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ON THE EXISTENCE OF EXTREMALS FOR THE SOBOLEV
TRACE EMBEDDING THEOREM WITH CRITICAL EXPONENT

JULIÁN FERNÁNDEZ BONDER AND JULIO D. ROSSI

Abstract

In this paper we study the existence problem for extremals of the Sobolev trace inequality
W 1,p(Ω) → Lp∗ (∂Ω) where Ω is a bounded smooth domain in RN , p∗ = p(N − 1)/(N − p)
is the critical Sobolev exponent and 1 < p < N .

1. Introduction.

Let Ω ⊂ RN be a bounded smooth domain. Relevant for the study of boundary
value problems for differential operators are the two following Sobolev inequalities.
For each 1 ≤ q ≤ p(N−1)/(N−p) ≡ p∗, we have a continuous inclusion W 1,p(Ω) ↪→
Lq(∂Ω), and for each 1 ≤ r ≤ pN/(N − p) ≡ p∗, W 1,p

0 (Ω) ↪→ Lr(Ω), hence the
following inequalities hold:

Sq‖u‖p
Lq(∂Ω) ≤ ‖u‖

p
W 1,p(Ω), S̄r‖u‖2Lr(Ω) ≤ ‖u‖

p

W 1,p
0 (Ω)

.

These inequalities are known as the Sobolev trace theorem and the Sobolev embed-
ding theorem respectively. The best constants for these embeddings are the largest
S and S̄ such that the above inequalities hold, that is,

Sq = inf
v∈W 1,p(Ω)\W 1,p

0 (Ω)

∫
Ω

|∇v|p + |v|p dx(∫
∂Ω

|v|q dσ
)p/q

(1.1)

and

S̄r = inf
v∈W 1,p

0 (Ω)\{0}

∫
Ω

|∇v|p dx(∫
Ω

|v|r dx
)p/r

. (1.2)

One big difference between these two quantities, is the fact that S̄r is homoge-
neous under dilatations of the domain, that is, if we define µΩ = {µx| x ∈ Ω},
taking v(x) = u(µx) in (1.2) and changing variables we get

S̄r(µΩ) = µ(rN−pr−pN)/rS̄r(Ω).
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On the other hand, Sq is not homogeneous under dilatations. In fact we have

Sq(µΩ) = µβ inf
v∈W 1,p(Ω)\W 1,p

0 (Ω)

∫
Ω

µ−p|∇v|p + |v|p dx(∫
∂Ω

|v|q dσ
)p/q

, (1.3)

where β = (Nq − pN + p)/q.
For 1 ≤ q < p∗ and 1 ≤ r < p∗ the embeddings are compact, so we have existence

of extremals, i.e. functions where the infimum is attained. These extremals are weak
solutions of the following problems

∆pu = |u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= λ|u|q−2u on ∂Ω,

(1.4)

where ∆pu = div(|∇u|p−2∇u) is the p−laplacian, ∂
∂ν is the outer unit normal

derivative, and  −∆pu = λ|u|r−2u in Ω,

u = 0 on ∂Ω.
(1.5)

The asymptotic behavior of Sq(µΩ) in expanding (µ → ∞) and contracting
domains (µ→ 0), was studied in [7] and [11]. In [7] it is proved that for expanding
domains and q > p = 2, Sq(µΩ) → Sq(RN

+ ). In [11] it is shown that

lim
µ→0+

Sq(µΩ)
µβ

=
|Ω|

|∂Ω|p/q
. (1.6)

The behavior of the extremals for (1.1) in expanding and contracting domains
is also studied in [7] and [11]. For expanding domains, it is proved in [7] (again
in the case q > p = 2) that the extremals develop a peak near a point where the
mean curvature of the boundary maximizes. For contracting domains, we have that
the extremals, when rescaled to the original domain as v(x) = u(µx), x ∈ Ω, and
normalized with ‖v‖Lq(∂Ω) = 1, are nearly constant in the sense that

lim
µ→0

v =
1

|∂Ω|1/q
in W 1,p(Ω).

Another big difference between the Sobolev trace theorem and the Sobolev em-
bedding theorem arises in the behavior of extremals. Namely, if Ω is a ball, Ω =
B(0, µ), as the extremals do not change sign, from results of [12] the extremals for
(1.2) are radial while, at least for large µ, extremals for (1.1) are not, since they
develop peaking concentration phenomena as is described in [7].

As for the symmetry properties of the extremals of the Sobolev trace constant, it
is proved in [10] that if Ω is a ball of sufficiently small radius, then the extremals are
radial functions. Also in [10], the authors use this result to prove that there exists
a radial extremal for the immersion H1(B(0, µ)) → L2∗(∂B(0, µ)) if the radius µ
is small enough. See also [1] for other geometric conditions that leads to existence
of extremals in the case p = 2.

So we arrive at the purpose of this article: to find existence of extremals for
the Sobolev trace theorem with the critical exponent in a general smooth bounded
domain Ω. Our main result is the following:
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Theorem 1. Let Ω be a bounded smooth domain in RN such that

|Ω|
|∂Ω|p/p∗

<
1

K(N, p)
, (1.7)

where K(N, p) is given by (2.1). Then there exists an extremal for the immersion
W 1,p(Ω) → Lp∗(∂Ω).

For the proof of Theorem 1 we use the same approach as in [2] (see also [16]),
properly adapted to our new context.

Existence result for elliptic problems with critical Sobolev exponents have de-
served a great deal of attention since the pioneer work [5] and is a intensive area of
research nowadays. Best Sobolev inequalities have been studied by many authors
and is by now a classical subject. It at least goes back to [2], [3].

The other key ingredient in the proof is the result of [4] where the author compute
the optimal constant in the Sobolev trace inequality (see Theorem 2 below). See
also [13] for a similar result in the case p = 2. For more references on Sobolev
inequalities see [6].

Remark 1. Let Ω be any smooth bounded domain in RN and let

Ωµ = µΩ = {µx | x ∈ Ω},

where µ > 0. We observe that when µ is small enough, precisely

µ <
1

K(N, p)1/p

|∂Ω|1/p∗

|Ω|1/p
,

then Ωµ verifies the hypotheses of Theorem 1 and hence there is an extremal for
the immersion W 1,p(Ωµ) → Lp∗(∂Ωµ).

Remark 2. We observe that with the same ideas and computations, we can
consider a problem of the form

∆pu = |u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= a(x)up∗−1 on ∂Ω,

(1.8)

with a ∈ L∞(∂Ω) bounded away from zero. This corresponds to a Sobolev trace
immersion with a weight, a, on the boundary. In this case the condition on Ω and
the weight function a is

|Ω|
(

sup
∂Ω

a

)p/p∗

<
1

K(N, p)

(∫
∂Ω

a dσ

)p/p∗

.

Remark 3. Observe that from the proof of Theorem 1, we obtain the existence
of extremals for every domain Ω that satisfies

Sp∗ = Sp∗(Ω) <
1

K(N, p)
. (1.9)

Condition (1.7) is the simplest geometric condition that ensures (1.9).
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2. Proof of Theorem 1

For the proof of Theorem 1 we use the following Theorem due to [4]

Theorem 2. For every ε > 0, there exists a constant B = B(ε) > 0 such that,(∫
∂Ω

vp∗ dσ

)p/p∗

≤ (K(N, p) + ε)
∫
Ω

|∇v|p dx+B

∫
Ω

vp dx

for every v ∈W 1,p(Ω), where

1
K(N, p)p

= inf
∇w∈Lp(RN

+ ), w∈Lp∗ (∂RN
+ )

∫
RN

+

|∇w|p dx(∫
∂RN

+

|w|p∗ dx′
)p/p∗

. (2.1)

Remark 4. The constant K(N, p) in Theorem 2 is sharp.

Now, to prove our result, we will use the same approach used by [2] (see also
[16]). Let us consider, for each 1 < q ≤ p∗ the quotient

Qq(u) =

∫
Ω

|∇u|p + up dx(∫
∂Ω

uq dσ

)p/q
(2.2)

and

Sq = inf
u∈W 1,p(Ω)\W 1,p

0 (Ω)
Qq(u).

To simplify the notation, we denote

Q(u) = Qp∗(u) and S = Sp∗ . (2.3)

We have the following

Lemma 1. If q < p∗, the constant Sq is attained.

Proof. It follows from the compactness of the immersion W 1,p(Ω) ↪→ Lq(∂Ω).

From now on, we will denote by uq an extremal related to Sq, normalized such
that ‖uq‖Lq(∂Ω) = 1.

For the proof of the Theorem, we need the following proposition, which is a
straightforward modification of [16].

Proposition 1. Let qi → r ≤ p∗ and assume that

sup
x∈Ω

uqi(x) ≤ A.
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Then there exists a subsequence uqij
such that uqij

→ u in the sense of distributions
and u is a solution of 

∆pu = |u|p−2u in Ω

|∇u|p−2 ∂u

∂ν
= λ|u|r−2u on ∂Ω,

where λ = limSqij
. Moreover ‖u‖Lr(∂Ω) = 1.

The next proposition we believe that has independent interest.

Proposition 2. The constant Sq is continuous with respect to q in 1 ≤ q ≤ p∗.

Proof. Let v ∈W 1,p(Ω) \W 1,p
0 (Ω) be fixed. As v ∈ Lp∗(∂Ω), it follows from the

Lebesgue’s dominated convergence Theorem that Qq(v) is a continuous function
with respect to q.

From this fact it follows that Sq is an upper semicontinuous function for q ∈
[1, p∗]. In fact, by definition, for any ε > 0 there exists v ∈W 1,p(Ω) \W 1,p

0 (Ω) such
that Qq(v) < Sq + ε. On the other hand, Sr ≤ Qr(v) and, as Qr(v) → Qq(v) as
r → q, it follows that

lim sup
r→q

Sr < Sq + ε, (2.4)

as we wanted to show.
Let us now show the left continuity on [1, p∗]. For 1 ≤ r < q ≤ p∗ we have(∫

∂Ω

vr dσ

)1/p

≤
(∫

∂Ω

vq dσ

)1/q

|∂Ω|
1
r−

1
q ,

hence

Qr(v) ≥ Qq(v)|∂Ω|
1
r−

1
q

and then

Sr ≥ Sq|∂Ω|
1
r−

1
q . (2.5)

Now the claim follows by taking limit in (2.5) together with (2.4).
It remains to prove the continuity of Sq in [1, p∗). To this end observe that

the functions uq are uniformly bounded for 1 ≤ q ≤ q0 < p∗, so we can apply
Proposition 1.

Assume that there exists r ∈ [1, p∗) such that Sq is not continuous in r. Then
there exists a sequence qi → r such that limi→∞ Sqi = λ 6= Sr. By (2.4) we
must have λ < Sr, but, by Proposition 1, there exists a function u satisfying (2.6)
and ‖u‖Lr(∂Ω) = 1 and hence Qr(u) = λ from where it follows that λ ≥ Sr, a
contradiction.

This finishes the proof.

Now we are ready to prove the main theorem.
Proof of Theorem 1. First, we claim that there exists a sequence qj ↗ p∗ such
that uqj

→ u weakly in W 1,p(Ω) and strongly in Lp(∂Ω). Moreover, the limit u
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satisfies 
∆pu = |u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= Sup∗−1 on ∂Ω.

(2.6)

In order to see this, we observe that

‖uq‖W 1,p(Ω) ≤ Sq ≤ C

by Proposition 2 (see also [9]). Hence, as W 1,p(Ω) → Lp∗(∂Ω) continuously,

‖uq‖Lp∗ (∂Ω) ≤ C.

Moreover, as p∗/(p∗ − 1) < p∗/(q − 1), we have uq−1
q is uniformly bounded in

Lp∗/(p∗−1)(∂Ω). As a consequence of these uniform bounds, there exists a sequence
qj ↗ p∗ and a function u ∈ H1(Ω) such that

uqj
⇀ u weakly in W 1,p(Ω),

uqj
→ u strongly in Lp(Ω) and in Lp(∂Ω),

uqj → u a.e. Ω and a.e. ∂Ω,

u
qj−1
qj ⇀ up∗−1 weakly in Lp∗/(p∗−1)(∂Ω).

(2.7)

Now, let ψ ∈W 1,p(Ω). We have, by (2.7),∫
∂Ω

uqj−1
qj

ψ dσ →
∫
∂Ω

up∗−1ψ dσ,∫
Ω

∇uqj
∇ψ + uqj

ψ dx→
∫
Ω

∇u∇ψ + uψ dx.

By the continuity of Sq (Proposition 2) we have

lim
qj↗p∗

Sqj
= S = Sp∗ ,

therefore u ∈ H1(Ω) is a weak solution of (2.6) and the claim follows.
Now, as uq ≥ 0, it follows that u ≥ 0 and, by classical regularity theory (see

[14]), u is smooth (C1,α) up to the boundary. By the strong maximum principle
and Hopf’s lemma (see [15]), it follows that either u > 0 or u ≡ 0. So, in order to
complete the proof of the theorem, we have to rule out the possibility of u ≡ 0. To
do this, we adapt the argument given in [2] to show that ‖u‖Lp(Ω) 6= 0. In fact, by
Theorem 2, given ε > 0, there exists a constant B = B(ε) such that(∫

∂Ω

vp∗ dσ

)p/p∗

≤ (K(N, p) + ε)
∫
Ω

|∇v|p dx+B

∫
Ω

|v|p dx

for every v ∈W 1,p(Ω). Recall that uq are normalized such that ‖uq‖Lq(∂Ω) = 1, so,
by Hölder’s inequality,

|∂Ω|
p

p∗−
p
q

(∫
∂Ω

uq
q dσ

)p/q

≤
(∫

∂Ω

up∗
q dσ

)p/p∗

≤ (K(N, p) + ε)
∫
Ω

|∇uq|p dx+B

∫
Ω

up
q dx
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and hence

|∂Ω|
p

p∗−
p
q ≤ (K(N, p) + ε)Sq + (B −K(N, p)− ε)

∫
Ω

up
q dx. (2.8)

Passing to the limit qj ↗ p∗ in (2.8) we arrive at

1 ≤ (K(N, p) + ε)S + (B −K(N, p)− ε)
∫
Ω

up dx

therefore, if S < K(N, p)−1 we are done choosing ε small enough. By taking v ≡ 1
in (1.1), we get

S ≤ |Ω|
|∂Ω|p/p∗

.

Hence, if
|Ω|

|∂Ω|p/p∗
< K(N, p)−1,

we have the existence of an extremal. �
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