
A PRIORI ESTIMATES FOR SOLUTIONS OF g-LAPLACE TYPE

PROBLEMS
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Abstract. In this work we study a priori bounds for weak solution to elliptic problems with
nonstandard growth that involves the so-called g−Laplace operator. The g−Laplacian is a
generalization of the p−Laplace operator that takes into account different behaviors than pure
powers. The method to obtain this a priori estimates is the so called “blow-up” argument
developed by Gidas and Spruck. Then we applied this a priori bounds to show some existence
results for these problems.

1. Introduction

In this work we consider the problem

(1.1)


∆gu+B(x, u,∇u) = 0 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where Ω is a smooth domain of Rn (n ≥ 2), B is the non linear source term and ∆g is the
g-Laplace operator, that is defined as

∆gu := div

(
g(|∇u|) ∇u

|∇u|

)
.

Recall that when the nonlinearity g(t) = tp−1 this operator becomes the well-known p−Laplace
operator that has been widely studied in the literature. The use of more general nonlinearities
g(t) comes from the fact that in several applications it is needed to consider growth laws different
from pure powers or different behaviors near zero and near infinity.

For problems of the form (1.1) with general nonlinearities g(t), the use of Orlicz and Orlicz-
Sobolev spaces provide a natural framework for analysis. These spaces have been the subject of
extensive research since the 1950s and are by now well understood. For a general introduction to
Orlicz and Orlicz-Sobolev spaces, interested readers may refer to the book of M. A. Krasnoselskii
[14].

Equations like (1.1) have been applied in various fields of sciences such as physics [16, 5],
ecology [11, 7], image processing [6], and fluid dynamics [9]. The study of the regularity for
bounded solutions to (1.1) was carried on in the seminal paper of G. Lieberman [15]. The
results of [15] will be of crucial use in this work.
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We are interested in two aspects of problem (1.1). Firstly, we consider the existence of a priori
bounds for all weak solutions of (1.1). This subject was considered in the seminal paper of Gidas
and Spruck [12], where they derive a priori bounds for positive solutions of the semi-linear elliptic
boundary value problem{

∂
∂xj

(aij(x) ∂u∂xj ) + bj(x)uxj (x) + f(x, u) = 0 in Ω,

u(x) = 0 on ∂Ω.

In [12], the authors used a “blow up” argument which reduces the problem to a global nonex-
istence results of Liouville type. The technique developed in [12] was then replicated by several
authors to cover more general equations and systems. See for instance [17, 18, 8, 13].

In [17], D. Ruiz studied the existence of positive solutions for a nonlinear Dirichlet problem
involving the p-Laplacian, when the non-linearity depend on x, u and ∇u .{

∆pu+B(x, u,∇u) = 0 in Ω,

u = 0 on ∂Ω.

However, the author was limited to consider the case where 1 < p ≤ 2, since at that time,
there were no available Liouville-type results for the generic p−Laplacian in the halfspace. This
restriction was overcome by H. Zou in [18], who prove the necesary Liouville type non-existence
theorem on the half-space Rn+, which is needed to use the standard blow-up device.

The first objective of this work is to provide with the generalization of H. Zou’s results to
problems of the form (1.1). That is, to prove uniform a priori bounds for nonnegative weak
solutions of (1.1).

In order to obtain such results, we use the classical blow-up argument of Gidas-Spruck, and
the key observation is that in the limit of the blow-up procedure, under mild hypotheses on
the function g(t), the same Liouville-type theorems for the p−Laplace operator used in [18] are
needed.

The work of H. Zou [18] is the main source of inspiration for this paper.

Secondly, we aim to prove the existence of solutions to (1.1). In general, when B depends
on ∇u, variational methods cannot be applied to deal with (1.1). Hence, the apriori bounds
estimates and a fixed point theorem are crucial.

So the second main result of this work is to show the existence of nontrivial, nonnegative
solutions to (1.1) by means of a fixed point argument, where the a priori bounds for weak
solutions are the key ingredient.

To end this introduction we want to point out that recently in [3, 4, 2] some existence results
for equations of the type (1.1) were proved by different arguments. In fact, the authors use the
method of sub and supersolutions to show the existence of weak solutions to (1.1).

Organization of the paper. The paper is structured as follows: in Section 2, we give the
framework of our work and recall some results on g−Laplace equations that will be used in the
rest of the paper. In Section 3, we state and prove the existence of a priori bounds of solution
of (1.1). Finally in Section 4 we prove the existence results for (1.1).



A PRIORI ESTIMATES 3

2. Preliminaries

In this section we will recall definitions and preliminary results on Orlicz and Orlicz-Sobolev
spaces and then we introduce the g−Laplace operator and recall its main properties and the
regularity results for solutions of (1.1) needed in this work. Finally we will state some Liouville
type theorems for the p−Laplace operator that will turn out to be crucial in our arguments.

2.1. Young functions. We define a Young function as an application G : [0,∞)→ [0,∞), that
is increasing, convex, G(0) = 0 and of class C1. Let us denote g(t) = G′(t)

The function g(t) will be assume to verify that

g(t) =

∫ t

0
g′(s) ds,

where g′ is a nonnegative, right-continuous, locally integrable function.

In fact, we will further assume that g satisfies the so-called Lieberman conditions, i.e.

(2.1) p− − 1 ≤ g′(t)t

g(t)
≤ p+ − 1,

for some 1 < p− ≤ p+ <∞.

From this inequality it can be easily verified that

(2.2) p− ≤ tg(t)

G(t)
≤ p+.

A Young function G is said to verify the ∆2−condition if there exists a constant C > 0 such
that

(2.3) G(2t) ≤ CG(t), t ≥ 0.

Condition (2.2) ensures that both G and G̃ satisfy the ∆2 condition, where G̃ denotes the
complementary function of G, that is defined as

G̃(t) := sup{tω −G(ω) : ω > 0}.

For a proof of all the assertions in this subsection and a thorough introduction to the subject,
we refer to [14].

Throughout this article G will always denote a Young function that verifies (2.1) and G′ := g
will always be assume to have regular variation at infinity, i.e.

(2.4) lim
s→∞

g(st)

g(s)
= tp−1,

uniformly on bounded intervales t ∈ [0, T ].

Observe that one can easily check that p− ≤ p ≤ p+. This exponent p can be thought as the
exponent at infinity for the function g.

Some examples of Young functions G satisfying (2.1)–(2.4) includes the most common uses
of Young functions, for instance G(t) = tp lnα(t + 1), p > 1, α > 0 and G(t) = 1

p t
p + 1

q t
q,

1 < p, q <∞.
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2.2. Orlicz spaces. Given G : R+ → R+ a Young function, we consider the spaces

LG(Ω) =
{
u ∈ L1

loc(Ω): ΦG(u) <∞
}

and
W 1,G(Ω) =

{
u ∈ LG(Ω): Φ1,G(u) <∞

}
,

where

ΦG(u) = ΦG,Ω(u) =

∫
Ω
G(|u|) dx and Φ1,G(u) = Φ1,G,Ω(u) =

∫
Ω
G(|∇u|) dx.

These spaces are endowed, respectively, with the Luxemburg norms defined as

‖u‖G = ‖u‖G,Ω = ‖u‖LG(Ω) = inf
{
λ > 0: ΦG

(u
λ

)
≤ 1
}

and
‖u‖1,G = ‖u‖1,G,Ω = ‖u‖W 1,G(Ω) = ‖u‖G + inf

{
λ > 0: Φ1,G

(u
λ

)
≤ 1
}
.

In the following proposition, we recall some properties of these spaces.

Proposition 2.1. [1, Chapter 8] Let G be a Young function that satisfies the condition (2.2).
Then, the spaces LG(Ω) and W 1,G(Ω) are reflexive, separable Banach spaces. Moreover, the

dual space of LG(Ω) can be identified with LG̃(Ω). Finally, C∞c (Rn) is dense in both LG(Rn)
and W 1,G(Rn).

2.3. The g−Laplace operator. Given Ω ⊂ Rn an open set, we define

W 1,G
0 (Ω) = C∞c (Ω),

where the closure is taken with respect to the norm ‖·‖1,G. Therefore, the topological dual space

of W 1,G
0 (Ω) is contained in the space of distributions D′(Ω) and it will be denoted by W−1,G̃(Ω).

Then, we present the g−Laplace operator −∆g : W 1,G
0 (Ω)→W−1,G̃(Ω) as

〈−∆gu, v〉 =

∫
Ω
g(|∇u|) ∇u

|∇u|
∇v dx.

Where 〈·, ·〉 denotes the duality pairing between W 1,G
0 (Ω) and W−1,G̃(Ω). We need the definition

of a weak solution to (1.1).

Definition 2.2. A function u ∈W 1,G
0 (Ω) ∩ L∞(Ω) is said to be a weak solution of (1.1) if∫

Ω
g(|∇u|) ∇u

|∇u|
∇v dx =

∫
Ω
B(x, u,∇u)v dx

for all v ∈W 1,G
0 (Ω) ∩ L∞(Ω).

The regularity theory for weak solutions of (1.1) was establishedby G. Lieberman in [15].
In fact, the author in [15] analyzed slightly more general problems than (1.1) and when we
specialized [15, Theorem 1.7] to (1.1) we obtain the following regularity theorem.

Theorem 2.3. Let Ω be a bounded domain in Rn with C1,α boundary for some 0 < α ≤ 1.
Suppose that G is a Young function satisfying (2.1), and consider the problem (1.1). Assume
that B satisfies

|B(x, t,p)| ≤ K(1 + g(p)p)

for some positive constants K and M0, all x ∈ Ω, all t ∈ [−M0,M0], and all p ∈ Rn. Then, any

weak solution u ∈W 1,G
0 (Ω) with |u| ≤M0 in Ω is C1,β(Ω) for some positive β.
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2.4. Liouville non-existence type theorem. Finally, we state a Liouville non-existence type
theorem for the p−Laplacian on the half-space Rn+ and on the entire space Rn, when B depends
only on u. This result is a particular case of [18, Theorem 1.1].

Theorem 2.4. Given 1 ≤ p < n and p∗ = np
n−p . Assume that B(x, t,p) = B(t) is continuously

differentiable for t > 0 and that there exist positive constants K > 0, q ∈ (p, p∗) and r ∈ (0, p∗−1)
such that for any t > 0

K−1tq−1 ≤ B(t) ≤ Ktq−1, rB(t) ≥ tB′(t).
Then

(2.5)


∆pu+B(u) = 0 in Ω

u > 0 in Ω

u = 0 on ∂Ω

does not admit any non-negative non-trivial solution u in the half space Ω = Rn+ or in the entire
space Ω = Rn.

3. A priori estimates

In this section we prove the existence of a priori L∞(Ω) bound for solutions of the quasi-linear
elliptic differential equation

(3.1)


∆gu+B(x, u,∇u) = 0 in Ω

u > 0 in Ω

u = 0 on ∂Ω,

where Ω ⊂ Rn (n ≥ 2) is a bounded smooth domain.

The nonlinear source term B(x, t,p) verifies the growth condition

(3.2) |B(x, t,p)| ≤ K(1 + f(t) + h(|p|)),
for some constant K > 0, and some functions f, h : R+ → R+.

The function f is assume to verify that tf(t) � G(t) in the sense that for any C > 0, there
exists t0 > 0 such that

(3.3) tf(t) ≥ G(Ct),

for every t > t0.

On h we assume that given s0 > 0, there exists C > 0 such that

(3.4)
h(G−1(sf(s))t)

f(s)
≤ C(1 +G(t)),

for every s > s0.

Furthermore, we assume that B satisfies the following limit condition: there exists q > 1
and a continuous function b : Ω→ R such that for every (Mk, ak) with ak = O(G−1(Mkf(Mk))),
we have

(3.5) lim
k→∞

B(x,Mkt, akp)

f(Mk)
= b(x)tq−1,

uniformly in Ω .
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Observe that if
B(x, t,p) = Af(t) +Bf0(t) + Ch(|p|),

where f is of regular variation at infinity, f0 � f , and h verifies (3.4), then B satisfy ours growth
and limit conditions.

Now, we are able to prove the a priori estimates for (1.1).

Theorem 3.1. Let Ω ⊂ Rn be a bounded domain with C1,β0 boundary. Let u ∈W 1,G
0 (Ω)∩C(Ω)

be a weak solution to

(3.6)


∆gu+B(x, u,∇u) + λ = 0 in Ω

u > 0 in Ω

u = 0 on ∂Ω,

where G is a Young functions satisfying (2.1) and (2.4). Assume moreover that B satisfies the
limit condition (3.5) and the growth condition (3.2), with the assumptions that the function f
satisfies (3.3), and h satisfies (3.4). Moreover, assume that p, as determined by (2.4), and q,
as determined by (3.5), are exponents such that q ∈ (p, p∗).

Then, there exists a constant C > 0 such that

‖u‖∞ + λ ≤ C.
where the value of C depends on Ω, K, p+, p−. The constant K is determined by equation (3.2),
and the constants p+, p− were determined in (2.1).

Proof. Assume that there exists a sequence {(uk, λk)}k∈N of weak solutions to (3.6) such that

‖uk‖∞ + λk →∞.
Let us defined

Mk := sup
x∈Ω

uk(x) = uk(xk),

with xk ∈ Ω and let φ : R+ → R+ be the function given implicitly by

φ(t)g(tφ(t)) = f(t).

It is easy to see that φ is a well-defined, continuous and nondecreasing function such that
φ(0) = 0 and φ(∞) =∞.

Furthermore, given ϕ as

(3.7) ϕ(t) :=
G−1(tf(t))

t
,

φ and ϕ verifies

(3.8) k−ϕ(t) ≤ φ(t) ≤ k+ϕ(t),

where the constants k± depend only on p±. Observe that since tf(t) � G(t), we have that
ϕ(t)→∞ as t→∞ and hence φ(t)→∞ as t→∞.

Next, let Nk > 0 and yk ∈ Ω be given and define the rescaled functions

vk(x) =
1

Nk
uk

(
yk +

x

φ(Nk)

)
,

and the rescaled domains

Ωk :=

{
x ∈ Rn : yk +

x

φ(Nk)
∈ Ω

}
.
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Now, direct computations gives that vk satisfies in Ωk,

φ(Nk) div

(
g (Nkφ(Nk)|∇vk|)

∇vk
|∇vk|

)
+B

(
yk +

x

φ(Nk)
, Nkvk, Nkφ(Nk)∇vk

)
+ λk = 0.

Denoting

gk(t) :=
g (Nkφ(Nk)t)

g (Nkφ(Nk))
,

and

Bk(x, t,p) :=
B
(
yk + x

φ(Nk) , Nkt,Nkφ(Nk)p
)

f(Nk)
, µk :=

λk
f(Nk)

,

then using (3.7) it is easy to see that vk is a weak solution to

(3.9)


∆gkvk +Bk(x, vk,∇vk) + µk = 0 in Ωk,

vk > 0

vk = 0 on ∂Ωk.

Therefore, using (3.2) (3.7) and (3.8) we get

(3.10) |Bk(x, t,p)| ≤ K
(

1 +
f(Nkt)

f(Nk)
+
h(k+G

−1(Nkf(Nk))p)

f(Nk)

)
.

Next, the proof is divided into two cases depending on the behavior of f(Mk)/λk.

Case 1: f(Mk)/λk is unbounded.

In this case, we can assume that

lim
k→∞

f(Mk)

λk
=∞ =⇒Mk →∞.

In this case, we take
Nk = Mk and yk = xk

therefore ‖vk‖∞ = vk(0) = 1.

Then, from our conditions on f and (3.4) and using (3.10) we readily obtain

|Bk(x, vk,∇vk)| ≤ K̃(1 +G(|∇vk|)),
and observe that in this case, µk → 0. In particular, µk is bounded.

Since the transformation xk + x
φ(Mk) flattens the boundary, we have that

‖∂Ωk‖1,β0 ≤ ‖∂Ω‖1,β0
(see [18] for the details).

Then by the regularity estimates of Theorem 2.3, we get that there exists a constant C
independent of k such that

(3.11) ‖vk‖C1,β(Ωk) ≤ C

for some β > 0 also independent of k.

Observe that, since vk(0) = 1, vk = 0 on ∂Ωk and |∇vk| ≤ C for every k, there exists a ρ > 0
such that

dist(0, ∂Ωk) ≥ ρ, for every k ∈ N.
This case now breaks down into two subcases, either dist(0, ∂Ωk) is bounded or not.
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Subcase 1.1: Assume that dist(0, ∂Ωk) is unbounded. Then, we can assume that

dist(0, ∂Ωk)→∞.

In this case, we have that Ωk → Rn in the sense that, given R > 0, BR(0) ⊂ Ωk for k large.

Next, from (3.11), using Arzela-Ascoli’s Theorem together with a diagonal argument, we have

that there exists v ∈ C1,β/2(Rn) such that (passing to a subsequence, if necessary)

vk → v in C
1,β/2
loc (Rn).

By our limits assumptions on B (3.5), it follows that

Bk(x, vk,∇vk)→ b(x0)vq−1 uniformly on compact sets of Rn,

where x0 = limk→∞ xk.

Moreover, by (2.4) we also get

gk(|∇vk|)→ |∇v|p−1 uniformly on compact sets of Rn.

Hence, passing to the limit in the weak form of (3.9), we obtain that v is a weak solution to

∆pv + b(x0)vq−1 = 0 in Rn, v ≥ 0,

but this implies, by Theorem 2.4, that v ≡ 0 and this contradicts the fact that v(0) = 1 and
this completes the proof in this subcase.

Subcase 1.2: Now we assume that dist(0, ∂Ωk) is bounded. Therefore, we may assume without
loss of generality that

dist(0, ∂Ωk)→ d <∞ as k →∞.

Following [18], after possibly making a rotation and translation, we have that

Ωk → Rnd := {x ∈ Rn : xn > −d}.

Reasoning exactly as in the previous subcase, we have that vk → v in the C1,β/2(BR(0)∩Rnd )
topology for every R > 0 and that v is a weak solution to

∆pv + b(x0)vq−1 = 0 in Rnd
v = 0 on ∂Rnd
v ≥ 0

Applying now Theorem 2.4 for the half space, we obtain that v ≡ 0 and this contradicts again
the fact that v(0) = 1. This completes the proof in this subcase and hence the proof of case 1.

Case 2: f(Mk)/λk is bounded.

In this case it is immediate to see that λk →∞, and we take the scale factor Nk as

Nk = f−1(λk).

Hence, µk = 1 for every k ∈ N in this case.

Since by hypothesis f(Mk)/λk is bounded, we get that Mk/Nk is also bounded and hence

0 ≤ vk ≤ C.
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Next, we take yk = 0 and observe that in this case, Ωk → Rn and hence, arguing exactly as

in the previous case, vk → v in C
1,β/2
loc (Rn) and v is a weak solution to{

∆pv + b(x0)vq−1 + 1 = 0 in Rn

v ≥ 0.

But Theorem 2.4 for this problem says that there is no nonnegative solution to this equation
and hence the proof of Case 2 is complete. �

4. Existence

In our last section, we prove the existence of solutions to (1.1). Observe that, in general, when
B depends on ∇u, variational methods cannot be applied to address the existence problem (1.1).
Therefore, a priori bound estimates and a fixed point theorem become crucial.

Theorem 4.1. Let Ω ⊂ Rn be a bounded domain with C1,β0 boundary. Suppose that all con-
ditions of Theorem 3.1 are satisfied. Furthermore, assume that B satisfies the positivity and
superlinearity conditions:

There exists L > 0 such that

(P) B(x, t,p) + Lg(t) ≥ 0, (x, t,p) ∈ Ω× R× Rn.

(S) B(x, t,p) + Lg(t) = o(g(t) + g(|p|)), as (t,p)→ 0 uniformly on Ω.

Then (1.1) has a positive weak solution u ∈W 1,G
0 (Ω).

The main idea to prove Theorem 4.1 is to use the following theorem from [14], which deals
with the existence of fixed points on compact operators defined in a cone.

Lemma 4.2 (Fixed point theorem). Let C be a cone in a Banach space X and Λ: C → C be a
compact operator such that Λ(0) = 0. Assume that there exists r > 0, satisfying:

(1) u 6= tΛ(u) for all ‖u‖ = r, t ∈ [0, 1].
Assume also that there exist a compact homotopy H : [0, 1] × C → C and R > 0 such

that:
(2) Λ(u) = H(0, u) for all u ∈ C.
(3) H(t, u) 6= u for any u such that ‖u‖ = R, t ∈ [0, 1].
(4) H(1, u) 6= u for any u such that ‖u‖ ≤ R.

Then Λ has a fixed point in D = {u ∈ C : r ≤ ‖u‖ ≤ R}.

Remark 4.3. In the course of the proof of Theorem 4.1, we will need to use the inequality

(4.1) g(t)s ≤ C(G(t) +G(s)).

In fact, we have that

g(t)s ≤ G̃(g(t)) +G(s),

and (4.1) follows from this and [10, Lemma 2.9]

Finally, we will provide a proof for Theorem 4.1.
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Proof. Let X := C1(Ω) and let C be the cone of nonnegative functions, C = {u ∈ X : u ≥ 0}.
Let T : C1(Ω)→ C(Ω) be the operator defined by T (u) = B(x, u,∇u) + Lg(u).

Observe that, for each ψ ∈ C(Ω) the problem{
−∆gu+ Lg(u) = ψ(x) Ω

u = 0 ∂Ω,

has unique weak solution uψ ∈ C1,β(Ω) for some positive β [15, Theorem 1.7].

Therefore, we define S : C(Ω) → C1,β(Ω) ∩ C0(Ω) as the solution operator, S(ψ) = uψ, note
that S is a continuous and positive operator.

Now, if we denote

Λ = i ◦ S ◦ T : C1(Ω)→ C1,β(Ω) ↪→ C1(Ω),

where i : C1,β(Ω) ↪→ C1(Ω) is the inclusion operator, then Λ is a compact operator such that
Λ(0) = 0. Observe that the positivity assumption (P) implies that Λ: C → C.

To apply Lemma 4.2 we must verify conditions (1)–(4) for Λ.

Assume that u = tΛ(u) for some u ∈ C such that ‖u‖ = r and a certain t ∈ [0, 1]. Then

−∆g

(u
t

)
+ Lg

(u
t

)
= B(z, u,∇u) + Lg(u).

By taking u as a test function, and the (S) hypothesis on B we obtain∫
Ω
g
(∣∣∣∇(u

t

)∣∣∣) |∇u|+ Lg
(u
t

)
u dx =

∫
Ω
u[B(z, u,∇u) + Lg(u)] dx

=

∫
Ω
o(g(u) + g(|∇u|))u dx

=

∫
Ω
o(G(u) +G(|∇u|)) dx

as ‖u‖ → 0 where we used (4.1) in the last step. But, this implies that

p−
∫

Ω
G(|∇u|) + LG(|u|) dx ≤ tp+−1

∫
Ω
o(G(|u|) +G(|∇u|)) dx.

Therefore, we can chose r > 0 small enough such that the equation u = tΛ(u) has no positive
solution in Br(0) \ {0} for all t ∈ [0, 1].

By Theorem 3.1, there exists a positive constant λ0 such that (3.6) has no solution. Therefore,
we define H : [0, 1]× C → C as

H(t, u) = i ◦ S(T (u) + tλ0).

Clearly H(0, u) = Λ(u) for any u ∈ C, so (2) holds. Observe that the equation u = H(t, u) is
equivalent to {

−∆gu+ Lg(u) = B(z, u,∇u) + Lg(u) + tλ0 in Ω

u = 0 on ∂Ω.

Which is equivalent to {
∆gu+B(z, u,∇u) + tλ0 = 0 in Ω

u = 0 on ∂Ω.
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Hence, by Theorem 3.1, we have that ‖u‖∞+ tλ0 ≤ C, then choosing R = C + 1 we obtain that
(3) holds.

Finally, H(1, u) = u has not solution in view of the choice of λ0 = C + 1, therefore (4) holds.
In conclusion, Λ has a fixed point u ∈ C which it is a non-negative solution of (1.1) as we wanted
to prove. �
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Departamento de Matemática, FCEyN, Universidad de Buenos Aires,
Instituto de Cálculo, CONICET
Ciudad Universitaria, 0+∞ building, C1428EGA, Av. Cantilo s/n
Buenos Aires, Argentina

Email address: jfbonder@dm.uba.ar

Web page: http://mate.dm.uba.ar/∼jfbonder
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Departamento de Matemática, FCFMyN, Universidad Nacional de San Luis
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