ∂
∂ν is the outer normal de-

rivative, λ stands for the eigenvalue and α is a positive parameter. Remark that
in this problem the eigenvalue appears in the boundary condition. These type of
problems are known as Steklov eigenvalue problems, see [18]. Observe that when
p = 2 the problem becomes linear. All our results are new even for the linear case.

We denote the first eigenvalue by λ(α, E). The existence of this first eigenvalue
and a positive associated eigenfunction follows easily from the variational charac-
terization

(1.2) λ(α, E) := inf
v∈W1,p(Ω),
‖v‖Lp(∂Ω)=1

∫
Ω

|∇v|p + |v|p dx + α

∫
E

|v|p dx,

and the compactness of the embedding W 1,p(Ω) ↪→ Lp(∂Ω), see [7].
Once the set E is fixed, it is not difficult to check that when α → ∞ the

eigenvalues converge to the first eigenvalue of the problem with E as a hole (the
eigenfunctions vanish on E). That is,

lim
α→∞

λ(α, E) = λ(∞, E),
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where

λ(∞, E) := inf
v∈W1,p(Ω), v|E≡0,

‖v‖Lp(∂Ω)=1

∫
Ω

|∇v|p + |v|p dx.

The aim of this paper is to study the following optimization problem: for a fixed
α we want to optimize λ(α, E) with respect to E, that is, we want to look at the
infimum,

(1.3) inf
E⊂Ω,
|E|=A

λ(α, E)

for a fixed volume A ∈ [0, |Ω|] (with | · | denoting volume). Moreover, we want to
study the limit as α → ∞ in the above infimum. The natural limit problem for
these infima is

(1.4) λ(∞, A) := inf
E⊂Ω,
|E|=A

λ(∞, E).

These kind of problems appear naturally in optimal design problems. They
are usually formulated as problems of minimization of the energy, stored in the
design under a prescribed loading. Solutions of these problems are unstable to
perturbations of the loading. The stable optimal design problem is formulated
as minimization of the stored energy of the project under the most unfavorable
loading. This most dangerous loading is one that maximizes the stored energy
over the class of admissible functions. The problem is reduced to minimization of
Steklov eigenvalues. See [3].

Also this limit problem (1.4) can be regarded as the study of the best Sobolev
trace constant for functions that vanish in a subset of prescribed measure. The
study of optimal constants in Sobolev embeddings is a very classical subject (see
[5]). Related problems for the best Sobolev trace constant can be found in [6, 9].
In our case the limit problem was studied in [10] where an optimal configuration
is shown to exists and some properties of this optimal configuration are obtained.
Among them it is proved that λ(∞, A) is strictly increasing with respect to A. In
a companion paper [11] the interior regularity of the optimal hole is analyzed.

To begin the study of our optimization problem (1.2) we prove that there exists
an optimal configuration. To this end, it is better to relax the problem and consider
φ ∈ L∞(Ω), such that 0 ≤ φ ≤ 1 and

∫
Ω

φ(x) dx = A instead of χE . Hence we
consider the problem,

(1.5)

{
−∆pu + |u|p−2u + αφ|u|p−2u = 0 in Ω
|∇u|p−2 ∂u

∂ν = λ|u|p−2u on ∂Ω.

This relaxation is natural in the use of the direct method in the calculus of variations
since {φ ∈ L∞(Ω), 0 ≤ φ ≤ 1 and

∫
Ω

φ(x) dx = A} is closed in the weak∗ topology
in L∞(Ω). In fact, this set is the closure in this topology of the set of characteristic
functions {χE , |E| = A}.

We denote by λ(α, φ) the lowest eigenvalue of (1.5). This eigenvalue has the
following variational characterization

(1.6) λ(α, φ) := inf
v∈W1,p(Ω),
‖v‖Lp(∂Ω)=1

∫
Ω

|∇v|p + |v|p dx + α

∫
Ω

φ|v|p dx.
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As an immediate consequence of the compact embedding W 1,p(Ω) ↪→ Lp(∂Ω), the
above infimum is in fact a minimum. There exists u = uα,φ ∈ W 1,p(Ω) such that
‖u‖Lp(∂Ω) = 1 and

λ(α, φ) =
∫

Ω

|∇u|p + |u|p dx + α

∫
Ω

φ|u|p dx.

Moreover, u is a weak solution of (1.5), does not changes sign (see [7, 8, 16]) and
hence, by Harnack’s inequality (see [20]), it can be assumed that u is strictly positive
in Ω̄.

Define

(1.7) Λ(α, A) = inf
φ:

∫
φ=A,

0≤φ≤1

λ(α, φ).

Any minimizer φ in (1.7) will be called an optimal configuration for the data (α, A).
If φ is an optimal configuration and u satisfies (1.5) then (u, φ) will be called an
optimal pair (or solution).

By the direct method of the calculus of variations it is not difficult to see that
there exits an optimal pair. The main point of the following result is to show that
we can recover a classical solution of our original problem (1.3). In fact, if (u, φ) is
an optimal pair, then φ = χD for some measurable set D ⊂ Ω. Moreover, the set
D is shown to be a sublevel set of u.

Theorem 1.1. For any α > 0 and A ∈ [0, |Ω|] there exists an optimal pair. More-
over, any optimal pair (u, φ) has de following properties:

(1) u ∈ C1,δ
loc (Ω) ∩W 2,q(Ω) ∩ Cγ(Ω) for some γ > 0, δ < 1 and q = min{p, 2}.

(2) There exists and optimal configuration φ = χD, where D is a sublevel set
of u, i.e. there is a number t ≥ 0 such that D = {u ≤ t}.

(3) Every level set {u = s}, has Lebesgue measure zero.

For the proof we use ideas from [1, 2] where a similar linear problem with ho-
mogeneous Dirichlet boundary conditions was studied.

We can compute the derivative from the right of λ(α, φ) with respect to φ in an
admissible direction. Let us denote by F the set of admissible directions,

(1.8) F =
{

f : f ≤ 0 in {φ = 1}, f ≥ 0 in {φ = 0},
∫

Ω

f = 0
}

.

Then, the right derivative of λ(α, φ) with respect to φ in direction of f ∈ F is given
by

λ′(α, φ)(f) = lim
t↘0+

λ(α, φ + tf)− λ(α, φ)
t

= α

∫
Ω

f |u|p dx,

where u is an eigenfuction associated to λ(α, φ), see Proposition 2.1.
Next, we analyze the limit as α → ∞ of the optimal configurations found in

Theorem 1.1. We give a rigorous proof of the convergence of these optimal config-
urations to those of (1.4).

Theorem 1.2. For any sequence αj →∞ and optimal pairs (Dj , uj) of (1.3) there
exists a subsequence, that we still call αj, and an optimal pair (D,u) of (1.4) such
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that
lim

j→∞
χDj = χD, weakly∗ in L∞(Ω),

lim
j→∞

uj = u, strongly in W 1,p(Ω).

Moreover, u > 0 in Ω \D.

Finally, we study symmetry properties of the optimal configuration when Ω is
the unit ball. For the definition of a spherically symmetric function see [14, 17] and
Section 4.

Theorem 1.3. Fix α > 0 and 0 < A < |B(0, 1)|, there exists an optimal pair
of (1.5), (u, χD), such that u and D are spherically symmetric. Moreover, when
p = 2, every optimal pair (u, χD) is spherically symmetric.

The rest of the paper is organized as follows: in Section 2 we prove that there
exists an optimal configuration; in Section 3 we analyze the limit α →∞ and finally
in Section 4 we study the symmetry properties of the optimal pairs in a ball.

2. Existence of an optimal configuration

In this section we prove that there exists an optimal configuration for the relaxed
problem and find some properties of it.

Proof of Theorem 1.1. To prove existence, fix α and A, and write Λ = Λ(α, A),
λ(φ) = λ(α, φ) to simplify the notation. Let φj be a minimizing sequence, i.e.,
0 ≤ φj ≤ 1,

∫
Ω

φj dx = A and λ(φj) → Λ as j →∞.

Let uj ∈ W 1,p(Ω), be a normalized eigenfunction associated to λ(φj), that is, uj

verifies ‖uj‖Lp(∂Ω) = 1 and

(2.9)

λ(φj) =
∫

Ω

|∇uj |p + |uj |p dx + α

∫
Ω

φj |uj |p dx

= inf
v∈W1,p(Ω),
‖v‖Lp(∂Ω)=1

∫
Ω

|∇v|p + |v|p dx + α

∫
Ω

φj |v|p dx.

Then, uj is a positive weak solution of
−∆puj + |uj |p−2uj + αφ|uj |p−2uj = 0 in Ω,

|∇uj |p−2 ∂uj

∂ν = λ(φj)|uj |p−2uj on ∂Ω,

‖uj‖Lp(∂Ω) = 1.

Since λ(φj) is bounded, the sequence uj is bounded in W 1,p(Ω). Also {φj} is
bounded in L∞(Ω). Therefore, we may choose a subsequence (again denoted uj ,
φj) and u ∈ W 1,p(Ω), φ ∈ L∞(Ω) such that

uj ⇀ u weakly inW 1,p(Ω)(2.10)
uj → u strongly inLp(Ω)(2.11)
uj → u strongly inLp(∂Ω)(2.12)

φj
∗
⇀ φ weakly∗ in L∞(Ω)(2.13)

By (2.11), ‖u‖Lp(∂Ω) = 1 and by (2.13) 0 ≤ φ ≤ 1 and
∫
Ω

φ dx = A.
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Now taking limits in (2.9), we get

(2.14)
Λ = lim

j→∞
λ(φj) ≥ lim inf

j→∞

∫
Ω

|∇uj |p + |uj |p dx + α

∫
Ω

φj |uj |p dx

≥
∫

Ω

|∇u|p + |u|p dx + α

∫
Ω

φ|u|p dx

Therefore, (u, φ) is an optimal pair and so u is a weak solution to{
−∆pu + |u|p−2u + αφ|u|p−2u = 0 in Ω,

|∇u|p−2 ∂u
∂ν = Λ|u|p−2u on ∂Ω.

That (1) holds is a consequence of the regularity theory for quasilinear elliptic
equations with bounded coefficients developed, for instance, in [19].

To prove (2), observe that the minimization problem

inf
φ:

∫
φ=A

0≤φ≤1

∫
Ω

φ|u|p dx

has a solution φ = χD where D is any set with |D| = A and

{u < t} ⊂ D ⊂ {u ≤ t}, t := sup{s : |{u < s}| < A}

(compare with the Bathtub Principle, see [15]). Therefore, we get from (2.14)∫
Ω

|∇u|p + |u|p dx + α

∫
Ω

χD|u|p dx ≤ Λ.

By definition of Λ as a minimum, this must actually be an equality, and (u, χD) is
an optimal pair.

Finally, if (u, χD) is any solution and Ns = {u = s} for any s > 0. Using Lemma
7.7 from [12] twice, we see that ∆pu = 0 a.e. on Ns. Then

(2.15) |u|p−2u + αχD|u|p−2u = 0 a.e. on Ns.

As u = s > 0 on Ns, we have

|u|p−2u + αχD|u|p−2u > 0 on Ns.

Then |Ns| = 0, we get (3). Taking s = t we get (2). �

Now, we find the derivative of λ(α, φ) in an admissible direction f ∈ F , given
by (1.8).

Proposition 2.1. Let f ∈ F , then the derivative from the right of λ(α, φ) in the
direction of f ∈ F is given by

(2.16) λ′(α, φ)(f) = lim
t↘0

λ(α, φ + tf)− λ(α, φ)
t

= α

∫
Ω

f |u|p dx,

where u is an eigenfunction of λ(α, φ).

Proof. Let us consider the curve

φt = φ + tf.

Note that since f ∈ F and φ is admissible then φt is admissible for every t ≥ 0
small enough. Therefore, we may compute λ(α, φt).
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Using an eigenfuction ut of λ(α, φt) in the variational formulation of λ(α, φ) we
get

(2.17)
λ(α, φt)− λ(α, φ)

t
≤ α

∫
Ω

f |ut|p dx.

On the other hand, using u in the variational formulation of λ(α, φt) we get

(2.18)
λ(α, φt)− λ(α, φ)

t
≥ α

∫
Ω

f |u|p dx.

As before, using v = 1 as a test function in the definition of λ(α, φt) we obtain that
the family {ut}0≤t≤t0 is bounded in W 1,p(Ω). Then, by our previous arguments we
have that

ut → u strongly in Lp(Ω) when t → 0.

Hence, taking limits in (2.17) and (2.18) we conclude (2.16). �

Using this Proposition we can easily prove again that the optimal set must be a
sublevel set of u.

Corollary 2.2. The optimal set D satisfies

D = {u ≤ t}.

Proof. As χD realizes the minimum of λ(α, φ) we have for all f ∈ F ,

(2.19) λ′(α, χD)(f) = α

∫
Ω

f |u|p dx ≥ 0,

Given two points x0 ∈ D of positive density (i.e., for every ε > 0, |B(x0, ε)∩D| > 0)
and x1 ∈ (Ω \ D) also with positive density we can take a function f ∈ F of the
form f = MχT0 − MχT1 with T0 ⊂ B(x0, ε) ∩ D, T1 ⊂ B(x1, ε) ∩ (Ω \ D) and
M−1 = |T0| = |T1|. It is clear that f ∈ F . From our expression for the right
derivative (2.16) and using that D is a minimizer, taking the limit as ε → 0 and
using the continuity of u we get u(x0) ≤ u(x1). We conclude that D = {u ≤ t}. �

3. Limit as α →∞.

In this section we analyze the limit as α →∞ in problem (1.7).

Proof of Theorem 1.2. Let (uα, χDα
) be a solution to our minimization problem

Λ(α, A) = inf
u∈W1,p(Ω),

φ:
∫

φ=A, 0≤φ≤1

∫
Ω

|∇u|p dx +
∫

Ω

|u|p dx + α

∫
Ω

φ|u|p dx∫
∂Ω

|u|p dS

.

Recall that uα is a positive weak solution of
−∆pu + |u|p−2u + αφ|u|p−2u = 0 in Ω,

|∇u|p−2 ∂u
∂ν = Λ(α, A)|u|p−2u on ∂Ω,

‖u‖Lp(∂Ω) = 1.
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Let u0 ∈ W 1,p(Ω) and D0 ⊂ Ω be such that |D0| = A and u0χD0 = 0. Then, we
have that

Λ(α, A) ≤

∫
Ω

|∇u0|p dx +
∫

Ω

|u0|p dx + α

∫
Ω

χD0 |u0|p dx∫
∂Ω

|u0|p dS

=

∫
Ω

|∇u0|p dx +
∫

Ω

|u0|p dx∫
∂Ω

|u0|p dS

= K

with K independent of α.
Thus {Λ(α, A)} is a bounded sequence in R and it is clearly increasing. As a

consequence, {uα} is bounded in W 1,p(Ω). Moreover {χDα
} is bounded in L∞(Ω).

Therefore, we may choose a sequence αj and u∞ ∈ W 1,p(Ω), φ∞ ∈ L∞(Ω) such
that

uαj ⇀ u∞ weakly inW 1,p(Ω),(3.20)
uαj → u∞ strongly inLp(Ω),(3.21)
uαj → u∞ strongly inLp(∂Ω),(3.22)

χDαj

∗
⇀ φ∞ weakly ∗ inL∞(Ω),(3.23)

By (3.22) ‖u∞‖Lp(Ω) = 1 and by (3.23) 0 ≤ φ∞ ≤ 1 with
∫
Ω

φ∞ dx = A. Also,
by (3.21) and (3.23) it holds∫

Ω

χDαj
|uαj

|p dx →
∫

Ω

φ∞|u∞|p dx.

As

0 ≤ αj

∫
Ω

χDαj
|uαj

|p dx ≤ Λαj
≤ K for all j,

we have

0 ≤
∫

Ω

χDαj
|uαj

|p dx ≤ K

αj
for all j,

then ∫
Ω

χDαj
|uαj |p dx → 0.

Therefore ∫
Ω

φ∞|u∞|p dx = 0

and we conclude that

φ∞u∞ = 0 a.e. Ω.

Since {Λ(αj , A)} is bounded and increasing there exists the limit

lim
j→∞

Λ(αj , A) = Λ∞ < +∞.
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Then

Λ∞ = lim
j→∞

∫
Ω

|∇uαj
|p dx +

∫
Ω

|uαj
|p dx + αj

∫
Ω

χαj
|uαj

|p dx

≥ lim inf
j→∞

∫
Ω

|∇uαj |p dx +
∫

Ω

|uαj |p dx

≥
∫

Ω

|∇u∞|p dx +
∫

Ω

|u∞|p dx.

Hence, we have

Λ∞ ≥
∫

Ω

|∇u∞|p dx +
∫

Ω

|u∞|p dx

≥ inf
u∈W1,p(Ω), ‖u‖Lp(∂Ω)=1,

φ:
∫

φ=A, φu=0

∫
Ω

|∇u|p dx +
∫

Ω

|u|p dx

≥ Λ(αj , A) for all j.

Therefore

Λ∞ = inf
u∈W1,p(Ω), ‖u‖Lp(∂Ω)=1,

φ:
∫

φ=A, φu=0

∫
Ω

|∇u|p dx +
∫

Ω

|u|p dx =
∫

Ω

|∇u∞|p + |u∞|p dx,

and so the infimum in the above equation is achieved by (u∞, φ∞).
Now, if we take D∞ = {φ∞ > 0} we get that |D∞| = B ≥ A. Hence

λ(∞, B) ≤ λ(∞, D∞) = Λ∞ ≤ λ(∞, A).

This implies that |D∞| = A (otherwise we have a contradiction with the strict
monotonicity of λ(∞, A) in A proved in [10]). So, φ∞ = χD∞ .

We observe that D∞ ⊂ {u∞ = 0} and again, by the strict monotonicity of
λ(∞, A) in A, see [10], D∞ = {u∞ = 0}. �

4. Symmetry properties.

In this section, we consider the case where Ω is the unit ball, Ω = B(0, 1).

Spherical Symmetrization. Given a measurable set A ⊂ RN , the spherical sym-
metrization A∗ of A is constructed as follows: for each r, take A ∪ ∂B(0, r) and
replace it by the spherical cap of the same area and center reN . This can be done for
almost every r. The union of these caps is A∗. Now, the spherical symmetrization
u∗ of measurable function u ≥ 0 is constructed by symmetrizing the super-level
sets so that, for all t, {u∗ ≥ t} = {u ≥ t}∗. See [14, 17].

The following theorem is proved in [14] (see also [17]).
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Theorem 4.1. Let u ∈ W 1,p(Ω) and let u∗ be its spherical symmetrization. Then
u∗ ∈ W 1,p(B(0, 1)) and

(4.24)

∫
B(0,1)

|∇u∗|p dx ≤
∫

B(0,1)

|∇u|p dx,∫
B(0,1)

|u∗|p dx =
∫

B(0,1)

|∇u|p dx,∫
∂B(0,1)

|u∗|p dS =
∫

∂B(0,1)

|∇u|p dS,∫
B(0,1)

(αχD)∗|u∗|p dx ≤
∫

B(0,1)

αχD|u|p dx,

where D ⊂ B(0, 1) and (αχD)∗ = −(−αχD)∗.

Now we prove Theorem 1.3.

Proof of Theorem 1.3. Fix α > 0 and A and assume (u, χD) is and optimal pair.
Let u∗ the spherical symmetrization of u. Define the set D∗ by χD∗ = (χD)∗. By
Theorem 4.1 we get

λ(α, D∗) ≤

∫
Ω

|∇u∗|p dx +
∫

Ω

|u∗|p dx +
∫

Ω

(αχD)∗|u∗|p dx∫
∂Ω

|u∗|p dS

≤

∫
Ω

|∇u|p dx +
∫

Ω

|u|p dx + α

∫
Ω

χD|u|p dx∫
∂Ω

|u|p dS

= λ(α, D∗).

Since we have |D∗| = |D| = A, optimality of (u, χD) implies that (u∗, χD∗) is also
a minimizer.

Now consider p = 2. In this case, it is proved in [4] that if equality holds in
(4.24) then for each 0 < r ≤ 1 there exists a rotation Rr such that

(4.25) u |∂B(0,r)= (u∗ ◦Rr) |∂B(0,r) .

We can assume that the axis of symmetry eN was taken so that R1 = Id. Therefore
u and u∗ coincide on the boundary of B(0, 1). Therefore, the optimal sets D, D∗

are sublevel sets of u and u∗ with the same level, t. As u and u∗ are solutions
of a second order elliptic equation with bounded measurable coefficients they are
C1. Hence {u > t} ∩ {u∗ > t} is an open neighborhood of ∂Ω ∩ {u > t}. In that
neighborhood both functions are solutions of the same equation, ∆v = v (which
has a unique continuation property), and along ∂Ω∩{u > t} both coincide together
with their normal derivatives. Thus they coincide in the whole neighborhood.

Now we observe that the set {u > t} is connected, because every connected
component of {u > t} touches the boundary (since solutions of ∆v = v cannot have
a positive interior maximum) and {u > t} ∩ ∂Ω is connected.

We conclude that {u > t} = {u∗ > t} and u = u∗ in that set. In the complement
of this set both u and u∗ satisfy the same equation with the same Dirichlet data,
therefore they coincide. �
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