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Abstract. In this paper we study the spectral counting function of the weigh-

ted p-laplacian in fractal strings, where the weight is allowed to change sign.
We obtain error estimates related to the interior Minkowski dimension of the

boundary. We also find the asymptotic behavior of eigenvalues.

1. Introduction

In this paper we study the following eigenvalue problem:

(1.1) −(ψp(u′))′ = λr(x)ψp(u) in Ω

with zero Dirichlet boundary conditions, in a bounded open set Ω ⊂ R. Here, the
weight r is a given bounded function which may change sign, λ is a real parameter
and

ψp(s) = |s|p−2s

for s 6= 0, and 0 if s = 0.
In [4, 10] it was proved that there exists a countable sequence of nonnegative

eigenvalues {λk}k∈N, tending to +∞ when r is a continuous function. For indefinite
weights r ∈ L1, the existence of a sequence of eigenvalues was proved in [3]. When
N = 1, in [1], it was proved that the variational eigenvalues represents a complete
list of eigenvalues.

We define the spectral counting function N(λ,Ω) as the number of eigenvalues
of problem (1.1) less than a given λ :

N(λ,Ω) = #{k : λk ≤ λ}.
We will write ND(λ,Ω) (resp., NN (λ,Ω)) whenever we need to stress the depen-
dence on the Dirichlet (resp., Neumann) boundary conditions. Also, we will stress
the dependence of problem (1.1) in the weight function, writing N(λ,Ω, r).

In [6], we obtained the following asymptotic development when r > 0

N(λ,Ω) ∼ λ1/p

2πp

∫
Ω

r1/p dx

as λ → ∞, using variational arguments and a suitable extension of the method of
‘Dirichlet-Neumann bracketing’ in [2]. Here,

πp = 2(p− 1)1/p

∫ 1

0

ds

(1− sp)1/p
.
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For the remainder estimate R(λ,Ω) = N(λ,Ω)− λ1/p

2πp

∫
Ω
r1/p dx we showed that

R(λ,Ω) = O(λµ/p)

where µ ∈ (0, 1] depends on the regularity of the weight r and the boundary ∂Ω.
However, the parameter µ does not reflect any geometric information about ∂Ω.
The goal of this paper is the study of the remainder term and the extension of

the previous results to indefinite weights.
We improve the previous estimate in terms of the interior Minkowski dimension

d of ∂Ω, i.e.
R(λ,Ω) = O(λd/p)

For indefinite weights, there exists a sequence of positive eigenvalues and a se-
quence of negative eigenvalues as well. Our main result is

N±(λ,Ω) =
λ1/p

2πp

∫
Ω

(r±)1/p dx+O(λd/p),

where N+(λ) denotes the number of positive eigenvalues of problem (1.1) less than
a given λ, and r+(x) = max{r(x), 0}, and N−(λ) denotes the number of negatives
eigenvalues greater than −λ. When p = 2, this asymptotic expansion was obtained
in [7].

The paper is organized as follows: In section 2, we introduce the necessary
notation and definitions. In section 3 we state and prove the main theorem. In
section 4 we analyze the eigenvalue problem with indefinite weights.

2. Notation, hypotheses and preliminary results

2.1. Notation and hypotheses. Let Aε denote the tubular neighborhood of ra-
dius ε of a set A ⊂ Rn, i. e.,

Aε = {x ∈ R : dist(x,A) ≤ ε}
We define the interior Minkowski dimension of ∂Ω as

d = dim(∂Ω) = inf{δ ≥ 0 : lim sup
ε→0+

ε−(n−δ)|(∂Ω)ε ∩ Ω|n = 0}

We define the interior Minkowski content of ∂Ω as the limit (whenever it exist):

(2.1) Mint(∂Ω, d) = lim
ε→0+

ε−(n−d)|(∂Ω)ε ∩ Ω|n.

Respectively, M∗
int(∂Ω, d)(M∗int(∂Ω, d)) denotes the d−dimensional upper (lower)

interior Minkowski content, replacing the limit in (2.1) by an upper (resp., lower)
limit.

For the history about the right fractal dimension involved in this problem when
p = 2, see [8].

Let Ω be an open set in R. Then, Ω = ∪∞n=1In, where In is an interval of length
ln. We can assume that

l1 ≥ l2 ≥ · · · ≥ ln ≥ · · · > 0

In [5, 9] was proved that ∂Ω is d-Minkowski measurable if and only if ln ∼
Cn−1/d. Moreover, the Minkowski content of ∂Ω is 21−d

1−d C
d.

Our assumption on the domain Ω is,

(H1) Ω is an open bounded set in R such that M∗
int(∂Ω, d) <∞.
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Observe that we do not make any assumption of self similarity about ∂Ω.

Given any η0 > 0 and q ∈ N, we consider a tessellation of R by a countable
family of open intervals {Iζq

}ζq∈Z of length ηq = 2−qη0. We define

I0(Ω) = {ζ0 ∈ Z : Iζ0 ⊂ Ω},
Ω0 = Ω \ (∪ζ0∈ZIζ0),

Iq(Ω) = {ζq ∈ Z : Iζq
⊂ Ωq−1},

and

(2.2) Ωq = Ω \ (Ωq−1

⋃
∪ζq∈ZIζq

).

Let r ∈ L∞(Ω) be a positive function.
Given γ > 0, we say that the function r satisfies the “γ-condition” if there exist

positive constants c1 and η1 such that for all ζq ∈ Iq(Ω) and all η ≤ η1,

(H2)
∫

Iζq

|r − rζq
|1/p dx ≤ c1η

γ
q ,

where rζq
=

(
|Iζq

|−1
∫

Iζq
r1/p dx

)p

is the mean value of r1/p in Iζq
.

Remark 2.1. The coefficient γ enable us to measure the smoothness of r, the larger
γ, the smoother r. When r is Holder continuous of order θ > 0 and is bounded
away from zero on Ω, it satisfies the γ-condition for 0 < γ ≤ 1 + θ/p. If r is only
continuous and positive on Ω, then it satisfies the γ-condition for 0 < γ ≤ 1.

2.2. Preliminary results. In this subsection we introduce the main tools to deal
with our problem, the genus and the Dirichlet-Neumann bracketing. We remark
that the results in this subsection hold in any dimension.

Most of the results in this subsection are contained in [6]. However, we include
the proofs in order to make the paper self contained.

Let X be a Banach space. We consider the class:

Σ = {A ⊂ X : A is compact , A = −A}.
Let us recall the definition of the Krasnoselskii genus γ : Σ → N ∪ {∞} as

γ(A) = min{k ∈ N there exist f ∈ C(A,Rk \ {0}), f(x) = −f(−x)}.
By the Ljusternik-Schnirelmann theory, we have a sequence of nonlinear eigen-

values of problem (1.1) with Dirichlet (resp. Neumann) boundary condition, given
by

(2.3) λk = inf
F∈Ck

sup
u∈F

∫
Ω

|u′|p dx

where

Ck = {C ⊂M : C is compact , C = −C, γ(C) ≥ k},

M = {u ∈W 1,p
0 (Ω) ( resp., W 1,p(Ω) ) :

∫
Ω

r(x)|u|p dx = 1}.

Due to the homogeneity of equation (1.1), we have an equivalent formula for the
eigenvalues,

(2.4) λk = inf
F∈Ck

sup
u∈F

R(u)
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where

R(u) =

∫
Ω
|u′|p dx∫

Ω
r(x)|u|p dx

When r ∈ L∞, we need to use a comparison result that is essentially contained
in [1] but we include the arguments for the sake of completeness.

Theorem 2.2. Let r1 and r2 be two positive functions in L∞(Ω), with r1(x) ≤
r2(x). Then,

λ1
k ≥ λ2

k.

Proof. It follows from (2.4), using that R2(u) ≤ R1(u) for all u ∈ W 1,p(Ω). For
each F ∈ Ck, we have supu∈F R2(u) ≤ supu∈F R1(u), hence,

λ2
k = inf

F∈Ck

sup
u∈F

R2(u) ≤ inf
F∈Ck

sup
u∈F

R1(u) = λ1
k,

as we wanted to show. �

In a similar way, we prove the Dirichlet–Neumann bracketing,

Theorem 2.3. Let Ω1,Ω2 ∈ RN be disjoint open sets such that (Ω1 ∪ Ω2)◦ = Ω
and |Ω \ Ω1 ∪ Ω2|n = 0, then

ND(λ,Ω1 ∪ Ω2) ≤ ND(λ,Ω) ≤ NN (λ,Ω) ≤ NN (λ,Ω1 ∪ Ω2)

Proof. It is an easy consequence of the following inclusions

W 1,p
0 (Ω1 ∪ Ω2) = W 1,p

0 (Ω1)⊕W 1,p
0 (Ω2) ⊂W 1,p

0 (Ω)

and
W 1,p(Ω) ⊂W 1,p(Ω1)⊕W 1,p(Ω2) = W 1,p(Ω1 ∪ Ω2),

and the variational formulation (2.3). Here, using that

M(X) = {u ∈ X :
∫

Ω

r(x)|u|p dx = 1} ⊂M(Y ) = {u ∈ Y :
∫

Ω

r(x)|u|p dx = 1},

and Ck(X) ⊂ Ck(Y ), we obtain the desired inequality, where X = W 1,p
0 (Ω1 ∪ Ω2)

(or X = W 1,p(Ω)) and Y = W 1,p
0 (Ω) (or Y = W 1,p(Ω1 ∪ Ω2)). �

The Dirichlet–Neumann bracketing is a powerful tool combined with the follow-
ing result:

Proposition 2.4. Let {Ωj}j∈N be a pairwise disjoint family of bounded open sets
in RN . Then,

N(λ,
⋃
j∈N

Ωj) =
∑
j∈N

N(λ,Ωj).

Proof. Let λ be an eigenvalue of problem (1.1) in Ω, and let u be the associated
eigenfunction. For all v ∈W 1,p

0 (Ω) we have∫
Ω

|∇u|p−2∇u∇v dx− λ

∫
Ω

|u|p−2uv dx = 0.

Choosing v with compact support in Ωj , we conclude that u|Ωj is an eigenfunction
of problem (1.1) in Ωj with eigenvalue λ.

In the other hand, an eigenfunction u of Ωj extended by zero outside is an
eigenfunction of Ω. �
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3. Main result

In this section we prove our main result,

Theorem 3.1. Let Ω ∈ R be an open, bounded set, and d ∈ (0, 1) such that
M∗

Int(∂Ω, d) < +∞. Let r ∈ L∞ be a positive function satisfying (H2) with d < γ.
Then,

N(λ,Ω) =
λ1/p

2πp

∫
Ω

r1/p dx+O(λd/p).

Remark 3.2. Observe that for γ > d the remainder term does not depends on γ.
So Theorem 3.1 improves the results of [7].

Proof. For a fixed λ > 1, let us choose a > 0 and η0 such that η0 = λ−a. Since
M∗

Int(∂Ω, d) < +∞, there exist a positive constant C such that

(3.1) #Iq(Ω) ≤ Cη−d
q .

Let us define the Weyl term:

ϕ(λ,Ω, r) =
λ1/p

2πp

∫
Ω

r1/p dx.

As r ∈ L∞(Ω) we have that r(x) ≤ M for almost all x ∈ Ω. Thus, λ being fixed,
there exist k ∈ N such that

ND(λ, Iζq
, r) = 0,

for all q > k. We define K = max{q ∈ N : ND(λ, Iζq , r) 6= 0} (let us observe that
K depends on λ).

The proof falls naturally into two steps, i.e., to find a lower and an upper bound
for R(λ,Ω).

Step 1: From Theorem 2.3 we obtain

(3.2)
K∑

q=0

∑
ζq∈Iq

ND(λ, Iζq , r)− ϕ(λ,Ω, r) ≤ ND(λ,Ω, r)− ϕ(λ,Ω, r).

We can rewrite (3.2) as:
K∑

q=0

∑
ζq∈Iq

ND(λ, Iζq , r)− ϕ(λ,Ω, r) = A1 +A2 +A3 +A4,

with

A1 =
K∑

q=0

∑
ζq∈Iq

(
ND(λ, Iζq , r)−ND(λ, Iζq , rζq )

)
,

A2 =
K∑

q=0

∑
ζq∈Iq

(
ND(λ, Iζq

, rζq
)− ϕ(λ, Iζq

, rζq
)
)
,

A3 =
K∑

q=0

∑
ζq∈Iq

(
ϕ(λ, Iζq

, rζq
)− ϕ(λ, Iζq

, r)
)
,

A4 =− ϕ(λ,ΩK , r),

where ΩK is given by (2.2).
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Using the monotonicity of the eigenvalues with respect to the weight (see Theo-
rem 2.2), and r ≤ rζq + |r − rζq |, a simple computation shows that

N(λ, Iζq , r) ≤ N(λ, Iζq , rζq ) +N(λ, Iζq , |r − rζq |),
which gives:

|ND(λ, Iζq
, r)−ND(λ, Iζq

, rζq
)| ≤ N(λ, Iζq

, |r − rζq
|) ≤ c1η

γ
q λ

1/p.

Hence, by (3.1),

|A1| ≤ c1

K∑
q=0

#(Iq)ηγ
q λ

1/p ≤ c1η
γ−d
0 λ1/p

K∑
q=0

2−q(γ−d) ≤ cλ(1/p)−a(γ−d).

If γ > d we take a > 1/p(γ − d) and we obtain |A1| = O(1).

We now consider A2. But∣∣∣∣N(λ, (0, T ),M)− (Mλ)1/p

2πpT

∣∣∣∣ =
∣∣∣∣[ (Mλ)1/p

2πpT

]
− (Mλ)1/p

2πpT

∣∣∣∣ ≤ 1,

which is non positive. Therefore,

|A2| ≤
K∑

q=0

#(Iq) ≤ Cλd/p.

Here, we are using that there exists a positive constant C such that
C

2
λ1/p ≤ 2K ≤ Cλ1/p.

Clearly, by the definition of rζq in (H2), A3 = 0.

In order to bound A4, let us note that ΩK ⊂ {x ∈ Ω : d(x, ∂Ω) ≤ ηK}. So, the
definition of Minkowski measure gives

|A4| = ϕ(λ,ΩK , r) = c

∫
ΩK

(rλ)1/p dx ≤ cλ1/pη1−d
K ≤ cλd/p

Step 2: In a similar way, we can find an upper bound for R(λ,Ω, r). As in the
previous step, we introduce

Jq(Ω) = {ζq ∈ Z : Iζq
∩ ∂Ω 6= ∅},

Ω ⊂
K⋃

q=0

⋃
ζq∈Iq

Iζq
∪

⋃
ζk∈JK

Iζk
,

and again,
#JK(Ω) ≤ Cη−d

K .

From Theorem 2.3 we have

ND(λ,Ω, r) ≤
K∑

q=0

∑
ζq∈Iq

NN (λ, Iζq
, r) +

∑
ζk∈JK

NN (λ, Iζk
, r).

Subtracting the Weyl term from the expression above we have
K∑

q=0

∑
ζq∈Iq

NN (λ, Iζq
, r) +

∑
ζk∈JK

NN (λ, Iζk
, r)−ϕ(λ,Ω, r) ≤ B1 +B2 +B3 +B4 +B5,
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with

B1 =
K∑

q=0

∑
ζq∈Iq

(
NN (λ, Iζq , r)−NN (λ, Iζq , rζq )

)
,

B2 =
K∑

q=0

∑
ζq∈Iq

(
NN (λ, Iζq , rζq )− ϕ(λ, Iζq , rζq )

)
,

B3 =
K∑

q=0

∑
ζq∈Iq

(
ϕ(λ, Iζq

, rζq
)− ϕ(λ, Iζq

, r)
)
,

B4 =− ϕ(λ,ΩK , r),

B5 =
∑

ζk∈JK

NN (λ, Iζk
, r).

The terms B1, B2, B3 and B4 can be handled in much the same way, the only
difference being in the analysis of B5. However, as r ∈ L∞,

B5 ≤
∑

ζk∈JK

NN (λ, Iζk
, 1) ≤ #(JK)Cλ1/pηK ≤ Cλd/p.

This completes the proof. �

4. Indefinite weights.

Let us begin recalling the existence of a sequence of variational eigenvalues with
an indefinite weight:

Theorem 4.1. Let r ∈ L∞, with r+ 6≡ 0. Then every eigenvalue of problem (1.1)
is given by (2.3). If we consider Σ+ = {λ+

k }k∈N the set of positive eigenvalues and
Σ− = {λ−k }k∈N the set of negative eigenvalues, we have that Σ− 6= ∅ if r− 6≡ 0 and
λ+

k → +∞ and λ−k → −∞ as k → +∞.

The proof can be found in [1].

To obtain the asymptotic behaviour of N(λ) we need to impose some conditions
in r+ = max{r, 0}, and r− = r− r+, let us suppose that r+ (resp. r−) satisfy (H2)
for certain γ+ (resp. γ−). Let Ω◦+ be the interior of Ω+ = {x ∈ Ω : r(x) > 0}
and let d+ be the interior Minkowski dimension of ∂Ω◦+, analogously, let d− be the
dimension of ∂Ω◦−.

Clearly, it suffices to obtain the asymptotic expansion for the number of positives
eigenvalues. The negatives ones may be studied in much the same way. Let us note,
however, that it is possible to have d− 6= d+, or γ− 6= γ+.

Theorem 4.2. Let Ω ∈ R be an open, bounded set, and d+ ∈ (0, 1) such that
M∗

Int(∂Ω+, d
+) < +∞. Let r ∈ L∞(Ω) be a function with r+ satisfying (H2) for

certain γ+ > d+. Then,

N+(λ,Ω, r) =
λ1/p

2πp

∫
Ω+

(r+)1/p dx+O(λd+/p).

Proof. We only need to find lower and upper bounds for λ+
n having the same as-

ymptotic. We achieve this with the help of monotonicity that allows us to reduce
the problem to the case of positive weights
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Let ρ be fixed. Now, applying Theorem 2.2, we have

(4.1) λn(r+ + ρ,Ω) ≤ λn(r+,Ω) ≤ λ+
n (r,Ω◦+).

The first inequality, together with Theorem 3.1, implies that

N+(λ,Ω, r) ≤ N(λ,Ω, r+ + ρ) =
λ1/p

2πp

∫
Ω

(r+ + ρ)1/p +O(λd+/p).

Now the proof follows by choosing ρ = λd+−1.
For the lower bound we use the second inequality in (4.1) which gives

N+(λ,Ω, r) ≥ N(λ,Ω0
+, r) =

λ1/p

2πp

∫
Ω0

+

r1/p +O(λd+/p)

=
λ1/p

2πp

∫
Ω

(r+)1/p +O(λd+/p).

The proof is now complete. �

Remark 4.3. From Theorem 4.2 it is easy to see that

lim
n→∞

n−pλ+
n (r+ + ρ,Ω) =

(
πp∫

Ω
(r+ + ρ)1/p

)p

lim
n→∞

n−pλ+
n (r,Ω+◦) =

(
πp∫

Ω+◦ r1/p

)p

Combined with the previous inequalities for the eigenvalues, we have(
πp∫

Ω
(r+ + ρ)1/p

)p

≤ lim inf
n→∞

n−pλ+
n (r,Ω) ≤ lim sup

n→∞
n−pλ+

n (r,Ω) ≤
(

πp∫
Ω+◦ r1/p

)p

Clearly, when ρ → 0, the first integral converges to
∫
Ω
(r+)1/p, and we obtain

the asymptotic formula for the positives eigenvalues

λ+
n (r,Ω) ∼

(
πp∫

Ω
(r+)1/p

)p

.
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