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Abstract. In this paper we study the asymptotic behavior of a semidiscrete
numerical approximation for the heat equation, ut = ∆u, in a bounded smooth
domain with a nonlinear flux boundary condition, ∂u

∂η
= up. We focus in the

behavior of blowing up solutions. We prove that every numerical solution
blows up in finite time if and only if p > 1 and that the numerical blow-up

time converges to the continuous one as the mesh parameter goes to zero. Also

we show that the blow-up rate for the numerical scheme is different from the

continuous one. Nevertheless we find that the blow-up set for the numerical

approximations is contained in a small neighborhood of the blow-up set of the

continuous problem when the mesh parameter is small enough.

1. Introduction. In this paper we study the asymptotic behavior of a semidiscrete
approximation of the following parabolic problem,

ut = ∆u, in Ω × (0, T ),
∂u
∂η = up, on ∂Ω × (0, T ),
u = u0 > 0, on Ω × {t = 0}.

(1)
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We assume that u0 is regular in order to provide a smooth solution u.
A remarkable (and well known) fact is that solutions develop singularities in finite

time regardless the smoothness of the initial datum u0. In fact, for many differential
equations or systems such as (1) the solution becomes unbounded in finite time, a
phenomenum that is known as blow-up (see [20], [22]). Other examples where this
phenomenum is observed are problems involving reaction terms in the equation (see
[19], [21] and the references therein).

In our problem a reaction term at the boundary of power type is considered
and if p > 1 this blow-up phenomenum occurs in the sense that there exists a
finite time T such that limt↗T ‖u(·, t)‖∞ = +∞ for every positive initial data (see
[20], [22]). The blow-up set is localized at the boundary of the domain, that is for
every subdomain Ω′ ⊂⊂ Ω there exists a constant K = K(d(Ω′, ∂Ω)) such that
u(x, t) ≤ K for every x ∈ Ω′ and for every 0 ≤ t < T (see [14], [20]). Also it is
known that the blow-up rate is given by ‖u(·, t)‖∞ ∼ (T − t)−

1
2(p−1) , in the sense

that there exist positive constants c, C such that

c(T − t)−
1

2(p−1) ≤ ‖u(·, t)‖L∞(Ω) ≤ C(T − t)−
1

2(p−1) ,

for 1 < p < n
n−2 (see [14]).

In this paper we are interested in numerical approximations of (1). Since the
solution u develops singularities in finite time, it is an interesting question what can
be said about numerical approximations for this kind of problems. For previous
work on numerical approximations of blowing up solutions of (1) in one space
dimension we refer to [8]. For other numerical approximations of blow-up problems
we refer to [1], [2], [4], [5], [18] the survey [3] and the references therein.

In [8] the authors analyze a semidiscrete scheme (such as ours) in one space
dimension. They find a necessary and sufficient condition for the appearance of
blow-up (p > 1) and prove the convergence of the numerical blow-up time to the
continuous one, when the mesh parameter goes to zero.

Here we extend these results to several space dimensions and prove some new
results concerning the asymptotic behavior (blow-up rate) and the localization of
blow-up points (blow-up set) for semidiscretizations in space.

We will consider a general method for the space discretization with adequate as-
sumptions. More precisely, we assume that for every h > 0 small (h is the parameter
of the method), there exists a set of nodes {x1, . . . , xN} such that our numerical
approximation uh, is given by U(t) = (u1(t), . . . , uN (t)) (that is uh(xk, t) = uk(t)
stands for an approximation of u(xk, t)) where U is the solution of the following
ODE

MU ′(t) = −AU(t) + BUp(t),
U(0) = U0.

(2)

The precise assumptions on the matrices involved in the method are: M and B
are diagonal matrices with positive entries mk and bk, and A is a nonnegative
symmetric matrix, with nonpositive coefficients off the diagonal (that is aij ≤ 0 if
i �= j), aii > 0 and

∑N
j=1 aij ≤ 0. U0 is the initial datum for problem (2).

Writing this equation explicitly we obtain the following ODE system,

mku′
k(t) = −∑N

j=1 akjuj(t) + bkup
k(t), 1 ≤ k ≤ N,

uk(0) = u0,k, 1 ≤ k ≤ N.
(3)

As an example, we can consider a linear finite element approximation of problem
(1) on a regular acute triangulation of Ω (see [6]). In this case, h is the norm of the
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mesh, and Vh is the subspace of piecewise linear functions in H1(Ω). We impose
that uh : [0, Th) → Vh, verifies∫

Ω

((uh)tv)I = −
∫

Ω

∇uh∇v +
∫

∂Ω

((uh)pv)I (4)

for every v ∈ Vh. Here (·)I stands for the linear Lagrange interpolation at the nodes
of the mesh.

We denote with U(t) = (u1(t), . . . , uN (t)) the values of the numerical approxi-
mation at the nodes xk at time t. Then U(t) verifies a system of the form (2). All
our assumptions on the matrices M and B holds as we are using mass lumping and
our assumptions on A are satisfied as we are considering acute elements (see [7]). In
this case M is the lumped mass matrix, A is the stiffness matrix and B corresponds
to the boundary condition obtained with lumping. As an initial datum, we take
U0 = uI

0.

Also one can easily check that a bilinear finite element approximation on a square,
Ω = (0, 1) × (0, 1), with square elements leads to an ODE system of the form (2).

As another example if Ω is a cube, Ω = (0, 1)n, we can use a semidiscrete finite
differences method to approximate the solution u(x, t) obtaining an ODE system
of the form (2).

In §2 we start our analysis of (3) and prove that this method converges uniformly
over {xk} × [0, T − τ ] under the assumption of the consistency of the method, see
Definition 2.1 (for one space dimension see [2] where the authors prove consistency
under the regularity hypothesis u ∈ C4,1).

In fact, we prove the following result,

Theorem 1.1. Let u be a regular solution of (1) and uh the numerical approxima-
tion given by (3). If the method is consistent in the sense of Definition 2.1, then
there exists a constant C such that

max
k

max
0≤t≤T−τ

|u(xk, t) − uk(t)| ≤ Cρ(h).

In §3 we begin our analysis of the asymptotic behavior of (2).

We say that a solution of (2) has finite blow-up time if there exists a finite time
Th such that

lim
t↗Th

‖U(t)‖∞ = lim
t↗Th

(
max

k
uk(t)

)
= +∞.

As a first step for our analysis of the behavior of solutions of (3), we want
to describe when the blow-up phenomenon occurs. In §3 we prove the following
Theorem,

Theorem 1.2. Positive solutions of (3) blow up in finite time if and only if p > 1.

We want to remark that the blow-up condition, p > 1, is the same as that of the
continuous problem, see [20], [22].

The purpose of §4 is to extend the result of [8] on the convergence of numerical
blow-up time Th to the continuous one T when the mesh parameter h goes to zero.
To this end, we again assume that the method is consistent in the sense of Definition
2.1 and hypotheses on u0 that implies that the numerical solution uh is increasing
in time.
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Theorem 1.3. Let u0 a compatible initial datum for (1) such that ∆u0 ≥ α > 0.
Assume that the method (3) is consistent in the sense of Definition 2.1. Let T and
Th be the blow-up times for u and uh respectively, then

lim
h→0

Th = T.

In §5 and §6 we arrive at the main points of this article, the asymptotic behavior
(blow-up rate) and the localization of blow-up points (blow-up set) of uh for a fixed
h.

Concerning the blow-up rate for (3) in §5 we prove the following Theorem,

Theorem 1.4. Let uh be a solution of (3). Assume that p > 1 and that uh blows
up in finite time, Th. Then

max
j

uj(t) ∼ (Th − t)−
1

p−1 ,

in the sense that there exists two positive constants c, C such that

c(Th − t)−
1

p−1 ≤ max
j

uj(t) ≤ C(Th − t)−
1

p−1 .

We have to remark that the constants c, C that appear in Theorem 1.4 may
depend on h. Let us also point out that the blow-up rate for the numerical scheme,
(Th − t)−

1
p−1 , is different from the continuous one, (T − t)−

1
2(p−1) .

Finally, in §6, we turn our attention to the blow-up set of uh, B(uh), that is the
set of nodes {xk} such that limt↗Th

uk(t) = +∞. Let F be the set of nodes {xj}
such that uj(t) ∼ (Th−t)−

1
p−1 . By Theorem 1.4, F �= ∅ and clearly, F ⊂ B(uh). By

means of the blow-up rate given by Theorem 1.4 we observe a propagation property
for blow-up points. We prove that the number of nodes adjacent to F that go to
infinity is determined only by p. To describe this propagation phenomena we need
the following notion of distance between nodes:

Definition 1.1. We define the graph with vertices in the nodes and say that two
different nodes are connected if and only if aij �= 0. We consider the usual distance
between nodes measured as a graph, see [11]. Finally, we denote by d(k) the distance
of the node xk to F also measured as a graph.

We prove that uk blows up if and only if d(k) ≤ K where K depends only on p,

Theorem 1.5. Let F be the set of nodes, {xj}, such that

uj(t) ∼ (Th − t)−
1

p−1 .

Then the blow-up propagates in the following way, let p > 1 and K ∈ N0 such that
K+2
K+1 < p ≤ K+1

K (if p > 2 then K = 0). Then the solution of (2), U , blows up
exactly at K nodes near F . More precisely,

uk(t) → +∞ ⇔ d(k) ≤ K.

Moreover, if d(k) ≤ K, the asymptotic behavior of uk is given by

uk(t) ∼ (Th − t)−
1

p−1+d(k),

if p �= K+1
K and if p = K+1

K , d(k) = K

uk(t) ∼ ln(Th − t).
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We want to remark that more than one node can go to infinity, but the asymp-
totic behavior imposes uk(t)

uj(t)
→ 0 (t → Th) if d(k) > d(j).

In the blow-up case (p > 1) the number of blow-up points outside F depends
on the power p but is independent of h. This fact gives a sort of “numerical
localization” of the blow-up set of uh near the blow-up set of u when the mesh
parameter h is small enough.

Theorem 1.6. Let u and uh be solutions of (1) and (3) respectively. Assume that
the numerical method is consistent and that ∆u0 ≥ α > 0. Then if we call B(u)
and B(uh) the blow-up sets for u and uh respectively, we have that given ε > 0
there exists h0 such that for every 0 < h ≤ h0,

B(uh) ⊂ B(u) + Nε ∀h ≤ h0,

where Nε = {x ∈ R
n : |x| < ε}.

We want to remark that regardless the difference in the blow-up rate found in
Theorem 1.4; the blow-up sets are similar as is showed by Theorem 1.6.

In [14] and [20] it is proved that B(u) ⊂ ∂Ω. Therefore, Theorem 1.6 implies
that B(uh) is contained in a small neighborhood of ∂Ω for h small enough. Hence
we recover the localization property, given a subdomain Ω′ ⊂⊂ Ω there exists a
constant K such that uk(t) ≤ K for every t ∈ [0, Th), xk ∈ Ω′ and h small enough.
Moreover, in [13] there is an example of single point blow-up for (1) and hence in
this case B(uh) shrinks around that single point as h goes to zero.

On the one hand, Theorems 1.2, 1.3 and 1.6 show that the numerical scheme (3)
has asymptotic properties that are similar to the ones of the continuous problem (1)
when the mesh parameter is small. On the other hand, a major difference appears
in the blow-up rates (Theorem 1.4). Up to our knowledge, this is the first time
that this phenomenon appears in the literature. This difference suggest that an
adaptive method is needed in order to reproduce the same blow-up rate. We leave
this question for future work.

We want to remark that the results obtained in Theorems 1.2, 1.4 and 1.5,
holds for a general ODE system of the form (3) regardless if it comes from a
semidiscretization of (1).

The paper is organized as follows: in §2 we prove our convergence result (The-
orem 1.1), in §3 the blow-up result (Theorem 1.2), in §4 we study the convergence
of the blow-up times (Theorem 1.3), in §5 we consider the blow-up rate (Theorem
1.4) and finally in §6 we study the localization of the blow-up set for uh (Theorem
1.5 and 1.6).

2. Convergence of the numerical scheme. In this Section we prove a uniform
convergence result for regular solutions of the numerical scheme (3). Throughout
this section, we consider 0 < τ < T fixed.

We want to show that uh → u (when h → 0) uniformly in {xk}× [0, T − τ ]. This
is a natural requirement since in such time intervals the exact solution is regular.
Approximations of regular problems in one space dimension with a source in the
equation have been analyzed in [2] and, also in one space dimension, for a problem
like (1) in [8].

The precise assumption that we make on the scheme is the consistency of the
method. We precise this concept in the following definition.
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Definition 2.1. Let w be a regular solution of

wt = ∆w + g(x, t) in Ω × (0, T ),
∂w

∂η
= f(x, t) on ∂Ω × (0, T ).

We say that the scheme (2) is consistent if for any t ∈ (0, T − τ) it holds

mkwt(xk, t) = −
N∑

j=1

akjw(xj , t) + mkg(xk, t) + bkf(xk, t) + ρk,h(t), (5)

and there exists a function ρ : R+ → R+ such that

max
k

|ρk,h(t)|
mk

≤ ρ(h), for every t ∈ (0, T − τ),

with ρ(h) → 0 if h → 0. The function ρ is called the modulus of consistency of the
method.

Observe that we only require the consistency of a linear problem. For the verifi-
cation of this consistency assumption in some particular examples see, for instance,
[17].

Let us begin with a comparison Lemma, that will be used throughout the paper,

Definition 2.2. We say that V is a supersolution (resp. subsolution) of (2) if

MV ′ ≥ (≤) − AV + BV p.

The inequalities are understood coordinate by coordinate.

Lemma 2.1. Let U and U be a super and a subsolution of (2) respectively such that
U(0) ≤ U(0). Then

U(t) ≤ U(t).

Proof. Let W = U − U . Assume first that W (0) > 0. We observe that W verifies

MW ′ ≥ −AW + B

(
U

p − Up

U − U

)
W.

Now, set δ = minj wj(0) and suppose that the statement of the Lemma is false.
Thus, let t0 be the first time that minj wj(t) = δ/2. At that time, there must be
a j0 such that wj0(t0) = δ/2. But on the one hand w′

j0
(t0) ≤ 0 and, on the other

hand, by our hypotheses on A,

mj0w
′
j0 ≥ −

N∑
i=1

aij0wi + bj0

(
up

j0
− bj0u

p
j0

uj0 − uj0

)
wj0 > −

N∑
i=1

aij0

δ

2
+ bj0pup−1

j0
wj0 ≥ 0

a contradiction. By an approximation argument using continuity of (2) with respect
to initial data, the result follows.

Now we are ready to prove our convergence result.

Proof of Theorem 1.1: Let us start by defining the error functions

ek(t) = uk(t) − u(xk, t). (6)

By (5), these functions verify

mke′k = −
N∑

i=1

aikei + bk(up
k − up(xk, t)) + ρk,h(t).



NUMERICAL APPROX. IN SEVERAL SPACE DIM. 285

Let t0 = maxt∈[0,T−τ ]{maxk |uk(t)− u(xk, t)| ≤ 1}. We will see that t0 = T − τ for
h small enough.

In [0, t0], E = (e1, ..., eN ) is a subsolution of

ME′ ≤ −AE + KBE + ρ(h)M(1, ..., 1)t

where K = p(‖u‖L∞(Ω×[0,T−τ ]) + 1)p−1.
Let us now define the following function that will be used as a supersolution for

(2). Let a ∈ C2(Ω) be such that a(x) ≥ δ > 0 in Ω, ∂a/∂η > Ka on ∂Ω and let
b(t) = exp(Lt) where L is to be determined.

Then, it is easy to check that w(x, t) = Ca(x)b(t)ρ(h) verifies

wt ≥ ∆w, in Ω × [0, T − τ ],
∂w
∂η ≥ Kw, on ∂Ω × [0, T − τ ].

Now, by the consistency of the scheme, one can verify that

W = Cb(t)ρ(h)(a(x1), ..., a(xN ))

is a supersolution of

MW ′ ≥ −AW + KBW + ρ(h)M(1, ..., 1)t

for L big enough depending on K but not on h.
Next, as maxk |u0(xk) − u0,k| ≤ Kρ(h), we can choose C large and independent

of h, such that E(0) ≤ W (0). It follows by a comparison argument (Lemma 2.1)
that

E(t) ≤ W (t), ∀t ∈ [0, t0].
By a symmetric argument, it follows that

|E(t)| ≤ Cb(T − τ)‖a‖L∞(Ω)ρ(h).

From this fact, as ρ(h) → 0, it is easy to see that t0 = T − τ for h small enough,
and the result follows.

3. Blow-up for the numerical scheme. In this section we prove Theorem 1.2
which states a condition for the existence of blow-up of the discrete solution.

Let us define, Th = sup{t such that uh(s) is defined for s ∈ [0, t]}. If Th is finite,
then by a classical result from ODE theory we have that

lim
t↗Th

(
max

j
uj(t)

)
= +∞.

As we mentioned in the introduction, this means that uh blows up at time Th.
We begin with the following Lemma,

Lemma 3.1. Let U be the solution of (2). If U0 > 0, then U is unbounded.

Proof. Assume by contradiction that U is uniformly bounded. Then, we observe
that

Φh(U) =
1
2
〈A1/2U,A1/2U〉 − 1

p + 1
〈BUp, U〉

is a Lyapunov functional for (3). In fact by direct computation we have
d

dt
Φ(U)(t) = −〈MU ′, U ′〉.

As (2) has only U ≡ 0 as a fixed point, it follows that (see [12]) U → 0 as
t → ∞. But our scheme verifies the minimum principle, minj uj(t) ≥ minj u0,j > 0,
a contradiction, that proves that U is unbounded.
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To prove Theorem 1.2 we need the following result.

Lemma 3.2. Let U be the solution of (2). If for some time t, maxj uj(t) >
maxj u0,j, then

max
j

uj(t) = uk(t)

where k is such that bk �= 0.

Proof. Follows easily since our hypotheses on the matrices M , B and A imply the
maximum principle.

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2: By Lemma 3.1 we have that U(t) is unbounded, using
that p > 1 and Lemma 3.2 we obtain that there exists a time t0 and a node xk with
bk �= 0 such that −akkuk(t0) + bkup

k(t0) ≥ bk

2 up
k(t0). Hence, by our assumptions on

A,

mku′
k(t0) = −

N∑
j=1

akjuj(t0) + bkup
k(t0) ≥ bk

2
up

k(t0). (7)

As a consequence of (7) uk(t) must be increasing for t ≥ t0 and verifies

mku′
k(t) ≥ bk

2
up

k(t).

Again, as p > 1, uk blows up, and hence U(t) has finite time blow-up as we wanted
to show.

4. Convergence of the blow-up times. Now we prove the convergence of the
blow-up times, Theorem 1.3. We use ideas from [8].

We begin with the following Lemma,

Lemma 4.1. Let U a solution of (2) such that u′
k(0) ≥ δup

k(0), 1 ≤ k ≤ N . Then
u′

k(t) ≥ δup
k(t), 1 ≤ k ≤ N for every t < Th.

Proof. Let wk(t) = u′
k(t)− δup

k(t). We want to use the minimum principle to show
that wk(t) is positive. To this end, we observe that wk verifies

mkw′
k +

N∑
j=1

akjwj = mk(u′′
k − δpup−1

k u′
k) +

N∑
j=1

akj(u′
j − δup

j )

= −δmkpup−1
k u′

k + bkpup−1
k u′

k − δ

N∑
j=1

akju
p
j

= −δpup−1
k


 N∑

j=1

akjuj + bkup
k


 + bkpup−1

k u′
k − δ

N∑
j=1

akju
p
j

= bkpup−1
k wk − δ


∑

j �=k

akj(u
p
j − pup−1

k uj) + akk(1 − p)up
k




= bkpup−1
k wk − δ


∑

j �=k

akj(u
p
j − pup−1

k (uj − uk)) − up
k) +

N∑
j=1

akj(1 − p)up
k


 .
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As f(u) = up is convex and by our hypotheses on the matrix A it follows that
W = (w1, . . . , wN ) verifies

MW ′ ≥ −AW + BpUp−1W.

As W (0) > 0 and the minimum principle holds for this equation, the result follows.

With this Lemma we can prove Theorem 1.3.

Proof of Theorem 1.3 As the scheme is consistent one can check that ∆u0 ≥
α > 0 implies the hypothesis of the previous lemma for h small enough, with δ
independent of h. So we have that u′

k(t) ≥ δup
k(t), integrating we obtain∫ Th

t

u′
k(s)

up
k(s)

ds ≥ δ(Th − t).

Therefore, changing variables we get

δ(Th − t) ≤
∫ +∞

uk(t)

1
xp

dx,

and so

δ(Th − t) ≤
∫ +∞

maxk uk(t)

1
xp

dx. (8)

Since p > 1 this last inequality implies that if maxk uk(t) is large enough, then
t is close to Th. Given ε > 0, as δ is independent of h, we can choose M (also
independent of h) large enough to ensure that

1
δ

∫ +∞

M

1
xp

dx <
ε

2
. (9)

Now, as u blows up at time T we can choose τ < ε
2 such that

‖u(·, T − τ)‖L∞(Ω) ≥ 2M.

Then by Theorem 1.1, if h is small enough,

max
k

max
{0≤t≤T−τ}

|u(xk, t) − uk(t)| ≤ Cρ(h) ≤ M,

and hence there exists a node k such that

uk(T − τ) ≥ M.

By (8) and (9),

|Th − (T − τ)| ≤ 1
δ

∫ +∞

uk(T−τ)

1
xp

dx ≤ 1
δ

∫ +∞

M

1
xp

dx <
ε

2
,

therefore,

|Th − T | ≤ |Th − (T − τ)| + |τ | < ε.

This finishes the proof.
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5. Blow-up rate. In this Section we consider positive solutions of (3) with h fixed
and we denote by C a positive constant that may depend on h and may vary from
one line to another.

Proof of Theorem 1.4: Let us begin by defining

w(t) =
N∑

k=1

uk(t).

As U blows up at time Th, and using that U is a solution of (3) we obtain that
there exists t0 such that for every t ∈ [t0, Th) it holds

w′(t) = −
N∑

k=1

N∑
j=1

akj

mk
uj(t) +

N∑
k=1

bk

mk
up

k(t) ≤ C(max
k

uk(t))p

≤ C

(
N∑

k=1

uk(t)

)p

= Cwp(t).

For t ∈ [t0, Th) we can integrate the above inequality between t and Th to obtain∫ Th

t

w′(s)
wp(s)

ds ≤ C(Th − t).

Changing variables we get ∫ +∞

w(t)

1
sp

ds ≤ C(Th − t),

hence
w(t) ≥ C(Th − t)−

1
p−1 .

Therefore we obtain

max
j

uj(t) ≥ w(t)
N

≥ C(Th − t)−
1

p−1 .

To prove the other inequality we proceed as follows: as maxj uj(t) → +∞ when
t → Th, we have that if uk(t) = maxj uj(t), then akkuk(t) ≤ bk

2 up
k(t) for every t

close to Th. In this case we have

u′
k(t) = −

N∑
j=1

akj

mk
uj(t) +

bk

mk
up

k(t) ≥ bk

2mk
up

k(t).

Integrating again over [t, Th] we obtain∫ Th

t

u′
k(s)

up
k(s)

ds ≥ bk

2mk
(Th − t).

Changing variables ∫ +∞

uk(t)

1
sp

ds ≥ bk

2mk
(Th − t),

hence
uk(t) ≥ Ck(Th − t)−

1
p−1 .

So maxj uj(t) verifies

max
j

uj(t) ∼ (Th − t)−
1

p−1
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in the sense that

c(Th − t)−
1

p−1 ≤ max
j

uj(t) ≤ C(Th − t)−
1

p−1 .

The proof is finished.

6. Blow-up set. In this Section we study the blow-up set of the solution U . We
begin by distinguish the set of nodes that blows up with the same rate as the
maximum from the others.

For this purpose, we make the following change of variables inspired by [9], [15],
[16], 


yk(s) = (Th − t)

1
p−1 uk(t),

(Th − t) = e−s.

(10)

These new variables, Y = (yk(s)), verify


mky′
k(s) = −e−s

∑N
j=1 akjyj(s) − mk

p−1yk(s) + bkyp
k(s),

yk(− ln(Th)) = (Th)
1

p−1 u0(xk), 1 ≤ k ≤ N + 1.

(11)

We observe that as maxj uj(t) ≤ C(Th−t)−
1

p−1 we have that yj(s) are uniformly
bounded.

Let us first define the following constant that will be use throughout this section,

Γk = sup
s

∣∣∣∣∣∣
N∑

j=1

akjyj(s)

∣∣∣∣∣∣ .

Lemma 6.1. If there exists s0 such that

bkyp
k(s0) − mk

p − 1
yk(s0) < −Γke−s0

then
yk(s) → 0 (s → ∞).

Proof. From (11) yk(s) verifies

mky′
k(s) ≤ Γke−s − mk

p − 1
yk(s) + bkyp

k(s).

Let wk(s) be a solution of

mkw′
k(s) = Γke−s − mk

p − 1
wk(s) + bkwp

k(s)

with wk(s0) = yk(s0). We observe that,

mkw′
k(s0) = Γke−s0 − mk

p − 1
yk(s0) + bkyp

k(s0) < 0.

We claim that w′
k(s) < 0 for all s > s0. To prove this claim, we argue by contradic-

tion. Assume that there exists a first time s1 such that w′
k(s1) = 0. At that time

s1 we have

mkw′′
k(s1) = −Γke−s1 − mk

p − 1
w′

k(s1) + pbkwp−1
k (s1)w′

k(s1) = −Γke−s1 ,

hence w′′
k(s1) < 0. Therefore w′

k is decreasing at s1, a contradiction.
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So we have proved that wk(s) is decreasing for all s > s0, and wk(s) ≥ 0 hence
there exists lk = lims→∞ wk(s). As lims→∞ w′

k(s) = 0 we have that

− mk

p − 1
lk + bklpk = 0.

As wk(s0) is below the only positive root of gk(x) = − mk

p−1x + bkxp and wk is
decreasing for s ≥ s0, we conclude that lk = 0.

By a comparison argument we have that

0 ≤ yk(s) ≤ wk(s) → 0 (s → ∞),

hence yk(s) → 0 (s → ∞).

Lemma 6.2. For every s, it holds

bkyp
k(s) − mk

p − 1
yk(s) ≤ Γke−s.

Proof. We argue by contradiction. Suppose that there exists s0 such that

bkyp
k(s0) − mk

p − 1
yk(s0) > Γke−s0 .

As before, from (11) yk(s) verifies

mky′
k(s) ≥ −Γke−s − mk

p − 1
yk(s) + bkyp

k(s)

Let wk(s) be a solution of

mkw′
k(s) = −Γke−s − mk

p − 1
wk(s) + bkwp

k(s)

with wk(s0) = yk(s0). We observe that,

mkw′
k(s0) = −Γke−s0 − mk

p − 1
yk(s0) + bkyp

k(s0) > 0.

We claim that w′
k(s) > 0 for all s > s0. To prove this claim, we argue by contra-

diction. Assume that there exists a first time s1 such that w′
k(s1) = 0, at that time

s1 we have

mkw′′
k(s1) = Γke−s1 − mk

p − 1
w′

k(s1) + pbkwp−1
k (s1)w′

k(s1) = Γke−s1 .

Hence w′′
k(s1) > 0. Therefore w′

k is increasing at s1, a contradiction.
So we have proved that wk(s) is increasing for all s > s0, hence there exists ε > 0

such that
w′

k(s) ≥ εwp
k(s)

and then, using that p > 1, we have that wk blows up in finite time s2.
As before, we can use a comparison argument to get

yk(s) ≥ wk(s).

Hence yk(s) blows up in finite time which contradicts the fact that it is uniformly
bounded.

Lemma 6.3. Let yk(s) be a solution of (11) then each yk verifies


yk(s) → 0 (s → +∞),
or
yk(s) → lk (s → +∞),

(12)

where lk is the only positive root of gk(x) = − mk

p−1x + bkxp.



NUMERICAL APPROX. IN SEVERAL SPACE DIM. 291

Proof. As yk is uniformly bounded, we conclude that it is globally defined. If yk(s)
does not converge to zero, by Lemmas 6.1 and 6.2 we have that

Γke−s ≥ bkyp
k(s) − mk

p − 1
yk(s) ≥ −Γke−s.

Then
bkyp

k(s) − mk

p − 1
yk(s) → 0 (s → +∞).

As yk does not converges to zero, we conclude that yk(s) → lk, where lk is the only
positive root of gk(x) = − mk

p−1x + bkxp.

Now we are ready to deal with the blow-up set. We begin by the proof of the
propagation result, Theorem 1.5.

Proof of Theorem 1.5: Let F = {xj1 , xj2 , . . . , xjm
} be the set of nodes such

that
yji

(s) �→ 0 (s → ∞).
Let K be such that

K + 2
K + 1

< p ≤ K + 1
K

(if p > 2 then K = 0). We want to see that the blow-up propagates to the K nodes
adjacents to F , that is, a node xk blows up if and only if d(k) ≤ K (d(k) is defined
in Definition 1.1).

For this purpose let us begin by a considering a node xk such that d(k) = 1. As
xk /∈ F , we have that yk(s) → 0. We want to obtain the asymptotic behavior of
yk(s). To this end, first we get a bound as follows, from (11) yk(s) verifies

mky′
k(s) ≤ Γke−s − mk

p − 1
yk(s) + bkyp

k(s).

Using that yk(s) → 0 we have that, given ε > 0 there exists s0 such that, for every
s > s0

mky′
k(s) ≤ Γke−s − mk

p − 1
yk(s) + bkyp

k(s) ≤ Γke−s −
(

mk

p − 1
− ε

)
yk(s)

Let wk(s) be a solution of

mkw′
k(s) = Γke−s −

(
mk

p − 1
− ε

)
wk(s),

we get
w(s) ≤ Ce−s.

By a comparison argument we obtain that for every s > s0,

yk(s) ≤ wk(s) ≤ Ce−s. (13)

Again, from (11)

mky′
k(s) +

mk

p − 1
yk(s) = −e−s

∑
akjyj(s) + bkyp

k(s)

then,
mk(e

1
p−1 syk(s))′ = e

1
p−1 s

(
−e−s

∑
akjyj(s) + bkyp

k(s)
)

.

Integrating between s0 and s, we get

mkyk(s) = e−
1

p−1 s

(
Ck +

∫ s

s0

e
1

p−1 τ
(
−e−τ

∑
akjyj(τ) + bkyp

k(τ)
)

dτ

)
.
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We need to find the behavior of the last integral. With this in mind let us compute
the following limit,

lim
s→+∞

∫ s

s0
e

1
p−1 τ

(
−e−τ

∑N
j=1 akjyj(τ) + bkyp

k(τ)
)

dτ∫ s

s0
e−

p−2
p−1 τ dτ

.

If the integral diverges, we can use L’Hôspital’s rule to obtain

lim
s→+∞

e( 1
p−1−1)s

(
−∑N

j=1 akjyj(s) + bkesyp
k(s)

)
e−

p−2
p−1 s

=

lim
s→+∞−

N∑
j=1

akjyj(s) + bkesyp
k(s).

Using (13) we get

esyp
k(s) ≤ Ce−(p−1)s → 0 (s → ∞),

hence we have,

lim
s→+∞

∫ s

s0
e

1
p−1 τ

(
−e−τ

∑N
j=1 akjyj(τ) + bkyp

k(τ)
)

dτ∫ s

s0
e−

p−2
p−1 τ dτ

=

lim
s→+∞−

N∑
j=1

akjyj(s) = C̃k �= 0.

Therefore, the integral behaves like∫ s

s0

e−
p−2
p−1 τ dτ.

If p �= 2, we have

yk(s) ∼ e−
1

p−1 s
(
C1 + C2e

− p−2
p−1 s

)
= C1e

− 1
p−1 s + C2e

−s.

If p = 2 we can repeat the above calculations but in this case the integral behaves
like s. Therefore

yk(s) ∼



Ce−
1

p−1 s if p > 2,

Cse−
1

p−1 s if p = 2,
Ce−s if p < 2.

This implies that uk(t) verifies

uk(t) ∼



C if p > 2, and hence it is bounded,
−C ln(Th − t) if p = 2, and hence it blows up,
C(Th − t)

p−2
p−1 if p < 2, and hence it blows up.

Now we can repeat this procedure with a node xl that is at distance 2 from F
(using the asymptotic behavior that we have found for yk) and so on to find that
ul(t) blows up if d(l) ≤ K and ul is bonded if d(l) > K where K ∈ N is determined
by p in the following way, K verifies

K + 2
K + 1

< p ≤ K + 1
K

.

Also we find that the asymptotic behavior of a node xl is given by

ul(t) ∼ (Th − t)−
1

p−1+d(l), d(l) = 1, . . . ,K,
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if p �= K+1
K and if p = K+1

K

ul(t) ∼ ln(Th − t)
if d(l) = K.

Finally we localize the blow-up set.

Proof of Theorem 1.6: We want to prove that, given ε > 0 there exists h0 such
that for every 0 < h ≤ h0,

B(uh) ⊂ B(u) + Nε. (14)

We have that the blow-up set of u is contained in ∂Ω (cf. [14], [20]). Let us call
A = B(u)+N ε

2
. First we claim that, for every h small enough, we have F ⊂ A (we

recall that F is the set of nodes xk such that yk(s) → lk �= 0). To prove this claim
we observe that there exists a constant L such that

|u(x, t)| ≤ L ∀x ∈ Ω − A, ∀t ∈ [0, T ).

Now, Theorem 1.1 implies that

max
k

|u(xk, T − τ) − uk(T − τ)| ≤ Cρ(h),

hence given τ , for every h small enough,

|uj(T − τ)| ≤ 2L ∀xj ∈ Ω \ A.

Let xj be a node in Ω \ A, then it holds

(Th − (T − τ))
1

p−1 uj(T − τ) ≤ 2L(Th − (T − τ))
1

p−1

and then
yj(s0) ≤ 2L(Th − (T − τ))

1
p−1 ,

where s0 = − ln(Th − (T − τ)). By Theorem 1.3 we have that Th → T . Therefore,
choosing τ and h small enough we can make yj(s0) small and fall into the hypothesis
of Lemma 6.1, proving our claim.

To finish the proof of the Theorem we only have to observe that by our propa-
gation result, Theorem 1.5, we have that, for h small enough,

B(uh) ⊂ F + NKh ⊂ A + NKh ⊂ B(u) + Nε,

proving (14).
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