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Abstract. In this paper we study the regularity properties of a free boundary problem arising
in the optimization of the best Sobolev trace constant in the immersion H1(Ω) ↪→ Lq(∂Ω) for
functions that vanish in a subset of Ω. This problem is also related to a minimization problem
for Steklov eigenvalues.

1. Introduction.

The study of Sobolev inequalities and of optimal constants is a subject of interest in the
analysis of PDE’s and related topics. It has been widely studied in the past by many authors and
is still an area of intensive research. See for instance the book [1], and, for recent developments
in this field, see the articles [6, 9, 10, 17] and the survey [7] among others.

The optimal Sobolev constant and its corresponding extremals (if they exist) are related to
eigenvalue problems. In the case of the best Sobolev trace embedding H1(Ω) → Lq(∂Ω) where
Ω is a bounded smooth domain in RN , the best constant and the extremal (that exists for
1 ≤ q < 2∗ = 2(N −1)/(N −2) since the immersion is compact) give rise to the following elliptic
problem with nonlinear boundary conditions −∆u + u = 0 in Ω,

∂u

∂ν
= λuq−1 on ∂Ω.

The constant λ depends on the normalization of the extremal u. For instance if u is chosen so
that ‖u‖Lq(∂Ω) = 1, then λ = S the best Sobolev trace constant. In the linear case, q = 2, this
problem becomes an eigenvalue problem that is known as the Steklov eigenvalue problem [19].

In this paper we are interested in the best Sobolev trace constant among functions that vanish
in a subset of Ω. We try to optimize this best constant when varying the subset in the class of
measurable sets with prescribed positive measure α. In a previous article [11], we proved that
there exists an optimal set. In this paper we focus our attention on regularity properties of these
optimal sets.
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More precisely, in [11] we studied the following problem. Let

J (v) =
∫

Ω
|∇v|2 + v2 dx,

Aα = {v ∈ H1(Ω) / ‖v‖Lq(∂Ω) = 1 and |{v > 0}| = α}.
Then the problem is:

(Pα) Find φ0 ∈ Aα such that S(α) := inf
v∈Aα

J (v) = J (φ0).

In [11] we proved that there exists a solution φ0 to (Pα) but the approach in [11] does not
give any regularity properties of φ0 nor of the hole {φ0 = 0}.

In this paper we consider a different approach. Instead of minimizing J (v) over Aα we
penalize the functional and minimize without the measure restriction. This approach has been
used with great success by many authors starting with the work [2] (see also [3, 15, 16, 20], etc.).
So, let

(1.1) Jε(v) =
∫

Ω
|∇v|2 + v2 dx + Fε(|{v > 0}|),

where

Fε(s) =


1
ε
(s− α) if s ≥ α

ε(s− α) if s < α.

The penalized problem is to minimize Jε over the class

K1 = {v ∈ H1(Ω) / ‖v‖Lq(∂Ω) = 1}.
For technical reasons, it is better to minimize in the class

K = {v ∈ H1(Ω) / ‖v‖Lq(ΓN ) = 1, v = ϕ0 on ΓD},
where ∅ 6= ΓN ⊂ ∂Ω, ΓD = ∂Ω \ ΓN is the closure of a relatively open set of the boundary and
ϕ0 ∈ H1(Ω), ϕ0 ≥ c0 > 0 on ΓD. We will only need to assume that ΓD 6= ∅ at the end of our
arguments. See Section 4, Lemma 4.3.

So the penalized problem is:

(Pε) Find uε ∈ K such that Jε(uε) = inf
v∈K

Jε(v).

Observe that minimizing Jε over K gives a problem with mixed boundary conditions. We
believe that this problem has independent interest.

The main idea is to prove that for ε small any minimizer uε of Jε in K satisfies |{uε > 0}| = α,
therefore the penalization term Fε vanishes and hence we have a minimizer of our original
problem. This allows us to avoid the passage to the limit (as ε → 0) where uniform bounds are
needed. To prove regularity of the minimizers of Jε and their free boundaries, ∂{uε > 0}, is
easier than the original problem, thanks to the results of [4].

The main theorem in this article is:

Theorem 1.1. For every ε > 0 there exists a solution uε ∈ K to (Pε). Moreover, any such
solution is a locally Lipschitz continuous function and the free boundary ∂{uε > 0} is locally a
C1,β surface up to a set of HN−1−measure zero. In the case N = 2 the free boundary is locally
a C1,β surface. Moreover, if ΓD 6= ∅, for ε small we have |{uε > 0}| = α.
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Outline of the paper. In Section 2 we begin our analysis of problem (Pε) for fixed ε. First we
prove the existence of a minimizer, local Lipschitz regularity and nondegeneracy near the free
boundary (Theorem 2.1). Then we prove that a minimizer uε of (Pε) is a weak solution to the
following free boundary problem −∆u + u = 0 in {u > 0} ∩ Ω,

∂u

∂ν
= λε on ∂{u > 0} ∩ Ω,

where λε is a positive constant (Theorem 2.6).

In Section 3, again for fixed ε, we analyze the regularity of the free boundary and show that,
up to a set of HN−1−measure zero, ∂{uε > 0} is locally a C1,β surface and, in the case N = 2,
the free boundary has no exceptional points (Theorem 3.1). The proof of this result follows
almost exactly the lines in [4], so we only remark the significant differences and refer to [4] for
further details.

In Section 4 we analyze the behavior of the solutions to (Pε) for small ε. We prove that, if
ΓD 6= ∅, the positivity set of the minimizer uε has measure α (Theorem 4.1).

Finally, in Section 5, we go back to our original problem and show, under some mild assump-
tions on the solutions φ0 to (Pα), that they are also solutions to (Pε) for small ε, so they inherit
the properties of the solutions to (Pε) (Theorem 5.1). These extra assumptions are satisfied, for
instance, if Ω is a ball (Corollary 5.1). In the general case, without the assumption that ΓD 6= ∅,
we prove that the set of α’s for which there is a solution to (Pα) with smooth free boundary is
dense in (0, |Ω|) (Theorem 5.2). Then, we show that the minimizers of (Pε) converge (up to a
subsequence) to a solution to (Pα) (Theorem 5.3). We believe that this last result might be of
interest in numerical approximations.

2. The penalized problem

In this section, we consider the penalized problem (Pε) stated in the introduction and prove
the existence of a minimizer and some regularity properties.

Theorem 2.1. There exists a solution to the problem (Pε). Moreover, any such solution uε has
the following properties:

(1) uε is locally Lipschitz continuous in Ω.
(2) For every D ⊂⊂ Ω, there exist constants C, c > 0 such that for every x ∈ D ∩ {uε > 0},

c dist(x, ∂{uε > 0}) ≤ uε(x) ≤ C dist(x, ∂{uε > 0}).

(3) For every D ⊂⊂ Ω, there exists a constant c > 0 such that for x ∈ ∂{u > 0} and
Br(x) ⊂ D,

c ≤ |Br(x) ∩ {uε > 0}|
|Br(x)|

≤ 1− c.

The constants may depend on ε.

The proof will be divided into a series of steps for the reader’s convenience.
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Proof of existence. Let (un) ⊂ K be a minimizing sequence for Jε. Then Jε(un) is bounded and
so ‖un‖H1(Ω) ≤ C. Therefore there exists a subsequence (that we still call un) and a function
uε ∈ H1(Ω) such that

un ⇀ uε weakly in H1(Ω),

un → uε strongly in Lq(∂Ω),
un → uε a.e. Ω.

Thus,

‖uε‖Lq(ΓN ) = 1,

uε = ϕ0 on ΓD,

|{uε > 0}| ≤ lim inf
n→∞

|{un > 0}| and

‖uε‖H1(Ω) ≤ lim inf
n→∞

‖un‖H1(Ω).

Hence uε ∈ K and
Jε(uε) ≤ lim inf

n→∞
Jε(un) = inf

v∈K
Jε(v),

therefore uε is a minimizer of Jε in K. �

Remark 2.1. Any minimizer uε of Jε satisfies the inequality

(2.1) ∆u− u ≥ 0 in Ω.

In fact, this can be seen by performing one side perturbations. Namely, we let v = uε − tϕ
with t > 0 and ϕ ∈ C∞

0 (Ω), ϕ ≥ 0 to get∫
Ω
∇uε∇ϕ + uεϕ ≤ 0.

In the remaining of the section we will remove the subscript ε from the solution of (Pε).

For the proof of properties (1)–(3), we apply the ideas developed in [4]. To this end, we need
a series of lemmas.

Lemma 2.1. Let u ∈ K be a solution to (Pε). There exists a constant C = C(N,Ω, ε) such that
for every ball Br ⊂⊂ Ω

1
r

–
∫
–

∂Br

u ≥ C implies u > 0 in Br.

Proof. The idea is similar to that of Lemma 3.2 in [4]. Let v be the solution to

(2.2)

{
v = u in Ω \Br,

∆v = v in Br.

Then v ∈ K, v > 0 in Br. We claim that

(2.3) ‖u− v‖2
H1(Ω) = ‖u‖2

H1(Ω) − ‖v‖2
H1(Ω).

In fact, ∫
Br

∇v∇(v − u) + v(v − u) dx = 0
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since v − u ∈ H1
0 (Br). This implies

(2.4)
∫

Br

∇u∇v + uv dx =
∫

Br

|∇v|2 + v2 dx.

This equality implies the claim since u = v in Ω \Br.

By (2.1), u ≤ v in Br. Now, by (2.3), since u is a minimizer and u = v in Ω \Br, we have

(2.5)

∫
Ω
|∇(u− v)|2 + (u− v)2 dx ≤ −Fε(|{u > 0}|) + Fε(|{v > 0}|)

≤ Cε |{u = 0} ∩Br|.

Now, as in [4], the idea is to control |{u = 0} ∩ Br| from above by the left hand side of
(2.5). By replacing u(x) by u(x0 + rx)/r we can assume that Br = B1(0). For |z| ≤ 1

2 we
consider the change of variables from B1 into itself such that z becomes the new origin. We call
uz(x) = u

(
(1− |x|)z + x

)
, vz(x) = v

(
(1− |x|)z + x

)
and define

rξ = inf
{

r /
1
8
≤ r ≤ 1 and uz(rξ) = 0

}
,

if this set is nonempty. Observe that this change of variables leaves the boundary fixed.

Now, for almost every ξ ∈ ∂B1 we have

(2.6) vz(rξξ) =
∫ 1

rξ

d

dr
(uz − vz)(rξ) dr ≤

√
1− rξ

(∫ 1

rξ

|∇(uz − vz)(rξ)|2 dr

)1/2

.

Let us see that

(2.7) vz(rξξ) ≥ C(N,Ω)(1− rξ) –
∫
–

∂B1

u.

In fact vz(rξξ) = v
(
(1− rξ)z + rξξ

)
and if |(1− rξ)z + rξξ| ≤ 3

4 , by Harnack inequality applied
to a solution to ∆v − r2v = 0 in B1 with r ≤ 1,

vz(rξξ) ≥ CNv(0).

Clearly (2.7) follows from

(2.8) v(0) ≥ α(N) –
∫
–

∂B1

v = α(N) –
∫
–

∂B1

u.

But (2.8) is a consequence of the mean value property of solutions to the Schrödinger equation
∆v − r2v = 0, namely

v(0) =
1

J(r)
–
∫
–

∂B1(0)
v

where J(r) = Γ(N/2)
(r

2

)1−N
2
IN−2

2
(r) and IN−2

2
is the Bessel function. In particular

J(0) = 1.

See Theorem 9.9 in [18] for this result.
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Now, if |(1 − rξ)z + rξξ| ≥ 3
4 we prove by a comparison argument that inequality (2.7) also

holds. In fact, first observe that we can assume that –
∫
–

∂B1

v = –
∫
–

∂B1

u = 1. So that, by (2.8),

v ≥ CNα in B3/4. Let w(x) = e−λ|x|2 − e−λ. There exists λ = λ(N,α) such that
∆w ≥ w in B1 \B3/4,

w ≤ CNα in ∂B3/4,

w = 0 in ∂B1,

so that, since ∆v ≤ v, there holds that v ≥ w ≥ C(1− |x|) in B1 \B3/4. Therefore,

vz(rξξ) ≥ C
(
1− |(1− rξ)z + rξξ|

)
–
∫
–

∂B1

u ≥ C(1− rξ) –
∫
–

∂B1

u

since |z| ≤ 1
2 . So that (2.7) holds for every rξ ≥ 1

8 .

By (2.6) and (2.7) we have

c
√

1− rξ –
∫
–

∂B1

u ≤

(∫ 1

rξ

|∇(uz − vz)|2(rξ) dr

)1/2

.

Hence

c2

∫
∂B1

(1− rξ) dSξ

(
–
∫
–

∂B1

u

)2

≤
∫

∂B1

∫ 1

rξ

|∇(uz − vz)|2(rξ) dr dSξ

≤ C

∫
B1

|∇(uz − vz)|2 dx.

Since ∫
∂B1

(1− rξ) dSξ ≥
∫

B1\B1/4(z)
χ{u=0} dx,

we have

c2|{x ∈ B1 \B1/4(z) / u(x) = 0}|
(

–
∫
–

∂B1

u

)2

≤ C

∫
B1

|∇(uz − vz)|2 dx

≤ K

∫
B1

|∇(u− v)|2 dx.

Finally, we integrate over z ∈ B1/2(0) and use (2.5) to obtain

|B1 ∩ {u = 0}|
(

–
∫
–

∂B1

u

)2

≤ K

∫
B1

|∇(u− v)|2 dx(2.9)

≤ KCε|B1 ∩ {u = 0}|.

Therefore we either have u > 0 almost everywhere in B1 or else –
∫
–

∂B1

u ≤
√

KCε.

Hence we deduce that if
–
∫
–

∂B1

u ≥
√

KCε = C(N,Ω, ε)

then |B1 ∩ {u = 0}| = 0. So that by (2.5) u = v > 0 in B1. �

Now we can prove the Lipschitz continuity of the minimizer u.
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Proof of Theorem 2.1 (1). The proof follows as in [4] Lemma 3.3. In fact, let D ⊂⊂ D′ ⊂⊂ Ω
and x ∈ D. Let r > 0 be the largest number such that Br(x) ⊂ {u > 0}∩D′. As in [4] we prove
by using Lemma 2.1 that {u > 0} is open and

1
r

–
∫
–

∂Br(x)
u ≤ C

with C independent of either u or x. Since u > 0 in Br(x), it is a solution to

∆u = u in Br(x).

In fact, let v be the solution to ∆v = v in Br(x), v = u on Ω \Br(x). Then,

0 ≤ ‖u− v‖2
H1(Ω) = ‖u‖2

H1(Ω) − ‖v‖2
H1(Ω) = Jε(u)− Jε(v) ≤ 0.

So that, u = v in Br(x).

Hence, there is a universal constant such that

|∇u(x)| ≤ C
{

r‖u‖L∞(Br(x)) +
1
r

–
∫
–

∂Br(x)
u
}

.

Now, since u is subharmonic in Ω and D′ ⊂⊂ Ω, there holds that u is bounded in D′ by a
constant that depends on the H1 norm of u in Ω which is bounded by a constant that depends
only on Ω and ε. Therefore,

|∇u(x)| ≤ C

with C depending only on N, Ω, ε, D and D′. �

In order to prove the nondegeneracy of u we need the following Lemma (see [4], Lemma 3.4).

Lemma 2.2. Let u ∈ K be a solution to (Pε). For 0 < κ < 1 there exists a constant c =
c(κ, N,Ω, ε) such that for every ball Br(x0) ⊂⊂ Ω,

1
r

–
∫
–

∂Br

u ≤ c implies that u = 0 in Bκr.

Proof. As in [4] Lemma 3.4, we consider the function

(2.10) φN
s (x) =


s

N − 2

((
s

|x|

)N−2

− 1

)
for N ≥ 3,

s log
s

|x|
for N = 2,

s− |x| for N = 1.

For simplicity let us take ū(x) =
1
r
u(x0 + rx),

F̄ε(s) =


1
ε

(
s− α

rN

)
if s >

α

rN
,

ε
(
s− α

rN

)
if s ≤ α

rN
,

and
J̄ε(w) =

∫
Ωr

|∇w|2 + r2w2 + F̄ε(|{w > 0}|)

where Ωr =
1
r
(Ω− x0). So that, Jε(u) = rN J̄ε(ū).
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Now, let v(x) =
γ
√

κ

−φN
κ (
√

κ)
max(−φN

κ (x), 0) where, since ū is subharmonic,

γ :=
1√
κ

sup
B√κ

ū ≤ C1(N,κ) –
∫
–

∂B1

ū = C1(N,κ)
1
r

–
∫
–

∂Br(x0)
u.

Hence, v ≥ ū on ∂B√
κ, and therefore if

w =

{
min(ū, v) in B√

κ,

ū in Ωr \B√
κ,

there holds that,∫
Bκ

|∇ū|2 + r2ū2 dx + |Bκ ∩ {ū > 0}|

= J̄ε(ū)−
∫

Ωr\Bκ

|∇ū|2 + r2ū2 dx + |Bκ ∩ {ū > 0}| − F̄ε(|{ū > 0}|)

≤ J̄ε(w)−
∫

Ωr\Bκ

|∇ū|2 + r2ū2 dx + |Bκ ∩ {ū > 0}| − F̄ε(|{ū > 0}|)

=
∫

B√κ\Bκ

|∇w|2 + r2w2 dx−
∫

B√κ\Bκ

|∇ū|2 + r2ū2 dx + |Bκ ∩ {ū > 0}|∫
+ F̄ε(|{w > 0}|)− F̄ε(|{ū > 0}|)

≤
∫

B√κ\Bκ

|∇w|2 + r2w2 dx−
∫

B√κ\Bκ

|∇ū|2 + r2ū2 dx + (1− ε) |Bκ ∩ {ū > 0}|.

since w = 0 in Bκ, w = ū in Ωr \ B√
κ. We have also used that F̄ε(A) − F̄ε(B) ≥ ε(A − B) if

A ≥ B and {w > 0} ⊂ {ū > 0}. This inclusion following from the fact that w ≤ ū. Thus,∫
Bκ

|∇ū|2 + r2ū2 dx + ε|Bκ ∩ {ū > 0}|

≤
∫

B√κ\Bκ

|∇w|2 + r2w2 dx−
∫

B√κ\Bκ

|∇ū|2 + r2ū2

=
∫

B√κ\Bκ

|∇ū−∇(ū− v)+|2 − |∇ū|2 dx + r2

∫
B√κ\Bκ

(
ū− (ū− v)+

)2 − ū2 dx

= −
∫

B√κ\Bκ

∇(ū− v)+∇(ū + v) dx− r2

∫
B√κ\Bκ

(ū− v)+(ū + v) dx

= −
∫

B√κ\Bκ

∇(ū− v)+∇ū dx− r2

∫
B√κ\Bκ

(ū− v)+ū dx

−
∫

B√κ\Bκ

∇(ū− v)+∇v dx− r2

∫
B√κ\Bκ

(ū− v)+v dx

≤ −2
∫

B√κ\Bκ

∇(ū− v)+∇v dx− 2r2

∫
B√κ\Bκ

(ū− v)+v dx

≤ 2
∫

∂Bκ

ū∇v η dS ≤ C2(N,κ) γ

∫
∂Bκ

ū.



REGULARITY IN AN OPTIMIZATION PROBLEM 9

Therefore,

(2.11)
∫

Bκ

|∇ū|2 + r2ū2 dx + ε|Bκ ∩ {ū > 0}| ≤ C2(N,κ) γ

∫
∂Bκ

ū.

Here we have used that min(ū, v) = ū − (ū − v)+, ∆v = 0 in B√
κ \ Bκ, v = 0 on ∂Bκ, and

(ū− v)+ = 0 on ∂B√
κ.

Recall that γ is controlled by
1
r

–
∫
–

∂Br(x0)
u, so that γ will be small if

1
r

–
∫
–

∂Br(x0)
u is small.

On the other hand, by standard estimates,∫
∂Bκ

ū ≤ C3(N,κ)
∫

Bκ

|∇ū|+ ū dx

≤ C3(N,κ)
{1

2

∫
Bκ

|∇ū|2 dx +
1
2
|Bκ ∩ {ū > 0}|+ γ|Bκ ∩ {ū > 0}|

}
≤ C3(N,κ)

{∫
Bκ

|∇ū|2 + r2ū2 dx + |Bκ ∩ {ū > 0}|
}

,

if γ ≤ 1/2.

So that, by (2.11), if γ is small enough (γ ≤ 1/2 and C2(N,κ)C3(N,κ)γ < 1), we deduce that
|Bκ ∩ {ū > 0}| = 0. This is, u = 0 in Brκ(x0) and the lemma is proved. �

We can now prove the nondegeneracy of u.

Proof of Theorem 2.1, (2). Let x ∈ {u > 0} and r = dist (x, {u = 0}). As we proved in (2.8),
since ∆u = u in Br(x), there holds that

u(x) ≥ α(N) –
∫
–

∂Br(x)
u.

Since u(x) > 0,
1
r

–
∫
–

∂Br(x)
u ≥ c

where c is the constant in Lemma 2.2 for κ = 1/2. Thus,

u(x) ≥ cα r.

The upper bound clearly follows from the Lipschitz continuity of u. Hence (2) is proved. �

Proof of Theorem 2.1, (3). In order to prove the uniform positive density of {u > 0} and {u = 0}
at every free boundary point we proceed as in [4], Lemma 3.7. The only difference being that
the function v that we have to take is the one in (2.2).

This ends the proof of Theorem 2.1. �

Corollary 2.1. Let u ∈ K be a solution to (Pε). Let D ⊂⊂ Ω. There exist constants c, C > 0
depending only on N,Ω, D and ε such that for Br(x) ⊂ D and x ∈ ∂{u > 0},

(2.12) c ≤ 1
r

–
∫
–

∂Br(x)
u ≤ C.
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Proof. It follows easily from Lemmas 2.1 and 2.2. �

Lemma 2.3. Let u ∈ K be a solution to (Pε). Then u satisfies for every ϕ ∈ C∞
0 (Ω) such that

suppϕ ⊂ {u > 0},

(2.13)
∫

Ω
∇u∇ϕ + uϕ dx = 0.

Moreover, the application

λ(ϕ) := −
∫

Ω
∇u∇ϕ + uϕ dx

from C∞
0 (Ω) into R defines a nonnegative Radon measure with support on Ω ∩ ∂{u > 0}.

Proof. The proof follows exactly as in [4], Lemma 4.2. �

Theorem 2.2. Let u ∈ K be a solution to (Pε). Let D ⊂⊂ Ω. Then, there exist constants
C, c > 0 such that for Br(x) ⊂ D and x ∈ ∂{u > 0},

c rN−1 ≤
∫

Br(x)
dλ ≤ C rN−1.

Proof. For n large enough, let un = u ∗ ρn where ρn are the standard mollifiers. Then,∫
Br(x)

λ ∗ ρn dx =
∫

Br(x)
∆un − un dx =

∫
∂Br(x)

∇un · ν dS −
∫

Br(x)
un

≤ ωN−1 sup
∂Br(x)

|∇un| rN−1 ≤ C rN−1

since |∇un| ≤ |∇u| ≤ C for a certain constant C depending on D. By taking limit for n → ∞
we get ∫

Br(x)
dλ ≤ C rN−1.

The other inequality follows as in the proof of Theorem 4.3 in [4] by taking as Gy(z) the
(positive) Green function of −∆ + Id with homogeneous Dirichlet boundary conditions in the
ball Br(x). Then, for 0 < κ < 1/2 and y ∈ Bκr(x) one uses the inequality

v(y) ≥ Cv(x) ≥ Cα –
∫
–

∂Br(x)
u

for v the solution to ∆v−v = 0 in Br(x), v = u on ∂Br(x), that follows from Harnack inequality
and (2.8). �

Theorem 2.3 (Representation Theorem). Let u ∈ K be a solution to (Pε). Then,

(1) HN−1(D ∩ ∂{u > 0}) < ∞ for every D ⊂⊂ Ω.
(2) There exists a Borel function qu such that

∆u− u = quHN−1b∂{u > 0}.
(3) For D ⊂⊂ Ω there are constant 0 < c ≤ C < ∞ depending on N,Ω, D and the constants

in (2.12) such that for Br(x) ⊂ D and x ∈ ∂{u > 0},
c ≤ qu(x) ≤ C, c rN−1 ≤ HN−1(Br(x) ∩ ∂{u > 0}) ≤ C rN−1.

Proof. The proof follows exactly as that of Theorem 4.5 in [4]. �
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Remark 2.2. Let u ∈ K be a solution to (Pε) and D ⊂⊂ Ω. Then D ∩ ∂{u > 0} has finite
perimeter. Thus, the reduce boundary ∂red{u > 0} is defined as well as the measure theoretic
normal ν(x) for x ∈ ∂red{u > 0}. See [8].

If the free boundary ∂{u > 0} is a regular surface then qu = −∂νu. In Theorem 2.4 it is
shown that this is true for almost all points in the reduce boundary.

Proposition 2.1. Let u ∈ K be a solution to (Pε) and let Bρk
(xk) ⊂ Ω be a sequence of balls

with ρk → 0, xk → x0 ∈ Ω and u(xk) = 0. Let

uk(x) :=
1
ρk

u(xk + ρkx).

We call uk a blow-up sequence with respect to Bρk
(xk). Since u is locally Lipschitz continuous,

there exists a blow-up limit u0 : RN → R satisfying (2.12) with the same constants, when
xk ∈ ∂{u > 0}, and such that, for a subsequence,

uk → u0 in Cα
loc(RN ) for every 0 < α < 1,

∇uk → ∇u0 weakly star in L∞
loc(RN ),

∂{uk > 0} → ∂{u0 > 0} locally in Hausdorff distance,

χ{uk>0} → χ{u0>0} in L1
loc(RN ),

∆u0 = 0 in {u0 > 0}.
Moreover if xk ∈ ∂{u > 0}, then 0 ∈ ∂{u0 > 0}

Proof. It follows as in [4], Section 4.7 observing that ∆uk − ρ2
kuk = 0 in {uk > 0}. �

Theorem 2.4 (Identification of qu). Let u ∈ K be a solution to (Pε). Then, for almost every
x0 ∈ ∂red{u > 0},

u(x0 + x) = qu(x0)〈x, ν(x0)〉− + o(|x|) for x → 0

with ν(x0) the outward unit normal de ∂{u > 0} in the measure theoretic sense.

Proof. It follows exactly as Theorem 4.8 and Remark 4.9 in [4]. �

Remark 2.3. Observe that by Theorem 2.1, (3)

HN−1(∂{u > 0} \ ∂red{u > 0}) = 0.

See [8].

Now we get a more precise identification of qu.

Theorem 2.5. Let u ∈ K be a solution to (Pε) and qu the function in Theorem 2.4. Then there
exists a constant λu such that

lim sup
x→x0

u(x)>0

|∇u(x)| = λu, for every x0 ∈ Ω ∩ ∂{u > 0}(2.14)

qu(x0) = λu, HN−1 − a.e x0 ∈ Ω ∩ ∂{u > 0}.(2.15)

Moreover, if B is a ball contained in {u = 0} touching the boundary ∂{u > 0} at x0. Then

(2.16) lim sup
x→x0

u(x)>0

u(x)
dist(x,B)

= λu.
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Proof. We follow the ideas of [2] Theorem 3 and [16] Theorem 5.1 and Lemma 5.2.

Let x0, x1 ∈ ∂{u > 0} and ρk → 0+. For i = 0, 1 let xi,k → xi with u(xi,k) = 0 such that
Bρk

(xi,k) ⊂ Ω and such that the blow-up sequence

ui,k(x) =
1
ρk

u(xi,k + ρkx)

has a limit ui(x) = λi〈x, νi〉−, with 0 < λi < ∞ and νi a unit vector. We will prove that λ0 = λ1.
From this, the Theorem will follow as in [16].

Assume that λ1 < λ0. Then, we will perturb the minimizer u near x0 and x1 and get an
admissible function with less energy, which is a contradiction. We perform a perturbation that
increases the measure of the positivity set in a neighborhood of x0,k and decreases its measure in
a neighborhood of x1,k. We perform this perturbation in such a way that we change the measure
of the positivity set in an amount of essentially order o(ρN

k ).

To this end, we take a nonnegative C∞
0 symmetric function Φ supported in the unit interval,

and for t > 0 small, we define

τk(x) =



x + tρkΦ
( |x− x0,k|

ρk

)
ν0 for x ∈ Bρk

(x0,k),

x− tρkΦ
( |x− x1,k|

ρk

)
ν1 for x ∈ Bρk

(x1,k),

x elsewhere,

which is a diffeomorphism if t is small enough. Now, let

vk(x) = u(τ−1
k (x)),

that are admissible functions. Moreover, since ‖Dτ−1
k ‖ ≤ C independent of k for t small enough,

there holds that
‖∇vk‖L∞ ≤ C

independent of k.

Also, we have

(2.17) Fε(|{vk > 0}|)− Fε(|{u > 0}|) = o(t) ρN
k + o(ρN

k ).

In fact, vk = u in Ω \ (Bρk
(x0,k) ∪Bρk

(x1,k)) and

|{vk > 0} ∩Bρk
(xi,k)| − |{u > 0} ∩Bρk

(xi,k)| =

= (−1)i ρN
k

(
t

∫
B1∩{y1=0}

Φ(|y|) dHN−1
y + oi(t)

)
+ o(ρN

k ),

since Φ(|y|) is radially symmetric and χ{ui,k>0} → χ{〈x,νi〉<0} in L1
loc(RN ).

Similar computations involving also the development of ∇vk in terms of ∇u and Dτk give

(2.18)

∫
Ω
|∇vk|2 dx−

∫
Ω
|∇u|2 dx =ρN

k

(
(λ2

1 − λ2
0) t

∫
B1(0)∩{y1=0}

Φ(|y|) dHN−1
y + o(t)

)
+ o(ρN

k ).
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See, [2] or [16] for detailed computations.

It remains to estimate the difference of the L2 norms. Since u(xi,k) = 0 there holds that

u(x) ≤ CρN
k in Bρk

(xi,k).

On the other hand,

0 = u(xi,k) = vk(τk(xi,k)) = vk(xi,k + (−1)i tρkΦ(0)νi).

Thus,
vk(z) ≤ C

∣∣z − xi,k − (−1)i tρkΦ(0)νi

∣∣ ≤ Kρk if z ∈ Bρk
(xi,k).

Therefore,

(2.19)
∫

Ω
v2
k dx−

∫
Ω

u2 dx = o(ρN
k ).

Thus, we get from (2.17), (2.18) and (2.19), for t small enough and k large enough, that

Jε(vk) < Jε(u),

a contradiction. �

Summing up, we have the following theorem,

Theorem 2.6. Let u ∈ K be a solution to (Pε). Then u is a weak solution to the following free
boundary problem

−∆u + u = 0 in {u > 0} ∩ Ω,

∂u

∂ν
= λu on ∂{u > 0} ∩ Ω,

where λu is the constant in Theorem 2.5. More precisely, HN−1−a.e. point x0 ∈ ∂{u > 0}
belongs to ∂red{u > 0} and

u(x0 + x) = λu〈x, ν(x0)〉− + o(|x|) for x → 0.

Finally, we get an estimate of the gradient of u that will be needed in order to get the regularity
of the free boundary.

Theorem 2.7. Let u ∈ K be a solution to (Pε). Given D ⊂⊂ Ω, there exist constants C =
C(N, ε,D), r0 = r0(N,D) > 0 and γ = γ(N, ε,D) > 0 such that, if x0 ∈ D ∩ ∂{u > 0} and
r < r0, then

sup
Br(x0)

|∇u| ≤ λu(1 + Crγ).

Proof. The proof follows the lines of the proof of Theorem 4.1 in [5].

Let Uk =
(
|∇u| −λu− 1

k

)+ and U0 =
(
|∇u| −λu

)+. By (2.14) we know that Uk vanishes in a
neighborhood of the free boundary. Also, the support of Uk is contained in {u > 0}. Therefore
Uk satisfies

∆Uk ≥ Uk in Ω ∩ {u > 0}
and vanishes in a neighborhood of the free boundary. We extend Uk by zero into {u = 0} and
set

hk(r) = sup
Br(x0)

Uk, h0(r) = sup
Br(x0)

U0,
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for any r < r0 = dist (D, ∂Ω) and x0 ∈ D ∩ ∂{u > 0}.
Then, hk(r)− Uk is a supersolution of ∆v = v in the ball Br(x0) and

hk(r)− Uk ≥ 0 in Br(x0)
= hk(r) in Br(x0) ∩ {u = 0}.

Applying the weak Harnack inequality (see [12] p. 246) with 1 ≤ p < N/(N − 2), we get

inf
Br/2(x0)

(
hk(r)− Uk

)
≥ cr−N/p‖hk(r)− Uk‖Lp(Br(x0)) ≥ chk(r),

since, by Theorem 2.1 (3), |Br(x0) ∩ {u = 0}| ≥ crN . Taking now k →∞ we obtain

inf
Br/2(x0)

(
h0(r)− U0

)
≥ ch0(r),

for some 0 < c < 1, which is the same as

sup
Br/2(x0)

U0 ≤ (1− c)h0(r).

Therefore
h0

(r
2
)
≤ (1− c)h0(r),

from which it follows that h0(r) ≤ Crγ for some C > 0, 0 < γ < 1 and now the conclusion of
the Theorem follows. �

3. Regularity of the free boundary.

At this point we have that our minimizer uε meets the conditions of the regularity theory
developed in [4]. The only difference being the equation satisfied by uε in {uε > 0}.

We will recall some definitions and we will point out the only significant difference with [4].
The rest of the proof of the regularity then follows as sections 7 and 8 of [4] with only minor
modifications.

Throughout this section we will remove the subscript ε.

Definition 3.1 (Flat free boundary points). Let 0 < σ+, σ− ≤ 1 and τ > 0. We say that u is
of class

F (σ+, σ−; τ) in Bρ = Bρ(0)

if

(1) 0 ∈ ∂{u > 0} and

u = 0 for xN ≥ σ+ρ,
u(x) ≥ −λ(xN + σ−ρ) for xN ≤ −σ−ρ.

(2) |∇u| ≤ λ(1 + τ) in Bρ.

If the origin is replaced by x0 and the direction eN by the unit vector ν we say that u is of class
F (σ+, σ−; τ) in Bρ(x0) in direction ν.
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Observe that the results in Section 2 imply that the minimizer u of Jε is in the class F (σ, 1;σ)
in Bρ(x0) in direction νu(x0) for every x0 ∈ ∂red{u > 0} with σ = σ(ρ) → 0 as ρ → 0.

The following lemma (Lemma 7.2 in [4]) is the only one that requires a non obvious modifi-
cation.

Lemma 3.1. There is a constant C = C(N) such that u ∈ F (σ, 1;σ) in Bρ(x0) in direction ν
implies u ∈ F (2σ,Cσ;σ) in Bρ/2(x0) in direction ν.

Proof. Clearly, by a change of variables, we may assume that x0 = 0 and ν = eN . Let ū(x) =
u(ρx)/λρ, then |∇ū| ≤ 1 + σ and ū ∈ F (σ, 1;σ) in B1. That is ū = 0 if xN > σ. Define

η(x′) =

exp
(
− 9|x′|2

1− 9|x′|2

)
for |x′| < 1

3

0 otherwise

and choose s ≥ 0 maximal with the property that ū = 0 in xN > σ − sη(x′).

Now, the proof follows as in Lemma 7.2 of [4] with the only difference that the comparison
function v must be the solution to ∆v = ρ2ū in D = B1 ∩ {xN < σ − sη(x′)} instead of a
harmonic function. The estimate

∂−νv ≤ 1 + Cσ

follows from
|∇(v + xN )| ≤ C

[
sup
D

(v + xN ) + ρ2
]
≤ Cσ

in D ∩B1/2 if ρ2 ≤ Cσ, since

∆(v + xN ) = ρ2ū in D,

v + xN ≤ Cσ in D and |ū(x)| ≤ 2. �

Once this lemma is established the following regularity result follows.

Theorem 3.1. Let u ∈ K be a solution to (Pε). Then ∂red{u > 0} is a C1,β surface locally in
Ω and the remainder of the free boundary has HN−1–measure zero. Moreover, if N = 2 then the
whole free boundary is a C1,β surface.

4. Behavior of the minimizer for small ε.

To complete the analysis of the problem, we will now show that if ε is small enough, then

|{uε > 0}| = α.

To this end, we need to prove that the constant λε := λuε is bounded from above and below by
positive constants independent of ε. We perform this task in a series of lemmas.

Lemma 4.1. Let uε ∈ K be a solution to (Pε). Then, there exist constants C, c > 0 independent
of ε such that

(4.1) c ≤ |{uε > 0}| ≤ α + Cε.
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Proof. As Jε(uε) is bounded from above uniformly in ε we obtain

Fε(|{uε > 0}|) ≤ C.

Hence
|{uε > 0}| ≤ α + Cε.

For the lower bound, we proceed as follows; by the Sobolev trace embedding, for some 1 < p < 2,
such that p(N − 1)/(N − p) > q,

1 ≤ ‖uε‖Lq(∂Ω) ≤ C‖uε‖W 1,p(Ω) ≤ C‖uε‖H1(Ω)|{uε > 0}|θ,

for some exponent θ that depends only on p. Since ‖uε‖H1(Ω) is uniformly bounded, the lower
bound follows. �

Lemma 4.2. Let uε ∈ K be a solution to (Pε). Then, there exists a constant C > 0 independent
of ε such that

λε := λuε ≤ C.

Proof. Let D ⊂⊂ Ω smooth, such that ω = |D| > α and |Ω \D| < c where c is the constant in
Lemma 4.1. Then,

|D ∩ {uε > 0}| ≤ α + Cε < ω

for ε small enough. On the other hand

|D ∩ {uε > 0}| ≥ |{uε > 0}| − |Ω \D| ≥ c− |Ω \D| > 0.

Therefore by the relative isoperimetric inequality we have

HN−1(D ∩ ∂{uε > 0}) ≥ c0 min {|D ∩ {uε > 0}|, |D ∩ {uε = 0}|}
N−1

N ≥ c1 > 0.

Now, take ϕ ∈ C∞
0 (Ω) as a test function in Lemma 2.3 such that 0 ≤ ϕ ≤ 1, ϕ ≡ 1 in D and

‖∇ϕ‖∞ ≤ C = C(dist(D, ∂Ω)) to get, since ‖uε‖H1(Ω) is bounded independently of ε,

C ≥
∫

Ω
∇uε∇ϕ dx +

∫
Ω

uεϕ dx = λε(ϕ) ≥ λεHN−1(D ∩ ∂red{uε > 0}).

This completes the proof of the lemma. �

The uniform lower bound follows similarly to Lemma 6 in [2]. We only make a sketch of the
proof for the reader’s convenience. It is at this point where we need the hypothesis that ΓD 6= ∅.

Lemma 4.3. Let ΓD 6= ∅ be the closure of a relatively open subset of ∂Ω. Let ϕ0 ∈ H1(Ω) with
ϕ0 ≥ c0 > 0 in ΓD. Let uε ∈ K be a solution to (Pε). Then

(1) uε is positive in a neighborhood of ΓD (depending on ε).
(2) There exists a constant c > 0 independent of ε such that

c < λε := λuε .

Proof. Let us first prove (1). In fact, arguing as in (2.9), given y0 ∈ ΓD there exists a constant
K > 0 independent of ε such that

|Ωr ∩ {u = 0}|
(

1
r

–
∫
–

∂Ωr

u

)2

≤ K

∫
Ωr

|∇(u− v)|2 dx,
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where Ωr = Ω ∩Br(y0) and v is the solution of{
∆v = v in Ωr

v = u on ∂Ωr.

Therefore, (c0

r

)2
|Ωr ∩ {u = 0}| ≤ K(‖u‖2

H1(Ωr) − ‖v‖2
H1(Ωr)) ≤

C

ε
|Ωr ∩ {u = 0}|.

So that, u > 0 in Ωr for small r depending on ε.

In order to see (2) we proceed as in [2] Lemma 6. Let y0 ∈ ΓD and let Dt with 0 ≤ t ≤ 1 be a
family of open sets with smooth boundary and uniformly (in ε and t) bounded curvatures such
that D0 is an exterior tangent ball at y0, D1 contains a free boundary point, Dt ∩ ∂Ω ⊂ ΓD and
D0 ⊂⊂ Dt for t > 0.

Let t ∈ (0, 1) be the first time such that Dt touches the free boundary and let x0 ∈ ∂Dt∩∂{uε >
0} ∩ Ω. Now, take w the solution to ∆w = w in Dt \ D0 with w = c0 on ∂D0 and w = 0 on
∂Dt. Thus w ≤ uε in Dt ∩Ω and ∂−νw(x0) ≥ c c0 with c independent of ε, therefore, for r small
enough

1
r

–
∫
–

∂Br(x0)
uε ≥

1
r

–
∫
–

∂Br(x0)
w ≥ c̄ c0

with c̄ is independent of ε.

If v0 is the solution to {
∆v = v in Br(x0)
v = u on ∂Br(x0),

then, by (2.9), we have

c|Br(x0) ∩ {uε = 0}| ≤ |Br(x0) ∩ {uε = 0}|

(
1
r

–
∫
–

∂Br(x0)
uε

)2

≤ K

∫
Br(x0)

|∇(uε − v0)|2 dx ≤ K(‖uε‖2
H1(Br(x0)) − ‖v0‖2

H1(Br(x0))).

Let now δr = |Br(x0) ∩ {uε = 0}| and let x1 ∈ ∂{uε > 0} be such that the free boundary
is smooth in a neighborhood of x1. We perturb {uε > 0} in a neighborhood of x1 so that the
measure of the perturbed set is increased an amount δr (cf. with Theorem 2.5).

Let Φ be a smooth nonnegative function supported in Bκ(x1) with κ > 0 small. For x ∈ Bκ(x1)
we write x = σ + sν(σ) with σ ∈ ∂{uε > 0} and s ∈ R where ν(σ) is the outer unit normal to
the free boundary at σ. We define the change of variables y = x− Φ(σ)τν(σ) with τ > 0 small
and the deformed set Dδr such that Dδr ∩Bκ(x1) = {y / x ∈ {uε > 0} ∩Bκ(x1)}. Observe that
if r is small we can perform this perturbation in such a way that it decreases the measure of
{uε > 0} in exactly δr. Also, observe that δr → 0 as r → 0.

Now let vr be the solution of

(4.2)


∆v = v in Dδr ,

v = 0 on ∂Dδr ∩Bκ(x1),
v = uε on ∂Bκ(x1) ∩ Dr,



18 J. FERNANDEZ BONDER, J.D. ROSSI & N. WOLANSKI

then vr verifies
∂vr

∂ν
= −λε + o(δr).

On the other hand,
uε = λεδr + oε(δr), on ∂{vr > 0} ∩Bκ(x1).

Thus∫
Bκ(x1)

|∇vr|2 + v2
r dx−

∫
Bκ(x1)

|∇uε|2 + (uε)2 dx =
∫

Bκ(x1)
|∇(uε − vr)|2 + (uε − vr)2 dx

= −
∫

∂{vr>0}∩Bκ(x1)

∂vr

∂ν
uε dS

= λ2
εδr + oε(δr).

Now we extend vr by zero to Bκ(x1) \ Dδr and define

wr =


vr in Bκ(x1),
v0 in Br(x0),
u elsewhere.

Then |{wr > 0}| = |{uε > 0}| and wr = uε on ∂Ω, thus

0 ≤ Jε(wr)− Jε(uε) =
∫

Ω
|∇wr|2 + w2

r dx−
∫

Ω
|∇uε|2 + (uε)2 dx

=
∫

Br(x0)
|∇v0|2 + v2

0 dx−
∫

Bκ(x0)
|∇uε|2 + (uε)2 dx

+
∫

Bκ(x1)
|∇vr|2 + v2

r dx−
∫

Bκ(x1)
|∇uε|2 + (uε)2 dx

≤ −cδr + λ2
εδr + oε(δr),

for every r > 0 small. Therefore, λ2
ε ≥ c/2. �

Now we are in a position to prove the main result of this section, namely that for ε small the
measure of the positivity set is exactly α.

Theorem 4.1. Let ΓD 6= ∅ be the closure of a relatively open subset of ∂Ω. Let ϕ0 ∈ H1(Ω)
with ϕ0 ≥ c0 > 0 in ΓD. Let uε ∈ K be a solution to (Pε). Then, for ε small

(4.3) |{uε > 0}| = α.

Proof. Arguing by contradiction, assume first that |{uε > 0}| > α. Let x1 ∈ ∂{uε > 0}∩Ω be a
regular point. We will proceed as in the proof of the previous lemma. Given δ > 0, we perturb
the domain {uε > 0} in a neighborhood of x1, Bκ(x1), decreasing its measure by δ. We choose
δ small so that the measure of the perturbed set is still larger than α. Then we let v be the
solution to (4.2) extended by zero to the rest of Bκ(x1) and equal to u in the rest of Ω. We have

0 ≤ Jε(v)− Jε(uε) =
∫

Ω
|∇v|2 + v2 −

∫
Ω
|∇uε|2 + (uε)2 + Fε(|{v > 0}|)− Fε(|{uε > 0}|)

≤ λ2
εδ + oε(δ)−

1
ε
δ ≤ (C2 − 1

ε
)δ + oε(δ) < 0,

if ε < ε0 and then δ < δ0(ε). A contradiction.
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Now assume that |{uε > 0}| < α. We proceed as in the previous case but this time we perturb
in a neighborhood of x1 the set {uε > 0} increasing the measure by δ. Then we construct the
function v as before, and if δ is small enough |{v > 0}| < α. Then

0 ≤ Jε(v)− Jε(uε) =
∫

Ω
|∇v|2 + v2 −

∫
Ω
|∇uε|2 + (uε)2 + Fε(|{v > 0}|)− Fε(|{uε > 0}|)

≤ −λ2
εδ + oε(δ) + εδ ≤ (−c2 + ε)δ + oε(δ) < 0,

if ε < ε1 and then δ < δ0(ε). Again a contradiction that ends the proof. �

As a consequence of the previous theorem, we get

Corollary 4.1. Let ΓD 6= ∅ be the closure of a relatively open subset of ∂Ω. Let ϕ0 ∈ H1(Ω)
with ϕ0 ≥ c0 > 0 in ΓD. Then, there exists a minimizer u of J (v) in the set

Kα = {v ∈ H1(Ω) / ‖v‖Lq(ΓN ) = 1, v = ϕ0 on ΓD, |{v > 0}| = α}.
This minimizer can be chosen in such a way that it is locally Lipschitz continuous in Ω and the
free boundary ∂{u > 0} ∩ Ω is locally a C1,β surface up to a set of HN−1 measure zero. In the
case N = 2 the free boundary is locally a C1,β surface.

Proof. From our previous results we have (4.3) for every ε small enough. Therefore we can take
u = uε and the desired regularity of u and its free boundary follows from the results of Sections
2 and 3. �

5. Main results.

In this last section we go back to our original minimization problem related to the best Sobolev
trace constant. Here we prove that any extremal is a locally Lispchitz continuous function and
the boundary of the hole ∂{u > 0} ∩ Ω is locally C1,β up to a set of HN−1 measure zero.

We begin with the following.

Theorem 5.1. Let φ0 be a minimizer for (Pα). Assume that there exists a positive constant c
such that φ0 > c in a ball B′

0 ⊂ Ω (resp. on B′
0 ∩ ∂Ω where B′

0 is a ball centered at ∂Ω). Then
φ0 is a minimizer of Jε in

K2 = {v ∈ H1(Ω) / ‖v‖Lq(∂Ω) = 1, v = φ0 in B0}

(resp. φ0/k is a minimizer of Jε in K = {v ∈ H1(Ω) / ‖v‖Lq(ΓN ) = 1, v = φ0/k on ΓD} with
ΓD = ∂Ω∩B0, ΓN = ∂Ω\ΓD). Here, B0 is a ball compactly contained in B′

0 and k = ‖φ0‖Lq(ΓN ).

In particular, φ0 is locally Lipschitz continuous in Ω and the free boundary ∂{φ0 > 0} ∩ Ω is
locally a C1,β surface up to a set of zero HN−1 measure. In the case N = 2 the free boundary is
locally a C1,β surface.

Proof. We will make the proof for the first case, the second one follows in the same way.

Let ε be small enough so that any minimizer uε of Jε in K2 verifies that |{uε > 0}| = α.
Then, it follows that φ0 is one of such minimizers and so the conclusions of the theorem follow.
In fact, as φ0 minimizes (Pα) we have

(5.1) Jε(φ0) =
∫

Ω
|∇φ0|2 + |φ0|2 dx ≤

∫
Ω
|∇v|2 + |v|2 dx
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for any v ∈ H1(Ω) such that ‖v‖Lq(∂Ω) = 1 and |{v > 0}| = α. In particular (5.1) holds for
v = uε. Thus

Jε(φ0) ≤ Jε(uε) = inf
v∈K2

Jε(v).

This ends the proof. �

In particular, by the symmetry results for minimizers of (Pα) in balls of [11] we have the
following corollary.

Corollary 5.1. Let Ω = B(x0, r) be a ball and let φ0 be a minimizer of (Pα). Then φ0 is locally
Lipschitz continuous in B(x0, r) and the free boundary ∂{φ0 > 0} ∩ B(x0, r) is locally a C1,β

surface up to a set of zero HN−1 measure. In the case N = 2 the free boundary is locally a C1,β

surface.

Proof. In [11] it was proved that any minimizer φ0 of (Pα) in the case that Ω is a ball Br(x0)
satisfies that, for any c0 > 0, {φ0 ≥ c0} ∩ ∂Br(x0) is a spherical cap. Since ‖φ0‖Lq(∂Ω) = 1,
there exists c0 > 0 such that {φ0 ≥ c0}∩ ∂Br(x0) 6= ∅. Hence the conditions of Theorem 5.1 are
satisfied. �

In the general case, for the problem (Pα) we can prove that the set of α’s for which there
exists minimizers with smooth free boundary is dense in (0, |Ω|). More precisely,

Theorem 5.2. For any 0 < α < |Ω| there exists αε → α as ε → 0 such that there exists
a solution φε of (Pαε) which is locally Lipschitz continuous in Ω and has a locally C1,β free
boundary up to a set of zero HN−1−measure. In the case N = 2 the free boundary is a locally
C1,β surface.

Proof. Let uε be a minimizer of Jε. We already know that αε := |{uε > 0}| ≤ α + Cε (see
(4.1)). Let us see that αε → α as ε → 0. If not, there exists a sequence εj → 0 such that
αεj = |{uεj > 0}| ≤ θ < α. Let φ0 be a minimizer of (Pα). By the strict monotonicity of S(α)
(see [11], Remark 2.2) we have

J (φ0) = S(α) < S(θ) ≤ J (uεj ) = Jεj (uεj )− Fεj (αεj )

≤ Jεj (φ0)− Fεj (αεj ) = J (φ0)− Fεj (αεj ) ≤ J (φ0) + Cεj

a contradiction.

Now, taking φε = uε we see that φε is a minimizer of (Pαε). In fact, let v be an admissible
function for (Pαε) then

J (v) + Fε(αε) = Jε(v) ≥ Jε(φε) = J (φε) + Fε(αε)

therefore
J (v) ≥ J (φε).

The theorem is proved. �

Finally, we have the following result.

Theorem 5.3. Let uε be a minimizer of Jε in K1. Then there exists φ0 ∈ H1(Ω) a solution to
(Pα) such that, up to a subsequence, uε → φ0 in H1(Ω).
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Proof. In the proof of Theorem 5.2 we showed that |{uε > 0}| → α as ε → 0.

It is easy to see that Jε(uε) is bounded uniformly in ε and so uε is uniformly bounded in
H1(Ω). Therefore, passing to a subsequence if necessary, there exists u0 ∈ H1(Ω) such that

uε ⇀ u0 weakly in H1(Ω),

uε → u0 strongly in Lq(∂Ω),
uε → u0 a.e. Ω.

Thus,

‖u0‖Lq(∂Ω) = 1,

|{u0 > 0}| ≤ α = lim
ε→0

|{uε > 0}| and

‖u0‖H1(Ω) ≤ lim inf
ε→0

‖uε‖H1(Ω).

Let us call φ0 = u0 and let us see that φ0 is a solution to (Pα). In fact, let v ∈ H1(Ω) be such
that |{v > 0}| = α and ‖v‖Lq(∂Ω) = 1. Then

J (v) = Jε(v) ≥ Jε(uε).

Now, since lim infε→0 Fε(|{uε > 0}|) ≥ 0 there holds that

(5.2) J (v) ≥ lim inf
ε→0

Jε(uε) ≥ lim inf
ε→0

J (uε) ≥ J (φ0).

It remains to see that |{φ0 > 0}| = α. Assume not, then α1 := |{φ0 > 0}| < α. So, by the strict
monotonicity of S(·) there holds that S(α) < S(α1) but

S(α) = inf
v
J (v) ≥ J (φ0) ≥ S(α1),

a contradiction.

Now, taking v = φ0 in (5.2),

J (φ0) ≤ lim inf
ε→0

J (uε) ≤ lim inf
ε→0

Jε(uε) ≤ J (φ0).

Hence, ‖φ0‖H1(Ω) = lim infε→0 ‖uε‖H1(Ω) and so, by taking a further subsequence if necessary,
the convergence is actually strong. �

Remark 5.1. We believe that, as in the previous cases, the minimizers uε of Jε inK1 will already
be solutions to (Pα) for ε small. Nevertheless, despite the fact that the result of Theorem 5.3
does not give regularity of the minimizer φ0 we believe that it could be of interest in numerical
approximations of the solution to (Pα).
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