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Abstract. In this paper we study the existence of infinitely many nontrivial

solutions of the following problem, −∆2u = u in Ω, − ∂∆u
∂ν

= f(x, u) on ∂Ω,

and either ∂u
∂ν

= 0 or ∆u = 0 on ∂Ω. We assume that f(x, u) is superlinear
and either subcritical or a sublinear perturbation of the critical case. For the

proof in the critical case we apply the concentration compactness method.

1. Introduction.

In this paper we study the existence of nontrivial solutions of the following fourth
order problem,

(1.1)
{
−∆2u = u in Ω,
−∂∆u

∂ν = f(x, u) on ∂Ω.

Here Ω is a bounded smooth domain in RN , ∂
∂ν is the outer normal derivative and

f : ∂Ω × R × R → R is a smooth function with some precise assumptions that we
will state below. Also we impose one of the following boundary conditions

(1.2) ∆u = 0 on ∂Ω,

or

(1.3)
∂u

∂ν
= 0 on ∂Ω.

Existence results for nonlinear elliptic problems of fourth order have deserved a
great deal of interest (see for example [6]). In the semilinear case see the references
[3], [7] and [14] for some existence results. See also [15] for some nonexistence results
also in the semilinear case. However the nonlinear boundary conditions are less
covered in the literature (see for example [4], [10] for the Laplace equation in a half
space). The aim of this work is to show how the usual variational techniques can be
extended to deal with fourth order problems with nonlinear boundary conditions.
So, we address the existence problem with a nonlinear boundary condition for the
bilaplacian operator.

In this work we find infinitely many weak solutions for problems (1.1)-(1.2) and
(1.1)-(1.3) under suitable assumptions on the nonlinearity f . First, we consider a
subcritical superlinear nonlinearity f . To handle this case, we apply abstract results
from critical point theory, some topological tools and Sobolev trace inequalities to
deal with the boundary terms. The proofs are rather elementary, but we include
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a sketch for the sake of completeness. Next, we study a critical nonlinearity with
a sublinear perturbation. This is the main part of the paper. For this case, our
results are inspired by [3] where the authors study a similar nonlinearity in the
semilinear case. The method that we apply here is the concentration compactness
method combined with topological arguments. We remark that the results proved
here can be extended to handle equations like −∆2u = u + g(x, u) with the same
boundary conditions. To clarify the exposition we will state and prove our results
for (1.1)-(1.3) and (1.1)-(1.2), leaving the details to the reader for the general case
using similar hypothesis on g that the ones used here on f .

For weak solutions of problems (1.1)-(1.2) and (1.1)-(1.3) we understand critical
points of the associated energy functional,

(1.4) F(u) =
1
2

∫
Ω

|∆u|2 + |u|2 dx−
∫

∂Ω

F (x, u) dσ,

where ∂F
∂u (x, u) = f(x, u).

This functional has to be set in H = {u ∈ H2(Ω) : ∂u
∂ν = 0 on ∂Ω} for the

boundary condition (1.3) and in H2(Ω) for (1.2). Throughout this paper we will
consider the norm in H2(Ω) given by ‖u‖2

H2(Ω) = ‖∆u‖2
L2(Ω) + ‖u‖2

L2(Ω).

For (1.1)-(1.3) integration by parts shows that critical points of F are weak
solutions of the problem. But, for (1.1)-(1.2) it is not immediate why the boundary
condition (1.2) is verified, so we need to show further regularity on critical points
to ensure this boundary condition. This is performed in §2.

In §3 we assume that f(x, u) is superlinear and subcritical. The precise assump-
tions on the nonlinearity f are the following:

(1.5) |f(x, u)| ≤ C (|u|p + 1) ,

(1.6) F (x, u) = F (x,−u)

and for r > 0 small, if |u| ≤ r,

(1.7) |F (x, u)| ≤ C|u|α,

where α > 2 and p satisfies

(1.8) 1 < p <
N + 2
N − 4

,

if N > 4. For |u| > R large enough,

(1.9) F (x, u) ≤ 1
p + 1

f(x, u)u.

This implies (cf. [8])

(1.10) F (x, u) ≥ C|u|p+1 − C.

Our first result is:
Theorem 1.1. Let us assume that f : ∂Ω × R → R verifies (1.5)-(1.9). Then
there exist infinitely many nontrivial solutions to (1.1)-(1.2) and infinitely many
nontrivial solutions to (1.1)-(1.3).

In §4 we arrive at the main point of the paper, the critical case. More precisely,
we assume that f is a sublinear perturbation of the critical power in the following
sense

(1.11) f(x, u) = |u|
6

N−4 u + λ|u|q−1u where 0 < q < 1.
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We remark that 6
N−4 + 1 = N+2

N−4 which is the critical exponent for our problem in
the sense that p = N+2

N−4 = 6
N−4 + 1 is the critical exponent corresponding to the

inclusion H2(Ω) ↪→ Lp+1(∂Ω). In this case we have the following result:

Theorem 1.2. Let f satisfies (1.11) then there exists a constant A such that if 0 <
λ < A, problem (1.1)-(1.2) and problem (1.1)-(1.3) have infinitely many nontrivial
solutions.

The paper is organized as follows, in §2 we prove a regularity result for critical
points of F that enables us to show that the boundary condition (1.2) is satisfied.
In §3, we prove the existence of infinitely many critical points in the subcritical
case (Theorem 1.1). Finally in §4 we deal with the critical case (Theorem 1.2).

2. A regularity result

In this section we prove a regularity result for critical points of F in H2(Ω).
First we observe that if u is a critical point of F then it verifies

(2.1) 0 =
∫

Ω

∆u∆φ + uφ dx−
∫

∂Ω

f(x, u)φ dσ.

As u is in H2(Ω), by our hypothesis on f (1.5)-(1.9) and the Sobolev trace Theorem
(cf. [1]) we have that f(x, u) is in Lr(∂Ω) with r = 2(N−1)

p(N−4) ≥ 1. Therefore v = ∆u

is a weak solution of

(2.2)
{
−∆v = u in Ω,

∂v
∂ν = −f(x, u) on ∂Ω.

By standard regularity theory (cf. [9]) we have that v = ∆u ∈ W 1,r(Ω), hence ∆u
has a trace on ∂Ω and by integration by parts in (2.1) we conclude that ∆u = 0 in
the sense of traces on ∂Ω. Hence we have proved the following result:

Theorem 2.1. Every critical point of F in H2(Ω) belongs to W 3,r(Ω), r = 2(N−1)
p(N−4) ,

and verifies ∆u |∂Ω≡ 0 in the sense of traces.

3. Proof of Theorem 1.1

In this section we consider problems (1.1)-(1.2) and (1.1)-(1.3) with f subcriti-
cal, i.e. under hypotheses (1.5)-(1.9). The proof of Theorem 1.2 is an immediate
consequence of a rather general Theorem due to [2]. We make only a sketch of the
proof. Let us begin by checking the Palais-Smale condition.

Proposition 3.1. F verifies the Palais-Smale condition.

Proof. First, we consider F defined in H2(Ω). Let (un)n≥1 ⊂ H2(Ω) be a Palais-
Smale sequence, that is

(3.1) |F(un)| ≤ c and F ′(un) → 0.

Let us first prove that (3.1) implies that (un) is bounded in H2-norm. In fact,
from (3.1) it follows that there exists a sequence εn → 0 such that

(3.2) |F ′(un)w| ≤ εn‖w‖H2(Ω), ∀w ∈ H2(Ω).
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Now, using (3.1),

c +
1

p + 1
εn‖un‖H2(Ω) ≥ F(un)− 1

p + 1
F ′(un)un

= (
1
2
− 1

p + 1
)
∫

Ω

|∆un|2 + |un|2 dx−
∫

∂Ω

F (un)− 1
p + 1

f(un)un dσ.

(3.3)

From (1.9) and (3.3) we obtain c(1 + ‖un‖H2(Ω)) ≥ ‖un‖2
H2(Ω) and then, un is

bounded in H2(Ω). Now the proof follows using standard arguments, using the
subcriticality assumption on f , (1.8). The case where F is defined in H = {u ∈
H2(Ω) : ∂u/∂ν = 0} can be handled in an analogous way. �

Now we recall a topological tool, the genus, that was introduced in [11] but we
will use an equivalent definition due to [5]. Given a Banach Space X, we consider
the class

(3.4) Σ = {A ⊂ X : A is closed, A = −A}.

Over this class we define the genus, γ : Σ → N ∪ {∞}, as

γ(A) = min{k ∈ N : there exists ϕ ∈ C(A, Rk − {0}), ϕ(x) = −ϕ(−x)}.

We need the following properties of the genus.

Proposition 3.2. ([16], Proposition 7.5) Let A, B ∈ Σ. Then

(1) If there exists an odd map f ∈ C(A,B), then γ(A) ≤ γ(B).
(2) If A ⊂ B, then γ(A) ≤ γ(B).
(3) γ(A ∪B) ≤ γ(A) + γ(B).
(4) If A is compact, then γ(A) < ∞ and there exists δ > 0 such that γ(Nδ(A)) =

γ(A), where Nδ(A) = A + Bδ(0).

For the proof of Theorem 1.1, we will use the following Theorem due to [2],

Theorem 3.1. ([2], Theorem 2.23) Let F : X → R verifying

(1) F ∈ C1(X) and even.
(2) F verifies the Palais-Smale condition.
(3) There exists a constant r > 0 such that F(u) > 0 in 0 < ‖u‖X < r, and

F(u) ≥ c > 0 if ‖u‖X = r.
(4) There exists a closed subspace Em ⊂ X of dimension m, and a compact set

Am ⊂ Em such that F < 0 on Am and 0 lies in a bounded component of
Em −Am in Em.

Let

Γ = {h ∈ C(X, X) : h(0) = 0, h is an odd homeomorphism and F(h(B)) ≥ 0},

and

Km = {K ⊂ X : K = −K, K is compact, and γ(K ∩ h(∂B)) ≥ m for all h ∈ Γ},

where B is the unit ball. Then,

(3.5) cm = inf
K∈Km

max
u∈K

F(u)

is a critical value of F , with 0 < c ≤ cm ≤ cm+1 < ∞. Moreover, if cm = cm+1 =
· · · = cm+r then γ(Kcm

) ≥ r + 1 where Kcm
= {u ∈ X : F ′(u) = 0, F(u) = cm}.
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With this result, we are able to prove Theorem 1.1.
Proof of Theorem 1.1: We deal with the functional F in H2(Ω). The other
boundary condition can be handled in a similar fashion.

We have to check the hypotheses of Theorem 3.1. The fact that F is C1 and
even is a consequence of our hypotheses on f (1.5)-(1.6) (see [16] for details). The
Palais-Smale condition was already checked in Lemma 3.1.

To verify 3 let us consider, for a fixed u ∈ H2(Ω), ‖u‖H2(Ω) = 1 and t small,
using (1.7) and the Sobolev trace Theorem,

g(t) := F(tu) =
t2

2
−
∫

∂Ω

F (tu) dσ ≥ t2

2
− Ctα.

As α > 2, we have that g(t) ≥ δ > 0 if t < t0.
Finally, we have to check 4. We consider subspaces Em ⊂ Em+1 ⊂ H2(Ω) such

that u 6≡ 0 on ∂Ω for every u ∈ Em, u 6= 0 in the sense of traces. We observe that,
as dim Em < ∞, then

min
{u∈Em, ‖u‖H2(Ω)=1}

∫
∂Ω

up+1 dσ > 0.

As Am we take {u ∈ Em : ‖u‖H2(Ω) = R}. Now, if u ∈ Am then, by (1.10),

F(u) =
R2

2
−
∫

∂Ω

F (u) dσ ≤ R2

2
− CRp+1 min

{u∈Em, ‖u‖H2(Ω)=1}

∫
∂Ω

up+1 dσ + C

therefore, if we choose R large enough, we have 4. �

4. Proof of Theorem 1.2

In this section we study the critical case with a sublinear perturbation, i.e. f

verifies (1.11), that is f(x, u) = |u|
6

N−4 u+λ|u|q−1u where 0 < q < 1. The technical
result used here, the concentrated compactness method, is mainly due to [12],
[13]. See [3] for the concentration compactness principle applied to a fourth order
semilinear problem. Throughout this section, we will call E the space H2(Ω) or
H = {u ∈ H2(Ω) : ∂u

∂ν = 0}. As before we are considering any of the two boundary
conditions (1.3) or (1.2).

To prove our existence result, since we have lost the compactness in the inclusion
H2(Ω) ↪→ Lp+1(∂Ω), we can no longer expect the Palais-Smale condition to hold.
Anyway we can prove a local Palais-Smale condition that will hold for F(u) below
a certain value of energy.

Let uj be a bounded sequence in E then there exists a subsequence, that we still
denote uj , such that uj ⇀ u weakly in E, ∆uj ⇀ dµ, |uj |∂Ω |

2N−2
N−4 ⇀ dη, weakly-*

in the sense of measures.
If we consider φ ∈ C∞(Ω), from the Sobolev trace inequality we obtain(∫

∂Ω

|φ|
2N−2
N−4 dη

) N−4
2N−2

S1/2 ≤
(∫

Ω

|φ|2dµ

)1/2

+ 2
(∫

Ω

〈∇φ∇u〉2dx

)1/2

+(∫
Ω

|∆φ|2|u|2dx

)1/2

+
(∫

Ω

|φ|2|u|2dx

)1/2

,

(4.1)

where S is the best constant in the Sobolev trace embedding Theorem.
¿From (4.1), we have that, if u = 0 we get a reverse Holder type inequality (it

involves one integral over ∂Ω and one over Ω) between the two measures µ and η.
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Now we state the following Lemma due to [12], [13].
Lemma 4.1. ([12], [13]) Let uj be a weakly convergent sequence in E with weak
limit u such that ∆uj ⇀ dµ and |uj |∂Ω |

2N−2
N−4 ⇀ dη, weakly-* in the sense of

measures. Then there exists x1, ..., xl ∈ ∂Ω such that

(1) η = |u|
2N−2
N−4 +

∑l
j=1 ηjδxj , ηj > 0,

(2) µ ≥ |∆u|2 +
∑l

j=1 µjδxj , µj > 0,

(3) (ηj)
N−4
N−1 ≤ µj

S

Next, we use Lemma 4.1 to prove a local Palais-Smale condition.
Lemma 4.2. Let uj ⊂ E be a Palais-Smale sequence for F , with energy level c.
If c < 3

2N−2S
N−1

3 −Kλ
2N−2

N+4−(N−4)q , where K depends only on q, N , and |∂Ω|, then
there exists a subsequence ujk

that converges strongly in E.

Proof. From the fact that uj is a Palais-Smale sequence it follows that uj is bounded
in E (see Lemma 3.1). By Lemma 4.1 there exists a subsequence, that we still
denote uj , such that

uj ⇀ u weakly in E,

uj → u in Lr(∂Ω), 1 < r <
2N − 2
N − 4

, and a.e. in ∂Ω,

|∆uj |2 ⇀ dµ ≥ |∆u|2 +
l∑

k=1

µkδxk
,

|uj |∂Ω |
2N−2
N−4 ⇀ dη = |u |∂Ω |

2N−2
N−4 +

l∑
k=1

ηkδxk
.

(4.2)

Let φ ∈ C∞(RN ) such that φ ≡ 1 in B(xk, ε), φ ≡ 0 in B(xk, 2ε)c, |∇φ| ≤ 2/ε and
|∆φ| ≤ 2/ε2, where xk is a point at ∂Ω that belongs to the support of dη. Consider
(ujφ). Obviously this sequence is bounded in E. As F ′(uj) → 0, we obtain that∫

∂Ω

φ dη + λ

∫
∂Ω

|u|q+1φdσ =
∫

Ω

|u|2φdx + lim
j→∞

∫
Ω

∆uj∆(ujφ) dx.

By (4.2) we obtain,

lim
j→∞

∫
Ω

∆uj∆(ujφ) dx =
∫

Ω

φdµ + lim
j→∞

∫
Ω

∆uj(2∇uj∇φ + uj∆φ) dx.

Now, by Hölder inequality and weak convergence,

0 ≤ lim
j→∞

∣∣∣∣∫
Ω

∆uj∇uj∇φdx

∣∣∣∣ ≤ lim
j→∞

(∫
Ω

|∆uj |2 dx

)1/2(∫
Ω

|∇φ|2|∇uj |2 dx

)1/2

≤ C

(∫
B(xk,ε)∩Ω

|∇φ|2|∇u|2 dx

)1/2

≤ C

(∫
B(xk,ε)∩Ω

|∇φ|N dx

)1/N (∫
B(xk,ε)∩Ω

|∇u|2N/(N−2) dx

)(N−2)/2N

≤ C

(∫
B(xk,ε)∩Ω

|∇u|2N/(N−2) dx

)(N−2)/2N

→ 0, as ε → 0.



A FOURTH ORDER PROBLEM 7

Analogously, we obtain

0 ≤ lim
j→∞

∣∣∣∣∫
Ω

∆ujuj∆φdx

∣∣∣∣ ≤ C

(∫
B(xk,ε)∩Ω

|u|2N/(N−4) dx

)(N−4)/2N

→ 0,

as ε → 0. Then

(4.3) lim
ε→0

[∫
∂Ω

φdη + λ

∫
∂Ω

|u|qφdσ −
∫

Ω

φdµ−
∫

Ω

|u|2φdx

]
= ηk − µk = 0.

By Lemma 4.1 we have that (ηk)
N−4
N−1 S ≤ µk, hence by (4.3) we obtain (ηk)

N−4
N−1 S ≤

ηk. Then, either ηk = 0 or

(4.4) ηk ≥ S
N−1

3 .

If (4.4) does indeed occurs for some k0 then, from the fact that uj is a Palais-Smale
sequence, we obtain

(4.5) c = lim
j→∞

F(uj) = lim
j→∞

(F(uj)−F ′(uj)uj) ≥

3
2N − 2

∫
∂Ω

|u|
2N−2
N−4 dσ +

3
2N − 2

S
N−1

3 − λ(
1

q + 1
− 1

2
)
∫

∂Ω

|u|q+1 dσ.

As 0 < q < 1, we can apply Hölder inequality in (4.5) to obtain

c ≥ 3
2N − 2

∫
∂Ω

|u|
2N−2
N−4 dσ +

3
2N − 2

S
N−1

3 −

λ(
1

q + 1
− 1

2
)|∂Ω|

N+4−(N−4)q
2N−2

(∫
∂Ω

|u|
2N−2
N−4 dσ

) (q+1)(N−4)
2N−2

.

Let ϕ(t) = c1 + c2t
2N−2
N−4 − λc3t

q+1. The minimum of ϕ is attained at t0 =(
λc3(q+1)(N−4)

(2N−2)c2

) N−4
N+4−(N−4)q

. Therefore,

ϕ(t) ≥ ϕ(t0) = c1 + c2(t0)
N−4
2N−2 − λc3(t0)q+1 =

3
2N − 2

S
N−1

3 −Kλ
2N−2

N+4−(N−4)q ,

which contradicts the hypothesis that c < 3
2N−2S

N−1
3 −Kλ

2N−2
N+4−(N−4)q . This implies

that ηk = 0 for every k, therefore, by (4.2), we have that ‖uj‖H2(Ω) → ‖u‖H2(Ω).
This fact and the weak convergence end the proof. �

We observe, using the trace Theorem, that

F(u) ≥ 1
2
‖u‖2

H2(Ω) − c1‖u‖
2N−2
N−4

H2(Ω) − λc2‖u‖q+1
H2(Ω) = j(‖u‖H2(Ω))

where j(x) = 1
2x2 − c1x

2N−2
N−4 − λc2x

q+1. As j attains a local but not a global
minimum (j is not bounded below), we have to perform some sort of truncation.
To this end let x0, x1 be such that m < x0 < M < x1 where m is the local minimum
of j and M is the local maximum and j(x1) > j(m). For these values x0 and x1

we can choose a smooth function τ(x) such that τ(x) = 1 if x ≤ x0, τ(x) = 0 if
x ≥ x1 and 0 ≤ τ(x) ≤ 1. Finally, let ϕ(u) = τ(‖u‖H2(Ω)) and define the truncated
functional as follows
(4.6)

F̃(u) =
1
2

∫
Ω

|∆u|2 + |u|2 dx− N − 4
2N − 2

∫
∂Ω

|u|
2N−2
N−4 ϕ(u) dσ − λ

1
q + 1

∫
∂Ω

|u|q+1 dσ.
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As above, F̃(u) ≥ j̃(‖u‖H2(Ω)) where j̃(x) = 1
2x2 − c1x

2N−2
N−4 τ(x) − λc2x

q+1. We
observe that if x ≤ x0 then j̃(x) = j(x) and if x ≥ x1 then j̃(x) = 1

2x2 − λc2x
q+1.

Now we state a Lemma that contains the main properties of F̃ .
Lemma 4.3. F̃ is C1, if F̃(u) ≤ 0 then ‖u‖H2(Ω) < x0 and F(v) = F̃(v) for
every v close enough to u. Moreover there exists A = A(q, N,Ω) > 0 such that if
0 < λ < A then F̃ satisfies a local Palais-Smale condition for c ≤ 0.

Proof. We only have to check the local Palais-Smale condition. Observe that every
Palais-Smale sequence for F̃ with energy level c ≤ 0 must be bounded, therefore
by Lemma 4.2 if λ verifies 0 < 3

2N−2S
N−1

3 − Kλ
2N−2

N+4−(N−4)q then there exists a
convergent subsequence. �

Next Lemma gives the final ingredient needed in the proof of Theorem 1.2.
Lemma 4.4. For every n ∈ N there exists ε > 0 such that γ(F̃−ε) ≥ n, where
F̃−ε = {u , F̃(u) ≤ −ε}.

Proof. Fix n ∈ N and choose En an n−dimensional subspace such that u |∂Ω 6≡ 0 if
u ∈ En, u 6≡ 0. Therefore,

αn = inf{
∫

∂Ω

|u|
N+2
N−4 dσ, u ∈ En, ‖u‖H2(Ω) = 1} > 0,

βn = inf{
∫

∂Ω

|u|q+1dσ, u ∈ En, ‖u‖H2(Ω) = 1} > 0.

Now take u ∈ En with ‖u‖H2(Ω) = 1, then for 0 < ρ < x0 it holds

F̃(ρu) = F(ρu) ≤ 1
2
ρ2 − αn

N − 4
N + 2

ρ
N+2
N−4 − βn

λ

q + 1
ρq+1.

As q < 1 we can choose ε = ε(ρ) > 0 such that F̃(ρu) ≤ −ε if u ∈ En, ‖u‖H2(Ω) = 1.
Therefore, by the monotonicity of the genus, γ(F̃−ε) ≥ γ(∂B(0, ρ) ∩ En) = n. �

Finally, we are ready to prove the main result of the paper.
Proof of Theorem 1.2 Let

Σk = {C ⊂ H2(Ω)− {0}, C is closed , C = −C, γ(C) ≥ k}
and

ck = inf
C∈Σk

sup
u∈C

F̃(u), Kc = {u ∈ H2(Ω), F̃ ′(u) = 0, F̃(u) = c}.

We want to show that if c = ck = ck+1 = · · · = ck+r then γ(Kc) ≥ r + 1. With
this purpose, we first prove that −∞ < ck < 0. In fact, by Lemma 4.4 there exists
ε = ε(k) > 0 such that γ(F̃−ε) ≥ k. Now as F̃ is continuous and even, F̃−ε ∈ Σk

then ck ≤ −ε < 0. As F̃ is bounded from below it follows that ck > −∞.
Let us assume by contradiction that c = ck = · · · = ck+r and γ(Kc) < r + 1.

Observe that as c < 0, F̃ verifies the Palais-Smale condition in Kc and therefore Kc

is compact. Also it is symmetric. Now, by the deformation Lemma (cf. [16]), there
exists an odd homeomorphism η : H2(Ω) → H2(Ω) such that η(F̃c+δ−Kc) ⊂ F̃c−δ

and one can easily check that we must choose 0 < δ < −c because F̃ verifies the
Palais-Smale condition on F̃0. We have c = ck+r = infC∈Σk+r

supu∈C F̃(u). Hence
there exists C ∈ Σk+r such that supu∈C F̃(u) ≤ c + δ and therefore

(4.7) η(C −Kc) ⊂ η(F̃c+δ −Kc) ⊂ F̃c−δ.
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But γ(C −Kc) ≥ γ(C)−γ(Kc) ≥ k and γ(η(C −Kc)) ≥ γ(C −Kc) ≥ k. Therefore
η(C −Kc) ∈ Σk, since η(C −Kc) ∈ Σk implies sup

u∈η(C−Kc)
F̃(u) ≥ ck = c, this

contradicts (4.7). We get infinitely many critical points of F̃ with negative energy
and hence, by Lemma 4.3, these points are critical points of F . This shows the
existence of infinitely many weak solutions of (1.1)-(1.2). �
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