The size of the sync basin resolved
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Sparsely coupled Kuramoto oscillators offer a fertile playground for exploring high-dimensional
basins of attraction due to their simple yet multistable dynamics. For n identical Kuramoto oscil-
lators on cycle graphs, it is well known that the only attractors are twisted states, whose phases
wind around the circle with a constant gap between neighboring oscillators (0, = 2mwqj/n). It was
conjectured in 2006 that basin sizes of these twisted states scale as e ¥ to the winding number
q. Here, we provide new numerical and analytical evidence supporting the conjecture and uncover
the dynamical mechanism behind the Gaussian scaling. The key idea is that, when starting with a
random initial condition, the winding number of the solution stabilizes rapidly at ¢ « logn, before
long-range correlation can develop among oscillators. This timescale separation allows us to model
the winding number as a sum of weakly dependent variables, leading to a Central Limit Theorem

derivation of the basin scaling.

Basins of attraction map initial conditions to attrac-
tors and are fundamental to the analysis of multistable
dynamical systems [1-3]. Even simple equations can gen-
erate complicated basins [4-10], as exemplified by Wada
basins [11], fractal basin boundaries [12-15], and rid-
dled basins [16-21]. Given the intricate and often high-
dimensional nature of basins, it is perhaps not surpris-
ing that even the most basic question—how big are the
basins—still holds plenty of mystery [22-40].

One of the canonical systems for studying basins is
Kuramoto oscillators on cycle graphs [22, 32, 41, 42]:

7n? (1)

where 6; € [0,2) is the phase of oscillator j. Note that
we assume periodic boundary conditions to close the ring.
The sync state ; = --- = 6, is always an attractor of
the system. For n > 4, Eq. (1) has additional attrac-
tors in the form of phase-locked configurations with the
oscillator’s phases making ¢ full twists around the ring:
0; = 2mjq/n + c. Here, ¢ is the winding number and ¢
is a constant. Such twisted states are stable if and only
if |[¢| < n/4 [32]. By varying the network size n, one can
easily change the number of attractors in the system.

In 2006, based on numerical evidence and heuristic ar-
guments, Wiley, Strogatz, and Girvan [22] conjectured
that the basin size of g-twisted states follows a simple
scaling law of e‘qu, where k is some constant. The con-
jecture was later challenged in the literature. For in-
stance, based on semi-analytical calculations, Ref. [32]
suggested that the correct scaling should be e~ *l9l. More
recently, there was additional evidence supporting the
original Gaussian scaling based on the geometries of the
basins [41]. Because the basin size decreases rapidly with
g, basins with ¢ > \/n can be exceedingly difficult to sam-
ple and direct numerical simulations cannot conclusively
resolve the debate. It is thus important to establish the

9j = sin(0;+1 — 0;) +sin(0;—1 —0;), j=1,...

scaling relation through analytical means.

In this Letter, we show that basin sizes of twisted states
in Eq. (1) scale as e=*" | with k = 1/202n and o being
the variance of a one-dimensional random variable that
we will define later on. We break the argument into three
steps:

1. Show the existence of a region Z that is flow-
invariant under the dynamics of Eq. (1) and the
winding number does not change once the system
enters 7.

2. Show that up to t o logn, there is no long-range
dependence between the oscillators. Consequently,
we can apply the Central Limit Theorem (CLT)
to establish that the winding number (given by a
sum of the phases) is Gaussian distributed at these
times.

3. Show that when starting from a random initial
condition, the system enters the region Z quickly
at ¢ o« logn. This bounds the time window for
which the winding number can change. Since the
CLT holds for the winding number when entering 7
and it remains invariant after, the Gaussian scaling
must hold for the final winding number at ¢ — oco.

Before giving details on these steps, we provide some
rationale behind our strategy. It is more convenient to
work with the phase differences between consecutive os-
cillators rather than directly with the phases 6;. We
consider the new variables n; = 61 — 6; € (—m, w|. For
j = n we define n, = 0, — 0,. It is important to note
that we force n; to be in the interval (—m,7]. In these
new variables, Eq. (1) is equivalent to

1) = sin (n;+1) — 2sin (n;) +sin (n;—1),  (2)



with the caveat that the equation has to be interpreted
mod (—m,n]. With this convention, if all the phase dif-
ferences n; # m, we can compute the winding number
as

== [ uw|, @

where [z] denotes the closest integer to .

Because the phase differences at ¢ = 0, 71;(0), are
independent random variables uniformly sampled from
(—m, 7], by the CLT the winding number (their sum)
follows a normal distribution when n is large. The
mean of the winding number is zero and its variance is
(n—1)/12, since random variables uniformly distributed
in [-1/2,1/2] have variance 1/12. To obtain a well-
defined distribution in the limit of n — oo, we simply
need to normalize g by /n. Observe that as ¢ — oo we
lose the independence (in fact for t = oo we have 7; = 7n;
for every i, ) and hence at this time the Gaussian scal-
ing can not be obtained as a consequence of the Cen-
tral Limit Theorem. Moreover, the winding number ¢ is
not conserved by the dynamics. So, how can we demon-
strate that the distribution of ¢ would remain Gaussian
as t — oo?

Numerically, we found that g typically stabilizes very
early on at a time t; and remains unchanged for ¢ > t,.
The magenta curve in Fig. 1 shows that the average sta-
bilization time (ts) grows slowly with the system size as
logn. The hope is that, at this early time, no long-range
correlation has developed in the system and the CLT can
still be applied to coarse-grained oscillator states. It is
known that as long as the range of dependence is of order
not larger than n'/4, the CLT still holds [43]. Indeed, nu-
merical evidence supports the no long-range dependence
assumption (Fig. 2). Later, in Step 2, we will explain this
observation by utilizing the local coupling in Eq. (1).

We now proceed with the three steps of the argument.

Step 1. Since it is not easy to estimate the stabiliza-
tion time ¢4 directly, as a first step, we would like to find
a region in the phase space where ¢ would stay invariant.
This would allow us to control the stabilization time ¢,
by estimating the time ¢, it takes to enter the invariant
region. Since ts < t., if we can show that for most ini-
tial conditions t.  logn, it would establish the desired
bound ts < alogn, where « is a finite constant. Indeed,
Fig. 1 provides numerical evidence that (t.) o< logn. We
will also give analytical arguments for this in Step 3.

We denote n = (11,...,7m,) and consider the region
T ={n:n € (=%5,%) foralli}. We can establish its
flow invariance through a maximum principle. Assume
1n(0) € Z and let to be the first time such that n(ty) € 9Z,
the boundary of Z. Then, for some i we have n;(tg) €
{—n/2,7/2}. Without loss of generality, we can assume
ni(to) = w/2. From Eq. (2), we have 7;(o) < 0 with
strict inequality unless n;_1(tg) = ni11(to) = 7/2. If we
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FIG. 1. Time till the winding number stops changing ()
and time till the system enters the invariant region Z (t.)
both scale as logn. This will be shown more rigorously in
Steps 1 and 3. The magenta curve shows (ts) and the purple
curve shows (t.). Each curve is averaged over 10* trajectories
starting from random initial conditions. We always have t; <
te for any individual trajectory, which is the point of Step 1.
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FIG. 2. No long-range correlation can develop before the

winding number stops changing. Here, we calculate the Pear-
son correlation r between two oscillators that are distance d
apart for n = 1280. The magenta curve shows r at t = ts
(winding number stabilized), and the purple curve shows
t = to (entering the invariant region Z). In either case, the
oscillators are essentially uncorrelated unless they are very
close to each other (d < 6). We show the lack of long-range
correlation analytically in Step 2.

have strict inequality, we obtain a contradiction since n;
needs to increase at to to exit Z. If 7;(to) = 0, we have
Ni—1(to) = Mit1(to) = /2, and proceeding inductively
we obtain that either there is a node j with 7;(tg) = 7/2
and 7;(to) < 0, or n;(tg) = m/2 for every j. The state
at which all the phase differences are 7/2 is an unstable
equilibrium and hence cannot be reached in finite time.
We conclude that there is no such tg at which 7 can exit



7.

With a slightly more involved argument, we can show
something stronger still. Let Z; = {n:n; € (=3, %)},
it is immediate that Z = N;Z;. We will show that in
fact each Z; is invariant. In other words, once a phase
difference enters (=3, ), it will never leave.

We proceed with a perturbation argument. Instead of
Eq. (2), consider the equations

n;(t) = sin(an) — (24 ¢)sin(nf) + Sin(nf_l).

Assume 75(0) € Z; and that at some finite time ty we
have 75 (to) = m/2 for the first time. Since

n;(to) <2—(24¢) = —¢,

we have a contradiction. Thus, for every € > 0, n{ cannot
leave Z;. Now, assume that there is a time ¢y such that
[n:(to)| > /2. By continuity of the solution at finite time
to with respect to the ODE parameters (see [44, Theorem
2 on page 84]), we have n5(ty) — n:(to) as e — 0. But
ns(to) € (—m/2,m/2) for every e. This is a contradiction.
Hence, we conclude that there is no such ¢y and that n;
cannot leave Z; once inside.

Next, we establish the invariance of the winding num-
ber inside Z. Since for n(t) € Z formula (3) holds, we
have

d 1 - d
%Q(t) =5 ; %Th’(t) =0.

To see this more intuitively, note that for the winding
number (a discrete quantity) to change along a contin-
uous flow, it can only happen when one of the phase
differences 7; crosses m or —m, the boundary points on
which ¢ becomes ill-defined. Since Z does not include
any of the boundary points and is flow invariant, there
can be no more change in ¢ along the flow once inside Z.

Step 2. In this step, our goal is to establish that
long-range correlations cannot develop in Eq. (1) at ¢ «
log n, paving the way for the use of CLT. For continuous
time, it is difficult to control the correlation between two
oscillators that are far away from each other. So, we
consider an Euler discrete scheme n" with time step h
that approximates Eq. (2),

0 (tes1) = 0l (tk) + hG(n" (tr)),

with G(n"(tx)) = sin(nl,(tx)) — 2sin(nf(tx)) +
sin(nf, | (tx))) and t, = kh. For this discrete scheme,
it is easy to see that the range of dependence of an os-
cillator increases by two (one on each side) at each time
step. To reach time ¢ o logn, we need h~'logn time
steps. At that time, the range of dependence for each os-
cillator is at most h~!logn. We can apply CLT as long
as the step size h approaches 0 not too fast as n — oo
(h=tlogn < n” for k < 1/4 is enough) [43].

Let us call Ej, = maxi<;<n [l (tx) — 1:(tx)|. An error
analysis similar to Ref. [45] gives Ey < kh%. So, for
k = h~'logn, we can control the error Ej, < hlogn — 0
as long as h decays faster than log™* n.

To export the CLT to the continuous equation we need
to control the difference between the winding number of
the discrete approximation and the one of the continuous
solution (divided by 4/n). To do that, observe that an
error Ey; when n;(t;) is at a distance larger than Ej ;
from {—m, 7} does not change the winding number. The
difference between the winding number of the discrete
approximation and the continuous solutions comes from
those 7; that are close to m in the approximation and
close to — in the solution of the ODE or vice versa (i.e.
they contribute £27 to the difference of the sum involved
in the computation of the winding number). The num-
ber of ¢ in this situation and their contribution can be
modeled as a sum of random variables that take values
—1,0 or 1. The probability of being 1 or —1 is bounded
by Ej. So, a CLT holds for the total difference (i.e. the
difference in the winding numbers of the discrete and
the continuous solution). Then, we can approximate this
total difference with a Gaussian variable with standard
deviation v/nEj. When we divide by v/n, we get an error
of order E}. In other words, the difference between the
winding number of the discrete approximation given by
the Euler method and the one of the continuous solution,
when divided by +/n, is also of order at most Ey. So, we
get the same condition as before (h < log™'n). In this
regime, the limiting distribution of the winding number
of the approximation and the one of Eq. (2) (divided by
\/n), coincide.

Step 3. The purpose of this step is to show that, start-
ing from random initial conditions, the oscillators enter
the invariant region Z quickly at t. o logn, thus estab-
lishing the Gaussian scaling of winding numbers through
the CLT. If we look at each phase difference 7; sepa-
rately, we can define the time £ > 0 at which it en-
ters the interval (—m/2,7/2) (from Step 1 we know that
once entered, it will never leave). Due to symmetry, we
know these times are identically distributed. The max-
imum of n identically distributed random variables can
be bounded by C'logn if their tails are not too heavy

[46]. In fact, for tgl), e ,tg") with the tail distribution
function F(t) = IP’(tgl) > t), we have

P ( max ¢V > an) =P (Ui{tg) > an}>

1<i<n

<nP(tY > a,) = nF(ay,).

To bound the entering time t., we want nF(a,) — 0 for
an = Clogn. This can be established if F'(¢) has an ex-
ponential tail. In fact, it is enough to show F(t) < e™*
for t < (logn)? and some A > 0. Combining with the

fact that Z; is invariant, we have t, = max; tg) < C'logn.



107,
ﬂ 10(§ i
g 105 1
]

- 101 i
N 103 ]
210
3

c 101 i

101] 4

0 5 10 15 20 25
t

FIG. 3. Distribution of the times t((f) at which phase differ-
ences 7); enter (—m/2,7/2). Half of the n; are already inside
(=m/2,7/2) for random initial conditions (thus the spike at
t = 0), while the nonzero entering times follow an exponen-
tial distribution. This suggests that |7;| becoming smaller
than 7/2 can be modeled as independent events happening
at a constant rate. The data are collected from 10000 inde-
pendent simulations of n = 1280 Kuramoto oscillators from
random initial conditions. The exponential distribution of t((f)
is a key ingredient for Step 3.

Note that we do not need to assume independence among
¢ for this to hold. In fact, strong correlation can quickly
develop between 7; and n; for neighboring 7 and j, as can
be seen in Fig. 2. Figure 3 provides numerical support
by showing that P( S)) follows an exponential distribu-
tion, which implies that F(t) = P(tgi) > t) also decays
exponentially.

Below, we show why the distribution F'(¢) has an expo-
nential tail. Eq. (1) is a gradient system, so its dynamics
are fully determined by an energy function E(0). It is
easy to see that

E.(0) =n— (cos(0j+1 — 6;) + cos(0—1 — 6;))

1

n

DN | =

J

which can also be written in terms of 1 as

n

Ea(m) =n— 3 > (cos(ay) +cos(; 1))

j=1

By the law of large numbers, which holds when starting
with i.i.d. initial conditions even for larger times than the
CLT, we have that for t < /n

%En(n) — 1 —E(cos(n1(t))).

Similarly, for the derivative of the energy we have
1

n

Bu(n) = ~ -V, (1)

= 7% Z[Sin (mi(t)) — sin (n;i—1(1))]?
i1
= _% Z sin? (n;(t)) + sin? (7,1 (t))

_ % Z sin (;(t)) sin (9;—1(t))

— —2E(sin’ (1 (1)) — 2E(sin(n: (1)) sin(2(1)))

< —2E(sin® (1 (1)),
where the last step follows from the fact that sinn(¢)
and sin 72 (¢) have nonnegative correlation. Hence, if we
show the existence of a positive constant ¢ such that
E(sin®(n1(t))) > ¢E(1 — cos(ny(t))) for times of order up
to y/n, we obtain that for such times and large n, with
high probability,

E,(t) < —cEy(t),
which implies
E,(t) < E,(0)e”“,
and consequently E(1 — cos(n;(t))) < e~“. Finally,
Pt > t) = P(|mi(t)| > 7/2)
=P(1 — cos(n;(¥)) > 1)
< E(1 — cos(ni(t)))

efct’

IN

where we used Markov inequality to go from the second
to the third line.

To show the existence of the positive constant ¢, ob-
serve that for any ¢ > 0, we can choose ¢ > 0 such that
sin®(s) > ¢(1 — cos(s)) for every s € (=7 +¢&,m — €),
with strict inequality except for s = 0. Also observe
that since Z is invariant and contains all stable equi-
libria, we have P(|n;(t)] < 7/2) — 1 as t — oo (and
P(|n:(t)] > m/2) — 0). So, the only thing that can pre-
vent the existence of the constant ¢ is mass being lost at
[n(t)] = 7 at a slower rate than being gained at n(t) = 0.
But, by symmetry, mass is grown at 0 and lost at = at
the same rate. As a consequence,

Ple<fm)<m—e¢)

0.
B0 Pt >1—2)

This is because if P(e < |n;(t)] < ™ —¢) converges to zero
faster than P(|n;(t)| > m—¢), that would mean that mass
is growing at 0 faster than the rate at which is lost at .
Thus,

- E(sin’(mi(1))) >0
t 9

t>0 E(1 — cos(n;(1)))



and we have, for t < \/n, E,(t) < E,(0)e™ .

Now, combining all three steps, at time logn (when
the winding number is stabilized), we can establish the
independence for phase differences 7; and n; that are at
distance h~!logn = log2+6 n from each other. Because
10g2+5 n < n/*, we can apply CLT to the phase differ-
ences to obtain the Gaussian scaling. Finally, the value
o? is given by

1 n—1
. —1 - )
Jm e Var | gz 2 i)

In this Letter, we established that the basin sizes
in Kuramoto oscillators with nearest-neighbor coupling
scales with winding number ¢ as e‘qu, contributing to
a central debate on multistable dynamical systems span-
ning the past 20 years. Our results offer new insights
into the dynamics of locally coupled Kuramoto oscilla-
tors (e.g., their winding number stabilizes early, before
long-range correlations can develop), and the techniques
developed here may also be applied to probe the basin
sizes in other high-dimensional dynamical systems. Fu-
ture work has the opportunity to extend our results to
more general network structures (e.g., ring networks with
higher density [22], signed networks [42], non-regular net-
works [47], higher-order networks [40], etc.) and dynam-
ics beyond Kuramoto oscillators [26].

We thank Steven Strogatz for the insightful discus-
sions.
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