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Abstract. We study the dependence on the subset A ⊂ Ω of the Sobolev trace constant
for functions defined in a bounded domain Ω that vanish in the subset A. First we find
that there exists an optimal subset that makes the trace constant smaller among all the
subsets with prescribed and positive Lebesgue measure. In the case that Ω is a ball we
prove that there exists an optimal hole that is spherically symmetric. In the case p = 2
we prove that every optimal hole is spherically symmetric. Then, we study the behavior
of the best constant when the hole is allowed to have zero Lebesgue measure. We show
that this constant depends continuously on the subset and we discuss when it is equal
to the Sobolev trace constant without the vanishing restriction.

1. Introduction.

In this paper we are interested in the best Sobolev trace constant from W 1,p(Ω) into
Lq(∂Ω) for functions that vanish on a subset A of Ω.

The properties of the best Sobolev trace constant have been widely studied from dif-
ferent points of view. Of special interest has been its dependence on the set Ω. Parallel
to the study of the constant is the study of extremals for the trace inequality and their
behavior. See, for instance, [5, 7, 9].

Our interest is on the behavior of this constant and extremals for the trace inequality
when we restrict the test functions to those that vanish in the subset A. It is our main
concern to understand the behavior of this constant and extremals with respect to A.

In order to start our discussion let us define the constant SA that is the object of our
investigation. For A ⊂ Ω we let

(1.1) SA = inf
{∫

Ω
(|∇u|p + |u|p) dx
( ∫

∂Ω
|u|q dS

)p/q
, u ∈ W 1,p(Ω) s.t. u 6≡ 0 on ∂Ω and u = 0 a.e. A

}
.

In this work we restrict ourselves to the subcritical case. This is, we consider exponents
1 ≤ q < p∗ = p(N − 1)/(N − p) for p < N , 1 ≤ q < ∞ for p ≥ N , so that the immersion
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W 1,p(Ω) ↪→ Lq(∂Ω) is compact. Therefore, it is easy to see that there exist extremals for
SA. When A is closed an extremal for SA is a weak solution to

(1.2)





−∆pu + |u|p−2u = 0 in Ω \ A,

|∇u|p−2∂u

∂ν
= λ|u|q−2u on ∂Ω \ A,

u = 0 in A,

where ∆pu = div(|∇u|p−2∇u) is the p−laplacian, ∂
∂ν

is the outer unit normal derivative
and λ depends on the normalization of u. For instance, if ‖u‖Lq(∂Ω) = 1, then λ = SA.
For results related to (1.2) see [8, 15, 17].

One of the problems we are interested in is the optimization of SA among subsets A
of Ω of a given positive measure α < |Ω|. We prove that there exist extremals for this
optimization problem. A natural question then is what can be said about the extremals
u and the “optimal holes” {u = 0} (regularity, location, symmetry, etc...).

In this paper we prove that, when Ω is a ball, there exist an extremal and an optimal
hole that are spherically symmetric. In the case p = 2 we prove that all the optimal
holes and extremals are spherically symmetric (see Section 2 for the definition of spherical
symmetry). For general domains Ω, 1 < p < ∞, we prove that when q ≥ p the complement
of the optimal hole is (measure-theoretic) connected. In a companion paper, [10], we prove
regularity of the optimal holes and extremals in the case p = 2.

Problems of optimal design related to eigenvalue problems like (1.2) appear in applica-
tions. For instance, in problems of minimization of the energy stored in the design under
a prescribed loading. Solutions of these problems are unstable to perturbations of the
loading. The stable optimal design problem is formulated as minimization of the stored
energy of the project under the most unfavorable loading. This most dangerous loading is
one that maximizes the stored energy over the class of admissible functions. The problem
is reduced to minimization of Steklov eigenvalues. This is, (1.2) when p = q = 2. See [2].

We want to stress that the results in this paper are new, even in the linear case,
p = q = 2.

Optimization problems for eigenvalues of elliptic operators have been widely studied in
the past, and are still an area of intensive research. For a comprehensive description of
the current developments in the field and very interesting open problems, we refer to [11].
In [3] the author studies an optimization problem for the second Neumann eigenvalue of
the laplacian with A ⊂ ∂Ω. He proves the existence of an optimal window A0 and shows
that – when Ω is a ball – A0 is spherically symmetric in the sense of [16]. Our approach
to the optimization problem follows closely the one in [3]. Optimal design problems have
been widely studied not only for eigenvalue problems. See for instance [1, 12, 14].

When trying to give sense to a best Sobolev trace constant for functions that vanish
in a set of zero Lebesgue measure a different approach has to be made. We consider the
space

(1.3) W 1,p
A (Ω) = C∞

0 (Ω \ A),
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where the closure is taken in W 1,p−norm. That is, W 1,p
A (Ω) stands for the set of functions

of the Sobolev space W 1,p(Ω) that can be approximated by smooth functions that vanish
in a neighborhood of A.

In this context the best Sobolev trace constant is defined as

(1.4) SA = inf
u∈W 1,p

A (Ω)\W 1,p
0 (Ω)

∫

Ω

|∇u|p + |u|p dx

(∫

∂Ω

|u|q dS

)p/q
.

In this case we prove that this problem only makes sense if A is a set with positive
p−capacity (see (1.6)). More precisely, we prove that SA = S∅ if and only if the p−capacity
of A is zero. Note that S∅ is the usual Sobolev trace constant from W 1,p(Ω) into Lq(∂Ω).

Observe that the constants SA and SA need not be the same. For a discussion on this
relation, see the end of Section 3.

Finally, we address the problem of the continuity of SA with respect to A. Here the
natural topology for the sets A is the Hausdorff distance and in fact, we prove that SA is
continuous in this topology. Also, we prove the continuity of the extremals of SA in W 1,p

norm with respect to the Hausdorff distance of the sets A.

In order to finish this introduction, let us comment briefly on related work. First we
comment on works related to the dependence of the Sobolev trace constant with respect
to variations of the domain. In [5] the authors analyze the behavior of extremals and
best Sobolev trace constants in expanding domains for p = 2 and q > 2. They prove that
the extremals develop a peak near the point where the mean curvature of the boundary
attains a maximum. In [9] the authors analyze the dependance of the best Sobolev trace
constant and extremals in expanding and contracting domains for p > 1 and 1 ≤ q < p∗.
Also, in [7] the behavior of the Sobolev trace constant and extremals in thin domains is
analyzed.

Finally, see [6] and [13] where symmetry and symmetry breaking properties of extremals
of the Sobolev trace constant in balls are analyzed.

1.1. Statements of the results. Now we state the main results of the paper.

Our first result is the sequential lower semicontinuity of SA.

Theorem 1.1. Let An ⊂ Ω be sets of positive measure such that

χAn

∗
⇀ χA0 in L∞(Ω),

where χA is the characteristic function of the set A. Then

SA0 ≤ lim inf
n→∞

SAn ,

where SA is given by (1.1).

We remark that the continuity is not true in general. See Remark 2.1.
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This semicontinuity result suggest that a minimizer for SA among sets A of fixed positive
Lebesgue measure exists. However, there is a major difficulty here because of the fact
that sets of prescribed positive Lebesgue measure are not compact with respect to the
topology of Theorem 1.1. We overcome this difficulty in the next theorem.

Our result concerning the existence of an optimal design for the constant SA is as
follows.

Theorem 1.2. Given 0 < α < |Ω|, let us define

(1.5) S(α) := inf
A⊂Ω, |A|=α

SA.

Then, there exists a set A0 ⊂ Ω such that |A0| = α and SA0 = S(α).

On the other hand, there is no upper bound for SA.

Theorem 1.3. Let 0 < α < |Ω|. Then,

sup
A⊂Ω, |A|=α

SA = ∞.

Next we study symmetry properties of optimal sets A0 in the special case where Ω is a
ball. To this end, we need the definition of spherical symmetrization (see [16]). Given a
measurable set A ⊂ RN , the spherical symmetrization A∗ of A is defined as follows: for
each r, take A ∩ ∂B(0, r) and replace it by the spherical cap of the same area and center
reN . The union of these caps is A∗.

We have the following result,

Theorem 1.4. Let Ω = B(0, 1) and 0 < α < |B(0, 1)|. Then, there exists an optimal
hole of measure α which is spherically symmetric, that is A∗ = A. Moreover, when p = 2,
every optimal hole is spherically symmetric and {u > 0} is a connected set for every
minimizer u.

For general domains, we can prove that the complement of the optimal hole is (measure-
theoretic) connected, if q ≥ p.

Theorem 1.5. Let A0 be an optimal hole for S(α), and u be the corresponding extremal.
Then, if q ≥ p, Ω \ A0 = {u > 0} is measure-theoretic connected. That is, if {u > 0} ⊂
U1 ∪ U2, where Ui, i = 1, 2, are nonempty, disjoint open sets, then |{u > 0} ∩ Ui| = 0 for
some i = 1, 2.

Now we state the results that allow us to consider the case |A| = 0. For simplicity we
will consider closed sets A.

First, we study when SA is equal to the usual Sobolev trace constant, that is, when
SA = S∅. For this purpose we recall de definition of p−capacity (see [4]). For A ⊂ Ω
closed, define

(1.6) Capp(A) = inf{
∫

Rn

|∇φ|p dx / φ ∈ W 1,p(RN) ∩ C∞(RN) and A ⊂ {φ ≥ 1}◦}.
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We have

Proposition 1.1. SA = S∅ if and only if Capp(A) = 0.

Next, we look at the dependence of SA on perturbations of A. We find that SA is
continuous with respect to A in the topology given by the Haussdorff distance.

Theorem 1.6. Let A,An ⊂ Ω be closed sets such that d(An, A) → 0 as n → ∞ where
d(An, A) is the Hausdorff distance between An and A. Then

|SAn − SA| → 0 when n →∞
and if we denote by un an extremal for SAn normalized such that ‖un‖Lq(∂Ω) = 1, there
exists a subsequence unk

such that

(1.7) lim
k→∞

unk
= u, strongly in W 1,p(Ω),

and u is an extremal for SA.

The rest of the paper is organized as follows, in Section 2 we prove the existence of
an optimal set A and its symmetry properties when Ω is a ball. In Section 3 we prove
our results involving the p−capacity of a subset and the continuous dependence of the
Sobolev constant on the subset A.

Throughout the paper, by C we mean a constant that may vary from line to line but
remains independent of the relevant quantities.

2. The optimization problem

In this section, we prove the sequential lower semicontinuity of the best Sobolev trace
constant SA with respect to A (Theorem 1.1). Then following ideas from [3], we prove
that if we consider holes with positive and fixed measure a minimizing hole does exist
(Theorem 1.2). Moreover, we prove that a maximizing hole does not exist (Theorem 1.3).
Finally, we study the symmetry properties of minimizing holes when Ω is a ball (Theorem
1.4) and the connectivity of {u > 0} in the case q ≥ p (Theorem 1.5).

2.1. Semicontinuity result.

Proof of Theorem 1.1. Let An, A ⊂ Ω such that χAn

∗
⇀ χA in L∞(Ω).

Let un ∈ W 1,p(Ω) be an extremal for SAn normalized such that ‖un‖Lq(∂Ω) = 1 and
un ≥ 0. Let a = lim inf SAn . Without loss of generality, we may assume that SAn → a.

Then, there exists a constant C such that

‖un‖W 1,p(Ω) ≤ C.
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Thus, there exists a function u ∈ W 1,p(Ω) such that, for a subsequence that we still call
un,

(2.1)

un ⇀ u weakly in W 1,p(Ω),

un → u strongly in Lp(Ω),

un → u strongly in Lq(∂Ω).

In particular, ‖u‖Lq(∂Ω) = 1, u ≥ 0 and

‖u‖W 1,p(Ω) ≤ lim inf ‖un‖W 1,p(Ω).

We claim that u is an admissible function in the characterization of SA. To this end,
observe that by (2.1) and by our hypotheses on An and A,∫

A

u dx = lim

∫

An

un dx = 0.

As u ≥ 0, the claim follows.

Now,

SA ≤ ‖u‖p
W 1,p(Ω) ≤ lim inf ‖un‖p

W 1,p(Ω) = lim inf SAn .

Also, this last inequality implies that

‖un‖W 1,p(Ω) → ‖u‖W 1,p(Ω),

so un → u in W 1,p(Ω). The proof is now complete. ¤
Remark 2.1. The continuity of SA with respect to A in the sense of Theorem 1.1 does
not hold in general.

For instance, take An = Br(x0) ∪ B1/n(x1) and A = Br(x0). It is easy to see that

χAn

∗
⇀ χA. Let un be extremals for SAn . As in the proof of Theorem 1.1, we may assume

that un ⇀ u weakly in W 1,p(Ω). If p > N , as W 1,p(Ω) ↪→ C(Ω), then un → u uniformly.
Since an extremal un for SAn vanishes in x1 there holds that u(x1) = 0. On the other
hand, if SA = lim SAn then u is an extremal for SA. Thus u is a weak solution of (1.2)
which implies, by the maximum principle (see [19]), that u > 0 in Ω\A. A contradiction.

For general p, we can take An = Br(x0) ∪ (
[0, 1/n]×Σ

)
where Σ is a closed portion of

the hyperplane {x1 = 0} and A = Br(x0). Arguing in a similar way as before, using that
W 1,p(Ω) ↪→ Lp(Σ), we get that SA < lim SAn .

2.2. Existence of an optimal hole.

Proof of Theorem 1.2. In order to prove Theorem 1.2, we define the functional

J(u) =

∫

Ω

|∇u|p + |u|p dx.

Our problem is to find extremals for

S(α) = inf{SA / A ⊂ Ω , |A| = α}.
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It is easy to see that
S(α) = inf{SA /A ⊂ Ω , |A| ≥ α}.

In fact, it is clear that

inf{SA /A ⊂ Ω , |A| = α} ≥ inf{SA /A ⊂ Ω , |A| ≥ α}.
On the other hand, if v is a test function for a set of measure greater than or equal to α
it is also a test function for a set of measure α. Thus, the two infima coincide. Now,

S(α) = inf{SA /A ⊂ Ω , |A| ≥ α}
= inf

{
J(v) / v ∈ W 1,p(Ω), v ≥ 0, ‖v‖Lq(∂Ω) = 1, |{v = 0}| ≥ α

}
.

Note that we can always restrict ourselves to nonnegative test functions since a mini-
mizer of SA does not change sign.

So, let {un} be a minimizing sequence of J(v) in{
v ∈ W 1,p(Ω), v ≥ 0, ‖v‖Lq(∂Ω) = 1, |{v = 0}| ≥ α

}
.

Observe that as un is a minimizing sequence, we get

‖un‖W 1,p(Ω) ≤ C.

Hence, by taking a subsequence if necessary, we may assume that there exists u ∈ W 1,p(Ω)
such that

(2.2)

un ⇀ u, weakly in W 1,p(Ω),

un → u, strongly in Lq(∂Ω),

un → u, strongly in Lp(Ω).

So that, u ∈ W 1,p(Ω), u ≥ 0 and ‖u‖Lq(∂Ω) = 1.

Now, let An = {un = 0}. Then, again by taking a subsequence if necessary we have
that there exists a function 0 ≤ φ ≤ 1 such that

(2.3) χAn ⇀ φ, weakly in Lp′(Ω).

So that, in particular, for A = {φ > 0},

|A| ≥
∫

Ω

φ = lim

∫

Ω

χAn = |An| ≥ α.

Since u ≥ 0, φ ≥ 0 and ∫

Ω

uφ = lim

∫

Ω

un χAn = 0

there holds that u = 0 almost everywhere in A. Thus, u is an admissible function and

J(u) = ‖u‖p
W 1,p(Ω) ≤ lim ‖un‖p

W 1,p(Ω) = S(α).

Thus, u is an extremal for S(α).

It only remains to see that |{u = 0}| = α. In fact, suppose by contradiction that u
vanishes in a set A with |A| > α. By taking a subset we may assume that A is closed. Let
us take a small ball B so that |A \B| > α with B centered at a point in ∂A∩ ∂Ω1 where
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Ω1 is the connected component of Ω \ A such that ∂Ω ⊂ ∂Ω1. We can pick the ball B in
such a way that |A ∩B| > 0. In particular, |{u = 0} ∩B| > 0. (See the figure below).

Since u is an extremal for S(α) and |A\B| > α, it is an extremal for SA\B. Thus, there
holds that

∆pu = up−1 in Ω \ (A \B) = (Ω \ A) ∪B.

Now, as u ≥ 0 there holds that either u ≡ 0 or u > 0 in each connected component of
(Ω \ A) ∪ B. Since u 6= 0 on ∂Ω there holds, in particular, that u > 0 in B. This is a
contradiction to the choice of the ball B. Therefore,

|{u = 0}| = α.

The theorem is proved. ¤

Ω 

A 

u=0 in A 

| A | > α Ω 

A 

A
0
 

A
0
 ⊂ A  

| A
0
 | > α 

A
0
 closed 

Ω 

A
0
 

Ω
1
 

Ω 

A
0
 

B 

| {u=0} ∩ B | > 0 
| A

0
 − B | > α 

A
0
 − B  closed 

∆
p
 u = up−1 in Ω

1
 − (A

0
 − B).    

 Thus, u>0 in B 

Ω
1
 

Construction in the proof of Theorem 1.2

Remark 2.2. As a consequence of the proof of Theorem 1.2 we deduce that S(α) is a
strictly increasing function of α. In fact, it is immediate to see that S(α) is nondecreasing
since test functions for α1 > α are also test functions for α. On the other hand, if
S(α1) = S(α) and u is an extremal for S(α1) then |{u = 0}| = α1. But u is an admissible
function for S(α) so that it is an extremal for S(α) with |{u = 0}| > α. This is a
contradiction with our results. Thus, S is strictly increasing.
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Now we prove that a maximal hole does not exist.

Proof of Theorem 1.3. Let ε > 0 and let δ = δ(ε) be such that

Aε = {x ∈ Ω / ε ≤ dist (x, ∂Ω) ≤ δ}

has measure α. We will see that SAε → ∞ as ε → 0. In fact, let uε ∈ W 1,p(Ω) be an
extremal for SAε normalized so that ‖uε‖Lq(∂Ω) = 1.

For each κ > 0, let

Ωκ = {x ∈ Ω / dist (x, ∂Ω) > κ}.

Observe that uε is a solution to

{
∆pv = |v|p−2v in Ωδ,

v = 0 on ∂Ωδ.

Thus, uε = 0 in Ωδ. On the other hand, by construction uε = 0 in Ωε \ Ωδ. Thus, uε = 0
in Ωε and so uε → 0 a.e. Ω.

If SAε were bounded then, up to a subsequence, there would exist a function u ∈ W 1,p(Ω)
such that

uε ⇀ u weakly in W 1,p(Ω),

uε → u strongly in Lp(Ω) and a.e. in Ω,

uε → u strongly in Lq(∂Ω).

Since uε → 0 a.e. Ω and ‖uε‖Lq(∂Ω) = 1 we arrive at a contradiction. ¤

2.3. Properties of optimal holes. In this subsection, we consider the case Ω = B(0, 1)
and investigate if the optimal hole constructed in the previous section inherits some sym-
metry from the domain.

To this end, we recall the definition of spherical symmetrization that we have given in
the introduction. Given a measurable set A ⊂ RN , the spherical symmetrization A∗ of
A is constructed as follows: for each r, take A ∩ ∂B(0, r) and replace it by the spherical
cap of the same area and center reN . This can be done for almost every r. The union of
these caps is A∗. Now, the spherical symmetrization u∗ of a measurable function u ≥ 0 is
constructed by symmetrizing the super-level sets so that, for every t, {u∗ ≥ t} = {u ≥ t}∗.
See [16] for more details.

The following theorem is proved in [16].
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Theorem 2.1. Let u ∈ W 1,p(B(0, 1)) and let u∗ be its spherical symmetrization. Then
u∗ ∈ W 1,p(B(0, 1)) and

∫

B(0,1)

|∇u∗|p dx ≤
∫

B(0,1)

|∇u|p dx,(2.4)

∫

B(0,1)

|u∗|p dx =

∫

B(0,1)

|u|p dx,(2.5)

∫

∂B(0,1)

|u∗|q dS =

∫

∂B(0,1)

|u|q dS.(2.6)

With these preliminaries, we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let u be an extremal for J and u∗ the spherical symmetrization
of u. Now, by Theorem 2.1, u∗ is an admissible function for the minimization problem
and J(u∗) ≤ J(u). So the first part of the theorem follows.

Assume now that p = 2. In this case, it is proved in [3] that if equality holds in (2.4)
then for each 0 < r ≤ 1 there exists a rotation Rr such that

(2.7) u |∂B(0,r)= (u∗ ◦Rr) |∂B(0,r) .

We can assume that the axis of symmetry eN was taken so that R1 = Id.

Observe that by the results of [10], u and u∗ as well as any other minimizer v are locally
Lipschtiz continuous in B(0, 1) and they are solutions to

(2.8) ∆v = v

in B(0, 1) ∩ {v > 0}.
Let us first see that {v > 0} is connected.

Since v = R v∗ on ∂B(0, 1) for a certain rotation R, there holds that {v > 0}∩∂B(0, 1)
is a connected set. Thus, there can only be one connected component of {v > 0} that
touches the boundary of the ball. In any other component O, (2.8) holds and v = 0
on the boundary of O. Therefore, v = 0 in O which is a contradiction to the fact that
O ⊂ {v > 0}.

Now let us see that u = u∗. In fact, Let w = u− u∗. Then w satisfies
{

∆w = w in {u > 0} ∩ {u∗ > 0},
w = 0 on {u > 0} ∩ ∂B(0, 1),

On the other hand, ∂u/∂ν = S(α)uq−1 = S(α)(u∗)q−1 = ∂u∗/∂ν on {u > 0}∩∂B(0, 1).
Hence, ∂w/∂ν = 0 on {u > 0}∩∂B(0, 1). Thus, by Holmgren’s uniqueness theorem there
holds that u = u∗ in a neighborhood of {u > 0} ∩ ∂B(0, 1) inside B(0, 1). Now, analytic
continuation gives that u = u∗ in {u > 0} ∩ {u∗ > 0}. This implies that necessarily
{u > 0} = {u∗ > 0}. In fact, if this is not the case we have that at least one of the
following holds:
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(1) ∂{u > 0} ∩ {u∗ > 0} ∩B(0, 1) 6= ∅.
or

(2) ∂{u∗ > 0} ∩ {u > 0} ∩B(0, 1) 6= ∅.
In the first case, since u = u∗ in {u > 0} ∩ {u∗ > 0} and u = 0 on ∂{u > 0} ∩ B(0, 1),

there holds that u∗ = 0 in ∂{u > 0} ∩ {u∗ > 0} ∩ B(0, 1) 6= ∅ which is a contradiction.
Analogously, we arrive at a contradiction in the second case.

Thus, {u > 0} = {u∗ > 0} and since both functions are solutions of the same boundary
value problem in this set, they have to coincide. This is, u = u∗.

The theorem is proved. ¤

We end this section with the proof of Theorem 1.5.

Proof of Theorem 1.5. The proof is done by contradiction. Assume that {u > 0}∩Ω ⊂
U1 ∪ U2, where Ui, i = 1, 2 are nonempty, disjoint, open sets with |Ui ∩ {u > 0}| > 0.

First, we claim that ∫

∂Ω∩Ui

|u|q dS < 1, i = 1, 2.

In fact, if
∫

∂Ω∩U1
|u|q dS = 1, then it follows that u|∂U2 ≡ 0.

But then, if we take φ := uχU1 , we get that φ ∈ W 1,p(Ω), |{φ = 0}| > |{u = 0}| and
‖φ‖Lq(∂Ω) = 1, so

J(φ) ≥ J(u) =

∫

U1

|∇u|p + |u|p dx +

∫

U2

|∇u|p + |u|p dx

= J(φ) +

∫

U2

|∇u|p + |u|p dx

Therefore, u|U2 ≡ 0 which is a contradiction and so the claim follows.

Now, taking

φi :=
uχUi(∫

∂Ω∩Ui
|u|q dS

)p/q
,

we have that each φi is admissible in the characterization of S(α) and so

J(u) = J(uχU1) + J(uχU2) < J(φi)

The inequality is strict because of the strict monotonicity of S(α).

Now, for any 0 < λ < 1,

J(uχU1) + J(uχU2) < λJ(φ1) + (1− λ)J(φ2)

= λ

∫
U1
|∇u|p + |u|p dx

(∫
∂Ω∩U1

|u|q dS
)p/q

+ (1− λ)

∫
U2
|∇u|p + |u|p dx

(∫
∂Ω∩U2

|u|q dS
)p/q

.
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So if we take λ =
(∫

∂Ω∩U1
|u|q dS

)p/q

, we get, as q ≥ p, (1 − λ) ≤
(∫

∂Ω∩U2
|u|q dS

)p/q

,

therefore

J(u) = J(uχU1) + J(uχU2) < λ

∫
U1
|∇u|p + |u|p dx

(∫
∂Ω∩U1

|u|q dS
)p/q

+ (1− λ)

∫
U2
|∇u|p + |u|p dx

(∫
∂Ω∩U2

|u|q dS
)p/q

≤
∫

U1

|∇u|p + |u|p dx +

∫

U2

|∇u|p + |u|p dx = J(u),

a contradiction.

This finishes the proof. ¤

3. Capacitary setting

In this section we consider general sets that may have zero Lebesgue measure. First, we
analyze when the Sobolev trace constant sees the set A. Then, we prove the continuity of
SA with respect to A in Hausdorff distance. We end this section with a discussion about
the relationship between SA and SA.

We need a result that may be found in [4]. We prove it here for the sake of completeness.

Lemma 3.1. Let A ⊂ Ω. Then, W 1,p
A (Ω) = W 1,p(Ω) if and only if Capp(A) = 0.

Proof. Let Ω ⊂ RN be a bounded smooth domain and take A a subset of Ω such that
Capp(A) = 0.

From (1.6), it follows that Capp(A) = 0 if and only if, for every ε > 0 there exists

φε ∈ W 1,p(RN)∩C∞(RN) such that ‖∇φε‖p
Lp(RN )

< ε and φε ≡ 1 in a neighborhood of A.

Take now u ∈ C∞(Ω) and define uε = (1− φε)u ∈ W 1,p
A (Ω). Then we have

‖u− uε‖W 1,p(Ω) = ‖φεu‖W 1,p(Ω).

We will show that ‖φεu‖W 1,p(Ω) → 0 as ε → 0. From this fact, the result will follow since

C∞(Ω) is dense in W 1,p(Ω).

Now,

‖φεu‖p
W 1,p(Ω) ≤ C

(∫

Ω

|∇φε|p|u|p dx +

∫

Ω

|φε|p|∇u|p dx +

∫

Ω

|φε|p|u|p dx

)

= C(I + II + III).

We will bound each term separately.

(3.1) I ≤ ‖u‖∞
∫

Ω

|∇φε|p dx < ‖u‖∞ε.
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The terms II and III are bounded in the same way. We perform the computations for
II. By Hölder’s inequality we have

II ≤
(∫

Ω

|φε|pα dx

)1/α (∫

Ω

|∇u|pα′ dx

)1/α′

.

So, if we take α = p∗/p where p∗ = Np/(N−p) is the critical Sobolev exponent, it follows
that

II ≤
(∫

RN

|φε|p∗ dx

)p/p∗ (∫

Ω

|∇u|N dx

)p/N

≤ ‖∇u‖p
∞|Ω|p/N

(∫

RN

|φε|p∗ dx

)p/p∗

.

Then, by the Gagliardo–Nirenberg–Sobolev inequality,

(3.2) II ≤ C‖∇u‖p
∞|Ω|p/N

∫

RN

|∇φε|p dx < C‖∇u‖p
∞|Ω|p/Nε.

Analogously, for III we have

(3.3) III ≤ C‖u‖p
∞|Ω|p/Nε.

Combining (3.1), (3.2) and (3.3) we have

(3.4) ‖u− uε‖p
W 1,p(Ω) = ‖φεu‖p

W 1,p(Ω) ≤ Cε.

Assume now that C∞
0 (Ω \ A) is dense in W 1,p(Ω). We will show that Capp(A) = 0.

By hypotheses, for every ε > 0, there exists uε ∈ C∞(Ω) such that

A ∩ supp(uε) = ∅ and ‖1− uε‖W 1,p(Ω) < ε.

Take φε = 1 − uε, then φε ∈ W 1,p(Ω). As Ω is smooth, it has the extension property.
Then, there exists φ̄ε ∈ W 1,p(RN) such that

‖φ̄ε‖W 1,p(RN ) ≤ E‖φε‖W 1,p(Ω).

But ∫

RN

|∇φ̄ε|p dx ≤ ‖φ̄ε‖p
W 1,p(RN )

≤ Ep‖φε‖p
W 1,p(Ω) < Epεp,

as we wanted to show. ¤

With this lemma, we can prove Proposition 1.1.

Proof of Proposition 1.1. We only need to see that if SA = S∅ then Capp(A) = 0. Let
u be an extremal for SA. As SA = S∅, u is also an extremal for S∅. Therefore, u is a weak
solution to 



−∆pu + |u|p−2u = 0 in Ω,

|∇u|p−2∂u

∂ν
= λ|u|q−2u on ∂Ω.

By known regularity theory (see [18]) and the maximum principle (see [19]) it follows that
u ∈ C1,α(Ω) and u > 0 in Ω.

As u ∈ W 1,p
A (Ω), there exists a sequence un ∈ C∞

0 (Ω \A) such that un → u in W 1,p(Ω).
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Let φn = 1− un

u
. Observe that φn ≡ 1 in a neighborhood of A. Moreover,

‖∇φn‖Lp(Ω) =
∥∥1

u
∇(un − u) +

1

u2
∇u(u− un)

∥∥
Lp(Ω)

≤ C‖∇(un − u)‖Lp(Ω) + C‖∇u‖L∞(Ω)‖u− un‖Lp(Ω),

where we used the fact that u ≥ α > 0 in Ω. Then, for every ε > 0 there exists n0 such
that

‖∇φn‖Lp(Ω) < ε if n ≥ n0.

Now the result follows by extending φn to RN and regularizing. ¤
Remark 3.1. If the set A is a regular surface of dimension k, then there exists a trace
operator

T : W 1,p(Ω) → Lp(A)

if k > N − p. This relates to Lemma 3.1 by the fact that sets of Hausdorff dimension less
than or equal to N − p have zero p−capacity (see [4]).

Now we prove the continuity of SA with respect to A in Hausdorff distance. Recall that
the Hausdorff distance is definded by,

d(A1, A2) = inf{r > 0 , A1 ⊂ Br(A2) and A2 ⊂ Br(A1)}.
Here Br(A) =

⋃
x∈A Br(x) is the usual fattening of A.

Proof of Theorem 1.6. Let Aε = Bε(A). Assume that d(An, A) → 0 as n → ∞, then
given ε > 0 there exists n0 such that A,An ⊂ Aε if n ≥ n0 and it follows that

(3.5) W 1,p
Aε

(Ω) ⊂ W 1,p
A (Ω) ∩W 1,p

An
(Ω).

First, observe that by (1.4), we have

(3.6) S = S∅ ≤ SA, SAn ≤ SAε ,

if n ≥ n0.

Now, let u ∈ W 1,p
A (Ω) be an extremal for SA normalized such that ‖u‖Lq(∂Ω) = 1. As

u ∈ W 1,p
A (Ω), given δ > 0 there exists uδ ∈ C∞

0 (Ω \ A) such that

‖u− uδ‖W 1,p(Ω) ≤ δ

and, moreover, we can assume that

(3.7) supp(uδ) ⊂ Ω \ Aε

if ε is small enough.

Now, by (3.5) and (3.7), uδ ∈ W 1,p
An

(Ω) for n ≥ n0, so

SAn ≤
‖uδ‖p

W 1,p(Ω)

‖uδ‖p
Lq(∂Ω)

≤
(‖u‖W 1,p(Ω) + ‖uδ − u‖W 1,p(Ω)

)p

(‖u‖Lq(∂Ω) − ‖uδ − u‖Lq(∂Ω)

)p

≤ (S
1/p
A + δ)p

(1− S−1/pδ)p
≤ SA + C1δ,
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where C1 is a constant that depends on S and SA.

By symmetry, we get

SA ≤ SAn + C2δ,

where C2 depends on S and SAn , but by (3.6) it can be taken depending on S and SAε

only.

So

|SAn − SA| ≤ Cδ if n ≥ n0,

as we wanted to show.

It remains to see the convergence of the extremals. Let un be an extremal for SAn

normalized such that ‖un‖Lq(∂Ω) = 1. Then, as

‖un‖W 1,p(Ω) = S
1/p
An
→ S

1/p
A ,

it follows that un is bounded in W 1,p(Ω). So there exists a sequence (that we still denote
un) and a function u ∈ W 1,p(Ω) such that

un ⇀ u weakly in W 1,p(Ω),

un → u strongly in Lq(∂Ω).
(3.8)

By the definition of the spaces W 1,p
An

(Ω), W 1,p
A (Ω) and by (3.5), it is straightforward to see

that u ∈ W 1,p
A (Ω).

Now, by (3.8), ‖u‖Lq(∂Ω) = 1 and, also by (3.8),

SA ≤ ‖u‖p
W 1,p(Ω) ≤ lim

n→∞
‖un‖p

W 1,p(Ω) = lim
n→∞

SAn = SA.

Therefore, u is an extremal for SA and un → u strongly in W 1,p(Ω). The proof is now
complete. ¤

3.1. Relationship between SA and SA. It is easy to see that SA ≤ SA. The other
inequality is not true in general. Moreover, the constant SA is not modified if we change
the set A by a set of zero Lebesgue measure while SA will be modified unless the variation
on A is of zero p−capacity.

For example, if A is a hypersurface contained in Ω, then SA = S∅. On the other hand
SA > S∅ = S∅ = SA since an extremal for SA has zero trace on A.

However, if A is the closure of an open set with regular boundary, both constants agree.

This leads to the question of the existence of a representative of the set A for both
constants to agree. We believe that this is an interesting problem.

Acknowledgements. We want to thank R. Durán for valuable help.
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