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Abstract. We study the energy function of the Kuramoto model in random geometric graphs
defined in the unit circle as the number of nodes diverges. We prove the existence of at least one
local minimum for each winding number q ∈ Z with high probability. Hence providing a large
family of graphs that support patterns that are generic. These states are in correspondence with
the explicit twisted states found in WSG and other highly symmetric networks, but in our situation
there is no explicit formula due to the lack of symmetry. The method of proof is simple and robust.
It allows other types of graphs like k−nn graphs or the boolean model and holds also for graphs
defined in any simple closed curve or even a small neighborhood of the curve and for weighted
graphs. It seems plausible that the method can be extended also to higher dimensions, but a more
careful analysis is required.

1. Introduction

The study of local minima and the whole geometry of high-dimensional random non-convex
functions is highly relevant in areas as diverse as deep-learning, statistical mechanics, complex
networks and synchronicity.

Phase synchronization of systems of coupled oscillators is a phenomenon that has attracted the
mathematical and scientific community because of its intrinsic mathematical interest [6, 8, 10, 15]
and its ubiquity in technological, physical and biological models [3, 4, 7, 11, 18, 21, 22, 24].

One of the most popular models for describing synchronization of a system of coupled oscillators
is the Kuramoto model. The model has been studied both by means of rigorous mathematical
proofs and heuristics arguments and simulations in different families of graphs. Here we focus in
the first class of evidence.

We consider graphs Gn = G = (V,E) where the set of nodes V = {x0, x1, . . . , xn−1} ⊂ S1 is
a sample of n i.i.d uniform random variables. The distance between two nodes is given by the
Euclidean distance in C, which is equivalent to the geodesic distance in S1. For convenience, we
assume that the nodes V are labeled counterclockwise with arg(x0) = 0 and we denote xn := x0.

The random geometric graph in the circle S1 with parameters n, ϵn is the graph that has V as the
set of nodes in which we declare {xi, xj} ∈ E (we denote this by i ∼ j) if and only if |xi−xj | < ϵn.

We can think of x0, . . . , xn−1 as points in [0, 2π] and | · | as the absolute value function with the
convention that everything is understood mod 2π.

For the sequence of random geometric graphs defined above, we are going to work in the regime

(1.1) nϵ2n → 0,
nϵn
log n

→ ∞, as n → ∞.

The first condition implies ϵn → 0, which is important to obtain Proposition 3.1 below (this propo-
sition does not hold if ϵn ↛ 0). It will also be used for the conclusion of the main theorem.
However, we expect the conclusion of our main theorem to hold even without Proposition 3.1 (but
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some bound from above is needed on ϵn to avoid high connectivity that leads to global synchro-
nization [23]). The second condition is required to guarantee connectivity of the graph with high
probability and so, it can’t be removed without altering the behavior of the system. Observe that
both conditions are verified for any sequence of the form ϵn ≈ n−a with 1/2 < a < 1.

Let un : [0,∞)×V → R be the unique solution to a system of n homogeneous Kuramoto equations
d

dt
un(t, xi) =

1

n

1

ϵ2nNi

∑
j∼i

sin (un(t, xj)− un(t, xi)) ,

un(0, xi) = ūn(xi), i = 0, 1, ..., n− 1.

(1.2)

The random integer Ni denotes the number of neighbors of xi. To lighten notation we call uni =
un(t, xi) and we also omit the dependence on n if it is not nessesary. Equations (1.2) define a
gradient system. It is a direct computation to see that

u̇ = −∇En(u),

for

En(u) = En(u0, . . . , un−1) =
1

n

n∑
i=1

1

2ϵ2nNi

∑
j∼i

(1− cos(uj − ui)).

The sine function in (1.2) can be replaced by an odd 2π−periodic symmetric smooth function J
with Taylor expansion J(θ) = θ + o(θ2) without altering the conclusion of our main result.

Our interest in the Kuramoto model in graphs with this structure is threefold: on the one hand
this kind of graphs is relevant to model several natural situations in which spatial considerations
are important to determine the strength of the links between oscillators. On the other hand they
form a large family of model networks with persistent behavior (robust to small perturbations) for
which we expect to observe patterns.

Last but not least, there has been a recent interest to understand the behavior of the Kuramoto
model on diverse models of random and non-random graphs [1, 2, 12, 13]. The main goal is to decide
if the networks foster synchronization or not. In [2] the authors have recently shown that in expander
graphs and in particular in Erdős-Rény graphs above the connectivity threshold, synchronization
occurs with high probability as n → ∞. Our results can be seen as a complement of those in
the sense that we are exhibiting a class of random graphs that are not expanders for which global
synchronization fails. Up to our knowledge this is the first rigorous proof of non-synchronization
in random graphs.

Twisted states have been defined for particular classes of graphs as explicit equilibria of (1.2).
They have been shown to be stable equilibria in rings in which each node is connected to its k
nearest neighbors on each side [23], in Cayley graphs and in random graphs with a particular
structure [16].They have also been studied in small-world networks [14] and in the continuum limit
[17] among others.

Our notion of twisted state is a bit different since we don’t expect to find explicit equilibria in
our context besides complete synchronization. We think of them as stable equilibria that can be
identified in some way to with the functions uq(xi) = qxi. Precise definitions in the next section.
We remark that we are considering functions that take values in S1 rather than R. Alternatively,
we can think of them as functions u : [0, 2π] → R with u(2π) = u(0) + 2qπ for some q ∈ Z.

Situations in which the twisted states are explicit are not expected to be robust and persistent.
Our interest is to find twisted states that are generic in some sense and for this same reason we do
not expect us to be able to compute them explicitly.
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Remark that as far as we know, in most of the literature that give rigorous proofs about existence
of twisted states they are computed explicitly by exploding graph symmetries and the issue is to
prove their stability. Here (and in most typical real situations with spatial structure and local
interactions) the issue is to prove their existence. We are going to get the stability for free.

The Kuramoto model in random geometric graphs has been studied in [1]. In that work the
authors are interested in the optimization landscape of the energy function determined by (1.2) as
well as we are here, but they work on a different regime: in their setting the graphs are constructed
on the sphere Sd−1 rather than in the circle and d → ∞ as n → ∞. In that context, they obtain
guarantees for global spontaneous synchronization (i.e. the global minimum θ1 = θ2 = · · · = θn is
the unique local minima of the energy). This is pretty different from our situation as we will see.

Besides the Kuramoto model, our work enters in the framework of random non-convex opti-
mization, which is relevant not just in the study of dynamics of complex networks but also in
deep-learning and statistical mechanics. In the first case due to the fact that most of modern learn-
ing algorithms (i.e., artificial neural networks) rely on the adequate optimization of a loss functions
which is typically highly non-convex and random [5, 9, 19, 20].

In particular, our results show that for this kind of random energies, while the energy at a typical
point diverges to infinity with the size of the graph, at local minima is of order one.

We are going to state our results for random geometric graphs but they can be exported straight-
forwardly to different kinds of graphs defined in any closed and simple curve like k−nn graphs or
even deterministic graphs. We discuss this in Section 4.

For a continuous function u : [0, 2π] → R with u(2π) = u(0) + 2qπ for some q ∈ Z we define its
index by I(u) = q. If u is defined only in a discrete set {x0, . . . , xn−1} we define its index as the
index of its linear interpolation (a more precise definition is given below).

Our main result reads as follows.

Theorem 1.1. For each q ∈ Z we have,

lim
n→∞

P ((1.2) has an asymptotically stable equilibrium with index q) = 1.

To prove this theorem we first consider in Section 2 a partition of the space Sn := (S1)n where
En is defined. Next, in Section 3 we prove Proposition 3.1 which is one of the main ingredients and
then Theorem 1.1.

2. Geometry of the space Sn

For a rectifiable closed curve γ : [a, b] → C that does not contain the origin we define the index
(or winding number) of γ (around the origin) as the total number of times that the curve travels
counterclockwise around ω. More precisely,

I(γ) =
1

2πi

∫
γ

dz

z
.

For each z = (z0, . . . , zn−1) ∈ Sn ⊂ Cn, consider γz =
∑n

j=1 γj where γj is the geodesic from

zj−1 to zj in S1, zn = z0 and γi + γj is the curve that results from concatenating γi and γj in the
given order. Observe that γz is a well-defined picewise differentiable closed curve in S1 as far as
zj ̸= −zj−1 for every j (otherwise the geodesic from zj−1 to zj is not unique). We abbreviate the
notation by writing I(z) := I(γz).
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If we write zj = eiθj for some θj ∈ [0, 2π), then

I(z) =
1

2πi

∫
γz

dz

z

=
1

2πi

n∑
j=1

∫
γj

dz

z

=
1

2π

n∑
j=1

θj ⊖ θj−1.

Here θj ⊖ θj−1 is the signed length of the geodesic from zj−1 to zj . If for each θ, θ′ we choose θ̄ and

θ̄′ such that eiθ̄ = eiθ, eiθ̄
′
= eiθ

′
with −π < θ̄ − θ̄′ < π, it can be computed as

θ ⊖ θ′ = θ̄ − θ̄′.

Sometimes we will slightly abuse notation by writing I(θ0, . . . , θn−1) instead of I(z0, . . . , zn−1). This
is not a problem since the value of I is independent of the choice of θ0, . . . , θn−1.

Observe that the set of points z ∈ Sn for which the index I(z) is well defined is open and that the
function I is continuous in its domain and integer valued. Hence it is constant in each connected
component and in fact the sets

Kq := {z ∈ Sn : I(z) = q},
define the connected components of the domain of I. Note that each Kq is open and ∂Kq = {z ∈
Kq : I(z) is not defined}. So, we have the decomposition

Sn =
⋃
q∈Z

Kq ∪

⋃
q∈Z

∂Kq

 .

Remark that for a given n, the sets Kq = ∅ for |q| > ⌊n−1
2 ⌋. Also remark that for |q| ≤ ⌊n−1

2 ⌋ we

have ∂Kq ∩ ∂Kq′ ̸= ∅. In fact the point (0, π, 0, π, . . . ) ∈ ∂Kq for every q ≤ ⌊n−1
2 ⌋.

We will prove that for each q ∈ Z, the energy En restricted to Kq attains a minimum with high
probability as n → ∞. Since the sets Kq are open, this minima are forced to be local minima of
En.

3. Proof of the main theorem

To prove Theorem 1.1 we will need the following proposition applied to the functions uq(x) = qx
but we state it for general smooth functions u due to its independent interest.

Proposition 3.1. Assume u ∈ C2([0, 2π],R), then

lim
n→∞

En(u) =
1

12π

∫ 2π

0
|u′(x)|2 dx, in probability.

Proof. We need to Poissonize. Consider an infinite sequence of independent uniform random vari-
ables in S1, x0, x1, . . . . Let n be an independent Poisson random variable with parameter n. Define
for every k ∈ N, Vk = {x0, . . . , xk−1}. Then V = Vn and we denote V := Vn. The point process V
is a Poisson Point Process in S1. Let us consider the Poissonized version of the energy,

En(u) = En(u0, . . . , un−1) =
1

n

n∑
i=1

1

2ϵ2nNi

∑
j∼i

xj∈V

(1− cos(uj − ui)).
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Here Ni is the number of neighbors of i in the graph constructed with V instead of V . We also
need to consider versions of the energy for different sets of nodes. So, define for any Vk,

EVk
n (u) = EVk

n (u0, . . . , uk−1) =
1

n

k∑
i=1

1

2ϵ2nN
Vk
i

∑
j∼i

xj∈Vk

(1− cos(uj − ui)).

Similarly, NVk
i denotes the number of neighbors of i in the graph constructed with Vk. With this

notation we have En = EVn
n and En = EV

n . There is a random variable C independent of n and u
such that for every integer k ≥ −n+ 2,

|EVn+k
n (u)− EVn

n (u)| ≤ C
|k|
n
∥(u′)2∥∞.

In particular,

|En(u)− En(u)| ≤ C
|n− n|

n
∥(u′)2∥∞.

Since |n−n|
n → 0 a.s., it is enough to prove

lim
n→∞

En(u) =
1

12π

∫ 2π

0
|u′(x)|2 dx, in probability.

We proceed to do that. First, observe that

(3.1) lim
ϵ→0

1

ϵ

∫ 2π

0

∫ 2π

0

(
u(y)− u(x)

ϵ

)2

1{|y − x| < ϵ} dy dx =
2

3

∫ 2π

0
|u′(x)|2 dx,

and moreover

(3.2) lim
ϵ→0

1

ϵ

∫ 2π

0

∫ 2π

0

(
1− cos(u(y)− u(x))

ϵ2

)
1{|y − x| < ϵ} dy dx =

1

3

∫ 2π

0
|u′(x)|2 dx.

Let N (i) be the set of neighbors of i in the graph determined by V. That is,

N (i) := {j : 0 ≤ j ≤ n, |xj − xi| < ϵn}.

Conditional on i ≤ n, xi = x and N (i), the variables

ζij := [1− cos(u(xj)− u(xi))]1{xj ∼ xi}
= [1− cos(u(x+ ϵzij)− u(x))]1{|zij | < 1}

are i.i.d. and their absolute values are bounded by ∥(u′)2∥∞ϵ2n. Here zij := (xj − xi)/ϵ. Moreover,

since the conditional distribution of zij , j ∈ N (i) is uniform in [−1, 1], we have that

E
(
ζij |xi = x,N (i)

)
=

1

2

∫ 1

−1
[1− cos(u(x+ ϵz)− u(x))] dz

=
1

2ϵn

∫ 2π

0
[1− cos(u(y)− u(x))]1{|y − x| < ϵn} dy.

Then

E

 1

ϵ2nNi

∑
j∈N (i)

ζij

 =
1

4πϵ3n

∫ 2π

0

∫ 2π

0
[1− cos(u(y)− u(x))]1{|y − x| < ϵn} dydx.
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and

E

 1

ϵ2nNi

∑
j∈N (i)

ζij

2

≤ ∥(u′)2∥∞.

We conclude by applying the following two lemmas to the variables

Zn
i :=

1

ϵ2nNi

∑
j∈N (i)

ζij , 0 ≤ i ≤ n− 1.

For the sake of well-definiteness we construct Zn
i for i ≥ n using independent copies of the

process.

Lemma 3.2. For Zn
i defined as above, we have for i ̸= j,

|Cov(Zn
i , Z

n
j )| ≤

∥(u′)2∥2∞ϵn
π

.

Proof. Observe that for every i, n, |Zn
i | ≤ ∥(u′)2∥∞. We compute for i ̸= j,

E[Zn
i Z

n
j |xi, xj ,N (i),N (j)] =

= E
[
Zn
i Z

n
j 1{|xi − xj | > 2ϵn}|xi, xj ,N (i),N (j)

]
+ E

[
Zn
i Z

n
j 1{|xi − xj | ≤ 2ϵn}|xi, xj ,N (i),N (j)

]
.

But,

E
[
Zn
i Z

n
j 1{|xi − xj | > 2ϵn}|xi, xj ,N (i),N (j)

]
= E [Zn

i |xi,N (i)]E
[
Zn
j |xj ,N (j)

]
1{|xi − xj | > 2ϵn}

and

E
[
Zn
i Z

n
j 1{|xi − xj | ≤ 2ϵn}

]
≤ ∥(u′)2∥2∞P(|xi − xj | ≤ 2ϵn) ≤ ∥(u′)2∥2∞

2ϵn
π

.

Hence,∣∣E(Zn
i Z

n
j )− E(Zn

i )E(Zn
j )
∣∣ =

=
∣∣E(Zn

i )E(Zn
j )P(|xi − xj | > 2ϵn) + E

[
Zn
i Z

n
j 1{|xi − xj | ≤ 2ϵn}

]
− E(Zn

i )E(Zn
j )
∣∣

=
∣∣−E(Zn

i )E(Zn
j )P(|xi − xj | ≤ 2ϵn) + E

[
Zn
i Z

n
j 1{|xi − xj | ≤ 2ϵn}

]∣∣
≤ 4∥(u′)2∥2∞ϵn

π
.

□

Lemma 3.3. For Zn
1 , Z

n
2 , . . . , Z

n
n defined as above we have,

1

n

n∑
i=1

Zn
i → µ :=

1

12π

∫ 2π

0
|u′(x)|2 dx, in probability.

Proof. Call Z̄n = 1
n

∑n
i=1 Z

n
i . We compute,
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E

[
1

n

n∑
i=1

Zn
i

]2
=

E(n)
n2

E(Zn
1 )

2 +
1

n2
E

 n∑
i ̸=j

Zn
i Z

n
j


=

1

n
E(Zn

1 )
2 +

E(n(n− 1))

n2
Cov(Zn

1 , Z
n
2 ) +

E(n(n− 1))

n2
E2(Zn

1 ).

We have that E(Zn
1 )

2 ≤ ∥(u′)2∥∞ and Cov(Zn
1 , Z

n
2 ) → 0. Then E(Z̄2

n) → µ2. Since E(Z̄n) → µ, the
variance Var(Z̄n) → 0. By means of Tchebychev inequality, Z̄n → µ in probability. □

Lemma 3.3 proves that En(u) → µ and hence the same holds for En(u).
□

We are ready to prove our main theorem.

Proof of Theorem 1.1. First, by Bernstein’s inequality and union bound, we have that

P
(

n
sup
i=1

|Ni −
ϵnn

π
| > λ

)
≤ 2ne

−
1
2λ2

ϵnn/π+λ/3 , λ > 0.(3.3)

For λ = ϵnn
π we obtain

P
(

n
sup
i=1

Ni ≥
2ϵnn

π

)
≤ 2ne−cϵnn.(3.4)

Similarly, if we call Nij = |{k : |xi − xk| < ϵn, |xj − xk| < ϵn}| the number of common neighbors of
i and j, we have E(Nij |i ∼ j) ≥ nϵn

2π and

P
(
Nij ≤

ϵnn

4π

)
≤ e−cϵnn.

Hence,

P
(
inf
i∼j

Nij <
nϵn
4π

)
≤
∑
i,j

P
(
Nij <

nϵn
4π

∣∣∣i ∼ j
)
P(i ∼ j) ≤ n2e−cϵnn(ϵn/π).(3.5)

Let z ∈ Sn, z = (z0, . . . , zn−1) = (eiθ0 , . . . , eiθn−1) such that I(z) is not defined. Then there
is k with zk = −zk−1 and hence we have cos(θk−1 − θk) = −1. For any θ ∈ [0, 2π) we have
cos(θk−1 − θ) ∧ cos(θk − θ) ≤ 0. If G is connected and r is a neighbor of both k and k − 1 we have∑

j∼r

(1− cos(θj − θr)) ≥ 1.

Hence

(3.6) En(θ0, . . . , θn−1) =
1

n

n∑
i=1

1

2ϵ2nNi

∑
j∼i

(1− cos(θj − θi)) ≥
Nk,k−1

2nϵ2n(Nk ∨Nk−1)
.

Due to (3.4) and (3.5) we have for every q ∈ Z ,

P
(

inf
θ∈∂Kq

E(θ) ≤ 1

16nϵ2n

)
≤ P

(
sup
i

Ni ≥
2ϵnn

π

)
+ P

(
inf
i,j

Nij ≤
ϵnn

4π

)
+ P

(
n⋃

i=1

{i ≁ i− 1}

)

≤ 2ne−cϵnn + n2e−cϵnn + n

(
π − ϵn

π

)n−1

.
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Condition (1.1) guarantees nϵ2n → 0 and that
∑

n n
2e−cϵnn < ∞. Thus,

(3.7) lim
n→∞

inf
(eiθ0 ,...,eiθn−1 )∈∂Kq

E(θ0, . . . , θn−1) = +∞, a.s.

For q ∈ Z we consider the function uq(x) = qx. Observe that (uq(x0), . . . , uq(xn−1)) ∈ Kq and
compute

lim
n→∞

En(uq) =
1

12π

∫ 2π

0
|u′q(x)|2 dx =

q2

6
, in probability.

Define the event

An,q :=

{
inf

z∈∂Kq

En(z) >
q2

4
and En(uq) <

q2

5

}
.

Due to Proposition 3.1 and (3.7), P(An,q) → 1 as n → ∞. Finally, observe that since Kq is compact

and En is continuous, it attains a minimum at Kq. If An,q occurs this minimum can not be attained
in ∂Kq and hence there is a point u∗q ∈ Kq with

En(u
∗
q) ≤ En(u), for every u ∈ Kq.

Since Kq is open, u∗q is a local minimum of En and hence a stable equilibrium for (1.2). We have
proved that for every q ∈ Z

P ((1.2) has a stable equilibrium with index q) ≥ P(An,q) → 1.

To ensure that u∗q is a strict local minima and hence asymptotically stable, we verify a well-known

condition that implies that the Hessian D2En(u
∗
q) is positive definite, namely

(3.8) |u∗q(xi)− u∗q(xj)| <
π

2
, for every i ∼ j,

(see [13]). Let Bn,q := {ω : ω ∈ An,q and (3.8) does not hold}. If there is k ∼ ℓ with |u∗q(xk) −
u∗q(xℓ)| ≥ π

2 , proceeding as in (3.6) we bound from below

En(u
∗
q) =

1

n

n∑
i=1

1

2ϵ2nNi

∑
j∼i

(1− cos(u∗q(xi)− u∗q(xj))) ≥
Nk,ℓ

nϵ2n(Nk ∨Nℓ)
.

Since in An,q we have En(u
∗
q) ≤ En(uq) ≤ q2/5, using Bernstein’s inequality again we obtain for n

large enough,

P(Bn,q) ≤

≤ P
(
An,q ∩

{
En(u

∗
q) ≥ inf

i∼j

Ni,j

nϵ2n(Ni ∨Nj)

})
≤ P

(
sup
i

Ni ≥
2ϵnn

π

)
+ P

(
inf
i∼j

Nij ≤
ϵnn

4π

)
≤ (2n+ n2)e−cϵnn.

Since P(An,q) → 1, we get that

P(An,q and (3.8) holds) → 1.

In particular,

lim
n→∞

P ((1.2) has an asymptotically stable equilibrium with index q) = 1.

□
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4. Discussion

In this section we discuss other models for which our results still holds, possible extensions and
other considerations.

4.1. Other graph models. Using the same arguments, Theorem 1.1 also holds for the following
families of graphs. All are based on nodes V = {x0, . . . , xn−1} i.i.d uniformly distributed on the
unit circle. Different models correspond to different sets of edges.

a. k−nn graphs Two vertices xi and xj are connected by an edge if the distance between xi and
xj is among the kn−th smallest distances from xi to other nodes from xi or vice versa. Condition
(1.1) becomes

k2n
n

→ 0,
kn

log n
→ ∞.

b. Boolean model. For each node xi we consider a random radius ri. We assume the radii are
i.i.d. We declare two nodes xi, xj neighbors if

(xi − ri, xi + ri) ∩ (xj − rj , xj + rj) ̸= ∅.

The role of ri is similar to the one of ϵn/2 in the original model but now they are random. Condition
(1.1) becomes

nE(r2i ) → 0,
nE(ri)
log n

→ ∞, as n → ∞.

c. Random N−nn. This is similar to the k−nn graph but instead of considering a deterministic
k we choose a random number Ni for each xi. The variables (Ni)0≤i≤n−1 are i.i.d.

d. Weighted graphs. In any of the previous models or even in WSG networks (with small
k) we can consider (random or deterministic) weights as far as they don’t degenerate as n → ∞.
To get a tractable model it is better to consider a kernel k : R → R≥0 to be a symmetric, smooth
function with compact support in (−1, 1) and

∫
k(z)dz = 1. Then we consider the weighted graph

G = (V,E), where the weights are given by wij = k
(
ϵ−1
n (xj − xi)

)
. For these graphs, condition

(1.1) remains unchanged.

e. Random geometric graphs in an ϵn−neighborhood of a simple closed curve. Con-
sider a simple closed curve γ and its ϵn neighborhood

γϵn := {x ∈ Rd : d(x, γ) < ϵn}.

Here d(x, γ) = infy∈γ |x− y|. For ϵn small enough γϵn is homeomorphic to an ϵn−neighborhood of

the unit circle Cϵn and we can work on that setting without loss of generality. So, consider in Rd

the set Cϵn with

C = {(x, y, 0, . . . , 0) ∈ Rd : x2 + y2 = 1}.
We consider as in the whole manuscript a sample V = {x0, . . . , xn−1} of n i.i.d. uniform points in
Cϵn and we declare xi ∼ xj if and only if their projections in the unit circle are at distance less
than ϵn. Observe that this implies that the distance between them is less than 3ϵn. By working
with the projections, we obtain a random geometric graph in the circle and hence we can apply
Theorem 1.1.
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4.2. Bounds for the existence of uq. In the course of the proof of Theorem 1.1 we saw that
with high probability the infimum of the energy on the boundary of any Kq is bounded below
by (16nϵ2n)

−1. This bound is sharp. Then we expect the event An,q to have small probability for
(16nϵ2n)

−1 < q2/4 and large probability when (16nϵ2n)
−1 > q2/4, which is equivalent to

|q| < 1

2
√
nϵn

→ ∞.

Hence, the larger the |q|, the larger the n we need to get the existence of a q−twisted state with
high probability.

In fact, following the same arguments it can be proved that if qn < 1
2
√
nϵn

for n large enough,

then

lim
n→∞

P ((1.2) has an asymptotically stable equilibrium with index qn) = 1.

4.3. The role of the scaling factor. Equation (1.2) is scaled according to the factor 1/nϵ2n. The
goal of this factor is to obtain Proposition 3.1, but once we obtain the existence of q−twisted states
for a specific value of n, the scaling factor plays no role and the same conclusion can be obtained
for any other constant used to normalize the energy En.

Acknowledgments. We thank Steven Strogatz for illuminating discussions.
Pablo Groisman and Cecilia De Vita are partially supported by CONICET Grant PIP 2021

11220200102825CO, UBACyT Grant 20020190100293BA and PICT 2021-00113 from Agencia I+D.
Julián Fernández Bonder is partially supported by CONICET under grant PIP 11220150100032CO

and PIP 11220210100238CO and by ANPCyT under grants PICT 2019-3837 and PICT 2019-3530.

References

[1] Pedro Abdalla, Afonso S. Bandeira, and Clara Invernizzi. Guarantees for spontaneous syn-
chronization on random geometric graphs, 2022.

[2] Pedro Abdalla, Afonso S. Bandeira, Martin Kassabov, Victor Souza, Steven H. Strogatz, and
Alex Townsend. Expander graphs are globally synchronizing, 2023.

[3] J.A. Acebrón, L.L. Bonilla, C.J.P. Vicente, F. Ritort, and R. Spigler. The kuramoto model: A
simple paradigm for synchronization phenomena. Reviews of Modern Physics, 77(1):137–185,
2005.

[4] Alex Arenas, Albert Dı́az-Guilera, Jurgen Kurths, Yamir Moreno, and Changsong Zhou. Syn-
chronization in complex networks. Phys. Rep., 469(3):93–153, 2008.

[5] Nicholas P. Baskerville, Jonathan P. Keating, Francesco Mezzadri, and Joseph Najnudel. The
loss surfaces of neural networks with general activation functions. J. Stat. Mech. Theory Exp.,
2021(6):71, 2021. Id/No 064001.

[6] Lorenzo Bertini, Giambattista Giacomin, and Christophe Poquet. Synchronization and random
long time dynamics for mean-field plane rotators. Probab. Theory Related Fields, 160(3-4):593–
653, 2014.

[7] Francesco Bullo. Lectures on network systems ed. 1.6. Kindle Direct Publishing, 2022.
[8] Hayato Chiba and Georgi S. Medvedev. The mean field analysis of the Kuramoto model on

graphs I. The mean field equation and transition point formulas. Discrete Contin. Dyn. Syst.,
39(1):131–155, 2019.

[9] Anna Choromanska, MIkael Henaff, Michael Mathieu, Gerard Ben Arous, and Yann LeCun.
The Loss Surfaces of Multilayer Networks. In Guy Lebanon and S. V. N. Vishwanathan,
editors, Proceedings of the Eighteenth International Conference on Artificial Intelligence and



KURAMOTO MODEL IN RANDOM GEOMETRIC GRAPHS 11

Statistics, volume 38 of Proceedings of Machine Learning Research, pages 192–204, San Diego,
California, USA, 09–12 May 2015. PMLR.

[10] Fabio Coppini, Helge Dietert, and Giambattista Giacomin. A law of large numbers and large
deviations for interacting diffusions on Erdös-Rényi graphs. Stoch. Dyn., 20(2):2050010, 19,
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