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Abstract. Aharoni, Berger and Ziv proposed a function which is a lower bound for the
connectivity of the independence complex of a graph. They conjectured that this bound is
optimal for every graph. We give two different arguments which show that the conjecture is
false.

Given a finite simple graph G, its independence complex IG is defined as the simplicial
complex whose vertices are the vertices of G and whose simplices are the independent sets
of G. The topology of independence complexes has been studied by a number of authors.
In particular, the connectivity of independence complexes has shown to be of interest in
the study of Tverberg graphs [5, Theorem 2.2], independent systems of representatives [3,
Theorem 2.1] and other important problems.

In [3], Aharoni, Berger and Ziv proposed a function ψ defined on graphs which is a lower
bound for the connectivity of IG and conjectured that this bound is optimal. No explicit proof
of this bound is given in that article, although the corresponding bound for the homological
connectivity follows immediately from a result of Meshulam [9, Claim 3.1]. Moreover, a
homological version of the conjecture has been considered, as well as reformulations taking
into account the existence of counterexamples in which the independence complex is simply-
connected or not [2].

In this note we give an explicit proof of the fact that ψ(G) is a lower bound for the
connectivity of IG, we prove that the conjecture is true in the cases where IG is not simply-
connected or where ψ(G) ≤ 1, we show that there exist counterexamples to the conjecture
with ψ(G) = 2, and that there are counterexamples in which ψ(G) and the connectivity of
IG take arbitrary values l, k with 3 ≤ l < k.

The connectivity conn(X) of a topological space X is usually defined as follows: conn(∅) =
−2, conn(X) = k if πi(X) = 0 for every 0 ≤ i ≤ k and πk+1(X) 6= 0, and conn(X) = ∞ if
πi(X) = 0 for every i ≥ 0. The homological connectivity connH(X) is defined in the same
way replacing the homotopy groups πi(X) by the reduced homology groups with integer
coefficients H̃i(X). In this context, however, in order to keep the notation of [3], we will use
the shifted versions

η(X) = conn(X) + 2, ηH(X) = connH(X) + 2.
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With this notation, X is non-empty when η(X) ≥ 1, path-connected if η(X) ≥ 2 and simply-
connected when η(X) ≥ 3. By the Hurewicz theorem, connectivity and homological connec-
tivity coincide for simply-connected spaces, while in general η(X) ≤ ηH(X).

All the graphs considered in this note are finite and simple (undirected, loopless and without
multiple edges). If e is an edge of a graph G, G−e denotes the subgraph obtained by removing
the edge e andG\e is the subgraph obtained by removing the endpoints of e and all neighbours
of each of those endpoints. We denote by E(G) the set of edges of G.

Consider the function ψ defined for all finite simple graphs G with values in {0, 1, . . . ,∞},
as follows

ψ(G) =





0 if G = ∅
∞ if G 6= ∅ is discrete
maxe∈E(G){min{ψ(G− e), ψ(G \ e) + 1}} otherwise

The join K ∗L of two simplicial complexes K and L is the simplicial complex with simplices
σ t τ for σ ∈ K and τ ∈ L. The (unreduced) suspension ΣK is the join of K with a
0-dimensional complex of two vertices.

If e is an edge of a graph G, we also consider e as a 1-dimensional simplicial complex and
by ė we denote the 0-dimensional simplicial complex whose vertices are the endpoints of e.
Meshulam [9] observed that IG−e = IG∪ (e∗ IG\e) and that IG∩ (e∗ IG\e) = ė∗ IG\e = ΣIG\e.

Theorem 1. For any graph G, ψ(G) ≤ η(IG).

Proof. We prove first that ψ(G) ≤ ηH(IG). This part of the proof is implicit in [3]. The
inequality is trivial for discrete graphs. Assume then that G is non-discrete and let e ∈ E(G)
be such that ψ(G) = min{ψ(G − e), ψ(G \ e) + 1}. By induction ψ(G − e) ≤ ηH(IG−e) =
connH(IG−e) + 2 and ψ(G \ e) ≤ ηH(IG\e) = connH(IG\e) + 2, and therefore H̃i(IG−e) = 0
for every 0 ≤ i ≤ ψ(G)− 2 and H̃i(IG\e) = 0 for every 0 ≤ i ≤ ψ(G)− 3.

Following [9], since H̃i(ė ∗ IG\e) = H̃i−1(IG\e) and since e ∗ IG\e is contractible, the Mayer-
Vietoris sequence for the triple (IG−e; IG, e ∗ IG\e) gives a long exact sequence

. . .→ H̃i−1(IG\e) → H̃i(IG) → H̃i(IG−e) → H̃i−2(IG\e) → . . . .

We deduce then that H̃i(IG) = 0 for every 0 ≤ i ≤ ψ(G) − 2 or, in other words, that
ψ(G) ≤ ηH(IG).

To prove the theorem it suffices to show that the condition ψ(G) ≥ 3 implies that IG is
simply-connected. If G is discrete, IG is a simplex. Otherwise, by definition of ψ, there exists
an edge e such that

ψ(G− e) ≥ 3 and ψ(G \ e) ≥ 2.
By induction IG−e is simply-connected and since ηH(IG\e) ≥ ψ(G \ e) ≥ 2, IG\e is connected.
The suspension ė ∗ IG\e is then simply-connected and by van Kampen’s theorem π1(IG−e) is
the free product of π1(IG) and π1(e∗IG\e). Since e∗IG\e is contractible, π1(IG) = π1(IG−e) =
0. ¤

In [3, Conjecture 2.4] it was conjectured that ψ(G) = η(IG). This has been confirmed for
some classes of graphs, e.g. chordal graphs [8], but, as we will show, it is not true in general. In
view of Theorem 1 it is clear that the homological version of the conjecture, i.e. the equation
ψ(G) = ηH(IG), does not hold in general since ηH(IG) can be strictly greater than η(IG). This
follows from the existence of a finite connected complexK with non-trivial fundamental group
but such that H1(K) = 0 and the well-known fact that for every finite simplicial complex K
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there is a graph G with IG homeomorphic to K, for instance the complement graph of the
1-skeleton of the barycentric subdivision of K.

Proposition 2. Let G be a graph.
a) If ψ(G) ∈ {0, 1}, then ψ(G) = η(IG).
b) If IG is not simply-connected, then ψ(G) = η(IG).

Proof. It is easy to see that ψ(G) = 0 if and only if G is empty, so the only non-trivial case
of a) is ψ(G) = 1.

Since the 1-skeleton of IG is the complement G of G, we have that η(IG) = 1 if and only if
G is disconnected. We will prove, by induction on the number of edges in G, that if ψ(G) = 1
then G is disconnected. By definition of ψ, G is non-discrete and for every edge e of G we
have

ψ(G− e) = 1 or G \ e is empty.

If there exists an edge e ∈ G such that ψ(G−e) = 1 then, by induction, G− e is disconnected
and therefore so is G. It suffices then to consider the case when for every edge e ∈ G the
graph G\ e is empty. Translating this into a statement about complements we see that G has
the following property:

for every pair of non-adjacent vertices x, y we have N(x) ∩N(y) = ∅,
where N(v) is the neighbourhood of v. It is easy to see that this property characterizes
precisely the graphs in which every connected component is a clique. Since G is not a clique
itself, it must be disconnected, as we wanted to show.

To prove b) note that if IG is not simply-connected, then ψ(G) ≤ η(IG) ≤ 2 by Theorem
1, and the result follows from part a). ¤

We now prove that the conjecture is not true. The first argument we show is not con-
structive and reduces to the fact that it is algorithmically undecidable whether η(IG) ≥ 3 or
η(IG) ≤ 2 for a given graph G, while ψ(G) is a computable function of G.

Proposition 3. There exists a graph G with ψ(G) = 2 and η(IG) ≥ 3.

Proof. The truth of the implication

if ψ(G) = 2 then η(IG) = 2

together with Theorem 1 and Proposition 2 would provide an algorithm (Turing machine)
capable of determining if a given finite simplicial complex K is simply-connected. The algo-
rithm would just find a graph G with IG homeomorphic to K and check if ψ(G) ≥ 3. However
it is known that there can be no such algorithm. It is a consequence of the non-existence
of an algorithm to determine whether a group Γ given by a finite presentation is trivial or
not [1, 10] and a construction that associates to each presentation of Γ a finite 2-dimensional
complex with fundamental group isomorphic to Γ (see [6] for example). ¤

We will give more explicit counterexamples to the conjecture, all of them different from
the one shown in Proposition 3. Their construction requires the next observation in which
G tH denotes the disjoint union of graphs G and H.

Lemma 4. For any graphs G and H we have ψ(G tH) = ψ(G) + ψ(H).
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Proof. The result holds when both G and H are discrete. The general case now follows by
induction on the number of edges in G t H. For every e ∈ E(G) we have (G t H) − e =
(G− e) tH and (G tH) \ e = (G \ e) tH. If G is non-discrete, then by induction

max
e∈E(G)

{
min{ψ((G tH)− e), ψ((G tH) \ e) + 1}} =

= max
e∈E(G)

{
min{ψ((G− e) tH), ψ((G \ e) tH) + 1}} =

= max
e∈E(G)

{
min{ψ(G− e), ψ(G \ e) + 1}} + ψ(H) =

= ψ(G) + ψ(H).

The same equation holds if H is non-discrete and the maximum is taken over the edges
e ∈ E(H). Then the result follows. ¤

The lemma also follows immediately from the interpretation of ψ(G) as the maximal value
achievable in a certain two-player game (see [3, p.257]).

Note that for any graphs G and H we have IGtH = IG ∗ IH . In particular, if H = e is
just an edge, IGte = ΣIG. Note also that ψ(e) = 1. Recall that for complexes K and L, the
suspension Σ(K ∨ L) of the wedge between K and L is homotopy equivalent to the wedge
ΣK ∨ ΣL.

Proposition 5. For any l, k ∈ {3, 4, . . . ,∞} with l ≤ k there exists a graph G such that
ψ(G) = l and η(IG) = k.

Proof. The case l = ∞ is trivial. Assume then that l is finite. Note that if G is such that
ψ(G) = l and η(IG) = k ≥ 3, then ψ(G t e) = ψ(G) + ψ(e) = l + 1 by Lemma 4, and
η(IGte) = η(ΣIG) = ηH(ΣIG) = ηH(IG) + 1 = η(IG) + 1 = k + 1. Therefore, it suffices to
prove the case l = 3.

Let K be an acyclic finite simplicial complex with non-trivial fundamental group, i.e. with
the properties

π1(K) 6= 0, H̃i(K) = 0 for all i.
(Such K can be obtained for example by triangulating the two-dimensional CW-complex of
[7, Example 2.38]). Note that the suspension ΣK is simply-connected and acyclic, hence
contractible.

Assume first that k is finite. Since every finite simplicial complex can be realized, up to
homeomorphism, as an independence complex of some graph, we can choose a graph H such
that we have a homeomorphism

IH ∼= K ∨ Sk−2.

Since η(K ∨ Sk−2) = 2, we have ψ(H) = 2 by Proposition 2.
Let G = H t e. Then IG = ΣIH is homotopy equivalent to ΣK ∨ Sk−1, which in turn is

homotopy equivalent to Sk−1 since ΣK is contractible. It follows that η(IG) = k. On the
other hand ψ(G) = ψ(H) + ψ(e) = 3 by Lemma 4. Therefore G has the desired property.

For the remaining case l = 3, k = ∞, we consider a graph H such that IH ∼= K and define
G = H t e. Then IG ∼= ΣK is contractible and ψ(G) = 3. ¤

Still, the study of the conjecture in special cases and for particular classes of graphs is an
interesting problem and the bound provided by Theorem 1 can be useful even when it is not
sharp.
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