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CLASSIFYING CANTOR SETS

BY THEIR FRACTAL DIMENSIONS

CARLOS A. CABRELLI, KATHRYN E. HARE, AND URSULA M. MOLTER

(Communicated by Michael T. Lacey)

Abstract. In this article we study Cantor sets defined by monotone se-
quences, in the sense of Besicovich and Taylor. We classify these Cantor sets
in terms of their h-Hausdorff and h-packing measures, for the family of dimen-
sion functions h, and characterize this classification in terms of the underlying
sequences.

1. Introduction

A natural way to classify compact subsets E ⊆ R of Lebesgue measure zero is by
their Hausdorff or packing dimension. This is a crude measurement, however, which
often does not distinguish salient features of the set. For a finer classification, one
could consider the family of h-Hausdorff measures, Hh, and h-packing measures,
P h, where h belongs to the set of dimension functions D, defined in Section 2.

Definition 1.1. By the dimension partition of a set E, we mean a partition of D
into (six) sets HE

α ∩ PE
β , for α ≤ β ∈ {0, 1,∞}, where

HE
α = {h ∈ D : Hh(E) = α} for α = 0,∞,

HE
1 = {h ∈ D : 0 < Hh(E) < ∞},

and PE
β is defined similarly, but with h-packing measure replacing h-Hausdorff

measure.

Sets which have the same dimension partition will have the same Hausdorff and
packing dimensions; however the converse is not necessarily true.

We call a compact, perfect, totally disconnected, measure zero subset of the real
line a Cantor set. There is a natural way (see Section 3.1) to associate to each
summable, non-increasing sequence a = {an} ⊆ R

+ a unique Cantor set Ca having
gaps with lengths corresponding to the terms an. The study of the dimension of
Cantor sets by means of its gaps was initiated by Besicovich and Taylor [1]. In fact,
the Hausdorff and packing dimensions of Ca can be calculated in terms of the tails

of the sequence a, the numbers r
(a)
n =

∑
i≥n ai, for n ∈ N. In this paper we show
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that the classification of the sets Ca according to their dimension partitions can be
characterized in terms of properties of their tails.

We introduce a partial ordering, �, on the set of dimension functions, which
preserves the order of Hausdorff and packing h-measures. A set E is said to be
h-regular if h ∈ HE

1 ∩ PE
1 . If this holds for h = xs, then E is said to be s-regular,

and in that case the Hausdorff and packing dimensions of E are both s. Although
not every Cantor set Ca of dimension s is an s-regular set, we show that one can
always find a dimension function h such that Ca is an h-regular set. This completes
arguments begun in [2] and [5]. The dimension functions for which a given Cantor
set, Ca, is regular form an equivalence class under this ordering and are called the
dimension functions associated to the sequence a.

We prove that two Cantor sets Ca, Cb have the same dimension partition if and
only if their associated dimension functions, ha, hb, are equivalent. More generally,
we prove that Ca and Cb have the same dimension partition if and only a and b are
weak tail-equivalent (see Definition 4.2).

Furthermore, we show that the weak tail-equivalence can be replaced by the
stronger tail-equivalence relation only when the associated dimension functions have
inverse with the doubling property.

2. Dimension functions and measures

A function h is said to be increasing if h(x) < h(y) for x < y and doubling if
there exists τ > 0 such that h(x) ≥ τ h(2x) for all x in the domain of h. We will
say that a function h : (0, A] → (0,∞] is a dimension function if it is continuous,
increasing, doubling and h(x) → 0 as x → 0. We denote by D the set of dimension
functions. A typical example of a dimension function is hs(x) = xs for some s > 0.

Given any dimension function h, one can define the h-Hausdorff measure of a
set E, Hh(E) in the same manner as the Hausdorff s-measure (see [6]): Let |B|
denote the diameter of a set B. Then

Hh(E) = lim
δ→0+

(
inf

{∑
h(|Ei|) :

⋃
Ei ⊆ E, |Ei| ≤ δ

})
.

The Hausdorff s-measure is the special case when h = hs. In terms of our notation,
the Hausdorff dimension of E is given by

dimH E = sup{s : hs ∈ HE
∞} = inf{s : hs ∈ HE

0 }.
The h-packing pre-measure is defined as in [7]. First, recall that a δ-packing of a

given set E is a disjoint family of open balls centered at points of E with diameters
less than δ. The h-packing pre-measure of E is defined by

P h
0 (E) = lim

δ→0+

(
sup

{∑
h(|Bi|) : {Bi}i is a δ-packing of E

})
.

It is clear from the definition that the set function P h
0 is monotone, but it is not a

measure because it is not σ-sub-additive. The h-packing measure is obtained by a
standard argument:

P h(E) = inf

{ ∞∑

i=1

P h
0 (Ei) : E =

⋃
Ei

}

.

The pre-packing dimension is the critical index given by the formula

dimP0
E = sup{s : P hs

0 (E) = ∞} = inf{s : P hs
0 (E) = 0}
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and is known to coincide with the upper box dimension [7]. Clearly, P h(E) ≤
P h
0 (E), and as h is a doubling function, Hh(E) ≤ P h(E) (see [8]). The packing

dimension is defined analogously and, like the Hausdorff dimension, can be obtained
as

dimP (E) = sup{s : hs ∈ PE
∞} = inf{s : hs ∈ PE

0 }.
Finally, we note that the set E is said to be h-regular if 0 < Hh(E) ≤ P h(E) < ∞

and s-regular if it is hs-regular. The set HE
1 ∩PE

1 consists of the h-regular functions
of E.

We are interested in comparing different dimension functions.

Definition 2.1. Suppose f, h : X → (0, A]. We will say f � h if there exists a
positive constant c such that

f(x) ≤ c h(x) for all x.

We will say f is equivalent to h, and write f ≡ h, if f � h and h � f .

This defines a partial ordering that is consistent with the usual pointwise ordering
of functions. It is not quite the same as the ordering defined in [5], but we find it
to be more natural.

Note that the definition of equivalence of functions, when applied to sequences,
implies that x = {xn} and y = {yn} are equivalent if and only if there exist
c1, c2 > 0 such that c1 ≤ xn/yn ≤ c2 for all n.

The following easy result is very useful and also motivates the definition of �.

Proposition 2.2. Suppose h1, h2 ∈ D and h1 � h2. There is a positive constant c
such that for any Borel set E,

Hh1(E) ≤ cHh2(E) and P h1

(0)(E) ≤ cP h2

(0)(E).

Proof. Suppose h1(x) ≤ ch2(x) for all x. For any δ > 0,

Hh1

δ (E) = inf

{
∑

h1(|Ui|), E ⊆
⋃

i

Ui, |Ui| < δ

}

≤ c inf

{
∑

h2(|Ui|), E ⊆
⋃

i

Ui, |Ui| < δ

}

= cHh2

δ (E).

The arguments are similar for packing pre-measure. �
Corollary 2.3. If h1, h2 ∈ D and h1 ≡ h2, then for any Borel set E, h1 and h2

belong to the same set HE
α ∩ PE

β .

3. Cantor sets associated to sequences

3.1. Cantor sets Ca. Each Cantor set is completely determined by its gaps, the
bounded convex components of the complement of the set. To each summable
sequence of positive numbers, a = {an}∞n=1, we can associate a unique Cantor set
with gaps whose lengths correspond to the terms of this sequence.

To begin, let I be an interval of length
∑∞

n=1 an. We remove from I an interval
of length a1. Then we remove from the left remaining interval an interval of length
a2 and from the right an interval of length a3. Iterating this procedure, it is easy
to see that we are left with a Cantor set which we will call Ca.

Observe that as
∑

ak = |I|, there is only one choice for the location of each
interval to be removed in the construction. More precisely, the position of the first
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gap we place (of length a1) is uniquely determined by the property that the length
of the remaining interval on its left should be a2 + a4 + a5 + a8 + . . . . Therefore,
this construction defines the Cantor set unequivocally. As an example, if we take
an = 1/3k for n = 2k−1, ..., 2k − 1, k = 1, 2, . . . , the classical middle-third Cantor
set is produced. In this case the sequence {an} is non-increasing.

This is also the case for any central Cantor set with fixed rate of dissection,
those Cantor sets constructed in a similar manner as the classical 1/3 Cantor set
but replacing 1/3 by a number 0 < a < 1/2, where a is the ratio of the length of
an interval of one step and the length of its parent interval.

We should remark that the order of the sequence is important. Different rear-
rangements could correspond to different Cantor sets, even of different dimensions;
however, if two sequences correspond to the same Cantor set, one is clearly a re-
arrangement of the other. From here on we will assume that our sequence is positive,
non-increasing and summable.

Given such a sequence, a = {an}, we denote by rn = r
(a)
n the tail of the series:

rn =
∑

j≥n

aj .

The Hausdorff and pre-packing dimensions of Ca are given by the formulas (see [2]
and [5])

dimH Ca = lim
n→∞

− log n

log(r
(a)
n /n)

and dimP0
Ca = lim

n→∞

− log n

log(r
(a)
n /n)

.

Motivated by the analogous result in [1] for s-Hausdorff measure, it was shown in
[5] that for any dimension function h, the Hausdorff h-measure and h-packing pre-
measure of the Cantor set Ca are determined by the limiting behaviour of h(rn/n).

Theorem 3.1 ([5, Prop. 4.1, Thm. 4.2]). For any h ∈ D,

1

4
lim
n→∞

nh(
r
(a)
n

n
) ≤ Hh(Ca) ≤ 4 lim

n→∞
nh(

r
(a)
n

n
),

and similarly for P h
0 (Ca), but with lim sup replacing lim inf.

This suggests that it will be of interest to study the following class of functions:

Definition 3.2. We will say that an increasing, continuous function h : (0, A] →
(0,∞] is associated to the sequence a (or to the Cantor set Ca) if the sequence

{h(r(a)n /n)} is equivalent to the sequence {1/n}.

One can check that any function ha associated to the sequence a is a doubling
function and thus belongs to D. Indeed, if

c1ha(
rn
n
) ≤ 1

n
≤ c2ha(

rn
n
) for all n

and rn/n ≤ x ≤ r(n−1)/(n− 1), then by monotonicity,

ha(2x) ≤ ha

(
2rn−1

n− 1

)

≤ ha

(
r[(n−1)/2]

(n− 1) /2

)

≤ 4

c1n
≤ 4c2

c1
ha(x).

In the special case that a = {n−1/s} for some 0 < s < 1, it is known (see [3])
that Ca has Hausdorff dimension s and 0 < Hhs(Ca) < ∞. One can easily see
that any function associated to Ca is equivalent to xs. This generalizes to arbitrary
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associated (dimension) functions, so we can speak of ‘the’ associated dimension
function.

Lemma 3.3. If h is associated to the sequence a and g ∈ D, then h ≡ g if and
only if g is also associated to a.

Proof. Suppose g is associated to a. Let bn = r
(a)
n /n and bn+1 ≤ x ≤ bn. As

{h(bn)} ≡ {g(bn)} ≡ {1/n} and g is monotonic,

c1h(bn+1) ≤ g(bn+1) ≤ g(x) ≤ g(bn) ≤ c2h(bn)

for all n and for suitable constants c1, c2. Thus

c′1 ≤ c1
h(bn+1)

h(bn)
≤ g(x)

h(x)
≤ c2

h(bn)

h(bn+1)
≤ c′2.

The other implication is straightforward. �
3.2. Packing dimension of Cantor sets Ca. The pre-packing dimension and
packing pre-measure always majorizes the packing dimension and packing measure,
and the strict inequality can hold. For example, it is an easy exercise to see that
the packing dimension of the countable set {1/n}∞n=1 is 0, but the pre-packing
dimension equals 1/2. This phenomena does not happen for the Cantor sets Ca. To
prove this, we begin with a technical result which generalizes [4, Prop. 2.2].

Lemma 3.4. Let μ be a finite, regular, Borel measure and let h ∈ D. If

lim
r→0

μ(B(x0, r))

h(r)
< c for all x0 ∈ E,

then

P h(E) ≥ μ(E)

c
.

Proof. We need to prove that for any partition
⋃∞

i=1 Ei = E, we have
∑∞

i=1 P
h
0 (Ei)

≥ μ(E)/c. Since μ(E) ≤
∑

μ(Ei), it is enough to prove that P h
0 (Ei) ≥ μ(Ei)/c for

each i.
Without loss of generality assume Ei = E, and we will show that for each δ > 0,

P h
0,δ(E) ≡ sup

{∑
h(|Bi|) : {Bi}i is a δ-packing of E

}
≤ μ(E)

c
.

Consider the collection of balls B(x, r), with x ∈ E and μ(B(x, r)) < ch(r),
where r ≤ δ. The hypothesis ensures that for each x ∈ E there are balls B(x, r)
in the collection, with r arbitrarily small. By the Vitali covering lemma, there are
disjoint balls from this collection, {Bi}∞i=1, with μ(E \

⋃
Bi) = 0. Thus

P h
0,δ(E) ≥

∑
h(|Bi|) ≥

1

c

∑
μ(Bi) =

1

c
μ(

⋃
Bi) =

1

c
μ(E). �

We now specialize to the case of Cantor sets Ca associated to a non-increasing,

summable sequence a = {aj}. If we use the notation {I(k)j }1≤j≤2k for the (re-

maining) intervals at step k in the Cantor set construction, then the sequence of

lengths of these intervals, {|I(k)j |}(k,j), with 1 ≤ j ≤ 2k, k ≥ 1 is (lexicographically)
non-increasing. Hence the length of any Cantor interval of step k is at least the
length of any Cantor interval of step k + 1. This observation, together with the
lemma above, is the key idea needed to prove that infinite (or positive) pre-packing
measure implies infinite (respectively, positive) packing measure for the sets Ca. Of
course, the other implication holds for all sets.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

3970 C. CABRELLI, K. HARE, AND U. MOLTER

Theorem 3.5. Suppose a = {aj} is a summable, non-increasing sequence with
associated Cantor set Ca and h ∈ D. If P h

0 (Ca) = ∞, then P h(Ca) = ∞, while if
P h
0 (Ca) > 0, then P h(Ca) > 0.

Proof. Let bn = r
(a)
n /n. By Theorem 3.1, P h

0 (Ca) = ∞ implies limnh(bn) = ∞
and P h

0 (Ca) > 0 implies limnh(bn) > 0. Since h is increasing, if 2k ≤ n ≤ 2k+1,
then

nh(bn) ≤ nh(b2k) ≤ 2k+1h(b2k).

Therefore, limk→∞ 2kh(b2k) = ∞ in the first case and is (strictly) positive in the
second.

The tail term, r
(a)

2k
, is the sum of gaps created at level k + 1 or later, which in

turn is equal to the sum of the lengths of the step k intervals. Thus r2k/2
k, the

average length of a step k interval, is at most the length of the shortest interval of
step k−1 and at least the length of longest interval of step k+1. As h is increasing,

h(|I(k)1 |) ≥ h(b2k) ≥ h(|I(k+1)
1 |).

Let μ be the (uniform) Cantor measure on Ca (constructed as a limiting process,
assigning at each step k the measure μk such that μk(I

k
j ) = 2−k and then taking

the weak*-limit).
Fix x0 ∈ Ca and r > 0. Suppose k is the minimal integer such that B(x0, r)

contains a step k interval. The minimality of k ensures that B(x0, r) can intersect

at most 5 step k intervals. Thus μ(B(x0, r)) ≤ 5 2−k. Also, if I
(k)
j is a step k

interval contained in B(x0, r), then 2r ≥ |I(k)j |. Since h is a doubling function,

h(r) ≥ τ h(2r) ≥ τ h(|I(k)j |) ≥ τ h(b2k+1)

for some τ > 0.
Combining these facts, we see that

μ(B(x0, r))

h(r)
≤ 5 · 2−k

τ h(b2k+1)
=

10

τ 2k+1h(b2k+1)
.

Thus if P h
0 (Ca) = ∞, then

lim
r→0

μ(B(x0, r))

h(r)
= 0,

while if P h
0 (Ca) > 0, then

c0 = lim
r→0

μ(B(x0, r))

h(r)
< ∞.

Applying Lemma 3.4 we conclude that in the first case, P h(Ca) ≥ μ(Ca)/c for
every c > 0 and therefore P h(Ca) = ∞, while P h(Ca) ≥ μ(Ca)/c0 > 0 in the
second case. �

Corollary 3.6. (i) For any dimension function h, P h
0 (Ca) = 0 (or ∞) if and only

if P h(Ca) = 0 (resp. ∞) and 0 < P h
0 (Ca) < ∞ if and only if 0 < P h(Ca) < ∞.

(ii) The packing and pre-packing dimensions of the Cantor set Ca coincide.

Theorem 3.1 was used in [5] to give sufficient conditions for two dimension func-
tions to be equivalent. Together with Theorem 3.5, we can obtain sufficient condi-
tions for comparability.
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Proposition 3.7. Suppose f, h ∈ D. If Hh(Ca) > 0 and P f (Ca) < ∞, then
f � h.

Proof. Let bn = r
(a)
n /n. Since Hh(Ca) > 0, Theorem 3.1 implies that there exists

a constant c1 > 0 such that for all sufficiently large n, h(bn) ≥ c1/n. Similarly, the

assumption that P f (Ca) < ∞ implies P f
0 (Ca) < ∞ by our previous theorem, and

therefore there is a constant c2 < ∞ with f(bn) ≤ c2/n.
Now suppose bn ≤ x < bn−1. By monotonicity, f(x) ≤ f(bn−1) and h(x) ≥

h(bn). Hence
f(x)

h(x)
≤ c2n

c1(n− 1)
≤ 2

c2
c1

< ∞,

and therefore f � h. �

The next result was obtained in [5, Thm. 4.4] with packing pre-measure replacing
packing measure.

Corollary 3.8. Suppose f, h ∈ D. If 0 < Hg(Ca) ≤ P g(Ca) < ∞ for g = f and
h, then f ≡ h.

4. Classification of Cantor sets

An immediate consequence of Theorems 3.1 and 3.5 is the following elegant
description of the dimension partition for Cantor sets Ca.

Theorem 4.1. Suppose a = {an} is a non-increasing, summable sequence of posi-
tive real numbers. Then

HCa
α =

{

h ∈ D : lim
n→∞

nh(
r
(a)
n

n
) = α

}

for α = 0,∞,

HCa
1 =

{

h ∈ D : 0 < lim
n→∞

nh(
r
(a)
n

n
) < ∞

}

,

and similarly for PCa

β , β = 0, 1,∞, but with lim sup replaced by lim inf. (See

Table 1.)

In particular, note that Ca is h-regular if and only if h is a dimension function
associated to a.

Table 1. Classification of functions in D for Ca

P0 P1 P∞

H0
0-h Hausdorff measure
0-h Packing measure

0-h Hausdorff measure
h-Packing set

0-h Hausdorff measure
∞-h Packing measure

H1 h-regular set
h-Hausdorff set
∞-h Packing measure

H∞
∞-h Hausdorff measure
∞-h Packing measure
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For the computation of dimensions the relevant behaviour of a sequence is that
of its tail; thus we introduce the following definitions.

Definition 4.2. (a) We say two sequences a, b are tail-equivalent if the sequences

of tails {r(a)n }, {r(b)n } are equivalent.
(b) We say a and b are weak tail-equivalent if there are positive integers j, k such

that r
(a)
n ≥ r

(b)
jn /j and r

(b)
n ≥ r

(a)
kn /k for all n.

Obviously, if a is tail-equivalent to b, then the dimension partitions of Ca and Cb

are the same. Furthermore, equivalence of sequences implies tail-equivalence which
implies weak tail-equivalence; however neither implication is reversible, as the next
example illustrates.

Example 4.3. (a) Let k1 = 1 and inductively define nj = 2kj+1 − 2 and kj+1 =

nj + kj + 1. Set akj
= 2−kj , an = 2−(2kj+1) for n = kj + 1, . . . , nj + kj , and set

bn = 2−2kj for n = kj + 1, . . . , nj + kj . Since akj
/bkj

= 2kj , {an} is not equivalent
to {bn}. However one can easily check that {an} is tail equivalent to {bn}.

(b) The sequence {e−n} is weak tail-equivalent to {e−2n}, but not tail-equivalent.
We are now ready to state and prove our classification result. For notational

ease we write Ha
α, Pa

β rather than HCa
α , PCa

β .

Theorem 4.4. Suppose Ca and Cb are Cantor sets associated to non-increasing,
summable sequences a, b of positive numbers. The following are equivalent:

(1) The dimension function associated to a is equivalent to the dimension func-
tion associated to b.

(2) Ca and Cb are h-regular for precisely the same set of dimension functions
h.

(3) The dimension partitions associated with Ca and Cb coincide; i.e., Ha
α ∩

Pa
β = Hb

α ∩ Pb
β for all α ≤ β ∈ {0, 1,∞}.

(4) The sequence a is weak tail-equivalent to the sequence b.

Proof. (2 ⇒ 1) Since Cb is hb-regular, Ca must also be hb-regular. Thus ha, hb ∈
Ha

1 ∩ Pa
1 . But all functions in Ha

1 ∩ Pa
1 are equivalent by Corollary 3.8.

(3 ⇒ 2) is obvious since (2) could be stated as Ha
1 ∩ Pa

1 = Hb
1 ∩ Pb

1 .

(4 ⇒ 3) It is easy to see that if there exists an integer j such that r
(a)
n ≥ r

(b)
jn /j,

then Ha
0 ⊆ Hb

0 and Hb
∞ ⊆ Ha

∞.

To see that Pb
∞ ⊆ Pa

∞, suppose there is a sequence {ni} with limi nih
(
r
(b)
ni /ni

)
=

∞. Let mi =
[
ni

j

]
, where [z] means the integer part of z. As ni ≥ jmi and rn/n is

decreasing,

r
(b)
ni

ni
≤

r
(b)
jmi

jmi
≤ r

(a)
mi

mi
.

Since h is increasing

2jmih

(
r
(a)
mi

mi

)

≥ nih

(
r
(b)
ni

ni

)

→ ∞;

therefore, limnh(
r(a)
n

n ) = ∞. A similar argument proves Pa
0 ⊆ Pb

0 .

Consequently, if a is weak tail-equivalent to b, then Ha
α = Hb

α and Pa
α = Pb

α for
α = 0,∞. This forces Ha

1 = Hb
1 and Pa

1 = Pb
1 .
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(1 ⇒ 4) We will prove a slightly more general result; namely, if ha � hb, then

there is a positive integer j such that r
(a)
n ≥ r

(b)
jn /j. There is no loss of generality

in assuming hx(r
(a)
n /n) = hx(r

(b)
n /n) = 1/n. As ha � hb there is an integer j > 0

such that

hb

(
r
(a)
n

n

)

≥ 1

j
ha

(
r
(a)
n

n

)

=
1

jn
= hb

(
r
(b)
jn

jn

)

.

The increasingness of hb establishes the claim. �

Corollary 4.5. If ha ≡ hb, then Ca and Cb have the same Hausdorff and packing
dimensions.

Example 4.6. In [5, Ex. 4.6] a construction is given of a Cantor set Ca which
has Hausdorff and packing dimension s, but where P s

0 (Ca) = ∞. Thus if Cb is any
s-regular Cantor set, then Ca and Cb have the same dimensions, but not the same
dimension partitions.

In Theorem 4.4 we proved that Cantor sets Ca and Cb have the same dimension
partition if and only if the sequences a and b are weak tail-equivalent. We conclude
the paper by determining when the class of sequences weak tail-equivalent to a
coincides with the class of sequences tail-equivalent to a.

Recall the example of the sequences a = {e−n} and b = {e−2n} which are
weak tail-equivalent, but not tail-equivalent. We can take ha(x) = | log x|−1 and
hb(x) = | log√x|−1. These associated dimension functions are, of course, equivalent,
but their inverse functions are neither equivalent nor doubling. As we see below,
the latter is the key property.

Lemma 4.7. If h ≡ g and h−1 is doubling, then h−1 ≡ g−1. In particular g−1 is
doubling.

Proof. Since h ≡ g we have c1h(g
−1(y)) ≤ y ≤ c2h(g

−1(y)) for suitable constants
c1, c2. As h−1 is doubling this implies that for some (probably different) positive
constants, c1g

−1(y) ≤ h−1(y) ≤ c2g
−1(y), and therefore g−1 ≡ h−1. �

We can now prove the following theorem.

Theorem 4.8. Given a non-increasing, summable sequence a, let Wa denote the
equivalence class of sequences weak tail-equivalent to a. The following are equiva-
lent:

(1) There exists b ∈ Wa such that h−1
b is doubling.

(2) For every b ∈ Wa, h
−1
b is doubling.

(3) Every b ∈ Wa is tail-equivalent to a.

Proof. (1) ⇐⇒ (2) follows from the previous lemma.
(2) =⇒ (3) Assume b ∈ Wa. Then h−1

a ≡ h−1
b and both are doubling. These

properties ensure that

c1h
−1
a

(
1

n

)

≤ h−1
b

(
1

n

)

≤ c2h
−1
a

(
1

n

)

and hence that there exist constants c′1, c
′
2 such that

c′1
r
(a)
n

n
≤ r

(b)
n

n
≤ c′2

r
(a)
n

n
;
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that is, the sequence a is tail-equivalent to b.
(3) =⇒ (1) We will prove this by contradiction. Suppose that h−1

a is not dou-
bling. We will show there is a sequence b ∈ Wa that is not tail-equivalent to a.
Indeed, let b = {bk} be defined as

b1 = a1, b2k = b2k+1 =
ak
2
.

Then r
(b)
2n = r

(a)
n , and by the definition of ha, there exist constants c1 ≤ c2 such

that

(4.1)
r
(b)
n

r
(a)
n

=
1

2

r
(a)
n/2

n/2

n

r
(a)
n

≥ 1

2

h−1
a (2c1/n)

h−1
a (c2/n)

≥ 1

2

h−1
a (2c1/n)

h−1
a (c1/n)

,

where in the last inequality we used the fact that h−1
a is increasing.

Since h−1
a is both increasing and non-doubling, it follows that

sup
n

h−1
a (2/n)

h−1
a (1/n)

= ∞.

Using this in equation (4.1) we conclude that the ratios r
(b)
n /r

(a)
n are not bounded

above and thus the sequences a and b are not tail-equivalent. However, as they are
clearly weak tail-equivalent, b ∈ Wa. This contradicts (3). �
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