ON A LOWER BOUND FOR THE CONNECTIVITY OF THE
INDEPENDENCE COMPLEX OF A GRAPH
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ABSTRACT. Aharoni, Berger and Ziv proposed a function which is a lower bound for the
connectivity of the independence complex of a graph. They conjectured that this bound is
optimal for every graph. We give two different arguments which show that the conjecture is
false.

Given a finite simple graph G, its independence complex I is defined as the simplicial
complex whose vertices are the vertices of G and whose simplices are the independent sets
of G. The topology of independence complexes has been studied by a number of authors.
In particular, the connectivity of independence complexes has shown to be of interest in
the study of Tverberg graphs [5, Theorem 2.2|, independent systems of representatives [3,
Theorem 2.1] and other important problems.

In [3], Aharoni, Berger and Ziv proposed a function 1 defined on graphs which is a lower
bound for the connectivity of I and conjectured that this bound is optimal. No explicit proof
of this bound is given in that article, although the corresponding bound for the homological
connectivity follows immediately from a result of Meshulam [9, Claim 3.1]. Moreover, a
homological version of the conjecture has been considered, as well as reformulations taking
into account the existence of counterexamples in which the independence complex is simply-
connected or not [2].

In this note we give an explicit proof of the fact that ¥ (G) is a lower bound for the
connectivity of I, we prove that the conjecture is true in the cases where I is not simply-
connected or where (G) < 1, we show that there exist counterexamples to the conjecture
with ¢(G) = 2, and that there are counterexamples in which ¢(G) and the connectivity of
I take arbitrary values [, k with 3 <[ < k.

The connectivity conn(X) of a topological space X is usually defined as follows: conn()) =
—2, conn(X) = k if m;(X) = 0 for every 0 < i < k and m41(X) # 0, and conn(X) = oo if
mi(X) = 0 for every ¢ > 0. The homological connectivity conny(X) is defined in the same
way replacing the homotopy groups m;(X) by the reduced homology groups with integer
coefficients H;(X). In this context, however, in order to keep the notation of [3], we will use
the shifted versions

n(X) =conn(X)+2, ng(X)=conng(X)+2.

Date: June 1, 2011.
2000 Mathematics Subject Classification. 05C69, 55U10.
Key words and phrases. Independence complex, topological connectivity.
t Supported by the Centre for Discrete Mathematics and its Applications (DIMAP), EPSRC award
EP/D063191/1.
¥ Supported by grant KAW 2005.0098 from the Knut and Alice Wallenberg Foundation.
1



2 MICHAL ADAMASZEK AND JONATHAN ARIEL BARMAK

With this notation, X is non-empty when 7(X) > 1, path-connected if 7(X) > 2 and simply-
connected when 7(X) > 3. By the Hurewicz theorem, connectivity and homological connec-
tivity coincide for simply-connected spaces, while in general n(X) < ng(X).

All the graphs considered in this note are finite and simple (undirected, loopless and without
multiple edges). If e is an edge of a graph G, G —e denotes the subgraph obtained by removing
the edge e and G\ e is the subgraph obtained by removing the endpoints of e and all neighbours
of each of those endpoints. We denote by E(G) the set of edges of G.

Consider the function 1 defined for all finite simple graphs G with values in {0,1,..., 00},
as follows

0 ifG=1
P(G) =< o0 if G # 0 is discrete
max.cp(e) imin{y (G —e), (G \ e) + 1}}  otherwise

The join K * L of two simplicial complexes K and L is the simplicial complex with simplices
olUrT for 0 € K and 7 € L. The (unreduced) suspension XK is the join of K with a
0-dimensional complex of two vertices.

If e is an edge of a graph GG, we also consider e as a 1-dimensional simplicial complex and
by é we denote the 0-dimensional simplicial complex whose vertices are the endpoints of e.
Meshulam [9] observed that I = Ig U (e Ig\) and that IgN(exIg\.) = éx Ig\. = g\

Theorem 1. For any graph G, ¥(G) < n(Ilg).

Proof. We prove first that ¥(G) < ng(Ig). This part of the proof is implicit in [3]. The
inequality is trivial for discrete graphs. Assume then that G is non-discrete and let e € E(Q)
be such that ¢(G) = min{y(G —e),¥(G \ e) + 1}. By induction (G —e) < ng(Ilg—e) =
conng (Ig—) +2 and (G \ e) < nu(Ig\e) = conny(Ige) + 2, and therefore Hi(Ig_.) =0
for every 0 <i < 9(G) — 2 and fIi(Ig\e) =0 for every 0 < i < ¢(G) — 3.

Following [9], since H;(é * Ig\e) = JEL;_l(Ig\e) and since e x I\ is contractible, the Mayer-
Vietoris sequence for the triple (Ig_e; I, € * IG\E) gives a long exact sequence

= Hi(Ig) = Hi(Ig) = Hi(Ig—) = Hi—o(Ig\e) — -- .-

We deduce then that H;(Ig) = 0 for every 0 < i < 9(G) — 2 or, in other words, that
¥(G) < nu(lg).

To prove the theorem it suffices to show that the condition ¥(G) > 3 implies that I is
simply-connected. If GG is discrete, I is a simplex. Otherwise, by definition of ¢, there exists
an edge e such that

Y(G—e)>3 and P(G\e)>2.
By induction Ig is simply-connected and since ng(Ig\e) > ¥(G \ e) > 2, I\ is connected.
The suspension ¢ x I is then simply-connected and by van Kampen'’s theorem 1 (Ig—) is
the free product of 71 (/) and m1(e* Ig\.). Since ex I is contractible, 71 (Ig) = 71 (Ig—e) =
0. O

In [3, Conjecture 2.4] it was conjectured that ¢(G) = n(Ig). This has been confirmed for
some classes of graphs, e.g. chordal graphs [8], but, as we will show, it is not true in general. In
view of Theorem 1 it is clear that the homological version of the conjecture, i.e. the equation
Y(G) = ng(Ilg), does not hold in general since g (I) can be strictly greater than n(Ig). This
follows from the existence of a finite connected complex K with non-trivial fundamental group
but such that H;(K) = 0 and the well-known fact that for every finite simplicial complex K
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there is a graph G with Is homeomorphic to K, for instance the complement graph of the
1-skeleton of the barycentric subdivision of K.

Proposition 2. Let G be a graph.

a) If p(G) € {0,1}, then (G) = n(lg).
b) If I is not simply-connected, then (G) = n(Ilg).

Proof. Tt is easy to see that ¢/(G) = 0 if and only if G is empty, so the only non-trivial case
of a) is Y(G) = 1.

Since the 1-skeleton of I is the complement G of G, we have that n(Ig) = 1 if and only if
G is disconnected. We will prove, by induction on the number of edges in G, that if ¥(G) = 1
then G is disconnected. By definition of v, G is non-discrete and for every edge e of G we
have

Y(G —e)=1or G\ eis empty.

If there exists an edge e € G such that ¢(G —e) = 1 then, by induction, G — e is disconnected
and therefore so is G. It suffices then to consider the case when for every edge e € G the
graph G'\ e is empty. Translating this into a statement about complements we see that G has
the following property:

for every pair of non-adjacent vertices x,y we have N(z) N N(y) = 0,

where N (v) is the neighbourhood of v. It is easy to see that this property characterizes
precisely the graphs in which every connected component is a clique. Since G is not a clique
itself, it must be disconnected, as we wanted to show.

To prove b) note that if I is not simply-connected, then ¥(G) < n(Ig) < 2 by Theorem
1, and the result follows from part a). O

We now prove that the conjecture is not true. The first argument we show is not con-
structive and reduces to the fact that it is algorithmically undecidable whether n(Ig) > 3 or
n(Ig) < 2 for a given graph G, while ¢(G) is a computable function of G.

Proposition 3. There exists a graph G with ¥(G) = 2 and n(Ig) > 3.
Proof. The truth of the implication
if (G) =2 then n(lg) =2

together with Theorem 1 and Proposition 2 would provide an algorithm (Turing machine)
capable of determining if a given finite simplicial complex K is simply-connected. The algo-
rithm would just find a graph G with I homeomorphic to K and check if ¢)(G) > 3. However
it is known that there can be no such algorithm. It is a consequence of the non-existence
of an algorithm to determine whether a group I' given by a finite presentation is trivial or
not [1, 10] and a construction that associates to each presentation of I' a finite 2-dimensional
complex with fundamental group isomorphic to I' (see [6] for example). O

We will give more explicit counterexamples to the conjecture, all of them different from
the one shown in Proposition 3. Their construction requires the next observation in which
G U H denotes the disjoint union of graphs G and H.

Lemma 4. For any graphs G and H we have Y(GU H) = ¢(G) + ¢(H).
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Proof. The result holds when both G and H are discrete. The general case now follows by
induction on the number of edges in G U H. For every e € E(G) we have (GUH) —e =
(G—e)UH and (GUH)\e=(G\e)UH. If G is non-discrete, then by induction

mae {min{u((GUH) — ), 0((GUH) \ )+ 1}} =

ecE(

= max {min{((G — ) UH), 0(G\e)UH) +1}} =

= max {min{o(G =€), 0(G\ ) +1}} +v(H) =

= (G) + ¢ (H).

The same equation holds if H is non-discrete and the maximum is taken over the edges
e € E(H). Then the result follows. O

The lemma also follows immediately from the interpretation of ¢)(G) as the maximal value
achievable in a certain two-player game (see [3, p.257]).

Note that for any graphs G and H we have Iqug = Ig * Ig. In particular, if H = e is
just an edge, Ig. = XIg. Note also that ¥(e) = 1. Recall that for complexes K and L, the
suspension (K V L) of the wedge between K and L is homotopy equivalent to the wedge
YK VXL

Proposition 5. For any I,k € {3,4,...,00} with | < k there exists a graph G such that
Y(G) =1 and n(lg) = k.

Proof. The case | = oo is trivial. Assume then that [/ is finite. Note that if G is such that
Y(G) =1 and n(lg) = k > 3, then ¥(G Ue) = (G) +¢(e) = 1+ 1 by Lemma 4, and
n(Ilgue) = n(Zlg) = nu(Xlg) = nu(le) + 1 = n(lg) + 1 = k + 1. Therefore, it suffices to
prove the case [ = 3.

Let K be an acyclic finite simplicial complex with non-trivial fundamental group, i.e. with
the properties

m(K) #0, H;(K)=0 for all i.
(Such K can be obtained for example by triangulating the two-dimensional CW-complex of
[7, Example 2.38]). Note that the suspension XK is simply-connected and acyclic, hence
contractible.

Assume first that k is finite. Since every finite simplicial complex can be realized, up to
homeomorphism, as an independence complex of some graph, we can choose a graph H such
that we have a homeomorphism

Iy =2 KvS2
Since (K v S¥72) = 2, we have ¢)(H) = 2 by Proposition 2.

Let G = H Ue. Then Ig = Y1y is homotopy equivalent to XK V S*~1, which in turn is
homotopy equivalent to S*~! since LK is contractible. It follows that n(Ig) = k. On the
other hand ¢(G) = ¢¥(H) + ¢ (e) = 3 by Lemma 4. Therefore G has the desired property.

For the remaining case [ = 3, k = oo, we consider a graph H such that I = K and define
G = H Ue. Then Ig = XK is contractible and ¢ (G) = 3. O

Still, the study of the conjecture in special cases and for particular classes of graphs is an
interesting problem and the bound provided by Theorem 1 can be useful even when it is not
sharp.
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