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Abstract. In this paper we study the spectral counting function for the

weighted p-laplacian in one dimension. First, we prove that all the eigenvalues
can be obtained by a mini-max characterization and then we show the exis-
tence of a Weyl-type leading term. Finally we find estimates for the remainder
term.

1. Introduction

In this paper we study the following eigenvalue problem:

(1.1) −(ψp(u′))′ = λr(x)ψp(u),

in a bounded open set Ω ⊂ R, with Dirichlet or Neumann boundary conditions.
Here, the weight r is a real-valued, bounded, positive continuous function, λ is a
real parameter, 1 < p < +∞ and

ψp(s) = |s|p−2s,

for s 6= 0 and 0 if s = 0.
From [7] Theorem 1.1 pag. 233, we know that the spectrum consists on a count-

able sequence of nonnegative eigenvalues λ1 < λ2 ≤ . . . ≤ λk ≤ . . . (repeated
according multiplicity) tending to +∞. See also [15] were a similar result is ob-
tained for the radial p-laplacian and for the one-dimensional p-laplacian with mixed
boundary conditions. With the same ideas as in [3], Theorem 4.1 it is easy to prove
that the sequence {λk}k coincides with the eigenvalues obtained by the Ljusternik-
Schnirelmann theory. We recall that the variational characterization of the eigen-
values is as follows:

(1.2) λΩ
k = inf

F∈CΩ
k

sup
u∈F

∫
Ω

|u′|p,

where
CΩ

k =
{
C ⊂MΩ : C compact , C = −C, γ(C) ≥ k

}
,

MΩ =
{
u ∈W 1,p

0 (Ω) ( resp., W 1,p(Ω) ) :
∫

Ω

r(x)|u|p = 1
}

and γ(C) is the Krasnoselskii genus (see [16] for the definition and properties of γ).
So our first result is,

Theorem 1.1. Every eigenvalue of problem (1.1) is given by (1.2).
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We define the spectral counting function N(λ,Ω) as the number of eigenvalues
of problem (1.1) less than a given λ :

N(λ,Ω) = #{k : λk ≤ λ}.
We will write ND(λ,Ω) (resp., NN (λ,Ω)) whenever we need to stress the depen-
dence on the Dirichlet (resp., Neumann) boundary conditions.

The problem of estimating the spectral counting function has a long history,
special in the linear case (p=2). See for instance [5, 9, 10, 12] and the references
therein.

However, up to our knowledge, for p 6= 2 there is a lack of information about
the behavior of N(λ,Ω). The only known result is due to [8]. In that paper, the
authors show that the eigenvalues of the p-laplacian in Rn (with r = 1) obtained
by the mini-max theory satisfy

(1.3) c1(Ω)kp/n ≤ λk ≤ c2(Ω)kp/n.

It is easy to see that this eigenvalue inequality is equivalent to

C1(Ω)λn/p ≤ N(λ,Ω) ≤ C2(Ω)λn/p,

for certain positive constants when λ→∞, see Lemma 3.2 below.
Our next result is concerned with the asymptotic behavior of the eigenvalues of

(1.1) and begins our analysis of the function N(λ,Ω).
We obtain the following asymptotic expansion:

(1.4) N(λ,Ω) ∼ λ1/p

πp

∫
Ω

r1/p,

as λ→∞, where πp is defined as

(1.5) πp = 2(p− 1)1/p

∫ 1

0

ds

(1− sp)1/p
.

The proof is based on variational arguments, including a suitable extension of the
‘Dirichlet-Neumann bracketing’ method, see [2]. We prove,

Theorem 1.2. Let r(x) be a real-valued, positive and bounded continuous function
in Ω. Then,

(1.6) N(λ,Ω) =
λ1/p

πp

∫
Ω

r1/p + o(λ1/p).

Observe that by Theorem 1.2, the asymptotic behavior of the eigenvalues (1.3)
is improved. In fact, what (1.6) implies is

λk ∼ ckp.

Once we found the first order asymptotics of N(λ,Ω), it is natural to try to
improve these estimates and look for a second order term.

Following the ideas of [5], we analyze the remainder term R(λ,Ω) = N(λ,Ω) −
1

πp

∫
Ω
(λr)1/p. We show that

(1.7) R(λ,Ω) = O(λδ/p),

where δ ∈ (0, 1] depends on the regularity of the boundary ∂Ω and on the smooth-
ness of the weight r measured in a subtle way. To this end, let us introduce the
following definitions:
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Given any η > 0 sufficiently small, we consider a tessellation of R by a countable
family of disjoint open intervals {Iζ}ζ∈Z, of length η.

Definition 1.3. Let Ω be a bounded open set in R. Given β > 0, we say that
the boundary ∂Ω satisfies the “β-condition” if there exist positive constants c0 and
η0 < 1 such that for all η ≤ η0,

(1.8)
#(J \ I)

#I
≤ c0η

β ,

where

I = I(Ω) = {ζ ∈ Z : Iζ ⊂ Ω},(1.9)

J = J(Ω) = {ζ ∈ Z : Iζ ∩ Ω 6= ∅}.(1.10)

It is easy to see that if the set is Jordan contented (i.e., it is well approximated
from within and without by a finite union of intervals), then it verifies the “β-
condition” for β = 1. The coefficient β allows us to measure the smoothness of
∂Ω.

Definition 1.4. Given γ > 0, we say that the function r satisfies the “γ-condition”
if there exist positive constants c1 and η1 < 1 such that for all ζ ∈ I(Ω) and all
η ≤ η1,

(1.11)
∫

Iζ

|r − rζ |1/p ≤ c1η
γ ,

where rζ =
(
|Iζ |−1

∫
Iζ
r1/p

)p

is the mean value of r1/p in Iζ .

Remark 1.5. 1. The coefficient γ enable us to measure the smoothness of r, the
larger γ, the smoother r.

2. When r is Hölder continuous of order θ > 0 and is bounded away from zero
on Ω, then it satisfies the γ-condition for 0 < γ ≤ 1 + θ/p.

If r is only continuous and positive on Ω, then it satisfies the γ-condition for
0 < γ ≤ 1

Now we are ready to state the theorem,

Theorem 1.6. Let Ω be a bounded open set in R with boundary ∂Ω satisfying the
“β-condition” for some β > 0, and let r be a bounded, positive and continuous
function satisfying the “γ-condition” for some γ > 1. Set ν = min(β, γ− 1). Then,
for all δ ∈ [1/(ν + 1), 1], we have

(1.12) N(λ,Ω)− 1
πp

∫
Ω

(λr)1/p = O(λδ/p)

Finally, we end this article with some examples where we compute the remainder
term explicitly.

The paper is organized as follows. In §2, we introduce the genus in a version due
to Krasnoselskii and prove the variational characterization of all the eigenvalues
together with some auxiliary lemmas. In §3, we prove the asymptotic expansion
(1.4). We analyze the remainder estimate in §4. Finally, in §5, we compute explicitly
a non-trivial second term for r = 1 and analyze the asymptotic behavior of the
eigenvalues.
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2. Variational characterization of the eigenvalues

In this section we first show that every eigenvalue of (1.1) is given by a variational
characterization and then we prove the Dirichlet-Neumann bracketing method that
will be the main tool in the remaining of the paper.

So let us begin with the proof of Theorem 1.1.

Proof of Theorem 1.1. The proof follows the lines of Theorem 4.1 of [3].
By [7] the spectrum is countable and we can assume that it is given by µ1 < µ2 ≤

· · · . Given (uk, µk) an eigenpair of (1.1), we claim that uk has k nodal domains. It
is clear that the number of nodal domains is less or equal than k (see for instance
[1]). Now the claim follows by induction, since the first eigenfunction has exactly
one nodal domain, and by [15] Theorem 4.1 (b) if uk has k nodal domains, uk+1

has at least k + 1 nodal domains.
Now, if (uk, µk) is an eigenpair of (1.1), we can consider wi(x) = uk(x) if x

belong to the ith nodal domain, and wi(x) = 0 elsewhere. Let St be the sphere in
W 1,p(Ω) of radius t. Then, the set Ck = span{w1, . . . , wk} ∩ St has genus k and
is an admissible set in the characterization (1.2) of the kth variational eigenvalue
λk, from where it follows that λk ≤ µk and then λk = µk. The proof is now
complete. �

The remaining of the section is devoted to the proof of the so called Dirichlet-
Neumann bracketing method. We want to remark that these results hold for arbi-
trary dimensions n ≥ 1 if one consider only the variational eigenvalues.

Theorem 2.1. Let U1, U2 ∈ Rn be disjoint open sets such that (U1 ∪ U2)int = U
and |U \ U1 ∪ U2|n = 0, then

ND(λ,U1 ∪ U2) ≤ ND(λ,U) ≤ NN (λ,U) ≤ NN (λ,U1 ∪ U2).

Here |A|n stands for the n-dimensional Lebesgue measure of the set A.

Proof. It is an easy consequence of the following inclusions

(2.1) W 1,p
0 (U1 ∪ U2) = W 1,p

0 (U1)⊕W 1,p
0 (U2) ⊂W 1,p

0 (U)

and

(2.2) W 1,p(U) ⊂W 1,p(U1)⊕W 1,p(U2) = W 1,p(U1 ∪ U2),

and the variational formulation (1.2). In fact, using that

MU (X) =
{
u ∈ X :

∫
U

r(x)|u|p = 1
}
⊂MU (Y ) =

{
u ∈ Y :

∫
U

r(x)|u|p = 1
}
,

and that CU
k (X) ⊂ CU

k (Y ) where X = W 1,p
0 (U1∪U2) or W 1,p(U) and Y = W 1,p

0 (U)
or W 1,p(U1 ∪ U2) respectively, we obtain the desired inequality. �

The Dirichlet-Neumann bracketing method is a powerful tool when combined
with the following result:

Proposition 2.2. Let Ω = ∪jΩj, where {Ωj}j is a pairwise disjoint family of
bounded open sets in Rn. Then,

(2.3) N(λ,Ω) =
∑

j

N(λ,Ωj).
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Proof. Let λ be an eigenvalue of problem (1.1) in Ω, and let u be the associated
eigenfunction. For all v ∈W 1,p

0 (Ω) we have

(2.4)
∫

Ω

|∇u|p−2∇u∇v − λ

∫
Ω

|u|p−2uv = 0.

Choosing v with compact support in Ωj , we conclude that u|Ωj
is an eigenfunction

of problem (1.1) in Ωj with eigenvalue λ.
For the other inclusion, it is sufficient to extend an eigenfunction u in Ωj by zero

outside, which gives an eigenfunction in Ω. �

3. The function N(λ)

In this section we prove the asymptotic expansion given by Theorem 1.2.
First let us recall the following lemma.

Lemma 3.1. Let {λk}k∈N be the eigenvalues of (1.1) in (0, T ), with Dirichlet
boundary condition and r = 1. Then,

(3.1) λk =
πp

p

T p
kp.

Let {µk}k∈N be the eigenvalues of (1.1) in (0, T ), with Neumann boundary con-
dition and r = 1. Then,

(3.2) µk =
πp

p

T p
(k − 1)p.

Proof. This result was proved in [14]. �

With the aid of Lemma 3.1 we can prove the following.

Lemma 3.2. Let {λk}k∈N be the eigenvalues of (1.1) in (0, T ) and suppose that
m ≤ r(x) ≤M . Then,

(3.3)
1
M

πp
p

T p
kp ≤ λk ≤

1
m

πp
p

T p
kp,

and

(3.4)
Tm1/p

πp
λ1/p − 1 ≤ N(λ, (0, T )) ≤ TM1/p

πp
λ1/p.

Proof. Equation (3.3) is an easy consequence of the Sturmian Comparison principle
in [15] (pag. 182 Theorem 4.1 (b) and the subsequent Corollary) and the explicit
formula for the eigenvalues with constant weight. Now,

(3.5) #
{
k :

πp
pk

p

T pM
≤ λ

}
≤ #{k : λk ≤ λ} ≤ #

{
k :

πp
pk

p

T pm
≤ λ

}
.

The left hand side is greater than

Tm1/p

πp
λ1/p − 1,

which gives the lower bound. In the same way, we obtain

N(λ, (0, T )) ≤
[
Tm1/p

πp
λ1/p

]
≤ Tm1/p

πp
λ1/p.

This finishes the proof. �
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Now we prove a proposition that is the key ingredient in the proof of Theorem
1.2.

Proposition 3.3. Let r(x) be a real-valued, positive continuous function in [0, T ].
Then,

(3.6) N(λ, (0, T )) =
λ1/p

πp

∫ T

0

r1/p + o(λ1/p).

Proof. Let [0, T ] = ∪1≤j≤JIj , Ij ∩ Ik = ∅ with |Ij | = T/J = η. We define

mj = inf
x∈Ij

r(x), Mj = sup
x∈Ij

r(x).

We can choose η > 0 such that

J∑
j=1

ηm
1/p
j =

∫ T

0

r1/p − ε1,

J∑
j=1

ηM
1/p
j =

∫ T

0

r1/p + ε2,

with ε1, ε2 > 0 arbitrarily small.
From Theorem 2.1 and Proposition 2.2, we obtain

J∑
j=1

ND(λ, Ij) ≤ N(λ, (0, T )) ≤
J∑

j=1

NN (λ, Ij).

Hence, using that

ND(λ, Ij) ≥ m
1/p
j

λ1/p

πp
− 1 and NN (λ, Ij) ≤M

1/p
j

λ1/p

πp
,

we have

λ1/p

πp

(∫ T

0

r1/p − ε1

)
− J ≤ N(λ, (0, T )) ≤ λ1/p

πp

(∫ T

0

r1/p + ε2

)
.

Letting λ→∞, we have
N(λ, (0, T ))
λ1/p

πp

∫ T

0
r1/p

→ 1

and the proof is complete. �

Finally, we arrive at the proof of Theorem 1.2.

Proof of Theorem 1.2. It is an easy consequence of Proposition 2.2 and Proposition
3.3. Let Ω = ∪∞j=1Ij , then

(3.7) N(λ,Ω) =
∞∑

j=1

N(λ, Ij) ∼
∞∑

j=1

λ1/p

πp

∫
Ij

r1/p =
λ1/p

πp

∫
Ω

r1/p.

This completes the proof. �
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4. Remainder estimates

As we mentioned in the introduction, we now look for an improvement in the
asymptotic expansion of N(λ,Ω). This is the content of Theorem 1.6.

Proof of Theorem 1.6. For the convenience of the reader, the proof is divided into
several steps.

Moreover, we will stress the dependence of the spectral counting function with
respect to the weight function by writing N(λ,Ω, r).

Step 1. Let η > 0 be fixed. We define

(4.1) ϕ(λ) = π−1
p

∫
Ω

(λr)1/p, ϕ(λ, ζ) = ηπ−1
p (λrζ)1/p,

where rζ =
(
|Iζ |−1

∫
Iζ
r1/p

)p

.
From Theorem 2.1 we obtain

(4.2)
∑
ζ∈I

ND(λ, Iζ , r)− ϕ(λ) ≤ ND(λ,Ω, r)− ϕ(λ)

and

(4.3) ND(λ,Ω, r)− ϕ(λ) ≤
∑
ζ∈I

NN (λ, Iζ , r) +
∑

ζ∈J\I

NN (λ, Iζ ∩ Ω, r)− ϕ(λ).

We are reduced to find a bound for the left (resp., right) term of (4.2) (resp.,
(4.3)).

Step 2. We can rewrite (4.2) as:∑
ζ∈I

ND(λ, Iζ , r)− ϕ(λ) ≤
∑
ζ∈I

ND(λ, Iζ , rζ)− ϕ(λ, ζ) +
∑
ζ∈I

ϕ(λ, ζ)− ϕ(λ)

+
∑
ζ∈I

ND(λ, Iζ , r)−
∑
ζ∈I

ND(λ, Iζ , rζ).
(4.4)

Let us note that both
∑

ζ∈I ND(λ, Iζ , rζ)−ϕ(λ, ζ) and
∑

ζ∈I ϕ(λ, ζ)−ϕ(λ) are
negative. Now, by Lemma 3.2:

(4.5)
∑
ζ∈I

|ND(λ, Iζ , rζ)− ϕ(λ, ζ)| ≤ #(I)M ≤ η−1|Ω|.

We can bound∑
ζ∈I

ϕ(λ, ζ)− ϕ(λ) = π−1
p λ1/p

∑
ζ∈I

∫
Iζ

(r1/p − r
1/p
ζ ) +

∑
ζ∈J\I

∫
Iζ∩Ω

r1/p


as

(4.6) Cλ1/p#(J \ I)ηM ≤ Cλ1/pηβ .

Here we have used that r ≤M, and that ∂Ω satisfies the β-condition.
Finally, the third term in (4.4) can be handled using the monotonicity of the

eigenvalues with respect to the weight (see [15]). Using that r ≤ rζ + |r − rζ |, a
simple computation shows that

N(λ, Iζ , r) ≤ N(λ, Iζ , rζ) +N(λ, Iζ , |r − rζ |),
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which gives∑
ζ∈I

ND(λ, Iζ , r)−ND(λ, Iζ , rζ) ≤
∑
ζ∈I

N(λ, Iζ , |r − rζ |) ≤ Cλ1/p#(I)ηγ

and using the same arguments as above and the fact that r satisfies the γ-condition,
we obtain

(4.7)
∑
ζ∈I

ND(λ, Iζ , r)−ND(λ, Iζ , rζ) ≤ Cλ1/pηγ−1.

Collecting (4.5), (4.6) and (4.7) we have the lower bound

(4.8) Cλ1/p(ηβ + ηγ−1) + Cη−1.

Step 3. In a similar way, we can find an upper bound for (4.3),

(4.9)

∑
ζ∈I

NN (λ, Iζ , r)− ϕ(λ)

+
∑

ζ∈J\I

NN (λ, Iζ ∩ Ω, r).

We only need to estimate the last term, but

NN (λ, Iζ ∩ Ω, r) ≤ Cλ1/p

∫
Iζ∩Ω

r1/p ≤ C(Mηλ)1/p

and again, using the β-condition, we have

(4.10)
∑

ζ∈J\I

NN (λ, Iζ ∩ Ω, r) ≤ Cλ1/pηβ .

Hence, we obtain an upper bound for (4.3):

(4.11) Cλ1/p(ηβ + ηγ−1) + Cη−1.

Step 4. From (4.8) and (4.11) we obtain

(4.12) |N(λ,Ω)− 1
πp

∫
Ω

(λr)1/p| ≤ Cλ1/p(ηβ + ηγ−1) + Cη−1.

We now choose η = λ−a, with 0 < a ≤ δ. It is clear that the last term in (4.12)
is bounded by Cλδ. Also, it is easy to see that, if a ≥ 1

β ( 1
p − δ), then λ1/pηβ ≤ λδ.

Likewise, choosing a ≥ 1
γ−1 ( 1

p − δ), we have λ1/pηγ−1 ≤ λδ. When β = 0, or γ = 1,
we must choose a = 1/p.

This completes the proof. �

5. Concluding remarks

We end this paper showing a family of examples with a power-like second term,
and an example with an irregular second term. Finally, we discuss the asymptotic
behavior of the eigenvalues.

In the examples below, the parameter d provides some geometrical information
about ∂Ω. In both cases, d is the interior Minkowski (or box) dimension of the
boundary, we refer the reader to [4] and references therein for the definition and
properties of the Minkowski dimension.
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Examples of explicit second term. Let Ω = ∪jIj , where |Ij | = j−1/d, and
0 < d < 1. We have the following asymptotic expansion for the spectral counting
function when r = 1 :

(5.1) N(λ,Ω) =
|Ω|
πp
λ1/p + C(d)λd/p +O(λd/p(2+d)).

The proof can be obtained with number-theoretic methods. We have:

N(λ,Ω) =
∞∑

j=1

[j−1/d

πp
λ1/p

]
= #{(m,n) ∈ N2 : m.n1/d ≤ π−1

p λ1/p}.

In fact, for each j we can draw the vertical segment of length j−1/dλ1/p/πp in the
plane, and the series in the left is the number of lattice points below the function
y(x) = λ1/p

πp
x−1/d. See [13] for a detailed proof.

When p = 2 and |Ij | ∼ j−1/d, it is shown in [11] that

N(λ,Ω) =
|Ω|
πp
λ1/p + C(d)λd/p + o(λd/p),

without the lattice point theory, the same result is valid for p 6= 2. However, let
us note that the error in equation (5.1) is better, which enables us to obtain more
precise estimates whenever we know more about the asymptotic behavior of |Ij |.
On the other hand, the result in [11] holds for more general domains that the ones
considered here.

Example of irregular second term. Let Ω be the complement of the ternary
Cantor set, and r = 1. We have:

(5.2) N(λ,Ω) =
|Ω|
πp
λ1/p − f(ln(λ))λln(2)/p ln(3) +O(1).

Here f(x) is a bounded, periodic function. Our proof follows closely [6], where the
usual Laplace operator on a self-similar set in Rn was studied for every n ≥ 2.

Let us define ρ(x) = x− [x], it is evident that |ρ(x)| ≤ min(x, 1). Hence,

(5.3) N(λ,Ω)− |Ω|
πp
λ1/p = −

∞∑
j=0

2jρ

(
λ1/p

3j+1πp

)
≤ Cλ1/p.

It remains to prove the periodicity of f . We write the error term as

(5.4)
∞∑

j=−∞
2jρ

(
λ1/p

3j+1πp

)
−

−1∑
j=−∞

2jρ

(
λ1/p

3j+1πp

)
.

Using that |ρ(x)| ≤ 1, the second series converges and it is bounded by a constant.
Let us introduce the new variable

(5.5) y =
ln(λ1/p)− ln(πp)

ln(3)
,

which gives 3y = λ1/p/πp and 2y = (λ1/p/πp)d, where

(5.6) d =
ln(2)
ln(3)

.
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Replacing in (5.4), we obtain

(5.7)
1
2

∞∑
j=−∞

2jρ

(
λ1/p

3jπp

)
=

1
2

(
λ1/p

3jπp

)d ∞∑
j=−∞

2j−yρ(3y−j).

Thus, as j − (y − 1) = (j + 1)− y, we deduce that f(x) is periodic with period
equal to one.

Asymptotics of eigenvalues. From Theorem (1.6) it is easy to prove the follow-
ing asymptotic formula for the eigenvalues:

λk ∼ ckp.

It follows immediately since k ∼ N(λk), which gives:

λk ∼
(

πp∫
Ω
r1/p

)p

kp.

Using the Dirichlet-Neumann bracketing method, it is possible to improve the
constants in equation (1.3). In [8] the authors only consider two cubes Q1 ⊂ Ω ⊂
Q2, and they obtain a lower and an upper bound for the eigenvalues in cubes which
depends on the measure of the cubes Q1, Q2 instead of the measure of Ω.

A similar argument as in [8], changing the functions {sin(kx)}k for {sinp(kx)}k,
gives the upper bound:

λk ≤
(
πp

|Ω|

)p/n

kp/n.

However, it seems difficult to improve the lower bound obtained with the aid of
the Bernstein’s Lemma.
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