EIGENVALUES OF THE P-LAPLACIAN IN FRACTAL STRINGS
WITH INDEFINITE WEIGHTS
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ABSTRACT. In this paper we study the spectral counting function of the weigh-
ted p-laplacian in fractal strings, where the weight is allowed to change sign.
We obtain error estimates related to the interior Minkowski dimension of the
boundary. We also find the asymptotic behavior of eigenvalues.

1. INTRODUCTION

In this paper we study the following eigenvalue problem:

(1.1) —(Up(u)) = Ar(z)dp(u) inQ
with zero Dirichlet boundary conditions, in a bounded open set {2 C R. Here, the
weight r is a given bounded function which may change sign, A is a real parameter
and

Gpls) = |52
for s #0, and 0 if s = 0.

In [4, 10] it was proved that there exists a countable sequence of nonnegative
eigenvalues { A }ren, tending to 400 when r is a continuous function. For indefinite
weights r € L', the existence of a sequence of eigenvalues was proved in [3]. When
N =1, in [1], it was proved that the variational eigenvalues represents a complete
list of eigenvalues.

We define the spectral counting function N (A, ) as the number of eigenvalues
of problem (1.1) less than a given A :

N\ Q) = #{k : A\ <AL

We will write Np(\, Q) (resp., Ny (A, ) whenever we need to stress the depen-
dence on the Dirichlet (resp., Neumann) boundary conditions. Also, we will stress
the dependence of problem (1.1) in the weight function, writing N (X, Q,r).

In [6], we obtained the following asymptotic development when r > 0

A\l/P
N(AQ) ~ / /P dy
21 Jo
as A — oo, using variational arguments and a suitable extension of the method of
‘Dirichlet-Neumann bracketing’ in [2]. Here,

1
ds
ﬂ'p:Z(p—l)l/p/O =
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For the remainder estimate R(\, Q) = N(A, Q) — %/: Jo /P dx we showed that

R(\, Q) = O(\H/P)

where p € (0,1] depends on the regularity of the weight r and the boundary 9.
However, the parameter p does not reflect any geometric information about 0.
The goal of this paper is the study of the remainder term and the extension of

the previous results to indefinite weights.

We improve the previous estimate in terms of the interior Minkowski dimension

d of 09, i.e.

R(\, Q) = O(AY/P)
For indefinite weights, there exists a sequence of positive eigenvalues and a se-
quence of negative eigenvalues as well. Our main result is

\/p

N*(\Q) = / (PP de + O/,
Q

2w,

where N ()) denotes the number of positive eigenvalues of problem (1.1) less than
a given A\, and r*(z) = max{r(z),0}, and N~ ()) denotes the number of negatives
eigenvalues greater than —A. When p = 2, this asymptotic expansion was obtained
in [7].

The paper is organized as follows: In section 2, we introduce the necessary
notation and definitions. In section 3 we state and prove the main theorem. In
section 4 we analyze the eigenvalue problem with indefinite weights.

2. I\IOTATION7 HYPOTHESES AND PRELIMINARY RESULTS
2.1. Notation and hypotheses. Let A. denote the tubular neighborhood of ra-
dius € of a set A C R", i. e.,
A = {x € R : dist(z, 4) < e}
We define the interior Minkowski dimension of 9 as

d = dim(8Q) = inf{d >0 : limsupe~"=9|(8Q). N Q,, = 0}

e—0t

We define the interior Minkowski content of 02 as the limit (whenever it exist):

(2.1) My (092, d) = lim_ e~ =D1(90). N Q..

Respectively, M (0, d)(M.int (02, d)) denotes the d—dimensional upper (lower)
interior Minkowski content, replacing the limit in (2.1) by an upper (resp., lower)
limit.

For the history about the right fractal dimension involved in this problem when
p =2, see [8].

Let € be an open set in R. Then, Q = US2 , I,,, where I,, is an interval of length
l,,. We can assume that

bzl 2l >->0

In [5, 9] was proved that 9Q is d-Minkowski measurable if and only if I, ~
Cn~14. Moreover, the Minkowski content of 9 is 211:; ce.
Our assumption on the domain {2 is,

(H1) ) is an open bounded set in R such that M} ,(09Q,d) < .
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Observe that we do not make any assumption of self similarity about 0f2.

Given any 79 > 0 and g € N, we consider a tessellation of R by a countable
family of open intervals {I¢, }¢,ez of length 7, = 27919 We define

() ={6€eZ : I, CQ},
Qo = Q\ (Ugezly),
1) ={G €Z : I, CQq1},
and
(2.2) Q= 2\ Qg1 [Jug,e2T,)-

Let r € L*°(Q) be a positive function.
Given v > 0, we say that the function r satisfies the “y-condition” if there exist
positive constants ¢; and 7, such that for all {; € 1,(2) and all n <y,

(12) | = irde <,
p
where r¢, = (|ng|_1 ffc rl/p dm) is the mean value of r'/? in I .
q

Remark 2.1. The coefficient « enable us to measure the smoothness of r, the larger
v, the smoother r. When r is Holder continuous of order § > 0 and is bounded
away from zero on €, it satisfies the y-condition for 0 < v < 1+ 8/p. If r is only
continuous and positive on 2, then it satisfies the y-condition for 0 < v < 1.

2.2. Preliminary results. In this subsection we introduce the main tools to deal
with our problem, the genus and the Dirichlet-Neumann bracketing. We remark
that the results in this subsection hold in any dimension.

Most of the results in this subsection are contained in [6]. However, we include
the proofs in order to make the paper self contained.

Let X be a Banach space. We consider the class:

Y={ACX : A iscompact, A=—A}.
Let us recall the definition of the Krasnoselskii genus v : ¥ — NU {oo} as
7(A) = min{k € N there exist f € C(A,R"\ {0}), f(z) = —f(—x)}.

By the Ljusternik-Schnirelmann theory, we have a sequence of nonlinear eigen-
values of problem (1.1) with Dirichlet (resp. Neumann) boundary condition, given
by

2.3 Ap = inf su u'|P dx
(23) o= it sup [ o]
where

Cr={CcCcM : C iscompact, C=—-C, v(C) >k},
M = {u e W, () (resp., W'P(Q)) : / r(z)|ul? de = 1}.
Q

Due to the homogeneity of equation (1.1), we have an equivalent formula for the
eigenvalues,

24 = inf s
@ = o s RO
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where
fQ |u/|P dx

Jo (@) |ulP d
When r € L, we need to use a comparison result that is essentially contained
in [1] but we include the arguments for the sake of completeness.

R(u) =

Theorem 2.2. Let r1 and r9 be two positive functions in L (), with r1(x) <
ro(x). Then,

b > A2
Proof. Tt follows from (2.4), using that Rp(u) < Ry(u) for all w € W1P(Q). For
each F' € Cy, we have sup,cp Ra(u) < sup,cp R1(u), hence,

A2 = inf sup R < inf sup R =\
¥ FGCkueg 2(v) FeC kueIF) () b

as we wanted to show. O

In a similar way, we prove the Dirichlet—Neumann bracketing,

Theorem 2.3. Let Q,Qy € RY be disjoint open sets such that (L UQ)° =0
and |Q\ Q4 UQs|, =0, then

]\7D(>\7 QU Qg) < ND()H Q) < NN()\, Q) < NN(/\, QU Qg)
Proof. Tt is an easy consequence of the following inclusions
Wy (@1 U Q) = Wy () @ Wy P (Qs) € Wy ()

and
WLP(Q) c WhP(Q)) @ WHP(Qy) = WHP(Q; UQy),

and the variational formulation (2.3). Here, using that

M(X)={ueX : / DlulP dz =1} € M(Y )_{ueY'/ Dul? dz = 1,
and C(X) C Ci(Y), we obtain the desired inequality, where X = Wy (Q; U Q)
(or X =WHP(Q)) and Y = W, P(Q) (or Y = WIP(Q UQy)). O

The Dirichlet—Neumann bracketing is a powerful tool combined with the follow-
ing result:

Proposition 2.4. Let {Q;}jen be a pairwise disjoint family of bounded open sets
in RN. Then,
N Q) =) Ny
jEN jEN
Proof. Let A be an eigenvalue of problem (1.1) in €, and let u be the associated
eigenfunction. For all v € W "*(€) we have

|VulP~2VuVodr — X [ |uP~?uvdz = 0.
Q Q

Choosing v with compact support in §;, we conclude that u|g; is an eigenfunction
of problem (1.1) in ; with eigenvalue A.

In the other hand, an eigenfunction u of €}; extended by zero outside is an
eigenfunction of Q. O
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3. MAIN RESULT
In this section we prove our main result,

Theorem 3.1. Let 2 € R be an open, bounded set, and d € (0,1) such that
M3, (09,d) < +00. Let r € L* be a positive function satisfying (H2) with d < 7.
Then,

A\L/p Y 4/
NOLQ) = 2— [ vYPde + O(\Y?).
27Tp [¢)

Remark 3.2. Observe that for v > d the remainder term does not depends on 7.
So Theorem 3.1 improves the results of [7].

Proof. For a fixed A > 1, let us choose a > 0 and 79 such that 9y = A7%. Since
Mj,,(09,d) < +o0, there exist a positive constant C' such that
(3.1) #1,(Q) < Cn?

Let us define the Weyl term:

\L/p
oA, Q,r) = —/ P dg.
27Tp Q

As r € L*™(Q) we have that r(z) < M for almost all 2 € Q. Thus, A being fixed,
there exist k € N such that

Np(A, I, ) =0,
for all ¢ > k. We define K = max{q € N : Np(\, I¢,,r) # 0} (let us observe that
K depends on A).

The proof falls naturally into two steps, i.e., to find a lower and an upper bound
for R(A, Q).

Step 1: From Theorem 2.3 we obtain

K
(3.2) SN No( I, ) — oA Q1) < Np(X, Q1) — o(A, Q7).

q=0 (41,

We can rewrite (3.2) as

K
ST No(W Iy, ) — @A Q1) = Ap + As + As + As,
q=0¢q€1,

with

~

= Z ND A ng, ) ND()\vquvTCq))’
0¢q€ly

N

—ZZ (Np(\ I¢yire,) — oM Iy 7e,)) s
€l,

q=0¢

Az = (PN Ie,sre,) — (N Iy 7))

\Mw

—0¢,el,
Ay = <P( ;)5
where Q¢ is given by (2.2).
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Using the monotonicity of the eigenvalues with respect to the weight (see Theo-
rem 2.2), and r < r¢, + |r —r¢ |, a simple computation shows that

N\ I, m) S N e, re,) + N e, |r—re, 1),
which gives:
IND(A, I¢,,m) = Np(A, ey e, )| < N Iy, [r = e, |) < eapg AP,
Hence, by (3.1),

K K
[Aa ey #UIng AP < exng T INP Y T2m107 D < ex/pmelmd),

q=0 q=0
If v > d we take a > 1/p(y — d) and we obtain |A;| = O(1).

We now consider Ay. But
(M)\)l/p
2m,T

which is non positive. Therefore,

N (0,T),M) —

— )

- (M)\)l/p (M)\)l/p
|l 27T 2m, T

K
[Ag| < #(1,) < CXYP.
q=0

Here, we are using that there exists a positive constant C' such that
g/\l/p < 9K <« oN\l/p,
2 < <

Clearly, by the definition of r¢, in (Hs), Az = 0.

In order to bound Ay, let us note that Qx C {x € Q : d(z,9Q) < ni}. So, the
definition of Minkowski measure gives

Ayl = (N, Qg 1) =¢ rA 1/pdx§c)\1/p 17d§c)\d/”
2 Nk
Qi

Step 2: In a similar way, we can find an upper bound for R(X,€Q,7). As in the
previous step, we introduce

JQ) ={C €T : I, N0 £ 0},

K
oclJ U v U L.
q=0¢q€l, CkEJK
and again,
#Jk(2) < Oy
From Theorem 2.3 we have

K
NpA ) <> 3" Nu(\ I, m)+ Y. Nu(AIg,,r).
qZOquIq CkEJK

Subtracting the Weyl term from the expression above we have

K
YN NN I )+ D> Na(A I, m) = @A Q,7) < B+ By + B + By + Bs,
q=0 qulq CkEJK
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with

K
B3 5 (el Er) W0 ),

q=0¢(,€l,
K

32 = Z Z (NN(A’ ICq’ 7"((1) - QD()\a IanTCQ)) 5
q=0¢(,€l,
K

By =3 3" (p(\Ig,,me,) = (N Ie,.m)
q=0¢(q€ly

B4 = - SD()‘7QK7T)>

Bs= Y Nn(\I.1).
ChE€JK
The terms By, Bs, B3 and B4 can be handled in much the same way, the only
difference being in the analysis of B;. However, as r € L,

Bs < Y Ny(MIg,1) < #(Jk)CA Py < OXYP.
Ck€JK

This completes the proof. ([l

4. INDEFINITE WEIGHTS.

Let us begin recalling the existence of a sequence of variational eigenvalues with
an indefinite weight:

Theorem 4.1. Let r € L™, with v # 0. Then every eigenvalue of problem (1.1)
is given by (2.3). If we consider St = {\ }ren the set of positive eigenvalues and
Y7 = {\, }ren the set of negative eigenvalues, we have that ¥~ # 0 if r= # 0 and
/\g—>+oo and A, — —o0 as k — +o0.

The proof can be found in [1].

To obtain the asymptotic behaviour of N(\) we need to impose some conditions
in 7t = max{r,0}, and r— = r —r™, let us suppose that r* (resp. r~) satisfy (H2)
for certain 4" (resp. 77). Let QF be the interior of Oy = {z € Q : r(z) > 0}
and let d* be the interior Minkowski dimension of 90 , analogously, let d~ be the
dimension of 92° .

Clearly, it suffices to obtain the asymptotic expansion for the number of positives
eigenvalues. The negatives ones may be studied in much the same way. Let us note,
however, that it is possible to have d~ # dt, or v~ # ~7T.

Theorem 4.2. Let € R be an open, bounded set, and d™ € (0,1) such that
Mj, (0Q,dT) < +oo. Let r € L>(Q) be a function with v satisfying (H2) for
certain v+ > d*. Then,

\L/P

Nt Q,r) = / (rH)YP dz + O(AY /7).
Q4

2m,
Proof. We only need to find lower and upper bounds for A\ having the same as-
ymptotic. We achieve this with the help of monotonicity that allows us to reduce
the problem to the case of positive weights
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Let p be fixed. Now, applying Theorem 2.2, we have
(4.1) At +0,Q) < A\ (rT,Q) < AF (7, 7).
The first inequality, together with Theorem 3.1, implies that

1/p
NTOL Q1) < N Q1+ p) = ;T (4 )P - OO,
p JQ

Now the proof follows by choosing p = A" 1.

For the lower bound we use the second inequality in (4.1) which gives

AL/p
NtOAQr) > NAQ, ) =2— [ #2400 /)
27rp 0o
9
)\1/17 1 d+t
=5 /Q(r+) P ot /P).
P
The proof is now complete. O

Remark 4.3. From Theorem 4.2 it is easy to see that

p
; =P+ (pt _ Tp
A (T 4, ) = (fQ(r+ +p)1/p>

+ + Tp 3
li “PA Q)= ———
noeo !t (T7 ) (fQ+o Tl/p)

Combined with the previous inequalities for the eigenvalues, we have

Tp P
(IQ(T+ +p)1/p> n—ee n— 00 +o Tl/p

Clearly, when p — 0, the first integral converges to fQ(r"‘)l/p, and we obtain
the asymptotic formula for the positives eigenvalues
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