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In this paper, we propose a method for computing eigenvalues of elliptic problems using Deep
Learning techniques. A key feature of our approach is that it is independent of the space dimen-
sion and can compute arbitrary eigenvalues without requiring the prior computation of lower ones.
Moreover, the method can be easily adapted to handle nonlinear eigenvalue problems.

INTRODUCTION

The impact of artificial intelligence (AI) on everyday
life has become undeniable in recent years. From smart-
phones to image recognition, from medical diagnostics
to self-driving cars, machine learning—and deep learn-
ing in particular—has transformed the way we interact
with technology.

This influence has also extended into mathematics and
physics, where machine learning techniques are being ap-
plied to analyze complex phenomena that were tradi-
tionally approached using classical analytical methods.
Among these, problems governed by partial differential
equations (PDEs) are especially prominent, due to their
central role in modeling physical systems across many
disciplines.

Reflecting this trend, a growing number of software
libraries and frameworks have been developed as educa-
tional and research tools for solving PDE-based prob-
lems in computational science and engineering; see, for
instance, [5–7] and references therein.

In parallel, neural network-based approaches for ap-
proximating solutions to PDEs have gained increasing
attention. These include successful applications to prob-
lems such as the Burgers, Eikonal, and heat equations
[8], as well as linear diffusion equations in complex two-
dimensional geometries [9].

A natural extension of this idea is the use of neural net-
works (NNs) as general-purpose function approximators
for solving differential equations. A prototypical exam-
ple arises in quantum mechanics, where one seeks to solve
the eigenvalue problem

−∆u+ V (x)u = Eu, in Rn, (1)

with a given potential function V : Rn → R and eigen-
value parameter E ∈ R. The idea of employing NNs to
approximate solutions of such equations dates back to
the 1990s [1], but the field gained significant momentum
with the introduction of Physics-Informed Neural Net-
works (PINNs) in [2], which triggered a wave of research
and applications (see also [3, 4]).

Most early PINN-based work focused on source prob-
lems, where the term Eu in (1) is replaced by a known
forcing function f . The eigenvalue problem itself has

FIG. 1. A fully connected feedforward NN with an n-
dimensional input and a 1-dimensional output.

been more recently addressed: first in one dimension
[10, 11], and later in two dimensions [12]. Related ap-
proaches have also been proposed in [13], which include
extensions to nonlinear eigenvalue problems.
In these works, the solution u is approximated using a

fully connected feedforward neural network (see Fig. 1),
with variations in the number of hidden layers and activa-
tion functions across implementations. To approximate
the eigenvalue E, the authors minimize the Rayleigh quo-
tient:

L(u) =

∫
|∇u|2 + V (x)u2 dx∫

u2 dx
.

Minimizing L(u) yields an approximation of the princi-
pal eigenvalue E1 and its associated eigenfunction u1.
Higher-order eigenpairs can be computed by iteratively
minimizing the same functional while constraining the
search to subspaces orthogonal to previously computed
eigenfunctions.
This approach, while effective, presents two main lim-

itations:

1. It is inherently sequential: to compute eigenvalues
within a given range, one must first compute all
lower ones, which can be inefficient.

2. Its extension to nonlinear problems (such as those
involving the p-Laplace operator) is limited, since
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FIG. 2. The loss curve Λ(E) in 2−dimensional space with a
confined potential in the unit disk.

orthogonality conditions between eigenfunctions
are no longer available.

OUR APPROACH

To overcome the drawbacks mentioned above, we pro-
pose a different approach to problem (1). We define the
following loss function:

Λ(u,E) =

∫
(∆u− V (x)u+ Eu)2 dx∫

u2 dx
. (2)

Given a fixed E ∈ R, minimizing with respect to u yields
a loss curve:

Λ(E) = inf
u

Λ(u,E). (3)

A proof of the existence of a minimizer uE for (3) is
provided in Theorem 1 in the appendix.

It is relatively straightforward to derive a theoretical
upper bound for the loss curve Λ(E). Indeed, let uk

denote the k−th eigenfunction to (1), normalized such
that

∫
u2
k dx = 1. Then we have:

Λ(E) ≤
∫
(∆uk − V (x)uk + Euk)

2 dx = (Ek − E)2,

and consequently,

Λ(E) ≤ min
k

(Ek − E)2.

See Fig. 2, where this upper bound is plotted in the
two-dimensional case with a confining potential given by
V (x) = 0 for |x| ≤ 1 and V (x) = ∞ for |x| > 1. In this
case the eigenvalues are known explicitly. The first four
are:

E1 = 5.7832, E2 = 14.6819, E3 = 26.3743, E4 = 30.4713.

Our approach proceeds as follows:
We first fix the interval [E∗, E

∗] where the eigenvalues
are expected to lie. Then, we take a uniform partition of
this interval:

E∗ = E1 < E2 < · · · < Ej = E∗,

and for each Ei we train our neural network to minimize
Λ(u,Ei), obtaining a corresponding minimizer ui.
Finally, we identify the minima of the loss curve Λ(Ei).

The values Ei at which these minima occur approximate
the eigenvalues of (1), and the associated minimizers ui

approximate the corresponding eigenfunctions.

IMPLEMENTATION DETAILS

We consider a fully connected feedforward neural net-
work (as in Fig. 1) with two hidden layers and the hy-
perbolic tangent activation function, tanh.
We begin by studying confining potentials as in the

previous section:

V (x) =

{
0 if x ∈ Ω

∞ if x ̸∈ Ω
(4)

which is equivalent to solving the Helmholtz problem
with homogeneous Dirichlet boundary condition:{

−∆u = Eu in Ω

u = 0 on ∂Ω.
(5)

To impose the boundary condition, we multiply the
output of the NN by a boundary factor B(x) that is a
smooth approximation to the distance to the boundary.
To ensure normalization, we include a penalization term
in the loss function to enforce ∥u∥2 = 1. The resulting
loss is:

Λ̄(u,E) =

∫
Ω

(∆u+ Eu)2 dx+ µ

(∫
Ω

u2 dx− 1

)2

. (6)

All integrals are approximated using a Monte Carlo sam-
pling scheme.
As described in the previous section, we train the NN

to minimize Λ̄(u,E) for each value in a discrete partition
E∗ = E1 < · · · < Ej = E∗. To improve efficiency, for
each Ei, the network is initialized with the weights and
biases obtained from training at Ei−1.
After training is complete, we obtain the discrete loss

curve

Λ̄(Ei) = Λ̄(ui, Ei)

and each local minimum below a given threshold ϵ > 0 is
taken as an approximate eigenvalue for (5).
Fig. 3 shows the loss curve Λ̄(Ei) in the case where Ω is

the unit disk in R2. The computed eigenvalues are accu-
rate up to the resolution of the discretized Ei−grid. Nat-
urally, once an approximate eigenvalue Ei0 is detected,
the method can be refined locally by using a finer grid in
the interval [Ei0−1, Ei0+1] to improve precision.
The associated computed eigenfunctions are displayed

in Fig. 4
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FIG. 3. The loss curve Λ̄(E) in two-dimensional space with
a confined potential in the unit disk compared with the the-
oretical upper bound.

FURTHER EXAMPLES

In this section, we illustrate the flexibility and robust-
ness of our method by applying it to a variety of settings
beyond the two-dimensional unit disk with a confining
potential. These examples include the computation of
higher-order eigenvalues, problems in higher spatial di-
mensions, domains with different geometries, and more
general potential functions.

Higher eigenvalues

Our method enables the computation of higher-order
eigenvalues without relying on sequential orthogonaliza-
tion procedures. By choosing an appropriate interval
[E∗, E

∗] and refining the discretization grid, we can di-
rectly recover eigenvalues that are far from the principal
one.

One technical point that must be considered when
computing higher eigenvalues is the appropriate choice
of the hyperparameter µ in the loss function (6). For a
randomly initialized NN output u, the first term in the
loss is typically of the order∫

Ω

(∆u+ Eu)2 dx ∼ c1E
2 + c2,

while the normalization penalty term is of the order

µ

(∫
Ω

u2 dx− 1

)2

∼ c3µ.

Hence, if E2 ≫ µ, the loss is dominated by the first term,
and the network tends to minimize it by driving u ≈
0, which is undesirable. To maintain a proper balance
between the two terms and ensure meaningful training,
it is necessary to scale µ ∝ E2.
To assess the accuracy of our method, we computed the

eigenvalues of problem (5) in the two-dimensional unit
square [0, 1]× [0, 1] that lie within the interval [44, 55]. In

FIG. 4. The first four computed eigenfunctions of (5) in the
2−dimensional unit disk.

this range, problem (5) has one eigenvalue, denoted E(1),
with value E(1) = 49.348. See Fig. 5 for the computed
loss curve in this interval, together with the theoretical
upper bound.

Higher dimensions

The proposed framework extends naturally to higher
spatial dimensions, with minimal changes required in the
implementation. As an example, we consider the unit
ball in Rd, with d = 3, 4 where the eigenvalue problem
becomes: {

−∆u = Eu in Bd

u = 0 on ∂Bd.

Despite the increased computational cost, the method
remains effective, as shown in Fig. 6.
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FIG. 5. The loss curve Λ̄(E) in two-dimensional space in the
unit square computed in the interval [44,55].

FIG. 6. The loss curve Λ̄(E) in three-dimensional space
(above) and in the four-dimensional space (below) in the unit
ball compared with the theoretical upper bound.

Different geometries

We also explore domains with more complex geome-
tries, such as squares, annuli, or triangles. The bound-
ary factor B(x) can be adapted to these shapes, ensuring
that the Dirichlet condition is enforced. In Fig. 7, we
show eigenfunctions obtained in a square, in Fig. 8 the
annular region is considered and in Fig. 9 the results in
a triangle are shown.

Different potentials

Beyond hard-wall confinement, our approach accom-
modates general potential functions V (x), including
smooth wells and step-like profiles. As an example, we

consider a harmonic potential V (x) = ω2

2 |x|2 for differ-

FIG. 7. The loss curve Λ̄(E) in two-dimensional space in
the unit square compared with the theoretical upper bound.
Below it is displayed the first two eigenfunction.

ent values of ω, illustrating the method’s applicability to
physically relevant models. Fig. 10 displays loss curve
and the first eigenfunction for ω = 1 and Fig. 11 for
ω = 10.

NONLINEAR PROBLEMS

Our method can also be extended to nonlinear eigen-
value problems. As an illustrative example, we consider
the eigenvalue problem for the p−Laplacian in the two-
dimensional unit disk:{

−∇ · (|∇u|p−2∇u) = E|u|p−2u in D,

u = 0 on ∂D,
(7)

where D ⊂ R2 is the unit disk and p > 1.

To approximate the solution using our framework, we
modify the loss function accordingly. For a fixed E, we
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FIG. 8. The loss curve Λ̄(E) in two-dimensional space in the
unit annulus of radii 0.5 and 1 compared with the theoretical
upper bound. Below it is displayed the first eigenfunction.

define the following loss:

Λp(u,E) =

∫ (
∆pu+ E|u|p−2u

)2
dx

+ µ

(∫
|u|p dx− 1

)2

,

where ∆pu = ∇ · (|∇u|p−2∇u).
Here, the normalization condition is adapted to the

natural scaling of the p−Laplacian: ∥u∥p = 1. As in the
linear case, the output of the neural network is multiplied
by a boundary factor to enforce homogeneous Dirichlet
boundary conditions.

Since the nonlinear problem lacks an orthogonality
structure among eigenfunctions, traditional sequential
methods based on orthogonal projections are not directly
applicable. Our approach, however, remains valid and
does not rely on any such structure, which makes it suit-
able for problems like (7). As a result, we are still able
to identify the first two eigenvalues as the values of E for
which the loss function attains a sufficiently small mini-
mum.

Figure 12 shows the loss curve and the corresponding
eigenfunction computed for the case p = 2.2.

CODE AVAILABILITY

The Python code used in this work is openly accessible
at the following URL:

https://github.com/amsalort/PINN-eigenvalues

FIG. 9. The loss curve Λ̄(E) in two-dimensional space in
the triangle of vertices (0, 0), (0, 1), (1, 0) compared with the
theoretical upper bound and the third and fourth computed
eigenfunctions.

CONCLUSIONS

The method proposed in this work provides a flexible
and effective framework for computing eigenvalues and
eigenfunctions of differential operators using neural net-
works. Unlike classical approaches, it does not rely on
the Rayleigh quotient or require orthogonality conditions
between eigenfunctions. As a result, it is particularly
well-suited for computing higher eigenvalues and for ad-
dressing nonlinear problems where such structures are no
longer available.

Moreover, the approach naturally extends to irregular
domains and high-dimensional settings, where traditional
mesh-based methods become increasingly difficult to ap-
ply. Its non-sequential nature allows for the identification
of multiple eigenvalues without the need to compute the
entire spectrum in order. These features make it a robust
and broadly applicable alternative for spectral problems
in both linear and nonlinear contexts.

https://github.com/amsalort/PINN-eigenvalues
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FIG. 10. The loss curve Λ̄(E) in two-dimensional disk with

harmonic potential V = ω2

2
|x|2 and ω = 1 with the first

computed eigenfunction.

FIG. 11. The loss curve Λ̄(E) in two-dimensional disk with

harmonic potential V = ω2

2
|x|2 and ω = 100 with the first

computed eigenfunction.
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The minimization problem

In this appendix, we show that the minimization prob-
lem leading to the loss curve Λ(E) defined in (3) admits a
solution. In order to keep things simple, we consider the
case in which V (x) is a confining potential of the form
(4) with Ω ⊂ Rn bounded.
To this end, we must specify the function space over

which the infimum is taken. The natural choice is the
Sobolev space H2(Ω) ∩ H1

0 (Ω). The main result of this
section reads as follows:

Theorem 1. Let V (x) be as in (4) with Ω ⊂ Rn bounded.
Given E ≥ 0, there exists uE ∈ H2(Ω)∩H1

0 (Ω) such that

Λ(E) = Λ(uE , E) = inf
u∈H2(Ω)∩H1

0 (Ω)
Λ(u,E),

where Λ(u,E) is given in (2).

Proof. The result follows from the direct method in the
Calculus of Variations. Fix E ≥ 0, and consider a min-
imizing sequence {uj}j∈N ⊂ H2(Ω) ∩ H1

0 (Ω) such that
∥uj∥2 = 1 and

Λ(E) = lim
j→∞

Λ(uj , E).

In particular, the sequence Λ(uj , E) is bounded and non-
negative:

0 ≤ Λ(uj , E) ≤ C, (8)

for some constant C > 0.
Now observe that

Λ(uj , E) =

∫
Ω

(∆uj + Euj)
2 dx

=

∫
Ω

(∆uj)
2 dx+ 2E

∫
Ω

uj∆uj dx+ E2.

Using the inequality ab ≤ ϵa2 + b2

4ϵ for any a, b > 0 and
ϵ > 0we estimate:∫

Ω

|uj ||∆uj | dx ≤ ϵ

∫
Ω

(∆uj)
2 dx+

1

4ϵ

∫
Ω

u2
j dx.

Taking ϵ = 1/4E, we obtain

Λ(uj , E) ≥ 1

2

∫
Ω

(∆uj)
2 dx+ E2 − E. (9)

Combining (8), (9) and the normalization ∥uj∥2 = 1
we conclude that the sequence {uj}j∈N is bounded in
H2(Ω) ∩H1

0 (Ω).
Therefore, up to a subsequence, we have uj ⇀ uE

weakly in H2(Ω) ∩H1
0 (Ω) for some uE in that space.

Since the functional

u 7→
∫
Ω

(∆u+ Eu)2 dx

is convex in u, it is weakly lower semicontinuous. Thus,∫
Ω

(∆uE + EuE)
2 dx ≤ lim inf

j→∞

∫
Ω

(∆uj + Euj)
2 dx.

Moreover, the immersion H2(Ω) ∩ H1
0 (Ω) ↪→ L2(Ω) is

compact, so ∫
Ω

u2
E dx = lim

j→∞

∫
Ω

u2
j dx = 1.

Hence, uE is admissible and attains the minimum.
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