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Abstract. Stochastic ordinary differential equations may have solutions that explode in
finite time. In this article we prove the continuity of the explosion time with respect to
the different parameters appearing in the equation, such as the initial datum, the drift and
the diffusion.

1. Introduction

In this paper we consider the following stochastic differential equation (SDE):

(P ) dx(t) = b(x(t)) dt + σ(x(t))dw(t),

with x(0) = x0 ∈ R≥0. Here b and σ are smooth positive functions (the precise assumptions
will be stated later) and w is a (one-dimensional) Wiener process defined on a given complete
probability space (Ω,F ,P) with a filtration {Ft}t≥0 satisfying the usual conditions (i.e. it
is right continuous and F0 contains all P-null sets, [8]). Equation (P ) is understood in the
sense of Itô.

It is well known that stochastic differential equations like (P ) may explode in finite time.
That is, trajectories may diverge to infinity as t goes to some finite time T that in general
depends on the particular path, see Definition 3.1.

The Feller Test for explosions (see [8, 10]) gives a precise description in terms of b and
σ of whether explosions in finite time occur with probability zero, positive or one. For
example, if b and σ behave like powers at infinity, i.e., b(x) ∼ xp and σ(x) ∼ xq as x →∞,
applying the Feller test one obtains that solutions to (P ) explode with probability one if
p > max{2q, 1}. We use f(x) ∼ g(x) to mean that there exist constants 0 < c < C such
that cg(x) ≤ f(x) ≤ Cg(x) for large enough x. The intuition behind this condition is that
p > 2q ensures that the asymptotic behavior of the solutions is governed by the drift term
while p > 1 impose the solution to grow up so fast that explodes in finite time, as happens
in the deterministic case (σ = 0).
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Stochastic differential equations with explosions have been considered in applications,
for example, in fatigue cracking (fatigue failures in solid materials) with b and σ of power
type, see [14], where solutions may explode in finite time. This explosion time is generally
random, depends on the particular sample path and corresponds to the time of ultimate
damage or fatigue failure in the material.

For deterministic one-dimensional ODEs (σ = 0), the dependence of the explosion time
T with respect to the different parameters entering in the problem is very well understood,
thanks to the explicit formula

(1.1) T =
∫ ∞

x0

1
b(x)

dx.

That is, if T is finite then the solution is defined just up to time T and if T = +∞ the
solution is globally define. In the first case the solution explodes at time T , while in the
later case, the solution can be either bounded or unbounded.

In more general situations (N -dimensional deterministic ODEs, SDEs or parabolic PDEs),
where no such explicit formula is available, the situation gets a lot more complicated.

In parabolic semilinear PDEs, typically of the form ut − ∆u = up, for example with
Dirichlet boundary conditions, the continuous dependence of the explosion time on the
initial data has deserved a great deal of attention and effort. See for instance [1, 6, 7, 11, 12]
and also [13] for a general result on the continuity of the explosion time in a general semiflow
context.

For systems of (deterministic) ODEs, or even for nonautonomous one-dimensional ODEs,
there is no general result concerning the continuous dependence of the explosion time with
respect to the initial data or with respect to parameters. Up to our knowledge, the only
result that treats a related issue for SDEs is [5] where the authors analyze the behavior of
the explosion time under small stochastic perturbations of a one-dimensional ODE.

This paper consists in an abstract result on continuity of the explosion time under struc-
tural hypotheses and, as an application of this result, we get the continuity of the explosion
time in stochastic differential equations with respect to the initial datum, the drift and the
diffusion.

The main idea used in the proofs is to obtain estimates for the first time where two
solutions spread at a fixed distance. This idea was previously used in [4, 6] and [13]. The
main results on this paper can be summarized as follows:

(1) Assume b
σ − 1

2σ′ is nondecreasing, x(t) is a solution to (P ) with initial datum x0

and xn(t) is a solution to (P ) with initial datum xn. Let T and Tn be the explosion
times for x(t) and xn(t) respectively. If xn → x0 then Tn → T a.s.

(2) For additive (σ constant) or multiplicative (σ linear) noise, under adequate hypothe-
ses, if bn → b and σn → σ then Tn → T a.s.
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Organization of the paper. In Section 2 we prove an abstract result on convergence
of explosion times for sequences of functions with explosion; in Section 3 we recall some
known results on the relation between SDEs and random differential equations, namely the
Doss-Sussmann theory; in Section 4 we study the dependence of T with respect to the initial
datum; finally in Section 5 we look at the dependence of T with respect to b and σ in two
relevant examples; additive and multiplicative noise.

2. An abstract result

In this section we prove a very general result on convergence of the explosion times. Let
Tn, T be real numbers and un : [0, Tn) → X, u : [0, T ) → X continuous functions with values
on a Banach space (X, ‖ · ‖), such that the following hypotheses hold:

Continuation property:

(H1) lim
t→T−

‖u(t)‖ = ∞, lim
t→T−n

‖un(t)‖ = ∞.

That is, we assume that both u and un explode in finite times, T and Tn respectively.

Continuous dependence:

For every t < T it holds: t < Tn for n ≥ n0(t) and

(H2) lim
n→∞ sup

s∈[0,t]
‖un(s)− u(s)‖ = 0.

That is, we are assuming that un approaches u as n →∞ at times at which u is well defined
and bounded.

Uniform upper explosion estimate:

There exists a nondecreasing continuous function G : [0, +∞) → R, independent of n,
such that

(H3) ‖un(t)‖ ≤ G
( 1

Tn − t

)
, t < Tn.

We are assuming that we have a uniform (in n) bound on the explosion rate of the sequence
un.

The main result of the section, is the following:

Theorem 2.1. If (H1)–(H3) hold, then

lim
n→∞Tn = T.

We divide the proof of the theorem into two propositions.

Proposition 2.2. If (H1)–(H3) hold, then

lim sup
n→∞

Tn ≤ T.
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Proof. It is enough to consider n such that Tn > T . Set, for t < T

en(t) = ‖un(t)− u(t)‖.
We have en(0) = o(1). Assume that for all t < T , en(t) < 1, then Tn ≤ T due to (H1); but
this is impossible. Hence, there exists a first time tn < T such that en(tn) = 1. Hypotheses
(H2) implies that tn → T since for any subsequence tnk

satisfying sup tnk
< T we have

1 = e(tnk
) → 0. Finally from (H3) we get

G
( 1

Tn − tn

)
≥ ‖un(tn)‖ ≥ ‖u(tn)‖ − 1 →∞, n →∞.

Recall that, due to (H3), G(s) → ∞ implies that s → 0. Consequently, Tn − tn → 0 as
n →∞ and hence

lim sup
n→∞

Tn ≤ lim sup
n→∞

Tn − tn + T = T,

as we wanted to prove. ¤

The lower semicontinuity is an easy consequence of continuation and continuous depen-
dence properties. We recall the following to complete the proof of the theorem.

Proposition 2.3. If (H1) and (H2) hold, then

lim inf
n→∞ Tn ≥ T.

Proof. We need only consider n such that Tn < T . We use the same notation as in the
previous proof. By (H1), there is a first time tn < Tn such that en(tn) = 1 and (H2) implies
that tn → T . Since Tn > tn, it follows that lim infn→∞ Tn ≥ T , as we wanted to prove. ¤

A counterexample. Let us now see that if (H3) fails we can have a sequence verifying
(H1) and (H2) but with Tn 6→ T . In order to see this fact it suffices to consider a one
dimensional deterministic ODE. In fact, let us consider{

u̇ = u2,

u(0) = 1.

The explicit solution is

u(t) =
1

1− t
, (0 < t < 1).

Now take

fn(x) =

{
x2 0 ≤ x ≤ n,

anxpn + (n2 − annpn) x > n,

and consider {
u̇n = fn(un),

un(0) = 1.
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Remark that un and u coincide until they reach level n, that is,

(2.2) un(t) = u(t) for all t ≤ 1− 1
n

.

Therefore un is a solution of

(2.3)

{
u̇n = anupn

n + (n2 − annpn),

un(1− 1/n) = n.

Assume that pn > 1, then un explodes in finite time Tn (hypothesis (H1)) and, from (2.2)
it is clear that (H2) holds.

From (2.3), we obtain

Tn = 1− 1
n

+
∫ +∞

n

ds

anspn + (n2 − annpn)
,

that is, changing variables, nu = s,

Tn = 1− 1
n

+
∫ +∞

1

du

npn−1an(upn − 1) + n
.

Let us choose
an =

1
npn−1

,

we obtain,

Tn = 1− 1
n

+
∫ +∞

1

du

(upn − 1) + n
≥ 1− 1

n
+

∫ +∞

(n+1)1/pn

du

2upn
.

Therefore, if we choose

pn = 1 +
1
n

we get

Tn ≥ 1− 1
n

+
n

2(n + 1)
1

n+1

→ +∞, n →∞.

Therefore
lim

n→∞Tn = +∞ 6= T = 1.

It is clear that we can modify this example in such a way that (fn)n ⊂ C∞ (here they
are only continuous) and moreover for any K > 1 we can select pn, an in such a way that

Tn → K, n →∞.

The main obstruction that prevents convergence of the explosion times in this example
is the fact that the sources fn and f are far away at infinity for every n in such a way that
fn grows very slowly making the blow-up times increase (and even go to infinity) with n.
In the one dimensional autonomous deterministic case, u̇ = f(u) and u̇n = fn(un) with the
same initial datum u(0) = un(0) = u0, a sufficient condition to assure (H3) is fn ≥ g with
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∫∞
u0

du
g(u) < ∞. This fact plus pointwise convergence of fn to f implies the convergence of

the blow-up times, Tn → T . This can be easily proved using the explicit formula for the
explosion times

Tn =
∫ +∞

u0

1
fn(s)

ds

and the Dominated Convergence Theorem.

3. Stochastic Differential Equations with explosions

In this section we extend some well known results for SDEs with global solutions to
the case where explosions occurs. The techniques are not new and quite standard but we
include them for the sake of completeness since they are scattered in the literature.

3.1. Existence and uniqueness.

Definition 3.1. A strong solution up to an explosion time of equation (P ) is a continuous,
Ft adapted process x = {x(t), 0 ≤ t < ∞} with values in R ∪ {±∞} with |x(0)| < ∞ a.s.
that verifies that for SN = inf{t ≥ 0, |x(t)| ≥ N}, we have, for every N ≥ 1,

P
[ ∫ t∧SN

0
b(x(s)) + σ2(x(s)) ds < ∞

]
= 1, ∀ 0 ≤ t ≤ ∞ and

P
[
x(t ∧ SN ) = x0 +

∫ t

0
b(x(s))1{s ≤ SN}+

∫ t

0
σ(x(s))1{s ≤ SN} dw(s), ∀0 ≤ t < ∞

]
= 1,

We refer to

T = lim
N→∞

SN

as the explosion time for x.

Observe that from the continuity of x we have

T = inf{t ≥ 0, x(t) /∈ R} and x(T ) = ±∞ a.s. on {T < ∞}
The assumption of finiteness of x0 gives P[T > 0] = 1.

A standard truncation argument gives the existence and uniqueness of a strong solution
up to an explosion time for equation (P ).

Theorem 3.2. Let b and σ be locally Lipschitz functions, then there exists a unique strong
solution to (P ) up to an explosion time T .
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Proof. Let

bN (x) =





b(x) if |x| ≤ N
b(N) if x ≥ N
b(−N) if x ≤ −N,

and

σN (x) =





σ(x) if |x| ≤ N
σ(N) if x ≥ N
σ(−N) if x ≤ −N.

and consider xN the unique strong solution of

dxN = bN (xN ) dt + σN (xN ) dw, xN (0) = x0.

Existence and uniquenes holds here since bN and σN are globally Lipschitz. Let SN =
inf{t ≥ 0, |xN (t)| ≥ N}. It is clear that {SN}N≥1 is monotone increasing and hence it
converges to a limit T that could be infinity. Moreover xN+1(t ∧ SN ) = xN (t ∧ SN ) and so
{xN}N≥1 is also convergent. Let

x = lim
N→∞

xN .

It is easy to see that x is a strong solution up to an explosion time and that T is the
explosion time. Following the same arguments uniqueness follows from the uniqueness for
globally Lipschitz coefficients. ¤

3.2. Doss-Sussmann theory for exploding solutions. As proved in [15] (see also [8]
pages 295–297), if σ is of class C2(R) one can get a solution to (P ) by means of a random
differential equation. In order to do that it is preferable to consider the solution x of (P ) as
a solution of a SDE in Fisk-Stratonovich form. Assume for the moment that b is globally
Lipschitz and σ has bounded first and second derivatives. Let β := b− 1

2σσ′. Then (P ) is
equivalent to

(3.4) dx(t) = β(x(t)) dt + σ(x(t)) ◦ dw(t).

Here we use ◦ to denote that the equation is in Fisk-Stratonovich form.

Let us define φ(t, z) the flux associated to the ODE

φ̇(t, z) = σ(φ(t, z)), φ(0, z) = z.

Observe that, as σ is globally Lipschitz, φ(t, z) is globally defined. Let

(3.5) H(z, t) :=
β(φ(t, z))
∂zφ(t, z)

.

Observe that

H(z, t) =
β(φ(t, z))σ(z)

σ(φ(t, z))
.
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In fact,
σ(φ(t, z))

σ(z)
= ∂zφ(t, z),

since both are the unique solution to

ẏ(t) = σ′(φ(t, z))y(t), y(0) = 1.

Now, for any ω ∈ Ω fixed, such that the path of the Wiener process w(·, ω) is continuous,
we consider z(t) to be the solution of the (deterministic, non autonomous) ODE:

(3.6) ż(t, ω) = H(z(t, ω), w(t, ω)).

This type of equations are known as random differential equations since the dependence on
ω is just on the coefficients of an ODE.

The process x(t) given by x(t, ω) := φ(w(t, ω), z(t, ω)) is a solution to (P ) with initial
datum x(0) = x0. See [8], pages 295–297 for the details.

If b is locally Lipschitz continuous, solutions may explode. Therefore we apply the same
truncation argument of the previous subsection to β (we don’t need to truncate σ since it is
already globally Lipschitz). We obtain a flux φ independent of the truncation and sequences
βN , HN , zN and SN := inf{t ≥ 0, |zN (t)| ≥ N}. We define xN (t, ω) := φ(w(t, ω), zN (t, ω)).
As before, the following limits exist:

x = lim
N→∞

xN , T = lim
N→∞

SN .

Since x(t) = φ(w(t, ω), zN (t, ω)) for t ≤ SN we get

x(t) = φ(w(t), z(t)), t < T.

As φ is globally defined, x explodes if and only if z does, and both variables explode at the
same time T .

4. Continuous dependence with respect to initial data

Now we combine the results of the previous sections to prove the continuity of the ex-
plosion time with respect to the initial data in stochastic differential equations. Recall that
β := b− 1

2σσ′.

Theorem 4.1. Assume that σ is C2 with bounded first and second derivatibes, that b is
locally Lipschitz and that β

σ = b
σ − 1

2σ′ is nondecreasing. Let x(t) and xn(t) be the solutions
to (P ) with initial data x0 and xn respectively and assume that xn → x0. If x(t) explodes
at a random time T with P(T < ∞) = 1, then xn(t) explodes at a random time Tn with
P(Tn < ∞) = 1 and

Tn → T a.s. in Ω.
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Proof. Thanks to the previous section we can think of (P ) as a random differential equation.
To apply our general result proved in Section 2, we just need to show that (H1), (H2) and
(H3) are verified for the pathwise solutions zn and z of equation (3.6) with intitial values
xn and x0 respectively.

First observe that H(z, t) is locally Lipschitz since the definition of φ(t, z) implies that
∂zφ(t, z) > c > 0. Hypotheses (H1) holds since H is monotone increasing with respect
to the time variable and hence the existence (or not) of explosion does not depend on the
initial datum. Hypotheses (H2) is a consequence of very well known results on continuous
dependence with respect to initial data for nonautonomous ODEs (see for example [2] or
Section 5.1 to see how to deal with the explosion). To prove (H3) we consider

S := sup
n≥1

{Tn;T}.

The monotonicity of the explosion time with respect to initial data implies P(S < ∞) = 1.
Now let M, K > 0 be two large constants and define

(4.1) AK,M := {ω ∈ Ω : S(ω) ≤ K and |w(t, ω)| ≤ M, for t ∈ [0,K + 1]}.
Observe that

P


 ⋃

K,M≥1

AK,M


 = 1.

Now note that since β/σ is nondecreasing it follows that H(z, t) is nondecreasing in t,
hence for ω ∈ AK,M , we have H(z, w(t, ω)) ≥ H(z,−M) for every z ∈ R, 0 ≤ t ≤ S(ω).

Let z(t), zn(t) be the solutions to (3.6) with initial data x0, xn respectively. As mentioned
previously, φ(w(t), z(t)), φ(w(t), zn(t)) solve (P ) and the explosion times of z(t) and zn(t)
are T and Tn respectively.

We have
żn(t) = H(zn(t), w(t)) ≥ H(zn(t),−M).

Integrating we obtain ∫ Tn

t

żn(t)
H(zn(s),−M)

≥ Tn − t,

and changing variables, ∫ +∞

zn(t)

du

H(u,−M)
≥ Tn − t.

Let

g(ξ) :=
(∫ +∞

ξ

du

H(u,−M)

)−1

.

Since g is increasing, its inverse G := g−1 is also increasing and then we have

zn(t) ≤ G

(
1

Tn − t

)
.
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Hence (H3) is also verified and the result follows. ¤

From this theorem we obtain the following corollaries.

Corollary 4.2. Under the same hypotheses of Theorem 4.1, if x0 and xn are random
variables independent of the Brownian motion w and with finite second moment such that
xn → x0 a.s. in Ω, then Tn → T a.s. in Ω.

Proof. This result follows exactly as in the proof of Theorem 4.1. Just observe that the
arguments used there works for ω ∈ Ω fixed, and so it is irrelevant if the initial datum is
deterministic or not as far as xn → x0 for almost every ω. ¤
Corollary 4.3. Under the same hypotheses of Theorem 4.1, if xn → x0 in probability, then
Tn → T in probability.

Proof. The proof of this corollary is just an application of Corollary 4.2, taking into account
the following lemma which is straightforward and the proof is omitted. ¤
Lemma 4.4. Let xn, x : Ω → R be random variables. Then xn → x in probability if and
only if for every subsequence xnk

there exists a sub-subsequence xnkj
such that xnkj

→ x

a.s. in Ω.

Remark 4.1. It is worth noticing that in the case of additive (σ constant) and multiplicative
(σ linear) noise, the hypotheses of Theorem 4.1 are verified if and only if the drift satisfies∫∞
y0

b−1(x) dx < +∞ for some y0 ≥ 0. The explosion of the solutions with probability one
can be checked by means of the Feller Test or by direct computation.

5. Continuous dependence with respect to b and σ

In this section we show in the two most important examples, additive and multiplicative
noise, how the abstract result of Section 2 can be applied to deal with perturbations of the
drift and the diffusion.

The idea is as follows: First, one constructs H and Hn as in Section 3. Then one has to
verify (H1)–(H3) for z(t) and zn(t) the solutions to

ż = H(z, w(t)) and żn = Hn(zn, w(t))

respectively with same initial datum z(0) = zn(0) = x0, for almost every ω ∈ Ω.

5.1. Additive noise: σ constant. Assume that σ is a positive constant We will assume
that b is an increasing locally Lipschitz function. In this case we have

φ(t, z) = z + σt,

and
H(z, t) = b(z + σt).
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Therefore H is increasing in both variables.

Assume that we have σn → σ and bn → b, uniformly on compact sets with

bn(x), b(x) ≥ h(x), and
∫ ∞ 1

h(x)
dx < ∞.

Then, for ω ∈ AK,M (given by (4.1))the solution of żn(t) = H(zn(t), w(t)) explodes in a
finite time bounded by

Tn ≤
∫ ∞

x0

dx

b(x− σM)
< ∞.

The same argument is valid for z and hence (H1) holds.

To prove (H2) we proceed as follows: fix ω ∈ AK,M and for that ω let t < T (ω) and
R := z(t, w(t))− 1. We consider globlly Lipschitz functions H̄n(x, s), H̄(x, s) that coincide
with Hn(x, s), H(x, s) respectively for (x, s) ∈ [0, R] × [0, t]. Since H̄n → H̄ uniformly in
[0, R] × [0, t] we can assume that the Lipschitz conditions holds with the same Lipschitz
constant L for all Hn and H in [0, R] × [0, t]. Hence, given ε > 0 we get that for n large
enough

|zn(s)− z(s)| ≤
∫ s

0
|Hn(zn(s′), w(s′))−Hn(z(s′), w(s′))| ds′

+
∫ s

0
|Hn(z(s′), w(s′))−H(z(s′), w(s′))| ds′

≤
∫ s

0
L|zn(s′)− z(s′)|+ ε ds′

Applying Gronwall’s inequality we obtain for all 0 ≤ s ≤ t

|zn(s)− z(s)| ≤ εteLt.

This proves (H2). To check (H3) we observe that

T − t =
∫ T

t

u̇n

bn(un + σnw)
≤

∫ T

t

u̇n

bn(un − σnM)
=

∫ ∞

un(t)−σnM

dx

bn(x)
≤

∫ ∞

un(t)−σnM

dx

h(x)
.

Hence, if we call

g(x) =
∫ ∞

x

dy

h(y)
,

we have, for large n,

un(t) ≤ g−1(T − t) + 2σM =: G

(
1

T − t

)
.

So we can apply Theorem 2.1 to obtain the following theorem.
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Theorem 5.1. Let σn, σ be positive constants such that σn → σ. Assume b is an increasing
locally Lipschitz function and that bn → b uniformly on compact sets. Assume also that there
exists a function h such that

bn(x), b(x) ≥ h(x), with
∫ ∞ 1

h(x)
dx < ∞.

Consider xn and x the solutions to (P ) with (bn, σn), (b, σ) up to the explosion times Tn,
T respectively. Then with probability one

T < ∞, Tn < ∞ for all n and Tn → T.

5.2. Multiplicative noise: σ linear. Assume that σ(x) = ax with a > 0. Recall that φ
is the solution of {

φ̇ = σ(φ) = aφ,

φ(0, z) = z.

Therefore in this case we have φ(t, z) = zea t and hence

H(z, t) =
β(zea t)

ea t
,

with β(x) = b(x)− 1
2a2x.

Assume that we have an → a and bn, b are in the same conditions of the previous subsec-
tion. Now using the uniform convergence of βn to β on compact sets, (H1) and (H2) hold
for ω ∈ AK,M . The proof is a mimic of the one in the previous section.

Now we look for (H3). As before, we impose that

bn(x), b(x) ≥ h(x), with
∫ ∞

y0

1
h(x)

dx < ∞

for some y0 ≥ 0. Then, the same hold for βn, β with ha(x) := h(x)− 1
2a2x and proceeding

as before, we obtain, for n large enough,

T − t =
∫ T

t

u̇n eanw

βn(un eanw)
≤

∫ T

t

u̇neanM

βn(un e−anM )

= e2anM

∫ ∞

un(t)e−anM

dx

βn(x)
≤ e2anM

∫ ∞

un(t)e−anM

dx

ha(x)

≤ e4aM

∫ ∞

un(t)e−
a
2 M

dx

ha(x)
.

Hence, if we call

g(x) =
∫ ∞

x

dx

ha(x)
,
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we have

un(t) ≤ e
a
2
Mg−1

(
T − t

e4aM

)
=: G

(
1

T − t

)
.

We have proved

Theorem 5.2. Let an, a be positive constants such that an → a. Assume bn, b are in
the conditions of Theorem 5.1 and let σn(x) = anx, σ(x) = ax. Consider xn and x the
solutions to (P ) with (bn, σn), (b, σ) up to the explosion times Tn, T respectively. Then with
probability one

T < ∞, Tn < ∞ for all n and Tn → T.

Example. Both for additive and multiplicative noise, just consider bn(s) = αnspn , b(s) =
αsp, with αn → α > 0, and pn → p > 1.
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