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Abstract. In this paper we extend the well-known concentration – compactness principle of
P.L. Lions to Orlicz spaces. As an application we show an existence result to some critical
elliptic problem with nonstandard growth.

1. Introduction

The study of Orlicz and Orlicz-Sobolev spaces is a subject that has a long history in analysis
since the begginning of the 1930s starting with the work of Orlicz himself and the famous Polish
school.

These spaces apear naturally in several applications in physics and engineering when one
need to deal with the so-called nonstandard growth differential equations. Some prototypical
examples of such problems are equations of the form

(1.1) −∆au := −div

(
a(|∇u|)
|∇u|

∇u
)

= f,

posed in a domain Ω ⊂ Rn and complemented with some boundary conditions.

The study of these problems is connected to Orlicz and Orlicz-Sobolev spaces since the natural
space for solutions is W 1,A(Ω) where A′(t) = a(t).

The regularity problem for (1.1) was analyzed in the classical work of Lieberman [12] where it
is shown, under adequate assumptions on A and f , that bounded solutions are Hölder continuous.

The existence problem of (1.1) is related to the growth of the source term f and therefore
related to the integrability properties of functions in W 1,A(Ω) and for that purpose it is extremely
relevant the study of the Sobolev immersions for these spaces. Namely, what is needed is to find
all Young functions B (see next section for precise definitions) such that

(1.2) W 1,A(Ω) ⊂ LB(Ω).

As far as we know, the first article that treated this problem was [5] and then it was refined in
[4] where the author finds the optimal Young function such that (1.2) holds. In [4] this optimal
Young function is denoted by An (it depends only on A and n) and it is shown that (1.2) holds if
and only if B ≤ An (in the sense of Young funcions). Moreover, if B � An then the immersion
(1.2) is compact. This critical Young function An has a precise formula given in (2.6).
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This compactness property of (1.2) for B � An is crucial for the existence problem of (1.1).
Namely, if F ′(t) = f(t) and F � An then the standard variational methods (under adequate
assumptions both on A and F ) can yield existence results for

−∆au = f(u).

However, for critical-type problems, where F ∼ An the existence problem becomes much more
delicate.

In the classical setting (when the differential operator is the Laplace operator), this problem is
very much related with the so-called Yamabe problem in differential geometry and the literature
is so vast that is impossible to give an extensive review in this short introduction.

One extremely important tool to deal with such critical problems was developed by P.L. Lions
in his famous article [13]. P.L. Lions developed what is called as the concentration-compactness
principle that consists in analyze the lack of compactness for bounded sequences in W 1,p(Ω).
What Lions proved is that for bounded domains Ω the only possibility is the appearance of
concentration points.

The concentration-compactness principle has been proved to be an extremely powerful tool
and has been used by several authors in too many different problems and also it has been
generalized to different settings. See [2, 7, 9, 10, 14] and references therein.

The main point of this article is therefore to generalized Lions’ concentration-compactness
principle to the context of Orlicz spaces. Then, as an application of the method, we give a proof
of existence of solutions to

(1.3)

{
−∆au = an(u) + λf(u) in Ω

u = 0 on ∂Ω,

where f is a subcritical nonlinearity in the sense that F � An (here A′n = an).

Organization of the paper. In section 2, we give a review of Young functions and Orlicz and
Orlicz-Sobolev spaces that are needed in the course of the arguments. There are no new results
there so any expert in the subject can safely skip this section.

In section 3, we prove some preliminary technical lemmas and in section 4 we prove our main
result (Theorem 4.3) where we extend Lions’ concentration-compactness principle to the Orlicz
setting.

Finally, in section 5 we apply Theorem 4.3 to obtain some existence result for (1.3).

2. Young functions and Orlicz and Orlicz-Sobolev spaces: a review

This section is devoted to give a very short overview of some known results on Young functions
and Orlicz and Orlicz-Sobolev spaces that will be needed in the rest of the paper. There are
no new results in this section so if the reader is familiar with the topic, he or she can skip the
section and go directly to section 3. An excellent source for these topics is the classical book
[11].

2.1. Young functions. Let us begin with the definition of a Young function.

Definition 2.1. A function A : R+ → R is said to be a Young function if it has the form

A(t) =

∫ t

0
a(τ) dτ, t ≥ 0,
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where a : [0,∞)→ [0,∞) has the following properties:

(i) a(0) = 0,
(ii) a(s) > 0 for s > 0,

(iii) a is right continuous at any point s ≥ 0,
(iv) a is nondecreasing on (0,∞).

Associated to any Young function A one define its complementary function (or Legendre
conjugate) of A.

Definition 2.2. Let A be a Young function, we define its complementary function Ã as

Ã(s) := sup
t≥0
{st−A(t)}

Observe that, by definition, Ã is the optimal function in Young’s inequality

st ≤ A(t) + Ã(s).

It is a known fact that Ã is also a Young function. Moreover, Ã is given by

Ã(s) =

∫ s

0
ã(τ) dτ,

where ã is the generalized inverse of a.

We need the notion of comparison between Young functions.

Definition 2.3. Given two Young functions A and B, we say that A ≤ B if there exists a
constant c > 0 and t0 > 0 such that A(t) ≤ B(ct), for every t ≥ t0.

Whenever A ≤ B and B ≤ A we say that A and B are equivalent Young functions and this
fact will be denoted by A ∼ B.

Finally, we say that B is essentially larger than A, denoted by A� B, if for any c > 0,

lim
t→∞

A(ct)

B(t)
= 0.

A very important and useful property is the so-called ∆2−condition. We recall this concept
in the next definition.

Definition 2.4. We say that a Young function A satisfies the ∆2−condition if

A(2t) ≤ CA(t)

for all t ≥ 0 for a fixed positive constant C > 2.

In [11, Theorem 4.1] it is shown that the ∆2−condition is equivalent to

(2.1)
ta(t)

A(t)
≤ p+ for t > 0,

for some p+ > 1.

Moreover, from this inequality it is easy to deduce that both A and Ã verify the ∆2−condition
if and only if

(2.2) p− ≤ ta(t)

A(t)
≤ p+ for t > 0,
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where 1 < p− ≤ p+ <∞.

Let us now recall some simple inequalities for Young functions that will be helpful later on.

Lemma 2.5 ([8, Lemma 2.6]). Let A be a Young function satisfying (2.1). Then for every η > 0
there exists Cη > 0 such that

A(s+ t) ≤ CηA(s) + (1 + η)p+A(t) s, t > 0.

Lemma 2.6 ([6, Lemma 2.1]). Let A be a Young function satisfying (2.2), s, t > 0. Then

min{sp− , tp+}A(t) ≤ A(st) ≤ max{sp− , sp+}A(t).

In order to understand the behavior of a Young function A at infinity, it is very helpful to
introduce the notion of the Matuszewska-Orlicz function and the Matuszewska-Orlicz index.

Definition 2.7. Given a Young function A, we define the associated Matuszewska-Orlicz func-
tion as

M(t, A) := lim sup
s→∞

A(st)

A(s)
.

When no confusion arises, we will simply denote M(t) = M(t, A).

The Matuszewska-Orlicz index is then defined as

p∞(A) := lim
t→∞

lnM(t, A)

ln t
= inf

t>0

lnM(t, A)

ln t
.

Again, when no confusion arises, we will simply denote p∞ = p∞(A).

The main feature that we use in this article is the fact that, if A verifies the ∆2−condition,
then the index p∞ is finite and for any ε > 0, there exists t0 > 0 such that

(2.3) tp∞ ≤M(t, A) ≤ tp∞+ε, for t ≥ t0.

See [1] for this fact and more properties of this index.

Remark 2.8. It is also easy to check that if A satisfy (2.2), then p− ≤ p∞ ≤ p+. and that

min{tp+
, tp
−}M(s) ≤M(st) ≤ max{tp+

, tp
−}M(s).

We will need the following result regarding the function M(·, A).

Lemma 2.9. If A verifies (2.2), then M is a Young function.

Proof. According to [11], we need to check that M(·, A) is convex, even and verifies

lim
t→0+

M(t, A)

t
= 0 and lim

t→∞

M(t, A)

t
=∞.

Note that if we call As(t) := A(st)
A(s) , then As is convex and even. So M(t, A) = sups>0As(t) is

also convex and even.

Also, M(t, A) ≥ A1(t) = A(t) and so limt→∞
M(t,A)

t ≥ limt→∞
A(t)
t =∞.

Finally, from Lemma 2.6, A(st) ≤ tp−A(s) for t ∈ (0, 1). Then it follows that As(t) ≤ tp
−

for

every s > 0. Hence M(t, A) ≤ tp− and so M(t,A)
t ≤ tp−−1 → 0 as t→ 0+. �
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2.2. Orlicz and Orlicz-Sobolev spaces. Given a Young function A and an open set Ω ⊂ Rn
we consider the spaces LA(Ω) and W 1,A(Ω) defined as follows:

LA(Ω) := {u ∈ L1
loc(Ω): ΦA,Ω(u) <∞}, W 1,A(Ω) := {u ∈W 1,1

loc (Ω): u, |∇u| ∈ LA(Ω)},

where

ΦA,Ω(u) =

∫
Ω
A(|u|) dx.

These spaces are endowed with the so-called Luxemburg norm defined as

‖u‖LA(Ω) = ‖u‖A;Ω = ‖u‖A := inf
{
λ > 0 : ΦA,Ω

(u
λ

)
≤ 1
}

and

‖u‖W 1,A(Ω) = ‖u‖1,A:Ω = ‖u‖1,A := ‖u‖LA(Ω) + ‖∇u‖LA(Ω).

The spaces LA(Ω) and W 1,A(Ω) are separable Banach spaces and both are reflexive if and only
if A verifies (2.2). See [11].

From Lemma 2.6 we immediately get

Lemma 2.10. Let A be a Young function satisfying (2.2). Then the following inequlaity holds
true for u ∈ LA(Ω)

min{‖u‖p
−

A , ‖u‖p
+

A } ≤
∫

Ω
A(|u|) dx ≤ max{‖u‖p

−

A , ‖u‖p
+

A }.

In order for the Sobolev immersion theorem to hold, one need to impose some growth condi-
tions on A. Following [4], we require A to verify∫ ∞

K

(
t

A(t)

) 1
n−1

dt =∞.(2.4) ∫ δ

0

(
t

A(t)

) 1
n−1

dt <∞,(2.5)

for some constants K, δ > 0.

Given a Young function A that satisfies (2.4) and (2.5) its Orlicz-Sobolev conjugate is defined
as

(2.6) An(t) = A ◦H−1(t),

where

(2.7) H(t) =

(∫ t

0

(
τ

A(τ)

) 1
n−1

dτ

)n−1
n

.

The following fundamental Orlicz-Sobolev embedding Theorem can be found in [4]

Theorem 2.11. Let A be a Young function satisfying (2.4) and (2.5) and let An be defined in

(2.6). Then the embedding W 1,A
0 (Ω) ↪→ LAn(Ω) is continuous. Moreover, the Young function

An is optimal in the class of Orlicz spaces.

Finally, given B any Young funcion, the embedding W 1,A
0 (Ω) ↪→ LB(Ω) is compact if and

only if B � An.
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From now on, we will denote by SA the optimal constant in the embeddingW 1,A
0 (Ω) ⊂ LAn(Ω).

That is

(2.8) SA := inf
φ∈C∞c (Ω)

‖∇φ‖A
‖φ‖An

.

Remark 2.12. It is easy to see that A� An and hence W 1,A
0 (Ω) ⊂ LA(Ω) is compact.

3. Preliminary Lemmas

In this section we prove some technical lemmas that will be helpful in the sequel. Namely, we
need to show that An defined in (2.6) verifies the ∆2−condition whenever A does. Finally we
need a version of the celebrated Brezis-Lieb Lemma to the Orlicz setting.

We begin with some preliminary estimates.

Lemma 3.1. Let H(t) be as in definition (2.7), then the following inequality holds.

C1 + C2t
n

n−p− ≤ H−1(t) ≤ C1 + C2t
n

n−p+ .

Proof. From the definition of H, (2.7), we get, for t > 1,

H(t)
n
n−1 =

∫ 1

0

(
τ

A(τ)

) 1
n−1

dτ +

∫ t

1

(
τ

A(τ)

) 1
n−1

dτ

= C0 +

∫ t

1

(
τ

A(τ)

) 1
n−1

dτ,

Observe that C0 depends on A and n.

Now, using Lemma 2.6, for t > 1 we obtain

A(1)
−1
n−1

∫ t

1
τ

1−p+
n−1 dτ ≤

∫ t

1

(
τ

A(τ)

) 1
n−1

dτ ≤ A(1)
−1
n−1

∫ t

1
τ

1−p−
n−1 dτ.

Observe that, for 1 < p < n, ∫ t

1
τ

1−p
n−1 dτ =

n− 1

n− p
(t
n−p
n−1 − 1).

Then

C1 + C2t
n−p+
n ≤ H(t) ≤ C1 + C2t

n−p−
n .

From this last estimate we obtain the desired result. �

Remark 3.2. Combining Lemma 2.6 with Lemma 3.1 is easy to conclude that An(t) verifies

C1 + C2t
p−∗ ≤ An(t) ≤ C1 + C2t

p+
∗ ,

for some constants C1, C2 > 0 depending only on A and n.

Recall that given an exponent p ∈ (1, n) we denote by p∗ the Sobolev conjugate, p∗ = np
n−p .

Let us now check that the critical function An inherits the ∆2−condition from A.

Lemma 3.3. Let A be a Young function satisfying (2.2), (2.4) and (2.5) and let An be the
Young function defined in (2.6). Then An verifies ∆2-condition.
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Proof. By definition of H and using that A(t) verifies the ∆2-condition , we obtain

H(2t)
n
n−1 =

∫ 2t

0

(
τ

A(τ)

) 1
n−1

dτ = 2
n
n−1

∫ t

0

(
τ

A(2τ)

) 1
n−1

dτ

≥ 2
n
n−1

∫ t

0

(
τ

CA(τ)

) 1
n−1

dτ =
2

n
n−1

C
1

n−1

H(t)
n
n−1 .

Then

(3.1) H(2t) ≥ 2

C
1
n

H(t).

From (3.1) we easily get that

2H−1(s) ≥ H−1

(
2

C
1
n

s

)
.

If we denote 2t = 2

C
1
n
s = κs, so

H−1(2t) ≤ 2H−1

(
2

κ
t

)
.

Now, we are in position to prove that An verifies ∆2-condition. In fact,

An(2t) = A(H−1(2t)) ≤ A
(

2H−1

(
2

κ
t

))
≤ CA

(
H−1

(
2

κ
t

))
= CAn

(
2

κ
t

)
.

As we want to prove. �

To finish this section, we prove the Brezis-Lieb lemma in the Orlicz setting.

Lemma 3.4 (Brezis-Lieb Lemma). Let B be a Young function, fn → f a.e and fn ⇀ f in
LB(Ω) then, for every φ ∈ L∞(Ω) it follows that

lim
n→∞

(∫
Ω
B(|fn|)φdx−

∫
Ω
B(|f − fn|)φdx

)
=

∫
Ω
B(|f |)φdx.

Proof. First, by Lemma 2.5 we know that given ε > 0, there exists Cε such that for every
a, b ∈ R, the following inequality holds

|B(|a+ b|)−B(|a|)| ≤ εB(|a|) + CεB(|b|).
We define

Wε,n(x) = (|B(|fn(x)|)−B(|f(x)− fn(x)|)−B(|f(x)|)| − εB(|fn(x)|))+,

and note that Wε,n(x)→ 0 as n→∞ a.e. On the other hand,

|B(|fn(x)|)−B(|f(x)− fn(x)|)−B(|f(x)|)| ≤ |B(|fn(x)|)−B(|f(x)− fn(x)|)|+B(|f(x)|)
≤ εB(|fn(x)|) + CεB(|f(x)|) +B(|f(x)|),

i.e.
|B(|fn(x)|)−B(|f(x)− fn(x)|)−B(|f(x)|)| − εB(|fn(x)|) ≤ (Cε + 1)B(|f(x)|),

therefore
0 ≤Wε,n(x) ≤ (Cε + 1)B(|f(x)|).

By the dominated convergence Theorem, we conclude that

lim
n→∞

∫
Ω
Wε,n(x)φ(x) dx = 0.
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On the other hand,

|B(|fn(x)|)−B(|f(x)− fn(x)|)−B(|f(x)|)| ≤Wε,n(x) + εB(|fn(x)|).
Then, if we denote In =

∫
Ω (B(|fn(x)|)−B(|f(x)− fn(x)|)−B(|f(x)|))φ(x) dx, we get

|In| ≤
∫

Ω
Wε,n(x)|φ(x)| dx+ ε

∫
Ω
B(|fn|)|φ(x)| dx

≤
∫

Ω
Wε,n(x)|φ(x)| dx+ ε sup

n∈N

∫
Ω
B(|fn|)|φ| dx

≤
∫

Ω
Wε,n(x)|φ(x)| dx+ εC‖φ‖∞,

for some constant C > 0. Hence, we can conclude that lim sup In ≤ εC‖φ‖∞, for every ε > 0. �

4. Proof of the Concentration Compactness Principle

This is the principal section of the paper where we prove the concentration compactness
principle in the context of Orlicz spaces.

In this section we assume that the Young function A satisfies condition (2.2).

Given A a young function satisfying (2.2), we denote by A∞ the following Young function
associated with A:

(4.1) A∞(t) = max{tp+
, tp
−}.

Observe that A ≤ A∞ both in the sense of Young functions and also in the pointwise sense.

Remark 4.1. A∞ verifies the ∆2-condition.

In the sequel it will be helpful a comparison between the Orlicz functions A∞ and Mn. This
is the content of the next lemma.

Lemma 4.2. With the same assumptions and notations of the section, assume that p+ < p−∗ .
Then

A∞ �Mn

Proof. This result is an immediate consequence of Remarks 2.8 and 3.2. �

This next theorem is our main result.

Theorem 4.3. Let {uk}k∈N ⊂ W 1,A(Ω) be a sequence such that uk ⇀ u weakly in W 1,A(Ω).
Then there exists a countable set I, positive numbers {µi}i∈I and {νi}i∈I such that

An(|uk|)dx ⇀ ν = An(|u|) dx+
∑
i∈I

νiδxi weakly-* in the sense of measures,(4.2)

A(|∇uk|) dx ⇀ µ ≥ A(|∇u|) dx+
∑
i∈I

µiδxi weakly-* in the sense of measures,(4.3)

C
1

M−1
n ( 1

νi
)
≤ 1

A−1
∞ ( 1

µi
)
, for every i ∈ I,(4.4)

where C is a constant depending only on A and n and Mn(t) = M(t, An) is the Matuszewska-
Orlicz function associated to An.
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The strategy of the proof is the same as in the original work of P.L. Lions [13].

Assume first that u = 0 and so, passing if necessary to a subsequence, uk → 0 a.e. in Ω. We
will prove Theorem 4.3 in this case and then with the help of Lemma 3.4 we can easily extend
it to the general case.

We divide the proof of Theorem 4.3 into a series of lemmas.The first one is a reverse-Hölder
type inequality between the measures ν and µ.

Lemma 4.4. Let A be a Young function satisfying (2.2), (2.4), (2.5) and let An be given by
(2.6). Then, for every φ ∈ C∞c (Ω) the following reverse Hölder inequality holds:

(4.5) ‖φ‖Mn,ν ≤ C‖φ‖A∞,µ,
where A∞ is given by (4.1) and Mn(t) = M(t, An) is the Matuszewska-Orlicz function associated
to An given in Definition 2.7.

Proof. Let φ ∈ C∞c (Ω) and we apply Sobolev inequality to φuk, to obtain

(4.6) SA‖φuk‖An ≤ ‖∇(φuk)‖A.
First, we can estimate the left hand side in the following way: given δ > 0 let K > 0 be such
that

An(st) ≥ An(t)(Mn(s)− δ), for t ≥ K.
Then

lim inf
k→∞

∫
Ω
An

(
|φuk|
λ

)
dx ≥ lim inf

k→∞

∫
{uk≥K}

An

(
|φuk|
λ

)
An(|uk|)
An(|uk|)

dx

≥ lim inf
k→∞

∫
{uk≥K}

(
Mn

(
|φ|
λ

)
− δ
)
An(uk) dx

= lim inf
k→∞

(∫
Ω
−
∫
{uk<K}

)(
Mn

(
|φ|
λ

)
− δ
)
An(uk) dx

= lim inf
k→∞

I − II.

From (4.2) it follows that

lim
k→∞

I =

∫
Ω

(
Mn

(
|φ|
λ

)
− δ
)
dν

and from the dominated convergence Theorem, since uk → 0 a.e., it follows that limk→∞ II = 0.

From these computations, since δ > 0 is arbitrary, one immediately obtain that

lim inf
k→∞

∫
Ω
An

(
|φuk|
λ

)
dx ≥

∫
Ω
Mn

(
|φ|
λ

)
dν.

From this inequality it follows that

lim inf
k→∞

‖φuk‖An ≥ ‖φ‖Mn,dν .

Now we deal with the right hand side of (4.6). First, we observe that

| ‖∇(φuk)‖A − ‖φ∇uk‖A| ≤ ‖uk∇φ‖A.
Then, we observe that the right side of the inequality converges to 0 since uk → 0 in LA(Ω).
Hence we can replace the right hand side of (4.6) by ‖φ∇uk‖A.
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Now, using Lemma 2.6,

lim sup
k→∞

∫
Ω
A

(
|∇uk|

φ

λ

)
dx ≤ lim sup

k→∞

∫
Ω

max

{(
φ

λ

)p+

,

(
φ

λ

)p−}
A(|∇uk|) dx

= lim sup
k→∞

∫
Ω
A∞

(
φ

λ

)
A(|∇uk|) dx

=

∫
Ω
A∞

(
φ

λ

)
dµ

so

lim sup
k→∞

‖φ∇uk‖A ≤ ‖φ‖A∞,µ

This inequality completes the proof. �

The next lemma is an easy adaptation of the first part of [13, Lemma I.2]. We include the
details for completeness.

Lemma 4.5. Let ν be a non-negative, bounded Borel measure and let A,B be two Young func-
tions such that A� B. If

(4.7) ‖φ‖B,ν ≤ C‖φ‖A,ν ,

for some constant C > 0 and for every φ ∈ C∞c (Ω). Then there exists δ > 0 such that for all
Borel sets U ⊂ Ω, either ν(U) = 0 or ν(U) ≥ δ.

Proof. It is easy to see that inequality (4.7) still holds for characteristic functions of Borel sets.
Then we may take φ = χU with ν(U) 6= 0, so∫

Ω
B
(χU
λ

)
dν =

∫
U
B

(
1

λ

)
dν = B

(
1

λ

)
ν(U).

Then

(4.8) ‖χU‖B,ν =
1

B−1
(

1
ν(U)

) .
Analogously,

‖χU‖A,ν =
1

A−1
(

1
ν(U)

) .
Therefore we obtain the following inequality A−1

(
1

ν(U)

)
≤ CB−1

(
1

ν(U)

)
.

Assume by contradiction that there exist Uk such that ν(Uk) = εk → 0, so

A−1

(
1

εk

)
≤ CB−1

(
1

εk

)
.

We choose tk such that B(tk) = 1
εk

. Then tk →∞ and A−1(B(tk)) ≤ Ctk. By composition with

A we obtain that B(tk) ≤ A(Ctk), which contradicts the fact that A� B. �

The next lemma is exactly as the end of [13, Lemma I.2].
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Lemma 4.6. Let ν be a non-negative bounded Borel measure on Ω. Assume that there exists
δ > 0 such that for every Borel set U we have that, ν(U) = 0 or ν(U) ≥ δ. Then, there exist a
countable index set I, points {xi}i∈I ⊂ Ω̄ and scalars {νi}i∈I ∈ (0,∞) such that

ν =
∑
i∈I

νiδxi .

Now we need a lemma that plays a key role in the proof of Theorem 4.3.

Lemma 4.7. Under the same assumptions of Lemma 4.4, there exist a countable index set I,
points {xi}i∈I ⊂ Ω̄ and scalars {νi}i∈I ⊂ (0,∞), such that

ν =
∑
i∈I

νiδxi .

Proof. By the reverse Hölder inequality (4.5), the measure ν is absolutely continuous with respect
to µ. In fact, if we choose φ = χU , by (4.8),

‖χU‖A∞,µ =

0 if µ(U) = 0
1

A−1
∞
(

1
µ(U)

) if µ(U) > 0.

Also,

‖χU‖Mn,ν =

0 if ν(U) = 0
1

M−1
n

(
1

ν(U)

) if ν(U) > 0.

This facts together with (4.5) clearly imply that ν � µ.

As a consequence there exists f ∈ L1
µ(Ω), f ≥ 0, such that ν = µbf . Also by (4.5) we can

conclude that f ∈ L∞µ (Ω). In fact,

–

∫
–
U
f dµ =

ν(U)

µ(U)
≤ 1

µ(U)Mn

(
CA−1
∞
(

1
µ(U)

)) .
Observe that if we denote t = A−1

∞

(
1

µ(U)

)
. We have the following equality

µ(U)Mn

(
CA−1
∞

(
1

µ(U)

))
=
Mn(Ct)

A∞(t)
,

and the last term goes to ∞ as t→∞ by Lemma 4.2.

In other words, the function r 7→ 1
rMn(CA−1

∞ ( 1
r ))

is bounded in [0, µ(Ω)), then f ∈ L∞µ (Ω).

On the other hand the Lebesgue decomposition of µ with respect to ν gives us

µ = νbg + σ,

where g ∈ L1
ν(Ω), g ≥ 0 and σ is a bounded positive measure, singular with respect to ν.

Let ψ ∈ C∞c (Ω) and consider (4.5) applied to the test functions of the form ϕ(g)ψχ{g≤k}
where ϕ(t) is to be determined, ϕ(0) = 0.
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We obtain

C‖ϕ(g)ψχ{g≤k}‖Mn,ν ≤ ‖ϕ(g)ψχ{g≤k}‖A∞,µ
≤ ‖ϕ(g)ψχ{g≤k}‖A∞,gdν+dσ.

Since σ ⊥ ν, A∞ is sub-multiplicative (i.e. A∞(st) ≤ A∞(s)A∞(t)) and A∞(χU ) = χU , we have
that∫

Ω
A∞

(
ϕ(g)ψχ{g≤k}

λ

)
dµ =

∫
Ω
A∞

(
ϕ(g)ψχ{g≤k}

λ

)
g dν +

∫
Ω
A∞

(
ϕ(g)ψχ{g≤k}

λ

)
dσ

=

∫
Ω
A∞

(
ϕ(g)ψχ{g≤k}

λ

)
g dν

≤
∫

Ω
A∞

(
ψ

λ

)
A∞(ϕ(g))gχ{g≤k} dν.

On the other hand, combining remarks 3.2 and 2.8, we have∫
Ω
Mn

(
ϕ(g)ψχ{g≤k}

λ

)
dν ≥

∫
Ω
Mn

(
ψ

λ

)
min{ϕ(g)p

+
∗ , ϕ(g)p

−
∗ }χ{g≤k} dν

Hence, if we define

ϕ(t) =

t
1

p+∗ −p− if t < 1

t
1

p−∗ −p+ if t ≥ 1

then

max{ϕ(t)p
+
, ϕ(t)p

−}t = min{ϕ(t)p
+
∗ , ϕ(t)p

−
∗ }

and we get that

h(x) := A∞(ϕ(g(x)))g(x) = min{ϕ(g(x))p
+
∗ , ϕ(g(x))p

−
∗ }

Hence if we denote dνk := h(x)χ{g≤k}dν the following reverse Hölder inequality holds

C‖ψ‖Mn,νk ≤ ‖ψ‖A∞,νk .

Now, by Lemmas 4.6 and 4.5, there exists {xki }i∈Ik and νki > 0 such that νk =
∑

i∈Ik ν
k
i δxki

. On

the other hand, νk ↗ h(x)ν. Then, we have

ν =
∑
i∈I

νiδxi .

This finishes the proof. �

Now we are in position to prove Theorem 4.3.

Proof of Theorem 4.3. First we write vk = uk − u. Then, we can apply Lemmas 4.4–4.7 to
conclude that

(4.9) An(|vk|) dx ⇀ dν̄ =
∑
i∈I

νiδxi ,

weakly star in the sense of measures.
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Now, we use Lemma 3.4 to obtain

lim
k→∞

(∫
Ω
φAn(|uk|)−

∫
Ω
φAn(|vk|)dx

)
=

∫
Ω
φAn(|u|)dx,

for any φ ∈ C∞c (Ω), from where the representation

An(|uk|) dx ⇀ dν = An(|u|) dx+ dν̄

follows.

It remains to analyze the measure µ and to estimate the weights νi and µi.

To this end, we consider again vk = uk − u and denote by µ̄ the weak* limit of A(|∇vk|) dx
as k →∞.

Let φ ∈ C∞c (Rn) be such that 0 ≤ φ ≤ 1, φ(0) = 1 and supp(φ) ⊂ B1(0). Now, for each i ∈ I
and ε > 0, we denote φε,i(x) := φ((x− xi)/ε).

Now we apply (4.5) to the measures ν̄ and µ̄ to obtain

C
1

M−1
n ( 1

νi
)
≤ C‖φε,i‖Mn,ν̄ ≤ ‖φε,i‖A∞,µ̄,

On the one hand,

1 =

∫
Bε(xi)

A∞

(
|φε,i|

‖φε,i‖A∞,µ̄

)
dµ̄ ≤ A∞

(
1

‖φε,i‖A∞,µ̄

)
µ̄(Bε(xi)),

hence,

‖φε,i‖A∞,µ̄ ≤
1

A−1
∞ ( 1

µ̄(Bε(xi))
)
→ 1

A−1
∞ ( 1

µ̄i
)

as ε→ 0,

where
µ̄i := µ({xi}) = lim

ε→0
µ̄(Bε(xi)).

Therefore,

µ̄ ≥
∑
i∈I

µ̄iδxi and C
1

M−1
n ( 1

νi
)
≤ 1

A−1
∞ ( 1

µ̄i
)

On the other hand, using Lemma 2.5, we have that for any δ > 0 there exists a constant Cδ
such that

A(|∇vk|) ≤ (1 + δ)A(|∇uk|) + CδA(|∇u|).
This inequality implies, passing to the limit k →∞, that

dµ̄ ≤ (1 + δ)dµ+ CδA(|∇u|) dx,
from where it follows that

µ̄i ≤ (1 + δ)µi, where µi := µ({xi}).
This shows that µ ≥

∑
i∈I µiδxi = µ̃ and, since δ > 0 is arbitrary, we get

C
1

M−1
n ( 1

νi
)
≤ 1

A−1
∞ ( 1

µi
)
.

To end the proof it remains to show that dµ ≥ A(|∇u|) dx since µ̃ is orthogonal to the
Lebesgue measure.

Now, the fact that uk ⇀ u weakly in W 1,A
0 (Ω) implies that ∇uk ⇀ ∇u weakly in LA(U) for all

U ⊂ Ω. Hence, since the modular is a convex and strongly continuous functional, by [3, Corollary
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3.9] it follows that it is weakly lower semicontinuous. Hence we obtain that dµ ≥ A(|∇u|) dx as
we wanted to show.

This finishes the proof. �

5. Application

In this section, we study the existence problem for the following elliptic equation

(5.1)

{
−∆au = A′n(|u|)

|u| u+ λF
′(|u|)
|u| u in Ω,

u = 0 in ∂Ω,

where ∆au = div(a(|∇u|)∇u
|∇u| ) and F � An.

In this case, the associated functional reads

Fλ(u) =

∫
Ω
A(|∇u|)−An(|u|)− λF (|u|) dx.

In this application, for technical reasons we need to impose a somewhat restrictive hypothesis
on A, namely, we required that A verifies that there exists constants 0 < c1 ≤ c2 <∞ such that

(5.2) c1 ≤
A(t)

tp
≤ c2,

for t ≥ t0 and for some exponent p− ≤ p ≤ p+.

This hypothesis is only required at the end of the proof of the Palais-Smale condition (Lemma
5.4) and we believe that is only technical and could be removed.

Remark 5.1. Condition (5.2) implies that, since Ω is bounded, that

LA(Ω) = Lp(Ω) and W 1,A(Ω) = W 1,p(Ω),

with equivalent norms

For this problem we can prove the following result

Theorem 5.2. Assume that A and F are Young functions that satisfy the hypotheses of Theorem
4.3. Moreover, assume that

p− ≤ tA′(t)

A(t)
≤ p+, r− ≤ tF ′(t)

F (t)
≤ r+, p+ < r− < p−n and F � An.

Finally, assume that A satisfies (5.2). Then, there exists λ0 > 0, such that if λ > λ0 problem

(5.1) has at least one nontrivial solution in W 1,A
0 (Ω).

We begin by proving that Palais-Smale sequences are bounded.

Lemma 5.3. Let {uj}j∈N ⊂ W 1,A
0 (Ω) be a Palais-Smale sequence, then {uj}j∈N is bounded in

W 1,A
0 (Ω).

Proof. Let {uj}j∈N ⊂W 1,A
0 (Ω) be a Palais-Smale sequence for Fλ. Then, by definition

Fλ(uj)→ c and F ′λ(uj)→ 0.

Now, we have

c+ 1 ≥ Fλ(uj) = Fλ(uj)−
1

r−
〈F ′λ(uj), uj〉+

1

r−
〈F ′λ(uj), uj〉,
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where

〈F ′λ(uj), uj〉 =

∫
Ω

A′(|∇uj |)∇uj∇uj
|∇uj |

− A′n(|uj |)ujuj
|uj |

− λF
′(|uj |)
|uj |

ujuj dx

≤
∫

Ω
p+A(|∇uj |)− p−nAn(|uj |)− λr−F (|uj |) dx.

Then, if p+ < r− < p−n we conclude that

c+ 1 ≥
(

1− p+

r−

)∫
Ω
A(|∇uj |) dx−

1

r−
|〈F ′λ(uj), uj〉|.

We can assume that ‖∇uj‖A,Ω ≥ 1, if not the sequence is bounded. As ‖F ′(uj)‖−1,Ã is bounded,

using Lemma 2.10 we have that

c+ 1 ≥
(

1− p+

r−

)
‖∇uj‖p

−

A −
C

r−
‖∇uj‖A.

We deduce that uj is bounded.

This finishes the proof. �

From the fact that {uj}j∈N is a Palais-Smale sequence it follows, from Lemma 5.3, that

{uj}j∈N is bounded in W 1,A
0 (Ω). Hence passing to a subsequence if necessary, by Theorem 4.3,

we have that

An(|uj |) ⇀ ν = An(|u|) +
∑
i∈I

νiδxi νi > 0,(5.3)

A(|∇uj |) ⇀ µ ≥ A(|∇u|) +
∑
i∈I

µiδxi µi > 0,(5.4)

C
1

M−1
n

(
1
νi

) ≤ 1

A−1
∞
(

1
µi

) .(5.5)

Note that if I = ∅, from (5.3) it is the easy to see that∫
Ω
An

(
|uj |
λ

)
dx→

∫
Ω
An

(
|u|
λ

)
dx,

for every λ > 0, from where it follows that ‖uj‖An,Ω → ‖u‖An,Ω and since LAn(Ω) is uniformly

convex (see [11]), then uj → u strongly in LAn(Ω).

Now we can prove the Palais-Smale condition for small energy levels

Lemma 5.4. Under the above assumptions on A and F , there exists a constant C0 > 0, depend-
ing on A and n, such that every Palais-Smale sequence {uj}j∈N of Fλ with energy level c < C0

verify that I = ∅ in (5.3).

Proof. In fact, suppose that I 6= ∅. Then let φ ∈ C∞c (Rn) with support in the unit ball of Rn
and φ(0) = 1. Consider the rescaled functions φi,ε(x) = φ(x−xiε ) that are supported in Bε(xi).

As F ′λ(uj)→ 0 in W−1,Ã(Ω), we obtain that

lim
j→∞
〈F ′λ(uj), φi,εuj〉 = 0.
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On the other hand,

〈F ′λ(uj), φi,εuj〉 =

∫
Ω

A′(|∇uj |)
|∇uj |

∇uj∇(φi,εuj)− λ
F ′(|uj |)
|uj |

ujφi,εuj −
A′n(|uj |)
|uj |

ujφi,εuj dx.

Then, passing to the limit as j → ∞, we get, since F � An implies that W 1,A
0 (Ω) ⊂ LF (Ω)

compactly,

0 ≥ lim
j→∞

(∫
Ω

A′(|∇uj |)
|∇uj |

∇uj∇(φi,ε)uj dx

)
+ p−

∫
Ω
φi,ε dµ− p+

n

∫
Ω
φi,ε dν − r+

∫
Ω
λF (|u|)φi,ε dx.

(5.6)

Now, we want to prove that

(5.7) lim
j→∞

(∫
Ω

A′(|∇uj |)
|∇uj |

∇uj∇(φi,ε)uj dx

)
= 0.

In fact, by Hölder inequality∣∣∣∣∫
Ω

A′(|∇uj |)
|∇uj |

∇uj∇(φi,ε)uj dx

∣∣∣∣ ≤ ∫
Ω
A′(|∇uj |)|∇φi,ε||uj | dx

≤
∫

Ω

‖∇φ‖∞
ε

A′(|∇uj |)|uj | dx

≤ 2
‖∇φ‖∞

ε
‖A′(|∇uj |)‖Ã,Bε ‖uj‖A,Bε

It is easy to see that ‖A′(|∇uj |)‖Ã,Bε is bounded. In fact, see [8, Lemma 2.9],∫
Bε

Ã(A′(|∇uj |)) dx ≤ (p+ − 1)

∫
Ω
A(|∇uj |) dx ≤ C

Moreover

lim
j→∞

‖uj‖A,Bε = ‖u‖A,Bε

It is then enough to prove that 1
ε‖u‖A,Bε goes to 0 as ε goes to 0 and this is the only part of the

proof where we need to use hypothesis (5.2).

From Remark 5.1, we know that there exists a constant C > 0 such that

‖u‖A,Bε ≤ C‖u‖p,Bε .

Moreover, since u ∈W 1,A
0 (Ω) = W 1,p

0 (Ω), it follows that u ∈ Lp∗(Ω).

But then,

‖u‖p,Bε ≤ ‖u‖p∗,Bε |Bε|
1
n = Cε‖u‖p∗,Bε ,

from where the proof of (5.7) is complete.

On the other hand,

lim
ε→0

∫
Ω
φi,ε dµ = µi, lim

ε→0

∫
Ω
φi,ε dν = νi and lim

ε→0

∫
Ω
λF (|u|)φi,ε dx = 0

and comming back to (5.6) we discover that

p−µi ≤ p+
n νi.
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Then either νi = 0 or, using (5.5), there exists a constant C̃ depending only on A and n such
that

C̃ ≤ νi
On the other hand, as p+ < r− < p−n ,

c = lim
j→∞

Fλ(uj) = lim
j→∞

Fλ(uj)−
1

p+
〈Fλ(uj), uj〉

≥ lim
j→∞

∫
Ω

(
p−n
p+
− 1

)
An(|uj |) dx+ λ

∫
Ω

(
r−

p+
− 1

)
F (|uj |) dx

≥ lim
j→∞

∫
Ω

(
p−n
p+
− 1

)
An(|uj |) dx.

But

lim
j→∞

∫
Ω

(
p−n
p+
− 1

)
An(|uj |) dx =

(
p−n
p+
− 1

)(∫
Ω
An(|u|) dx+

∑
l∈I

νl

)

≥
(
p−n
p+
− 1

)
νi ≥

(
p−n
p+
− 1

)
C̃.

We get c ≥ C0 :=
(
p−n
p+ − 1

)
C̃.

Therefore, if
c < C0,

the index set I is empty. �

Now we are ready to prove the Palais-Smale condition below level c.

Theorem 5.5. The functional Fλ verifies the Palais-Smale condition for every energy level

c < C0. That is, given {uj}j∈N ⊂ W 1,A
0 (Ω) a Palais-Smale sequence for Fλ, with energy level

c < C0, then there exist u ∈W 1,A
0 (Ω) and {ujk}k∈N ⊂ {uj}j∈N a subsequence such that ujk → u

strongly in W 1,A
0 (Ω).

Proof. Let {uj}j∈N ⊂ W 1,A
0 (Ω) be a Palais-Smale sequence for Fλ. Then, by Lemma 5.3, we

know that {uj}j∈N is bounded. Then, for a subsequence that we still denote {uj}j∈N, , from

Lemma 5.4 we have that uj → u strongly in LAn(Ω).

We define φj := F ′(uj). Since {uj}j∈N is a Palais-Smale sequence, we have φj → 0 in

W−1,Ã(Ω).

Observe that, by definition of φj , it follows that uj is a weak solution of the following equation

(5.8)

{
−∆Auj =

A′n(|uj |)uj
|uj | + λ

F ′(|uj |)
|uj | uj + φj =: fj in Ω,

uj = 0 on ∂Ω.

We define T : W−1,Ã(Ω) → W 1,A
0 (Ω) to be the solution operator of −∆A. That is, T (f) := u

where u is the weak solution of the following equation.

(5.9)

{
−∆Au = f in Ω,

u = 0 on ∂Ω.

Then T is a continuous invertible operator.
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To finish the proof, it is sufficient to show that fj converges in W−1,Ã(Ω). Since φj → 0 and

F � An, we only need to prove that
A′n(|uj |)uj
|uj | → A′n(|u|)u

|u| strongly in W−1,Ã(Ω).

In fact, 〈
A′n(|uj |)uj
|uj |

− A′n(|u|)u
|u|

, ψ

〉
=

∫
Ω

(
A′n(|uj |)uj
|uj |

− A′n(|uj |)uj
|uj |

)
ψ dx

≤ 2‖ψ‖An,Ω
∥∥∥∥A′n(|uj |)uj

|uj |
− A′n(|u|)u

|u|

∥∥∥∥
Ãn,Ω

.

Therefore,∥∥∥∥A′n(|uj |)uj
|uj |

− A′n(|u|)u
|u|

∥∥∥∥
W−1,Ã(Ω)

= sup
ψ∈W1,A

0 (Ω)

‖ψ‖
W

1,A
0 (Ω)

=1

∫
Ω

(
A′n(|uj |)uj
|uj |

− A′n(|u|)u
|u|

)
ψ dx

≤ C
∥∥∥∥A′n(|uj |)uj

|uj |
− A′n(|u|)u

|u|

∥∥∥∥
Ãn,Ω

Hence, to finish the proof we need to show that

lim
j→∞

∫
Ω
Ãn

(∣∣∣∣A′n(|uj |)uj
|uj |

− A′n(|u|)u
|u|

∣∣∣∣) dx = 0.

We can assume, passing to a further subsequence if necessary, that uj → u a.e. in Ω. Hence

Ãn

(∣∣∣∣A′n(|uj |)uj
|uj |

− A′n(|u|)u
|u|

∣∣∣∣)→ 0 a.e. in Ω,

hence we need to find an integrable majorant for this integrand.

To this end, we observe that

Ãn

(∣∣∣∣A′n(|uj |)uj
|uj |

− A′n(|u|)u
|u|

∣∣∣∣) ≤ C (Ãn(A′n(|uj |)) + Ãn(A′n(|u|))
)

≤ C (An(|uj |) +An(|u|)) .

Now, since uj → u strongly in LAn(Ω) and uj → u a.e. in Ω, a straightforward modification of
[3, Theorem 4.9], gives us the existence of a function g ∈ L1(Ω) such that

An(|uj(x)|) ≤ g(x) a.e. in Ω.

This fact concludes the proof of the result. �

Now we are in condition to give the proof of the main result of the section.

Proof of Theorem 5.2. In view of the previous result, we seek for critical values of level
c < C0. For that purpose, we want to use the Mountain Pass Theorem. Hence we have to check
the following condition:

(1) There exist constants R, r > 0 such that when ‖u‖1,A = R, then Fλ(u) > r.

(2) There exist v0 ∈W 1,A(Ω), ‖v0‖1,A > R, such that Fλ(v0) < r.
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Let us first check (1). We suppose that ‖∇u‖A ≤ 1 and ‖u‖A ≤ 1. The other cases can be
treated similarly.

By Poincaré inequality we have,

Fλ(u) =

∫
Ω
A(|∇u|)−An(|u|)− λF (|u|) dx ≥ ‖∇u‖p

+

A − ‖u‖
p−n
An
− λ‖u‖r−F

≥ ‖∇u‖p
+

A − C‖∇u‖
p−n
A − λC‖∇u‖

r−
A .

Let g(t) = tp+−Ctq−−Cλtr−, then as p+ < r− < p−n it is easy to check that g(R) > r for some
R, r > 0. This proves (1).

Now, in order to prove (2), for a fixed u ∈ W 1,A
0 (Ω) such that ‖∇u‖A,Ω ≥ 1, ‖u‖A,Ω ≥ 1 and

given t > 1 we have

Fλ(tu) =

∫
Ω
A(|∇tu|)−An(|tu|)− λF (|tu|) dx

≤ tp+

∫
Ω
A(|∇u|) dx− tp

−
n

∫
Ω
An(|u|) dx.

So, since p+ < p−n , it is easy to see that limt→∞Fλ(tu) = −∞.

Now the candidate for a critical value according to the Mountain Pass Theorem is

c = inf
g∈C

sup
t∈[0,1]

Fλ(g(t)),

where C = {g : [0, 1]→W 1,A
0 (Ω): g continuous and g(0) = 0, g(1) = v0}.

We will show that c < C0 if λ is chosen to be big enough and therefore Theorem 5.5 can be
applied.

Let g ∈ C be given by g(t) = tv0. Then

c ≤ sup
t∈[0,1]

Fλ(g(t)) = sup
t∈[0,1]

Fλ(tv0).

Now,

Fλ(tv0) ≤ tp−
∫

Ω
A(|∇v0|) dx− λtr

+

∫
Ω
F (|v0|) dx

If we denote by φ(t) := tp
−
a1−λtr

+
a2, then the maximum of φ is attained at tλ =

(
a1
λa2

) 1
r+−p− ,

from where it follows that

lim
λ→∞

sup
t∈[0.1]

Fλ(g(t)) = 0.

So, we conclude that there exists λ0 > 0 such that if λ ≥ λ0 then c < C0 and this finishes the
proof. �
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