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GEOMETRIC METHODS IN WAVELET THEORY

C. CABRELLI AND U. MOLTER

To the memory of our teacher and colleague Pucho Larotonda, who taught us much more than
Mathematics.

Abstract. In this paper we present an overview of how geometric methods

can be successfully used to solve problems in Analysis. We will focus on self-
similar objects and use their structure to construct frames, Riesz bases and

wavelet bases in Rd with a single generator function. Further, we show that

the generating functions for these systems are dense in L2(Rd).

1. Introduction

In this article we review some geometric methods that have proven to be very
successful in different contexts and we show their application to wavelet construc-
tion (sections 5 and 6).

We describe the notion of self-similarity as developed by Hutchinson [Hut81]
and its characterization in terms of contraction mappings in general metric spaces.
We show that when these results are applied to affine functions in the euclidean
space using a fixed expanding matrix, they can produce a self-similar tiling of the
space. In other words, given an expansive matrix M ∈ Rd×d and an admissible
lattice Γ, it is in general the case that there exists a self-similar set associated to
M that tiles the plane by Γ-translates.

Tilings by lattice translates are associated to local Fourier orthonormal bases,
which leads to the notion of spectral sets and to the “Fuglede Conjecture”, as we
describe in section 4.

When the property of tiling by Γ-translates is linked to the self-similarity of the
tile by an expansive matrix, a beautiful construction of wavelet bases is obtained.
This is the theory of wavelet sets (section 5).

Finally, a careful choice of the expanding matrix and the lattice in the wavelet
set construction, allows to approximate any function in L2(Rd) by a generator of
a Riesz wavelet system. We develop this density result in section 6.
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Figure 1. Self-Similar square

2. Self-Similarity

Throughout this section the concept of self-similarity in a very general way will
play a fundamental role. In Rd, a similarity is a function of the type Ax+b where b
is a point in Rd and A is a d×d isotropic matrix, i.e. all eigenvalues have the same
magnitude. The name reflects the fact that this transformation copies objects into
similar objects, just smaller, bigger or simply translated or rotated, depending on
the matrix A and the point b.

In this sense, an object could be called self-similar if you can write it as the
finite union of copies of itself, i.e.

B =
r⋃

i=1

Ai(B) + bi.

A trivial example is the unit square in R2 (see Figure 1).
Not so trivial, but still simple, is the well known middle third Cantor set, which

we will denote by C1/3. If you look at the Cantor set, you realize, that you can
write it as the union of two shrunken copies of itself, one in the [0, 1

3 ] interval and
the other one in the [ 23 , 1] interval.

Both examples are examples of compact sets in Rd. They also share the prop-
erty, that they are the (almost) disjoint union of smaller copies of themselves. This
allows to virtually see the self-similarity.

We will also be interested in self-similar functions, or measures. Self-similar
objects are interesting for us, since the self-similarity allows us to recover infor-
mation of the whole object by looking only at some part, since one can think that
the properties are “translated” into each part. Therefore self-similar objects may
be easier to study than “arbitrary” objects. This is one of the reasons why we
are interested in finding and characterizing self-similar objects. The fact that they
are simple to describe and in many cases they are dense, in the sense that they
approximate arbitrary objects, makes this characterization extremely useful.

One of the main tools to construct self-similar objects, will be by resort to the
fixed point theorem or Banach contraction principle. Since we will try to apply it
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to very different scenarios, we will state it here in its most general way. The proof
can be found in may textbooks, such as [Rud64].

Theorem 2.1 (Generalized Banach Contraction Principle). Let (X, d) be a com-
plete metric space, and let f : X −→ X be a function such that there exists a
metric d1 which is equivalent to d, for which there exist 0 < c < 1, and n > 0 such
that for all x, y ∈ X

d1(fn(x), fn(y)) ≤ c d1(x, y). (2.1)

Then there exists a unique point x∗ in X, such that f(x∗) = x∗.

2.1. The space of compact sets in Rd. To describe the setting for the theory,
we start defining an appropriate structure for the space of non-empty compact
sets in Rd. Precisely, we define H by

H = {K ⊂ Rd,K 6= ∅,Kcompact}. (2.2)

We want to transform H into a metric space, and therefore we need to define an
appropriate metric on H. We would like that this metric takes the similarity of
the shapes into account. For example, a point P and a segment S should not be
close with the appropriate distance.

One distance that performs this task in a reasonable way, is the so-called Haus-
dorff distance.

Definition 2.2. Let A,B ⊂ Rd be non-empty compact sets, then the Hausdorff
distance between A and B is

dH(A,B) = inf
ε
{A ⊆ Bε and B ⊆ Aε}, (2.3)

where
Aε =

⋃
x∈A

B(x, ε) = {x ∈ Rd : d(x,A) < ε}. (2.4)

The following Theorem is straightforward (see for example [Hut81].

Theorem 2.3. The space H of all non-empty compact subsets of Rd equipped with
the Hausdorff distance is a complete metric space.

3. Attractors and Self-Similar Sets

The following theorem, due to Hutchinson ([Hut81]), is a key result in the theory
of self-similar sets and provides a simple way to construct them.

Theorem 3.1. Let s1, . . . , sm be m contraction-mappings in Rd, with contraction
factors ci. There exists a unique non-empty compact set A satisfying

A = ∪m
i=1si(A)

(i.e. A is self-similar with respect to s1, ..., sm). Furthermore, if s : H → H is
the map defined by s(B) =

⋃m
i=1 si(B), for each compact set B0 6= ∅, the sequence

{Bk}k∈N given by Bk = s(Bk−1) converges to A in (H, dH).
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Figure 2. Self-Similar parallelogram and twin dragon attractors

Proof. The proof is immediate noting that

dH(s(A), s(B)) ≤ ( max
1≤i≤m

ci) dH(A,B).

Examples of Self-Similar Sets:

• Examples in R

– s1(x) = 1
2x s2(x) = 1

2x+ 1
2 A = [0, 1]

– s1(x) = 1
3x s2(x) = 1

3x+ 2
3 A = C1/3

• Examples in R2

– s1(x) = 1
2I2x s2(x) = 1

2I2x+ ( 1
2 , 0)

s3(x) = 1
2I2x+ (0, 1

2 ) s4(x) = 1
2I2x+ ( 1

2 ,
1
2 )

A = [0, 1]× [0, 1] (see Figure 1).

– s1(x) = M−1x s2(x) = M−1 (x+ (1, 0)) where

M =
[

1 1
1 −1

]
or M =

[
1 −1
1 1

]
In this case, the attractors

A are shown in Figure 2.
Focusing on the application we have in mind, we will look at a particular case

of Theorem 3.1 which is satisfied by all our examples so far.
For this, let Γ be a full rank lattice, i.e. Γ = RZd with R any invertible matrix.

Let γ1, . . . , γd be a set of generators for the lattice Γ, i.e., independent vectors such
that

Γ = {m1γ1 + · · ·+mdγd : mi ∈ Z}.
Then the rectangular parallelepiped

P = {x1γ1 + · · ·+ xdγd : 0 ≤ xi < 1}

is a fundamental domain for the group Rd/Γ. A matrix M ∈ Rd×d is said to be
expansive, if all the eigenvalues have absolute value bigger than 1. If M ∈ Rd×d

is expansive, and Γ is a lattice such that MΓ ⊂ Γ, a set of representatives of the
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quotient Γ/M(Γ) is called a full set of digits for that lattice. Note that, since
MΓ ⊂ Γ, detM ∈ Z. A full set of digits always has |detM | elements. We have
the following result.

Proposition 3.2. Let M ∈ Rd×d be an expansive matrix and let Γ be a lattice
such that MΓ ⊂ Γ, m = |detM |, and D = {d1, . . . , dm} be a full set of digits.
There always exists a non-empty compact set A ⊂ Rd satisfying

A = ∪m
i=1M

−1(A+ di). (3.1)

The following properties of A will be useful [Ban91], cf. also [GM92]. For a
general description see also [CHM04]. If X ⊂ Rd, we will denote by |X| the
d-dimensional Lebesgue measure of X.

Lemma 3.3. Let A be as in (3.1). Then the following statements hold.
(a) A+ Γ = Rn.

(b) A has nonempty interior, A is the closure of A◦, and |∂A| = 0.

(c) |A ∩ (A + k)| = 0 for all k ∈ Γ \ {0} if and only if |A| = |P |. In this case,
A ∩ (A+ k) ⊂ ∂A for each k ∈ Γ \ {0}.

(d) #(A◦ ∩ Γ) ≤ 1.

In other words, part (c) above says that if |A| = |P |, then A is a tile in the
sense that the Γ-translates {A+ k}k∈Γ cover Rd with overlaps of measure zero.

A long-standing open problem was the question of whether for each dilation
matrix M there exists a full set of digits D such that the corresponding attractor
A is a tile. Lagarias and Wang proved that this is the case if n = 1, 2, 3 or if
m = |det(M)| > d [LW95], [LW96], [LW97]. Potiopa [Pot97] however showed that
if d = 4 and

M =


0 1 0 0
0 0 1 0
0 0 −1 2

−1 0 −1 1

 ,
then there is no set of digits D = {d1, d2} such that the unique self similar set A
associated to (M,D) i.e. A = M−1A+ d1 ∪M−1A+ d2 is a tile, cf. [LW99]. Note
that this matrix M has determinant 2.

4. Spectral Sets

Let Ω ⊂ Rd a measurable set such that 0 < |Ω| < +∞. The set Ω is called a
spectral set if there exists a discrete set Λ = {λk : k ∈ Z} ⊂ Rd such that the set
of exponential functions {

1
|Ω|1/2

e2πiλkx

}
k∈Z

(4.1)

is an orthonormal basis of L2(Ω). In this case, Λ is called the spectrum of Ω. Many
results on spectral sets can be found in the work of Jörgensen et. al ([JP91, JP92,
JP98a, JP98b, JP99, BJR99]), Wang ([Wan02, PW01]) and others.

In 1974 Fuglede ([Fug74]) proved the following theorem.
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Theorem 4.1. Ω is a spectral set with spectrum Γ′ = (R−1)∗Zd if and only if Ω
tiles Rd by translations on Γ = RZd (the dual lattice of Γ′).

He further conjectured that his theorem was still true, if one removes the con-
dition that the spectrum of Ω has to be a lattice. Terence Tao ([Tao04]) proved
in 2003, that - at least for dimension d ≥ 5 - this is false.

However, Fuglede’s Theorem allows us to add an additional equivalence to item
(c) of Lemma 3.3 above:

Proposition 4.2. Let M ∈ Rd×d be an expansive matrix and m = |detM |. Let
Γ be a lattice such that MΓ ⊂ Γ and let D = {d1, . . . , dm} ⊂ Rd be a full set of
digits. We have

A = ∪γ(A+ γ) if and only if
{

1
|A|1/2

e2πiγ′x

}
γ′∈Γ′

is an o.n. basis of L2(A).

(4.2)

5. Minimal Supported (in Frequency) Wavelets

For a lattice Γ, an expansive matrixM ∈ Rd×d such thatMΓ ⊂ Γ, m = |detM |,
and ψ ∈ L2(Rd) we consider the set

F =
{
|det(M)|j/2ψ(M jx− γ) : j ∈ Z, γ ∈ Γ

}
. (5.1)

The question we are addressing now, is for which ψ ∈ L2(Rd), F is an orthonormal
basis for L2(Rd). Such a function will be called a wavelet.

The following Theorem, whose proof is straightforward, characterizes those
wavelets whose Fourier transform has support with smallest possible measure.

Theorem 5.1. Let Γ and M be as before, and let Q ⊂ Rd be such that

• {Q + γ′ : γ′ ∈ Γ′} tiles Rd(= R̂d) (i.e. Q is a tile for Γ′, the dual lattice of
Γ)

• {M jQ : j ∈ Z} tiles Rd(= R̂d), i.e.

∪jM
jQ = Rd \ {0} and |M jQ ∩MkQ| = 0, j 6= k.

Then if ψ is such that ψ̂ = χQ we have

F =
{
|det(M)|j/2ψ(M jx− γ) : j ∈ Z, γ ∈ Γ

}
is an orthonormal basis of L2(Rd). ψ is called a Minimal Supported in Frequency
wavelet (MSFW).

5.1. Construction of Q. Therefore, in order to obtain MSFW, we need to con-
struct a setQ that satisfies the conditions above. Sets of this type are called wavelet
sets and have been studied by many groups of researchers ([BL01, BMM99, BS02,
BS04, DLS97, DLS98, ILP98, SW98, Wan02, Zak96]. We will illustrate the con-
struction given by Benedetto [BL01, BS02, BS04] for a particular case, which will
be useful in the next section.
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Figure 3. The annulus tiles by dilations by M but not by Γ translates

Assume that M = λId with |λ| ≥ 3 and that Γ = γZd, for 0 < γ < +∞. (The
choice of λ > 3 is only to simplify the construction.) Set Q0 = [0, γ

2 ]d \M−1[0, γ
2 ]d

(see Figure 3). This set tiles by dilation by M , but not by Γ-translates. We need
to fill the hole.

We define

T̃ : Rd −→ Rd

x 7→ x+ γξj if x ∈ jth − quadrant

where ξj is the vertex of the cube [−1, 1]d that lies in the jth-quadrant.
Let us call

A0 = M−1[0,
γ

2
]d = [0,

γ

(2λ)
]d (5.2)

and define
Ai := (M−1 ◦ T̃ )i(A0), i = 1, 2, . . . (5.3)

It will be convenient to use the notation Aj
0 for the intersection of the set A0 with

the jth-quadrant. With this notation, note that

Ai =
⋃

1≤j≤2d

(M−1 ◦ T̃ )i(Aj
0)

=
⋃

1≤j≤2d

TγM−1ξj+···+γM−iξj
(M−i(Aj

0)). (5.4)

Here Ty denotes the usual translation by y in L2(Rd). Therefore we have that
∞∑

i=1

µ(Ai) = µ(A0)
∞∑

i=1

(
1
λd

)i

=
(γ
λ

)d 1
λd − 1

. (5.5)

We define the set

Q := M

( ∞⋃
i=0

Ai

)
\

( ∞⋃
i=0

Ai

)
, (5.6)

Observe that:
• By construction, Q tiles Rd \ 0 by dilations by M .
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Figure 4. Q tiles by dilations by M and by Γ translates

• Furthermore Q tiles Rd by translations on Γ. For this, we first note that if
x ∈ An then

γ

λ− 1

(
1−

(
1
λ

)n)
≤ ‖x‖∞ ≤ γ

λ− 1

(
1−

(
1
λ

)n(1 + λ

2λ

))
. (5.7)

This fact allows us to conclude that:
1. Ai ⊂ ([0, γ

2 ]d \A0), for i ≥ 1,
2. Ai ∩Aj = ∅ if i 6= j,

which allows us to rewrite Q

Q = M

( ∞⋃
i=0

Ai

)
\

( ∞⋃
i=0

Ai

)

=

(
MA0 \ (

∞⋃
i=0

Ai)

)
∪

( ∞⋃
i=0

T̃Ai

)
.

This shows that Q is in fact Γ-congruent to [0, γ
2 ]d.

Therefore, using Fuglede’s Theorem (Theorem 4.1) we have that{
1

γd/2
e2πiγkωχQ(ω) : k ∈ Zd

}
is an orthonormal basis for KQ, and using that DMf := md/2f(M ·) is a unitary
operator, we conclude that

F =
{
|det(M)|j/2ψ(M jx− γk) : j ∈ Z, k ∈ Zd

}
is an orthonormal basis of L2(Rd).
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6. Riesz basis are dense

In this section we will outline, how we can use the construction of the previous
section, to answer an open question posed by D. Larson. For details, we refer the
reader to [CM06].

The question we are going to address now is the following:
Given f ∈ L2(Rd) , and ε > 0, does there exist a function ψ ∈ L2(Rd), an

expansive matrix M ∈ Rd×d, and a lattice Γ, such that

• ‖f − ψ‖2 < ε and

• F =
{
|det(M)|j/2ψ(M jx− γk) : j ∈ Z, k ∈ Zd

}
is a Riesz basis for L2(Rd)?

Here we are relaxing the condition of being an orthonormal basis, to the Riesz
basis condition.

We recall that a set {vk}k∈Z is a Riesz basis for a Hilbert space H, if it is
complete in H and there exist constants 0 < A ≤ B < +∞, such that for every
n ∈ N and every finite sequence of scalars c = (c1, . . . , cn),

A
n∑

i=1

|ci|2 ≤ ‖
n∑

i=1

civi‖2 ≤ B
n∑

i=1

|ci|2.

The constants A and B are called Riesz basis bounds.
In order to show, how the previous results can be used to give a positive answer

to this question, we need the following result.

Lemma 6.1. Let Ω ⊂ Rd be a set of finite measure. If {λk}k∈Z ⊂ Rd satisfies
that

{
e2πiλkωχΩ(ω) : k ∈ Z

}
is a Riesz basis for KΩ with bounds A and B and

h ∈ L2(Rd) satisfies that 0 < p < |h(ω)| < P < +∞ then

{h(ω)e2πiλkω : k ∈ Z}

is a Riesz basis for KΩ, with Riesz bounds pAµ(Ω) and PBµ(Ω).
If M ∈ Rd×d is an invertible matrix and Ω satisfies that ∪j∈Za

jΩ = Rd up to
a set of zero measure, with the union being almost disjoint, and {gk : k ∈ Z} is a
Riesz basis for KΩ, then

{Dj
Mgk : k, j ∈ Z}

is a Riesz basis for L2(Rd) with the same bounds. (Here DM is the dilation operator
defined in the previous section.)

Proof. The first assertion is immediate, and the second one follows from the fact
that the dilation is a unitary operator in L2(Rd).

In view of this Lemma, if we are given a function in L2(Rd), we need to find
the right lattice and the appropriate dilation matrix. For this we proceed in the
following way:

• Let g ∈ L2(Rd), such that ‖f̂ − ĝ‖22 < ε/2 and ĝ is continuous.

• Choose R ∈ R such that
∫

Rd\B(0,R/2)

|ĝ(ω)|2dω < δ
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• We now select r > 0 small enough such that:

r <
R

3
(6.1)∫

B∞(0,r/2)

|ĝ(ω)|2dω < ε2

16
(6.2)

and ard <
ε2

16
where a := max{|ĝ(ω)|2 : ω ∈ B∞(0, R/2)}. (6.3)

Let now

Γ = RZd and M =
R

r
Id×d.

Note that by the choice of r, we have that R
r ≥ 3 and we are therefore in the

previously described situation.
We define the set Q as in (5.6), and for α = ε

8(R)d/2 , the function h by

h(ω) :=


ĝ(ω) x ∈ Q ∩ Eα

α x ∈ Q \ Eα

0 else
.

where
Eα := {ω ∈ Rd : |ĝ(ω)| > α}.

Then the function ψ, with ψ̂ = h satisfies that

F =
{
|det(M)|j/2ψ(M jx− γk) : j ∈ Z, k ∈ Zd

}
is a Riesz basis for L2(Rd) (see [CM06] for the details of the proof).
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Facultad de Ciencias Exactas y Naturales,

Universidad de Buenos Aires,

Ciudad Universitaria, Pabellón I,
1428 Capital Federal, ARGENTINA
and CONICET, Argentina
umolter@dm.uba.ar

Recibido: 27 de marzo de 2006

Aceptado: 7 de agosto de 2006

Rev. Un. Mat. Argentina, Vol 46-2


