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Abstract. In this work we analyze the eigenvalue problem associated to the
fractional m−Laplacian, defined as

(−∆m)su(x) := 2p.v.

∫
Rn

m

(
|u(x)− u(y)|
|x− y|s

)
(u(x)− u(y))

|u(x)− u(y)|
dy

|x− y|n+s
,

This operator serves as a model for nonlocal, nonstandard growth diffusion prob-
lems. In contrast to previous analyses, we explore the eigenvalue problem without
presuming the ∆2 condition on M – the primitive function of m. Our results show
the existence of a sequence of eigenvalues λk → ∞. This research contributes to
advancing our understanding of nonlocal diffusion models, specifically those char-
acterized by the fractional m−Laplacian, by relaxing the constraints imposed by
the ∆2 condition.
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1. Introduction and main results

Eigenvalue problems stand as some of the most extensively investigated chal-
lenges within Partial Differential Equations. This interest arises both from their
innate relevance to a wide array of natural phenomena, spanning vibrating mem-
branes, quantum physics, and signal processing, among others, and from their in-
trinsic significance. Consider an open and bounded domain Ω ⊂ Rn. The classical
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Courant minimax principle ensures the existence of an infinite sequence of eigenval-
ues {λk}k∈N for the classical Dirichlet eigenvalue problem:{

−∆u = λu in Ω

u = 0 in ∂Ω,

where λk → ∞ (refer to [34] and [36]). The applications of this problem extend
across various branches of mathematics and natural sciences.

In recent times, attention has shifted to nonlinear extensions and variations of
the eigenvalue problem associated with the Laplacian. One of the most extensively
studied is the eigenvalue problem for the p−Laplacian:{

−∆pu = λ|u|p−2u in Ω

u = 0 in ∂Ω,

introduced by [27] (also discussed in [28, 29]). For this problem, the classical
Ljusternik–Schnirelmann theory applied to the functionals F and G defined on
W 1,p

0 (Ω):

F, G : W 1,p
0 (Ω)→ R

F (u) =

∫
Ω

|∇u|p dx and G(u) =

∫
Ω

|u|p dx

yields a sequence of eigenvalues {λk}k∈N with λk → ∞. Crucially, in this case, the
space W 1,p

0 (Ω) must be reflexive and separable, and the corresponding functionals
F and G must be differentiable (see [21, 22, 36]).

Another interesting nonlinear eigenvalue problem arises with the m−Laplacian
operator, defined as

∆mu = div

(
m(|∇u|)
|∇u|

∇u
)
,

where m : R+ → R+ is a nondecreasing function. This operator generalizes the
p−Laplacian operator when m(t) = tp−1.

Consequently, the eigenvalue problem is given by{
−∆mu = λg(u) in Ω

u = 0 in ∂Ω.
(1.1)

Here, the function g : R → R satisfies certain growth conditions. What makes
these operators particularly appealing for applications is the potential for distinct
behaviors in diffusivity when |∇u| � 1 and |∇u| � 1, a phenomenon known in the
literature as nonstandard growth elliptic operators. See [26].

A key factor in addressing such problems is the primitive function of m, denoted
as M(t) =

∫ t
0
m(s) ds. When M satisfies the so–called ∆2−condition, that is

M(2t) ≤ CM(t),
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for some constant C > 1 and all t ≥ T0, then the eigenvalue problem (1.1) inherits
many properties from the p−Laplacian case. In such instances, the Ljusternik–
Schnirelmann theory can be applied seamlessly to establish the existence of a se-
quence of eigenvalues for (1.1).

However, when M does not satisfy the ∆2−condition, the situation becomes sig-
nificantly more intrincate. In [35], the author analyzed problem (1.1) and using
ideas from [24] and employing a Galerkin–based approximation method, the au-
thor successfully overcome the absence of the ∆2−condition. Subsequently, the
Ljusternik–Schinrelmann theory was applied, resulting in the identification of an
infinite sequence of eigenvalues for (1.1).

In recent years, nonlocal diffusion models have garnered considerable attention
due to their diverse and novel applications in the natural sciences. These operators
naturally arise in the context of stochastic Lévy processes with jumps and have
been extensively investigated from both probabilistic and analytical perspectives. Its
applications range from physics, where it describes nonlocal interactions in materials,
to finance, where it captures the memory effect in stochastic processes, and to image
processing and ecology, where it accounts for spatial interactions over long distances,
as documented in works such as [4, 10, 33] and the references therein. For the
mathematical background from the partial differential equation (PDE) perspective
adopted in this paper, readers can refer to [9, 23].

Arguably, one of the most significant nonlocal operators is the fractional Lapla-
cian, defined as

(−∆)su(x) = p.v.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy,

where s ∈ (0, 1) is the fractional parameter. The associated eigenvalue problem
takes the form {

(−∆)su = λu in Ω

u = 0 in Rn \ Ω,

which can be analyzed using standard methods of functional analysis. This frac-
tional Laplacian has proven to be a powerful tool in capturing nonlocal interactions
and long-range dependencies, making it an invaluable tool for modeling phenomena
characterized by anomalous diffusion.

In the realm of nonlocal diffusion models, numerous nonlinear generalizations
of the fractional Laplacian eigenvalue problem have been explored in the liter-
ature. One particularly well-studied extension is encapsulated by the fractional
p−Laplacian operator, defined as

(−∆p)
su(x) = p.v.

∫
Rn

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|n+2s
dy.

It is noteworthy that when p = 2, the fractional p−Laplacian reduces to the standard
fractional Laplacian.
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The eigenvalue problem associated with the fractional p−Laplacian has been a
subject of investigation by various authors in recent years. Notable contributions
include works by [7, 19, 20], among others. This line of research delves into under-
standing the spectral properties and the behavior of solutions for this nonlinear non-
local eigenvalue problem. The fractional p−Laplacian offers a versatile framework
that extends the capabilities of the standard fractional Laplacian by incorporating
additional nonlinearity through the power p. These developments hold promise for
applications in modeling complex phenomena where both nonlocal interactions and
nonlinear effects play crucial roles. The exploration of such nonlocal operators en-
riches the mathematical tools available for describing a wide range of phenomena in
different scientific disciplines.

In [18], the authors introduced a fractional counterpart of the m−Laplacian, of-
fering a model for nonlocal, nonstandard growth diffusion problems. Specifically, for
an increasing and continuous function m(t), the fractional m−Laplacian operator is
defined as

(−∆m)su(x) = p.v.

∫
Rn

m

(
|u(x)− u(y)|
|x− y|s

)
(u(x)− u(y))

|u(x)− u(y)|
dy

|x− y|n+s
.

It is worth noting that when m(t) = tp−1, this fractional m−Laplacian reduces to the
fractional p−Laplacian. Subsequent to the pioneering work of [18], numerous studies
exploring this operator have emerged, as evidenced by works such as [3, 16, 30], and
references therein.

The associated eigenvalue problem for the fractional m−Laplacian is given by{
(−∆m)su = λg(u) in Ω

u = 0 in Rn \ Ω.
(1.2)

For an alternative eigenvalue problem associated with this operator, readers are
directed to [17].

Previous studies of Problem (1.2), such as those found in [5, 31], assumed the
∆2−condition on M(t). Notably, [32] stands as the sole work known to address
(1.2) without imposing the ∆2−condition, demonstrating the existence of a first
eigenvalue for this problem.

Thus, the primary focus of this article lies in the investigation of Problem (1.2)
without relying on the ∆2−condition for the function M(t). Our main result can
be succinctly summarized as follows:

Theorem 1.1. Under suitable assumptions on Ω, m(t), and g(t) without necessi-
tating the ∆2−condition on M(t) there exists a sequence {λk}k∈N of eigenvalues for
(1.2). Moreover, λk →∞ as k →∞.

For a precise and detailed statement of this result, please refer to Theorem 4.1
in Section 4. This contribution marks a significant advancement in our under-
standing of nonlocal eigenvalue problems, specifically those associated with the
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fractional m−Laplacian, by extending the analysis beyond the constraints of the
∆2−condition.

2. Preliminaries

In this section we present some preliminary definitions needed for the rest of
the paper. The first subsection is well know and does not contain any new result
being the book [25] the standard reference for the subject. The second subsection
contains the definitions and basic results regarding fractional Orlicz-Sobolev spaces.
See for instance [6] where these spaces were introduced and [2, 1] where several
properties of these spaces were analyzed whitout requiring the ∆2−condition. The
third subsection recall the definition of complemantary pairs intruduced in [24] and
construct a complementary pair in the context of fractional Orlicz-Sobolev spaces.
Finally in the last subsection we recall an abstract result due to [35] that will be
helpful in the sequel.

2.1. Young functions and Orlicz spaces. Let M : R → R be a function, such
that M is even, convex and continuous, M(t) > 0 for t > 0, M(t)/t → 0 as t → 0
and M(t)/t→∞ as t→∞. Such a function M is called a Young function if it can
be written as

M(t) =

∫ |t|
0

m(s) ds,

for m : [0,∞) → [0,∞) increasing, right continuous, m(t) = 0 if and only if t = 0
and m(t)→∞ as t→∞.

It will be helpful to extend the function m to the entire real line by oddness, that
is

m(t) =
m(|t|)
|t|

t.

We recall now some basic definitions on Orlicz spaces that can be found, for instance,
in [25].

Let U ⊂ RN be a bounded domain and let µ be a Borel measure in U . The Orlicz
class LM(U, dµ) is defined as

LM(U, dµ) :=

{
u : U → R, measurable :

∫
U

M(u) dµ <∞
}
.

The Orlicz space LM(U, dµ) is then define as the linear hull of LM(U, dµ). It follows
that LM(U, dµ) can be characterized as

LM(U, dµ) =

{
u : U → R, µ−measurable :

∫
U

M
(u
k

)
dµ <∞, for some k > 0

}
.
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This space is a Banach space when it is equipped, for instance, with the Luxemburg
norm, i.e.

‖u‖LM (U,dµ) = ‖u‖M,U,dµ = ‖u‖M,dµ := inf

{
k > 0:

∫
U

M
(u
k

)
dµ ≤ 1

}
.

A well known and interesting fact is that LM(U, dµ) = LM(U, dµ) if and only if M
satisfies the so-called ∆2−condition, i.e.

M(2t) ≤ CM(t), for t ≥ T. (2.1)

Also, the Orlicz space LM(U, dµ) is separable, if and only if M satisfies (2.1).

Next, we define the space EM(U, dµ) as the closure of bounded µ−measurable
functions in LM(U, dµ), in the case µ(U) = ∞ the space EM(U, dµ) is the closure
in LM(U, dµ) of bounded µ−measurable functions with bounded support. Again,
EM(U, dµ) = LM(U, dµ) if and only if M satisfies (2.1).

So, in general, we have

EM(U, dµ) ⊂ LM(U, dµ) ⊂ LM(U, dµ),

with equalities if and only if M satisfies (2.1).

Observe that EM(U, dµ) and LM(U, dµ) are Banach spaces and LM(U, dµ) is a
convex set.

Given a Young function M , we define its complementary function M̄ as

M̄(t) := sup{τ |t| −M(τ) : τ ≥ 0}.

Observe that M̄ is also a Young function and is the optimal function in the Young
inequality

τt ≤M(t) + M̄(τ), (2.2)

for all τ, t. Observe that equality in (2.2) is achieved if and only if τ = m(t) sign t
or t = m̄(τ) sign τ where m̄(t) is the derivative of M̄(t).

It follows directly from (2.2) that if u ∈ LM(U, dµ) and v ∈ LM̄(U, dµ), then
uv ∈ L1(U) and ∫

U

|uv| dµ ≤ 2‖u‖M‖v‖M̄ .

This fact allows one to define in LM(U, dµ) the topology σ(LM , LM̄) and it follows
that EM(U, dµ) is dense in LM(U, dµ) in this topology.

It is easy to check that ¯̄M = M . The Orlicz space LM̄(U, dµ) is the dual space of
EM(U, dµ) and so LM(U, dµ) is reflexive if and only if M and M̄ satisfy (2.1).

Finally, given M a Young function, we define

Dom(m) := {u ∈ LM(U, dµ) : m(|u|) ∈ LM̄(U, dµ)}. (2.3)
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It can be checked that EM(U, dµ) ⊂ Dom(m) ⊂ LM(U, dµ) and hence, Dom(m) =
LM(U, dµ) if and only if M satisfies (2.1). Moreover, the map u 7→ m(u) from
EM(U, dµ) to LM̄(U, dµ) is continuous if and only if M̄ satisfies (2.1).

2.2. Fractional Orlicz-Sobolev spaces. In the product space Rn×Rn = R2n we
define de measure

dνn :=
dxdy

|x− y|n
.

Observe that this is a Borel measure and that if K ⊂ R2n \ ∆ is compact, then
νn(K) <∞, where ∆ ⊂ Rn × Rn is the diagonal ∆ := {(x, x) : x ∈ Rn}.

We will consider two Orlicz spaces LM(U, dµ). One with U = Rn and dµ = dx
(the Lebesgue measure) and other with U = R2n and dµ = dνn.

We will use the notations

LM = LM(Rn, dx), LM = LM(Rn, dx), EM = EM(Rn, dx);

LM(νn) = LM(R2n, dνn), LM(νn) = LM(R2n, dνn), EM(νn) = EM(R2n, dνn).

Now, given a fractional parameter s ∈ (0, 1), we introduce the notation for the
Hölder quotient of a function u : Rn → R.

Dsu(x, y) :=
u(x)− u(y)

|x− y|s
.

Then Dsu : R2n \∆→ R.

Now, with all the notation introduced, the fractional Orlicz-Sobolev spaces are
defined as

W sLM := {u ∈ LM : Dsu ∈ LM(νn)}
and

W sEM := {u ∈ EM : Dsu ∈ EM(νn)}.
These spaces are naturally equipped with the norms

‖u‖s,M = ‖u‖M + ‖Dsu‖M,νn .

Also, these spaces can be isometrically identified as closed subspaces of LM×LM(νn)
and EM × EM(νn) respectively using the map

u 7→ (u,Dsu).

Now, given Ω ⊂ Rn a bounded open set, the space W s
0LM(Ω) is then defined as

the closure of D(Ω) in W sLM with respect to the topology σ(LM × LM(νn), EM̄ ×
EM̄(νn)). The space W s

0LM(Ω) is equipped with the norm ‖u‖W s
0LM (Ω) = ‖u‖M,Ω,dx+

‖Dsu‖M,νn and by Poincaré’s inequality (see [18, Corollary 6.2]) we can consider the
space W s

0LM(Ω) with the equivalent norm ‖Dsu‖M,νn .

The space W s
0EM is defined as the closure of D(Ω) in W sEM in norm topology.

In order to define the dual spaces, we need to introduce the notion of fractional
divergence. See [15].
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Given F ∈ LM̄(νn), the fractional divergence of F is defined as

divsF (x) := p.v.

∫
Rn

F (y, x)− F (x, y)

|x− y|n+s
dy

= lim
ε→0

∫
Rn\Bε(x)

F (y, x)− F (x, y)

|x− y|n+s
dy.

In [14] it is shown that for F ∈ LM̄(νn), then divsF ∈ (W s
0LM(Ω))∗ and the following

fractional integration by parts formula holds

〈divsF, u〉 =

∫∫
R2n

FDsu dνn.

So, we define the following spaces of distributions

W−sLM̄(Ω) := {φ ∈ D′(Ω) : φ = f + divsF with f ∈ LM̄ , F ∈ LM̄(νn)}

W−sEM̄(Ω) := {φ ∈ D′(Ω) : φ = f + divsF with f ∈ EM̄ , F ∈ EM̄(νn)}.
Recall that since EM̄ and EM̄(νn) are separable then W−sEM̄(Ω) is also separable.

These spaces are endowed with the usual quotient norms,

‖φ‖−s,M̄ := inf{‖f‖M̄ + ‖F‖M̄,νv : φ = f + divsF}.

2.3. Complementary systems. In [12, 13] the authors introduce the notion of
complementary systems in order to work in spaces without the usual reflexivity
assumption.

Let Y and Z be real Banach spaces with a duality pairing 〈·, ·〉. Let Y0 ⊂ Y and
Z0 ⊂ Z be closed and separable subspaces. We say (Y, Y0;Z,Z0) is a complementary
system if Y ∗0 = Z and Z∗0 = Y (where equality is understood in the sense of a natural
isometry via the duality pairing).

The first natural example of a complementary system is Y = LM , Y0 = EM ,
Z = LM̄ and Z0 = EM̄ .

We use the notation (Y, Y0;Z,Z0) for a complementary system. Observe that it
is immediate to see that

(LM × LM(νn), EM × EM(νn);LM̄ × LM̄(νn), EM̄ × EM̄(νn)) (2.4)

is also a complementary system.

In [24] the author provides with a general method to generate complementary
systems from a previous one. More precisely

Lemma 2.1 ([24], Lemma 1.2). Given a complementary system (Y, Y0;Z,Z0) and
a closed subspace E of Y , define E0 = E ∩ Y0, F = Z/E⊥0 and F0 = Z0/E

⊥
0 .

Then, the pairing 〈·, ·〉 between Y and Z induces a pairing between E and F if
and only if E0 is σ(Y, Z) dense in E. In this case, (E,E0;F, F0) is a complementary
system if E is σ(Y, Z0) closed, and conversely, when Z0 is complete, E is σ(Y, Z0)
closed if (E,E0;F, F0) is a complementary system.
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Using this Lemma, in [24] it is shown that

(W 1
0LM(Ω),W 1

0EM(Ω);W−1LM̄(Ω),W−1EM̄(Ω))

is a complementary system when the domain Ω satisfies the segment property (See
Definition A.1 for a precise statement).

Let us now see that

(W s
0LM(Ω),W s

0EM(Ω);W−sLM̄(Ω),W−sEM̄(Ω)) (2.5)

is also a complementary system under the same assumptions on Ω.

In fact, since (2.4) is a complementary system, we use Lemma 2.1 to generate
(2.5) from (2.4).

So we take E = W s
0LM(Ω) and E0 = E ∩ Y0 = W s

0EM(Ω). It is also easy to see
that F = Z/E⊥0 = W−sLM̄(Ω) and F0 = W−sEM̄(Ω). So in order to see that (2.5) is
a complementary system it remains to check that W s

0EM(Ω) is σ(LM×LM(νn), LM̄×
LM̄(νn)) dense in W s

0LM(Ω) and that W s
0LM(Ω) is σ(W s

0LM(Ω),W−sEM̄(Ω)) closed.

Now, W s
0LM(Ω) is σ(W s

0LM(Ω),W−sEM̄(Ω)) closed by definition. The proof of
the density of W s

0EM(Ω) in W s
0LM(Ω) with respect to the σ(LM × LM(νn), LM̄ ×

LM̄(νn)) topology follows similarly as in [24, Theorem 1.3]. All these details are
collected in Appendix A for the reader convenience. See Theorem A.2.

2.4. An abstract result. In this subsection, we recall an abstract result from [35]
where the author construct in a complementary system a sequence of projector op-
erators converging to the identity. This abstract result will be of critical importance
in the application of the Ljusternik-Schnirelmann method.

Theorem 2.2 ([35], Theorem 3.1). Assume (E,E0;F, F0) is a complementary sys-
tem, the norm ‖ · ‖F is dual to ‖ · ‖E0, the norm ‖ · ‖E is dual to ‖ · ‖F0 and
V ⊂ E0 is a norm-dense linear subspace. Then there exists a sequence of mappings
Pk : E0 → E0, k = 1, 2, . . . satisfying

• Pk is odd and norm-continuous for all k = 1, 2, . . .
• Pk(E0) is contained in a finite-dimensional subespace of V for all k = 1, 2, . . .
• If {uk} ∈ E0 and uk → u ∈ E for σ(E,F0), then Pk(uk)→ u for σ(E,F0).
• If {uk} ∈ E0 and uk → u ∈ E strongly, then ‖Pk(uk)‖E → ‖u‖E.

3. The fractional m−laplacian (−∆m)s

In this section we introduce the integro–differential operator appearing in our
eigenvalue problem (1.2). This operator was first introduced in [6] and was analyze
in the case where the Young function M satisfies the ∆2−condition.

Let M be a Young function and Ω ⊂ Rn be a bounded, open set with the segment
property. Recall that for 0 < s < 1 the fractional m−Laplacian of a function u is
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defined as

(−∆m)su(x) := 2 p.v.

∫
Rn

m(Dsu)
dy

|x− y|n+s

= 2 lim
ε↓0

∫
|x−y|≥ε

m(Dsu)
dy

|x− y|n+s
.

Let us see now that this operator is well defined between the spaces Dom((−∆m)s)
and W−sLM̄(Ω) respectively where

Dom((−∆m)s) := {u ∈ W s
0LM(Ω) : m(Dsu) ∈ LM̄(νn)}.

To do this we consider for ε > 0

(−∆m)sεu(x) := 2

∫
|x−y|≥ε

m(Dsu)
dy

|x− y|n+s
.

Theorem 3.1. Let 0 < s < 1 be fixed. For u ∈ Dom((−∆m)s) the limit (−∆m)su :=
limε↓0(−∆m)sεu exists in W−sLM̄(Ω), that is

〈(−∆m)su, v〉 := lim
ε↓0
〈(−∆m)sεu, v〉 <∞,

forall v ∈ W s
0EM(Ω).

Moreover the following representation formula holds

〈(−∆m)su, v〉 =

∫∫
R2n

m(Dsu)Dsv dνn,

for all v ∈ W s
0EM(Ω).

Proof. Let 0 < ε < 1. We begin by proving that (−∆m)sεu ∈ LM̄ for u ∈ Dom((−∆m)s).
If u ∈ Dom((−∆m)s) then there exists a constant k > 0 such that∫∫

R2n

M̄

(
m(Dsu)

k

)
dνn <∞,

therefore by Jensen’s inequality∫
Rn

M̄

 (−∆m)sεu(
2kε−sωn−1

s

)
 dx =

∫
Rn

M̄

∫|x−y|≥ε m(u(x)−u(y)
|x−y|s )
k

dy
|x−y|n+s

ε−sωn−1

s

 dx

≤ εss

ωn−1

∫
Rn

∫
|x−y|≥ε

M̄

m
(
u(x)−u(y)
|x−y|s

)
k

 dy

|x− y|n+s
dx

≤ εss

ωn−1

∫∫
R2n

M̄

(
m(Dsu)

k

)
dνn

<∞,
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where ωn−1 denotes the measure of the (n−1)−dimensional sphere Sn−1. The above
inequality implies (−∆m)sεu ∈ LM̄ .

Let v ∈ W s
0EM(Ω), using Fubini’s theorem and change variables we obtain

〈(−∆m)sεu, v〉 = 2

∫
Rn

∫
|x−y|≥ε

m

(
u(x)− u(y)

|x− y|s

)
v(x)

dy

|x− y|n+s
dx

= 2

∫
Rn

∫
|x−y|≥ε

m

(
u(y)− u(x)

|x− y|s

)
v(y)

dy

|x− y|n+s
dx,

and so

〈(−∆m)sεu, v〉 =

∫
Rn

∫
Rn

m

(
u(x)− u(y)

|x− y|s

)(
v(x)− v(y)

|x− y|s

)
χ{|x−y|≥ε}(x, y)

dxdy

|x− y|n

=

∫∫
R2n

m(Dsu)Dsvχ{|x−y|≥ε} dνn,

since u ∈ Dom((−∆m)s) and v ∈ W s
0EM(Ω) we have m(Dsu) ∈ LM̄(νn) and Dsv ∈

LM(νn) respectively, therefore by the dominated convergence theorem we conclude
the proof. �

By our remarks after the definition of Dom(m), (2.3), it follows that

W s
0EM(Ω) ⊂ Dom((−∆m)s) ⊂ W s

0LM(Ω).

Recall now that the monotonicity of m implies that, for any a, b ∈ R,

(m(a)−m(b))(a− b) ≥ (m(|a|)−m(|b|))(|a| − |b|) ≥ 0,

from where it follows that the operator (−∆m)s is monotone. That is

〈(−∆m)su− (−∆m)sv, u− v〉 ≥ 0, for u, v ∈ Dom((−∆m)s).

Another key property of the fractional m−laplacian is that it is pseudomonotone,
this is the content of the following theorem.

Theorem 3.2. Let Ω ⊂ Rn be a bounded domain that satisfies the segment property.
If {ui}i∈N ⊂ Dom((−∆m)s) is a sequence such that fulfills the conditions

ui → u for σ(W s
0LM(Ω),W−sEM̄(Ω))

(−∆m)sui → f ∈ W−sLM̄(Ω) for σ(W−sLM̄(Ω),W s
0EM(Ω))

lim supi→∞〈(−∆m)sui, ui〉 ≤ 〈f, u〉

then 
u ∈ Dom((−∆m)s)

(−∆m)su = f

〈(−∆m)sui, ui〉 → 〈f, u〉 if i→∞.



12 JULIÁN FERNÁNDEZ BONDER AND JUAN F. SPEDALETTI

It will be convenient to introduce the following notation. Given a function u, we
denote the sets {Rj(u)}j∈N as

Rj(u) := {(x, y) ∈ R2n : |(x, y)| ≤ j and |Dsu(x, y)| ≤ j}.

To prove Theorem 3.2 we need first the following two lemmas.

Lemma 3.3. Let u be a function in W s
0LM(Ω) and v ∈ W s

0EM(Ω) respectively. If
0 < |λ| < 1 then for each j ∈ N

m(Dsu+ λDsv)Dsv, m(Dsu)Dsv ∈ L1(Rj(u), νn).

Moreover

lim
λ→0

∫∫
Rj(u)

m(Dsu+ λDsv)Dsv dνn =

∫∫
Rj(u)

m(Dsu)Dsv dνn.

Proof. Let v ∈ W s
0EM(Ω) and u ∈ W s

0LM(Ω), then m(2|Dsv|) ∈ LM̄(νn) and Dsv ∈
LM(νn) then there exists constants k, k̃ > 0 such that∫∫

R2n

M̄

(
m(2|Dsv|)

k

)
dνn <∞ (3.1)

and ∫∫
R2n

M

(
|Dsv|
k̃

)
dνn <∞. (3.2)

We observe by using Young’s inequality that

|m(Dsu+ λDsv)Dsv| ≤ kk̃

{
M̄

(
m(|Dsu|+ |Dsv|)

k

)
+M

(
|Dsv|
k̃

)}
≤ kk̃

{
M̄

(
m(j + |Dsv|)

k

)
+M

(
|Dsv|
k̃

)} (3.3)

in Rj(u). Therefore for each j∫∫
Rj(u)

∣∣∣∣M̄ (
m(j + |Dsv|)

k

)∣∣∣∣ dνn ={∫∫
{|Dsv|≤j}∩Rj(u)

+

∫∫
{|Dsv|>j}∩Rj(u)

}∣∣∣∣M̄ (
m(j + |Dsv|)

k

)∣∣∣∣ dνn ≤
M̄(m(2j/k))|Rj(u)|+

∫∫
{|Dsv|>j}∩Rj(u)

M̄

(
m(2|Dsv|)

k

)
dνn ≤

M̄(m(2j/k))|Rj(u)|+
∫∫

R2n

M̄

(
m(2|Dsv|)

k

)
dνn <∞,

from this inequality together with (3.1)-(3.3) it follows that m(Dsu + λDsv)Dsv ∈
L1(Rj(u), dνn).
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Moreover observe that in Rj(u),

|m(Dsu)Dsv| ≤ m(j)|Dsv| ≤ M̄(k̃m(j)) +M

(
|Dsv|
k̃

)
.

So using (3.2) it follows that m(Dsu)Dsv ∈ L1(Rj(u), νn).

Finally, by using

|m(Dsu+ λDsv)Dsv| ≤ kk̃

{
M̄

(
m(j + |Dsv|)

k

)
+M

(
|Dsv|
k̃

)}
∈ L1(Rj(u), νn),

the fact

m(Dsu+ λDsv)Dsv → m(Dsu)Dsv

if λ → 0 a.e. in Rj(u) and the dominated convergence theorem we conclude the
proof. �

Lemma 3.4. If there exists u ∈ W s
0LM(Ω) and φ ∈ LM̄(νn) such that∫∫

R2n

(m(W )− φ) (W −Dsu) dνn ≥ 0, (3.4)

for all W ∈ L∞(R2n, dνn) with compact support then m(Dsu) = φ in (W s
0LM(Ω))∗

that is ∫∫
R2n

m(Dsu)Dsv dνn =

∫∫
R2n

φDsv dνn ∀v ∈ W s
0LM(Ω).

Proof. Let w ∈ W s
0LM(Ω) be such that Dsw ∈ L∞(Rj(u), νn). For l ≥ j we take

W ≡ DswχRj(u) −DsuχRj(u) +DsuχRl(u) = Ds,jw −Ds,ju+Ds,lu,

now using W in (3.4) we obtain∫∫
R2n

(m(Ds,jw−Ds,ju+Ds,lu)−φ)((Ds,jw−Ds,ju+Ds,lu)−Dsu)dνn ≥ 0 (3.5)

The left hand side in the above inequality can be written as∫∫
R2n

(m(Ds,jw −Ds,ju+Ds,lu)− φ)(Ds,jw −Ds,ju) dνn+∫∫
R2n

m(Ds,jw −Ds,ju+Ds,lu)(Ds,lu−Dsu) dνn−∫∫
R2n

φ(Ds,lu−Dsu) dνn =

I + II + III.
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The first integral I is zero outside Rj(u), therefore

I =

∫∫
Rj(u)

(m(Ds,jw −Ds,ju+Ds,lu)− φ)(Ds,jw −Ds,ju) dνn

=

∫∫
Rj(u)

(m(Dsw)− φ)(Dsw −Dsu) dνn.

For the second integral II we observe that Ds,lu − Dsu is zero inside Rl(u), and
outside Rl(u) we have m(Ds,jw − Ds,ju + Ds,lu) = m(0) = 0 and so II = 0. The
third integral III goes to zero as l→ +∞. Hence, letting l→∞ in (3.5), we obtain∫∫

Rj(u)

(m(Dsw)− φ)(Dsw −Dsu) dνn ≥ 0, (3.6)

∀w ∈ W s
0LM(Ω) with Dsw ∈ L∞(Rj(u), νn).

Now let v ∈ D(Ω), using (3.6) and Lemma 3.3 with λ > 0 first with w = u + λv
and then w = u− λv we have∫∫

Rj(u)

(m(Dsu)− φ)Dsv dνn = 0 ∀v ∈ D(Ω),

taking limit j →∞ we have∫∫
R2n

(m(Dsu)− φ)Dsv dνn = 0 ∀v ∈ D(Ω),

and by density ∀v ∈ W s
0EM(Ω). Using the density of W s

0EM(Ω) in W s
0LM(Ω) with

respect to the σ(LM × LM(νn), LM̄ × LM̄(νn)) topology we conclude the proof. �

With this preliminaries we are ready to prove the pseudomonotonicity.

Proof of Theorem 3.2. Given a sequence {ui}i∈N ⊂ Dom((−∆m)s) such that ui →
u ∈ W s

0LM(Ω) for σ(W s
0LM(Ω),W−sEM̄(Ω)), (−∆m)sui → f ∈ W−sLM̄(Ω) for

σ(W−sLM̄(Ω),W s
0EM(Ω)) and

lim sup
i→∞

〈(−∆m)sui, ui〉 ≤ 〈f, u〉. (3.7)

We must prove that u ∈ Dom((−∆m)s), (−∆m)su = f and 〈(−∆m)sui, ui〉 → 〈f, u〉
if i→∞.

We prove first that the sequence {m(Dsui)}i∈N remains bounded in LM̄(νn).

Using Young’s inequality we have

m(Dsui)D
sui = M̄(m(Dsui)) +M(Dsui),
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then ∫∫
R2n

M̄(m(Dsui)) dνn ≤
∫∫

R2n

m(Dsui)D
sui dνn

= 〈(−∆m)sui, ui〉
≤ |〈(−∆m)sui, ui〉| ≤ C,

by (3.7). Therefore the sequence {m(Dsui)}i∈N is bounded in LM̄(νn) hence there
exists a subsequence that we still denote {m(Dsui)}i∈N and φ ∈ LM̄(νn) such that
m(Dsui) → φ in σ(LM̄(νn), EM(νn)) combining this fact with the convergence
(−∆m)sui → f ∈ W−sLM̄(Ω) for σ(W−sLM̄(Ω),W s

0EM(Ω)) implies that for any
v ∈ W s

0EM(Ω),

〈f, v〉 = lim
i→∞

∫∫
R2n

m(Dsui)D
sv dνn

=

∫∫
R2n

φDsv dνn.

This formula togheter with the density of W s
0EM(Ω) in W s

0LM(Ω) with respect to
the σ(LM × LM(νn), LM̄ × LM̄(νn)) topology allow us to extend f to the space
W s

0LM(Ω).

Let W ∈ L∞(R2n, dνn) with compact support, using the monotonicity property
of (−∆m)s ∫∫

R2n

(m(Dsui)−m(W ))(Dsui −W ) dνn ≥ 0. (3.8)

All the above discussion allow us to pass to the limit in (3.8) and we obtain∫∫
R2n

(φ−m(W ))(Dsu−W ) dνn ≥ 0.

It then follows from Lemma 3.4 that m(Dsu) = φ in (W s
0LM(Ω))∗ and so by Young’s

inequality ∫∫
R2n

φDsu dνn =

∫∫
R2n

m(Dsu)Dsu dνn

=

∫∫
R2n

M̄(m(Dsu)) dνn +

∫∫
R2n

M(Dsu) dνn

≥
∫∫

R2n

M̄(m(Dsu)) dνn

the above says that m(Dsu) ∈ LM̄(νn) and u ∈ Dom((−∆m)s). Also

〈f, v〉 =

∫∫
R2n

φDsv dνn =

∫∫
R2n

m(Dsu)Dsv dνn = 〈(−∆m)su, v〉,

for all v ∈ W s
0LM(Ω), then (−∆m)su = f in (W s

0LM(Ω))∗.
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Finally, we prove that 〈(−∆m)sui, ui〉 → 〈f, u〉 for i→∞. Let

L = lim inf
i→∞

∫∫
R2n

m(Dsui)D
sui dνn,

we only need to prove that L ≥ 〈f, u〉. Using the monotonicity property again we
have ∫∫

R2n

(m(Dsui)−m(Ds,ju))(Dsui −Ds,ju) dνn ≥ 0,

where Ds,ju = DsuχRj(u) taking limit in i and rewriting we obtain

L ≥
∫∫

R2n

m(Ds,ju)(Dsu−Ds,ju) dνn +

∫∫
R2n

m(Dsu)Ds,ju dνn.

In Rj(u) the factor Dsu−Ds,ju = 0, and in (Rj(u))c the factor m(Ds,ju) = m(0) = 0
so the first integral in the above inequality is zero, then

L ≥
∫∫

Rj(u)

m(Dsu)Dsu dνn

for arbitrary j therefore

L ≥
∫∫

R2n

m(Dsu)Dsu dνn = 〈f, u〉.

This concludes the proof of the theorem. �

4. The eigenvalue problem

In this section we study the main result of the paper, namely the existence of a
sequence {(λk, uk)}k∈N of eigenpairs of the equation (1.2) and, moreover, λk → ∞
as k →∞.

We say that (λ, u) is an eigenpair of (1.2) if∫∫
R2n

m(Dsu)Dsφ dνn = λ

∫
Ω

g(u)φ dx, (4.1)

for every φ ∈ D(Ω), provided that both integrals are defined.

The strategy of the proof is to apply the Ljusternik-Schnirelmann method that
have been proved to be succesful in previous works. However, the lack of reflexivity
of the spaces involved prevent us to apply directly the Ljusternik-Schnirelmann
method. This fact was already observe by [35] where the author is able to reduce
the problem to a finite dimensional one and then pass to the limit. Here we apply
the same idea to the context of fractional order spaces.

In fact after the work performed in the previous sections the ideas of [35] can
be applied almost straightforward. Howewer we include the details for the reader
convenience and to make the paper selfcontained.

Therefore we look for the existence of a sequence (λk, uk) ⊂ R×W s
0EM(Ω) of eigen-

pairs for the problem (1.2). Observe that, since uk ∈ W s
0EM(Ω) ⊂ Dom((−∆m)s),
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m(Dsu) ∈ LM̄(νn). Hence the left hand side of (4.1) is well defined forall φ ∈
W s

0EM(Ω).

On the function g : R → R we assume that is an odd and continuous function
satisfying g(t)t > 0 for all t 6= 0 and

|g(t)| ≤ a1 + a2m(a3t) for all t ≥ 0, (4.2)

where a1, a2 and a3 are positive constants. Observe that if u ∈ W s
0EM(Ω) the right

hand side of (4.1) is well defined.

Therefore, the main result of this paper reads as follows:

Theorem 4.1. Let Ω ⊂ Rn be an open and bounded domain with the segment
property. Then there exists a sequence of eigenpairs {(λk, uk)}k∈N ⊂ R+×W s

0LM(Ω)
of (1.2). Moreover, λk → +∞ and uk → 0 in the topology σ(W s

0LM(Ω),W−sEM̄(Ω))
as k →∞.

We consider the even functionals Ms : DMs → R and G : DG → R defined as

Ms(u) :=

∫∫
R2n

M(Dsu) dνn (4.3)

G(u) :=

∫
Ω

G(u) dx, (4.4)

where G(t) =
∫ |t|

0
g(τ) dτ and

DMs := {u ∈ W s
0LM(Ω) : M(u) <∞} and DG := {u ∈ W s

0LM(Ω) : G(u) <∞}.

It is clear that W s
0EM(Ω) ⊂ Dom((−∆m)s) ⊂ DMs ⊂ W s

0LM(Ω) and both function-
als Ms and G vanish only at zero.

Let B = {φ1, φ2, . . . } ⊂ D(Ω) be a countable linearly independent subset in
W s

0EM(Ω) such that the linear hull is norm dense, and we define the sets V and Vk
as the linear hull of the sets B and Bk := {φ1, φ2, . . . , φk} respectively. We denote
the continuous pairing between W−sLM̄(Ω) and W s

0EM(Ω) by 〈·, ·〉, and the one
between Vk and (Vk)

∗ by 〈·, ·〉k.
A straightforward calculation gives Ms,G ∈ C1(Vk) and

〈M′
s(u), v〉k =

∫∫
R2n

m(Dsu)Dsv dνn for all u, v ∈ Vk

〈G ′(u), v〉k =

∫
Ω

g(u)v dx for all u, v ∈ Vk,

for each k = 1, 2, . . .
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By the growth condition (4.2) and the compact immersion W s
0LM(Ω) ⊂⊂ EM(Ω)

(see Theorem B.3), it follows that DG = W s
0LM(Ω) and

G(uk)→ G(u)

〈G ′(uk), uk〉 →
∫

Ω

g(u)u dx

〈G ′(uk), v〉 →
∫

Ω

g(u)v dx,

whenever uk ∈ Vk, uk → u ∈ W s
0LM(Ω) in σ(W s

0LM(Ω),W−sEM̄(Ω)), and v ∈ V .

A first step to attack the problem (1.2) is to consider the following problem on
the finite dimensional space Vk

M′

s(u) = λG ′(u) in V ∗k
u ∈ N s

k , λ ∈ R,
(4.5)

where N s
k = {u ∈ Vk : Ms(u) = 1}.

Now, in order to study the problem (4.5), we use the following notation

N s = {u ∈ W s
0EM(Ω) : Ms(u) = 1}

Ksi = {K ⊂ N s compact and symmetric : gen(K) ≥ i}
Ksi,k = {K ⊂ N s

k compact and symmetric : gen(K) ≥ i}
ci = sup

K∈Ks
i

inf
u∈K
G(u)

ci,k = sup
K∈Ks

i,k

inf
u∈K
G(u),

observe that the critical levels ci,k are increasing in k and choosing Si to be the unit
sphere of Vi, we have that gen(Si) = i and infu∈Si

G(u) > 0 therefore ci,k > 0 when
i ≤ k. If i > k then Ksi,k are empty and so ci,k = 0. The next lemma provides
solution for the problem (4.5).

Lemma 4.2. Let i ∈ N be given. Then there exist sequences {uk}∞k=i ⊂ W s
0EM(Ω),

and {λk}∞k=i ⊂ (0,+∞) such that

uk ∈ N s
k ⊂ Vk

M′

s(uk) = λkG ′(uk) in V ∗k

G(uk) = ci,k,

for all k = i, i+ 1, . . .

Proof. As we observe above for each k we have Ms,G ∈ C1(Vk) and G(0) = 0.

On the other hand let u ∈ Vk with u 6= 0 putting r(u) = 1/‖Dsu‖M,νn we have∫∫
R2n

M(r(u)Dsu) dνn = 1.
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Now from the finite dimensional Ljusternik-Schnirelmann theory ([36, Theorem 2
and Corollary 7.1]) the lemma follows. �

We are interested in the study of the asymptotic behavior of the sequences {uk}k
and {λk}k in k with fixed i. The following tools are needed first.

Lemma 4.3. Let Gk : R2n → R be a sequence of functions such that Gk → G
νn−a.e. for some function G : R2n → R. Suppose that there exists a sequence of
functions {Φk}k in L1(R2n, νn) such that

|Gk| ≤ Φk νn − a.e. in R2n (4.6)

Φk → Φ νn−a.e. in R2n and∫∫
R2n

Φk dνn →
∫∫

R2n

Φ dνn

for some function Φ ∈ L1(R2n, νn). Then∫∫
R2n

Gk dνn →
∫∫

R2n

Gdνn.

Proof. The condition (4.6) implies Gk + Φk,Φk−Gk ≥ 0 a.e. in R2n, and by Fatou’s
lemma we obtain∫∫

R2n

Gdνn +

∫∫
R2n

Φ dνn =

∫∫
R2n

(G+ Φ) dνn

≤ lim inf
k→∞

∫∫
R2n

(Gk + Φk) dνn

≤ lim inf
k→∞

∫∫
R2n

Gk dνn +

∫∫
R2n

Φ dνn,

from where we obtain ∫∫
R2n

Gdνn ≤ lim inf
k→∞

∫∫
R2n

Gk dνn.

In similar way from Φk −Gk ≥ 0 a.e. in R2n we obtain∫∫
R2n

Φ dνn −
∫∫

R2n

Gdνn ≤
∫∫

R2n

Φ dνn + lim inf
k→∞

(
−
∫∫

R2n

Gk dνn

)
=

∫∫
R2n

Φ dνn − lim sup
k→∞

∫∫
R2n

Gk dνn,

and so

lim sup
k→∞

∫∫
R2n

Gk dνn ≤
∫∫

R2n

Gdνn.

The proof is completed. �
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Lemma 4.4. Let Gk : R2n → R be a sequence of a nonnegative functions in L1(R2n, νn)
and G ∈ L1(R2n, νn) such that Gk → G νn−a.e. in R2n and∫∫

R2n

Gk dνn →
∫∫

R2n

Gdνn.

Then Gk → G in L1(R2n, νn).

Proof. If we define Φk := Gk +G then Φk ∈ L1(R2n, νn),Φk → 2G a.e. in R2n and∫∫
R2n

Φk dνn →
∫∫

R2n

2Gdνn.

We observe that |Gk −G| ≤ Φk a.e. in R2n, therefore by Lemma 4.3∫∫
R2n

|Gk −G| dνn → 0,

and so Gk → G in L1(R2n, νn). �

We are in position to give the asymptotic behavior of the sequence {(λk, uk)}k .

Theorem 4.5. Let i ∈ N be fixed and the sequences {uk}∞k=i ∈ W s
0EM(Ω) and

{λk}∞k=i ∈ (0,+∞) as given by Lemma 4.2. Then there exists ūi ∈ Dom((−∆m)s)
and λ̄i ∈ (0,+∞) such that up to a subsequence, λk → λ̄i and uk → ūi for
σ(W s

0LM(Ω),W−sEM̄(Ω)). Moreover, Ms(ūi) = 1,G(ūi) = limk→∞ ci,k, and (λ̄i, ūi)
is an eigenpair for (1.2).

Proof. Using that ∫∫
R2n

M(Dsuk) dνn = 1,

for all k ≥ i we have that the sequence {uk}k is bounded in W s
0LM(Ω) therefore

there exists ūi ∈ W s
0LM(Ω) such that uk → ūi in σ(W s

0LM(Ω),W−sEM̄(Ω)) for a
subsequence then G(uk)→ G(ūi) and so by Lemma 4.2

G(ūi) = lim
k→∞
G(uk) = lim

k→∞
ci,k,

since {ci,k}k are increasing and positive we have G(ūi) > 0 implying g(ūi) 6≡ 0 (and
therefore ūi 6≡ 0). Then there exists k0 > i and a function φ ∈ Vk0 such that∫

Ω

g(ūi)(ūi − φ) dx < 0.

Now assume that λk → ∞, when k → ∞. Using the monotonicity of the operator
(−∆m)s for k ≥ k0∫∫

R2n

(m(Dsuk)−m(Dsφ))(Dsuk −Dsφ) dνn ≥ 0,
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the above inequality and Lemma 4.2 produces∫∫
R2n

m(Dsφ)(Dsuk −Dsφ) dνn ≤
∫∫

R2n

m(Dsuk)(D
suk −Dsφ) dνn

= λk

∫
Ω

g(uk)(uk − φ) dx,

since ∫
Ω

g(uk)(uk − φ) dx→
∫

Ω

g(ūi)(ūi − φ) dx < 0

and ∫∫
R2n

m(Dsφ)(Dsuk −Dsφ) dνn →
∫∫

R2n

m(Dsφ)(Dsūi −Dsφ) dνn,

we have a contradiction and so the sequence {λk} is bounded. Therefore we may as-
sume for a common subsequence that λk → λ̄i in R and uk → ūi for σ(W s

0LM(Ω),W−sEM̄(Ω)).

Recall that Young’s inequality implies that M̄(m(t)) = m(t)t − M(t) ≤ m(t)t
forall t ∈ R. Therefore∫∫

R2n

M̄(m(Dsuk)) dνn ≤
∫∫

R2n

m(Dsuk)D
suk νn

= λk

∫
Ω

g(uk)uk dx

→ λ̄i

∫
Ω

g(ūi)ūi dx <∞,

where we used Lemma 4.2. Then the sequence {m(Dsuk)} is bounded in LM̄(νn) and
there exists F ∈ LM̄(νn) such that m(Dsuk) → F in σ(LM̄(νn), EM(νn)) therefore
(−∆m)suk → f = divs F ∈ W−sLM̄(Ω) in σ(W−sLM̄(Ω),W s

0EM(Ω)). For any
φ ∈ V we have

〈f, φ〉 = lim
k→∞
〈(−∆m)suk, φ〉

= lim
k→∞

∫∫
R2n

m(Dsuk)D
sφ dνn

= lim
k→∞

λk

∫
Ω

g(uk)φ dx

= λ̄i

∫
Ω

g(ūi)φ dx.

Since V is norm dense in W s
0EM(Ω) and W s

0EM(Ω) is dense in W s
0LM(Ω) in σ(LM×

LM(νn), LM̄ × LM̄(νn)) it follows that

〈f, φ〉 = λ̄i

∫
Ω

g(ūi)φ dx ∀φ ∈ W s
0LM(Ω). (4.7)
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Also we have

lim
k→∞
〈(−∆m)suk, uk〉 = lim

k→∞

∫∫
R2n

m(Dsuk)D
suk dνn

= lim
k→∞

λk

∫
Ω

g(uk)uk dx

= λ̄i

∫
Ω

g(ūi)ūi dx

= 〈f, ūi〉.
Now we are in position to apply the pseudomonotonicity property of (−∆m)s (The-
orem 3.2) and conclude that ūi ∈ Dom((−∆m)s), (−∆m)sūi = f and∫∫

R2n

m(Dsuk)D
suk dνn →

∫∫
R2n

m(Dsūi)D
sūi dνn. (4.8)

Therefore by (4.7)∫∫
R2n

m(Dsūi)D
sφ dνn = λ̄i

∫
Ω

g(ūi)φ dx ∀φ ∈ W s
0LM(Ω),

that is (λ̄i, ūi) is an eigenpair for the problem (1.2). Observe that the above implies
λ̄i > 0.

On the other hand using Lemma 4.4 and (4.8) we have that m(Dsuk)D
suk →

m(Dsūi)D
sūi in L1(R2n, νn) and so there exists a majorant integrable h ∈ L1(R2n, νn)

such that m(Dsuk)|Dsuk| ≤ h νn−a.e. in R2n ([8, Theorem 4.9]), then by Young’s
inequality we have

M(Dsuk) ≤ M̄(m(Dsuk)) +M(Dsuk)

= m(Dsuk)|Dsuk|
≤ h,

νn−a.e. in R2n. By the compact immersion W s
0LM(Ω) ⊂⊂ EM(Ω) we can assume

for a subsequence that uk → ūi a.e. in Ω, and extending ūi = 0 in Ωc we have
Dsuk → Dsūi νn−a.e. in R2n, and consequently M(Dsuk) → M(Dsūi) νn−a.e. in
R2n. Therefore by the dominated convergence theorem

Ms(ūi) = lim
k→∞

∫∫
R2n

M(Dsuk) dνn = 1.

This finishes the proof of the theorem. �

In order to complete the proof of the main theorem we need to analize the asymp-
totic behavior of the eigenvalues λ̄i as i→∞. In order to complet this fact we first
study the behavior of the constants ci,k and ci. This is the content of the next two
lemmas. The proofs of this lemmas follow the same ideas of the lemmas 4.3 and 4.4
in [35].

Lemma 4.6. Let i ∈ N be fixed. Then ci,k → ci as k →∞.
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Proof. Using the definition of the constants ci,k we have ci,k ≤ ci,k+1 ≤ · · · ≤ ci for
all k ∈ N. We argue by contradiction, suppose that there exists ε > 0 such that
ci,k < ci − ε for all k ∈ N. By the definition of ci and the supremum property there
exists Kε ∈ Ksi,k such that

ci − ε/2 < inf
w∈Kε

G(w). (4.9)

We consider now the mappings Pk : W s
0EM(Ω)→ W s

0EM(Ω) given by Theorem 2.2.
It is easy to check that 0 /∈ Pk(Kε) for every k large enough. Indeed, suppose
Pkj(wkj) = 0 with wkj ∈ Kε and kj → ∞. By compactness of the set Kε, wkj →
w ∈ Kε for a subsequence. Theorem 2.2 implies w = 0 wich contradicts 0 /∈ Kε.
Therefore the map Ψk : Kε → N s ∩ Vmk

defined as

Ψk(w) =
Pk(w)

‖Pk(w)‖s,M
is odd and continuous for k large enough. Hence Ψk(Kε) ⊂ Ksi,mk

implying

inf
w∈Ψk(Kε)

G(w) ≤ ci,mk
,

for every k large enough. Thus, for every k large enough there exists wk ∈ Kε such
that

G(Ψk(wk)) < ci − ε. (4.10)

by the compactness we have wk → w ∈ Kε in W s
0EM(Ω) for a subsequence implying,

again by Theorem 2.2, that ‖Pk(wk)‖s,M → ‖w‖s,M = 1 therefore

Ψk(wk)→ w for σ(W s
0LM(Ω),W−sEM̄(Ω)),

and so G(Ψk(wk))→ G(w), which contradicts (4.9) and (4.10). �

Lemma 4.7. ci → 0 as i→∞.

Proof. Let ε > 0 be arbitraty and {Pk}k∈N the mappings given by Theorem 2.2. The
continuity properties of the mappings Pk and G imply the existence of k0 ∈ N and
δ > 0 such that

|G(Pk0(w))− G(w)| < ε/2 for all w ∈ N s

and
G(w) < ε/2 for all ‖w‖M,s ≤ δ.

Therefore if K ⊂ N s is compact and symmetric with infw∈K G(w) > ε then

‖Pk0(w)‖M,s ≥ δ for all w ∈ K.
Hence gen(K) ≤ gen(Pk0(w)) ≤ mk0 for some mk0 ∈ N. Thus, if i > mk0 and
K ∈ Ksi then

inf
w∈K
G(w) ≤ ε,

and recalling that
ci = sup

K∈Ks
i

inf
u∈K
G(u)
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we have ci ≤ ε for i > mk0 . �

Now we are ready to complete the proof of the main result, namely Theorem 4.1.

Theorem 4.8. With the previous assumptions and notations, λ̄i → +∞ and ūi → 0
for σ(W s

0LM(Ω),W−sEM̄(Ω)) as i→∞.

Proof. Using Theorem 4.5, Lemma 4.6 and Lemma 4.7 we obtain that G(ūi)→ 0 as
i→∞. On the other by Theorem 4.5 we can assume that ūi → ũ ∈ W s

0LM(Ω) for
σ(W s

0LM(Ω),W−sEM̄(Ω)) as i→∞. From these facts we easily deduce that ũ = 0.

Now taking ūi as test function in (4.1) we obtain

λ̄i =

∫∫
R2n m(Dsūi)D

sūi dνn∫
Ω
g(ūi)ūi dx

≥ 1∫
Ω
g(ūi)ūi dx

.

Finally by the compactness of the embedding ūi → 0 in EM as i → ∞ from where
it follows that λ̄i →∞ as i→∞. �

Appendix A. Density results

In this Section, we prove some density results regarding the fractional order Orlicz-
Sobolev spaces that are needed in this work. We mention that these results follow
the same approach as the analog ones for the classical Orlicz-Sobolev spaces proved
in [24]. So we only sketch the arguments, including some detail where the differences
arise.

One of the key properties that we assume on the domain Ω is that it satisfies the
so called segment property.

Definition A.1. Let Ω ⊂ Rn be an open and bounded domain. We say that Ω has
the segment property if there exists a locally finite open covering of ∂Ω with balls
{Bt(xj)} centered in xj ∈ ∂Ω with radius t, a corresponding sequence of units vectors
nj, and a number t∗ ∈ (0, 1) such that

x ∈ Ω̄ ∩Bt(xj) =⇒ x+ tnj ∈ Ω for all t ∈ (0, t∗).

This condition about the domain Ω says, in some sense, that the domain lie locally
on one side of its boundary. Observe that the segment property does not impply
any smoothness on the boundary ∂Ω. Conversely, if a domain is of class C1 does
not imply that the domain satisfy the segment property. See Section 8.1 in [11] for
more details.

The main result in this section is the following.

Theorem A.2. Assume that Ω ⊂ Rn has the segment property. Then D(Ω) is dense
in W s

0LM(Ω) with respect to the σ(W s
0LM(Ω),W−sLM̄(Ω)) topology.

In the rest of the paper we allways assume that the domain Ω satisfies the segment
property.
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For the proof of Theorem A.2 we use a series of lemmas from [24].

Lemma A.3 ([24], Lemma 1.4). Let uk ∈ LM(RN , dµ) be such that uk → u µ−a.e.
in RN and M(uk) ≤ wk µ−a.e. in RN where wk → w in L1(RN , dµ). Then
u ∈ LM(RN , dµ) and uk → u in the σ(LM(RN , dµ), LM̄(RN , dµ)) topology.

Lemma A.4 ([24], Lemma 1.5). Let u ∈ LM(RN , dµ) and denote by ut the translated
function: ut(x) = u(x − t). Then, ut → u in the σ(LM(RN , dµ), LM̄(RN , dµ))
topology as t→ 0.

Lemma A.5 ([24], Lemma 1.6). Let u ∈ LM(Rn, dx) and denote by uε the regular-
ized function: uε = u ∗ ρε, where ρε(x) = ε−nρ(x/ε) is the standard mollifier. Then
uε → u in the σ(LM(Rn, dx), LM̄(Rn, dx)) topology as ε→ 0.

Now, we need a modification of Lemma A.5 to deal with functions F ∈ LM(R2n, dνn).

Lemma A.6. Let F ∈ LM(R2n, dνn) and denote by Fε

Fε(x, y) =

∫
Rn

F (x− z, y − z)ρε(z) dz,

where ρε(z) = ε−nρ(z/ε) is the standard mollifier. Then, if F has compact support,
Fε → F as ε→ 0 in the σ(LM(R2n, dνn), LM̄(R2n, dνn)) topology.

Proof. The proof of this lemma is a modification of Lemma A.5. In fact, first observe
that it is enough to prove the lemma in the case where F ∈ LM(R2n, dνn). Then,
using Jensen’s inequality, one can easily verify that

M(Fε) ≤M(F )ε =

∫
Rn

M(F (x− z, y − z))ρε(z) dz.

So, to finish the proof it remains to see that M(F )ε → M(F ) in L1(R2n, dνn), that
Fε → F νn−a.e. and apply Lemma A.3.

First, observe that if G ∈ L1(R2n, dνn) then Gε → G in L1(R2n, dνn). In fact,∫∫
R2n

|Gε −G| dνn ≤
∫∫

R2n

|G(x− z, y − z)−G(x, y)|ρε(z) dz dνn(x, y)

=

∫
|z|≤ε

ρε(z)

(∫∫
R2n

|G(x− z, y − z)−G(x, y)| dνn(x, y)

)
dz.

From this inequality, the result follows by the continuity of the L1−norm.

Applying this result to G = M(F )ε gives that M(F )ε → M(F ) in L1(R2n, dνn),
Finally, observe that since F has compact support, F ∈ LM(R2n, dνn) implies that
F ∈ L1(R2n, dνn), then if we apply the same result to G = F we get that Fε → F
in L1(R2n, dνn), so passing to a subsequence εk → 0 if necessary, we get the desired
result. �

Now we are ready to prove the main result of this appendix
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Proof of Theorem A.2. Let u ∈ W s
0LM(Ω). We can assume, without loss of gener-

ality, that u ∈ W s
0LM(Rn) and that u = 0 in Rn \ Ω.

Now, using Lemma A.3, the segment property of Ω, and observing that Dsut =
(Dsu)t, we can argue exactly as in the proof of [24, Theorem 1.3] and assume,
without loss of generality, that u has compact support in Ω.

Now, we can regularize u by convolution uε = u ∗ ρε and apply Lemmas A.5 and
A.6 to conclude the desired result. �

Appendix B. A Rellich-Kondrachov type result

In this appendix we prove a Rellich-Kondrachov compactness result for the in-
clusion W s

0LM(Ω) ⊂ LM(Ω). In the case where M satisfies the ∆2−condition this
result was proof in [18, Theorem 3.1].

It is worth mention that in [1] optimal embeddings of the formW sLM(Ω) ⊂ LN(Ω)
were obtained when Ω is Lipschitz and M satisfies some subcritical conditions. See
Theorem 9.1 in [1].

The purpose of this appendix is to obtain the compact embedding result of [18]
whitout requiring the ∆2−condition on M . We want to stress that the main ideas
in order to accomplish this task are taken from [1].

Lemma B.1. For all u ∈ W sLM and |h| < 1/2 we have∫
Rn

M (|u(x+ h)− u(x)|) dx ≤ 2n+1

ωn

∫∫
R2n

M(2s+1|h|sDsu) dνn.

Proof. Let x, h ∈ Rn with |h| < 1/2 and u ∈ W sLM . We define the following sets

S1 =

{
y ∈ B|h|(x) : |u(x+ h)− u(y)| ≥ 1

2
|u(x+ h)− u(x)|

}
,

S2 =

{
y ∈ B|h|(x) : |u(x)− u(y)| ≥ 1

2
|u(x+ h)− u(x)|

}
.

Then B|h|(x) ⊂ S1 ∪ S2. Therefore it follows that

|S1| ≥
1

2
|B|h|(x)| or |S2| ≥

1

2
|B|h|(x)|.

Without loss of generality we may assume that

1

2
ωn|h|n ≤ |S1| ≤ ωn|h|n.

Hence we have∫
Rn

M (|u(x+ h)− u(x)|) dx =

∫
Rn

1

|S1|

∫
S1

M (|u(x+ h)− u(x)|) dy dx

≤ 2

ωn|h|n

∫∫
Rn×B|h|(x)

M(2|u(x+ h)− u(y)|) dy dx.
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The last integral is bounded by

2

ωn|h|n

∫∫
Rn×B|h|(x)

M

(
2
|u(x+ h)− u(y)|
|x+ h− y|s

|x+ h− y|s
)
|x+ h− y|n dydx

|x+ h− y|n

≤ 2n+1

ωn

∫∫
R2n

M

(
2s+1|h|s |u(x)− u(y)|

|x− y|s

)
dνn.

This finish the proof. �

Corollary B.2. There exists a constant C = C(n, s) > 0 such that

‖τhu− u‖M ≤ C|h|s‖Dsu‖M,νn ,

for every u ∈ W sLM and |h| < 1/2

Proof. Take λ = ‖Dsu‖M,νn2s+1|h|sA where A = max{1, 2n+1/ωn}, and apply the
previous lemma to the function u/λ. And we get∫

Rn

M

(
|u(x+ h)− u(x)|

λ

)
dx ≤ 2n+1

ωn

∫∫
R2n

M

(
Dsu

‖Dsu‖M,νnA

)
≤ 1.

This finish the proof taking C = 2s+1A. �

Whit these preliminaries we are ready to prove the main result of this appendix.

Theorem B.3. Let Ω ⊂ Rn be a bounded domain that satisfies the segment prop-
erty and let M be a Young function. Then the inclusion W s

0LM(Ω) ⊂ EM(Ω) is
compact. That is if {uk}k∈N ⊂ W s

0LM(Ω) is bounded, there exists u ∈ EM(Ω) and a
subsequence {ukj}j∈N ⊂ {uk}k∈N such that ukj → u in EM(Ω) as j →∞.

Proof. With the help of Corollary B.2 the proof of the theorem is an immediate
consequence of [25, Theorem 11.4]. �
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