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Summary. In this chapter we discuss the problem of finding the shift-invariant
space model that best fits a given class of observed data F . If the data is known to
belong to a fixed—but unknown—shift-invariant space V (Φ) generated by a vector
function Φ, then we can probe the data F to find out whether the data is sufficiently
rich for determining the shift-invariant space. If it is determined that the data is
not sufficient to find the underlying shift-invariant space V , then we need to acquire
more data. If we cannot acquire more data, then instead we can determine a shift-
invariant subspace S ⊂ V whose elements are generated by the data. For the case
where the observed data is corrupted by noise, or the data does not belong to a
shift-invariant space V (Φ), then we can determine a space V (Φ) that fits the data in
some optimal way. This latter case is more realistic and can be useful in applications,
e.g., finding a shift-invariant space with a small number of generators that describes
the class of chest X-rays.

To John, whose mathematics and humanity have inspired us.

14.1 Introduction

In many signal and image processing applications, images and signals are
assumed to belong to some shift-invariant space of the form:

V (Φ) :=

{
f =

n∑

i=1

∑

j∈Zd

αi(j)φi(· + j) : αi ∈ l2(Zd), i = 1, . . . , n

}
, (14.1)

where Φ = [φ1, φ2, . . . , φn]t is a column vector whose elements φi are functions
in L2(Rd). These functions are a set of generators for the space V = V (Φ). For
example, if n = 1, d = 1, and φ(x) = sinc(x), then the underlying space is the
space of band-limited functions (often used in communications) [4], [5], [6].
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However, in most applications, the shift-invariant space chosen to describe
the underlying class of signals is not derived from experimental data—for
example most signal processing applications assume “band-limitedness” of the
signal, which has theoretical advantages, but generally does not necessarily
reflect the underlying class of signals accurately. Thus, in order to derive the
appropriate signal model for a class of signals, we consider the following two
types of problems:

(I) Given a class of signals belonging to a certain fixed—but unknown—shift-
invariant space V , the problem is whether it is possible to determine the
space V from a set of m experimental data F = {f1, f2, . . . , fm}, where
fi are observed functions (signals) belonging to V (Φ).

(II) Given a large set of experimental data F = {f1, f2, . . . , fm}, where fi are
observed functions (signals) that are not necessarily from a shift-invariant
space with a small fixed number of generators, we wish to determine some
small space V that models the signals in “some” best way.

For Problem I to be meaningful, we must have some a priori assump-
tion about our signal space V . In particular, we assume that V is a shift-
invariant space that can be generated by a set of exactly n generators,
Φ = [φ1, φ2, . . . , φn]t, such that {φi(· − k) : k ∈ Z, i = 1, . . . , n} forms a
Riesz basis for V (Φ). If a finite set F of signals is sufficient to determine
V (Φ), then F is called a determining set for V (Φ). The goal is to see if we
can perform operations on the observations F = {f1, f2, . . . , fm} to deduce
whether they are sufficient to determine the unknown shift-invariant space
V (Φ), and if so, use them to find some set of generators Ψ for V (Φ), i.e., find
some Ψ = [ψ1, ψ2, . . . , ψn]t such that V (Ψ) = V (Φ). If the observations are
not sufficient to determine V (Φ), then we need to obtain more observations
until a determining set is found.

This then becomes a learning problem: If the data is insufficient to de-
termine the model, then the set S(F) = closureL2

(
span{fi(· − k) : i =

1, . . . ,m, k ∈ Zd}
)

is a proper shift-invariant subspace of V . Thus the data
determines some “smaller” shift-invariant space. The acquisition of new data
will allow us to “learn” more about the right model, i.e., with the new infor-
mation we can obtain a more complete description of the space.

In practice however, the a priori hypothesis that the class of signals belongs
to a shift-invariant space with a known number of generators may not be sat-
isfied. For example, the class of functions from which the data is drawn may
not be a shift-invariant space. Another example is when the shift-invariant
space hypothesis is correct but the assumptions about the number of genera-
tors is wrong. A third example is when the a priori hypothesis is correct but
the data is corrupted by noise. For these three more realistic cases, we must
consider Problem II.

Similarly to Problem I, we must impose some a priori conditions on the
space V . In particular, we will search for the optimal space V among those
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spaces that are generated by exactly n generators. Consider the class V of
all the shift-invariant spaces that are generated by some set of generators
Φ = [φ1, φ2, . . . , φn]t, φi ∈ L2(Rd), with the property that {φi(· − k) : k ∈
Zd, i = 1, . . . , n} is a Riesz basis for V (Φ). The problem is then to find a space
V ∈ V such that

V = argmin
V ∈V

m∑

i=1

wi ‖fi − PV fi‖
2, (14.2)

where wi are positive weights and where PV is the orthogonal projection on V .
The weights wi can be chosen to normalize or to reflect our confidence about
the data. For example we can choose wi = ‖fi‖

−2 to place the data on a
sphere or we can choose a small weight wi for a given fi if—due to noise
or other factors—our confidence about the accuracy of fi is low. The goal is
to use the observations F = {f1, f2, . . . , fm} to find some set of generators
Ψ = [ψ1, ψ2, . . . , ψn]t that generates the optimal space V = V (Ψ) in (14.2).

14.2 Notation and Preliminaries

Throughout this chapter, we assume that the unknown space V is a Riesz
shift-invariant space, i.e., a shift-invariant space that has a set of generators
Φ = [φ1, . . . , φn]t such that {φi(x − k) : i = 1, . . . , n, k ∈ Zd} forms a Riesz
basis for V . That is, there exist 0 < A ≤ B such that for all f ∈ V (Φ),

A‖f‖2 ≤

n∑

i=1

∑

k∈Zd

|〈φi(· − k), f〉|
2
≤ B‖f‖2.

This Riesz basis assumption can be restated in the Fourier domain using the
Grammian matrix of Φ. Specifically, the Grammian GΘ of a vector function
Θ = [θ1, . . . , θn]t is defined by

GΘ(ω) =
∑

k∈Zd

Θ̂(ω + k) Θ̂∗(ω + k)

where Θ̂(ω) :=
∫

Rd Θ(x) e−2πiωx dx, and Θ̂∗ is the adjoint of Θ̂. With this
definition, it is well known that Φ induces a Riesz basis of the space V = V (Φ)
defined by (14.1) if and only if there exist two positive constants A > 0 and
B > 0 such that

AI ≤ GΦ(ω) ≤ BI, a.e. ω, (14.3)

where I is the n × n identity matrix (see, e.g., [1], [8], [9]). The set B =
{φi(x−k) : i = 1, . . . , n, k ∈ Zd} forms an orthonormal basis if and only if A =
B = 1 in (14.3). Throughout the chapter we assume that Φ = [φ1, . . . , φn]t

satisfies (14.3).
We use F to indicate a set of functions and F to denote the vector-valued

function whose components are the elements of F in some fixed order.



328 Akram Aldroubi, Carlos Cabrelli, and Ursula Molter

14.3 Problem I

A complete account of the results considered in this section, with proofs, is
contained in [3].

Our main goal is to find necessary and sufficient conditions on subsets F =
{f1, . . . , fm} of V (Φ) such that any g ∈ V can be recovered from F as defined
precisely next. A set F with such a property will be called a determining set
for V (Φ). Specifically we have the following definition.

Definition 14.1. The set F = {f1, f2, . . . , fm} ⊂ V (Φ) is said to be a deter-
mining set for V (Φ) if any g ∈ V (Φ) can be written as

ĝ(ω) = α̂1(ω) f̂1(ω) + α̂2(ω) f̂2(ω) + · · · + α̂m(ω) f̂m(ω),

where α̂1, . . . , α̂m are some 1-periodic measurable functions. In addition, if F
is a determining set of V (Φ), then we will say that V (Φ) is determined by F .

Remark 14.2. (i) The integer translates of the functions in the set F =
{f1, . . . , fm} need not form a Riesz basis for V . In fact, series of the form

m∑

i=1

∑

k∈Zd

ci(k)fi(x− k)

need not even be convergent for all ci ∈ l2.

(ii) An equivalent definition of a determining set is the following (e.g., see
[8, Thm. 1.7]): a set F is a determining set for V (Φ) if and only if V (Φ) ⊂
closureL2

(
span{fi(x− k) : fi ∈ F}

)
.

It is not surprising that if V has a Riesz basis of n generators, then the
cardinality m of a determining set F must be larger or equal to n. This result
is stated in the following proposition.

Proposition 14.3. Let V be a shift-invariant space generated by some Riesz
basis {φi(x− k) : i = 1, . . . , n, k ∈ Zd}, where Φ = [φ1, . . . , φn]t is a vector of
functions in V . If F is a determining set for V , then card (F) ≥ n.

Because of the proposition above, we will only consider sets F of cardinality
m larger than or equal to the number n of the generators for V . Given such
a set F there are L =

(
m

n

)
subsets F` ⊂ F of size n. For each such subset F`

of size n, we define the set

A` = {ω : detGF`
(ω) 6= 0}, 1 ≤ ` ≤ L, (14.4)

whereGF`
is the n×nGrammian matrix for the vector F`, and we “disjointize”

the sets A` by introducing the sets {B`}
L
`=1 defined by
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B1 := A1, B` := A` −

`−1⋃

j=1

Aj , ` = 2, . . . , L.

Below, we state (and give a reduced version of the proof of) a theorem
from [3] that solves Problem I. The result characterizes determining sets,
and produces an orthonormal basis for a shift-invariant space V when it is
determined by the data.

Theorem 14.4 ([3]). A set F = {f1, . . . , fm} ⊂ V (Φ) is a determining set

for V (Φ) if and only if the set
⋃L

`=1A` has Lebesgue measure one.
Moreover, if F is a determining set for V (Φ), then the vector function

Ψ̂(ω) := G
− 1

2

F1
(ω) F̂1(ω)χB1

(ω) + · · · +G
− 1

2

FL
(ω) F̂L(ω)χBL

(ω) (14.5)

generates an orthonormal basis {ψi(x− k) : i = 1, . . . , n, k ∈ Zd} of V (Φ).

Proof (Sketch). Since F` ⊂ V (Φ) and card(F`) = n, we can write F̂` = ĈF`
Φ̂

for some n× n square matrix ĈF`
with L2([0, 1]d) entries, and we have

GF`
(ω) =

∑

k

(ĈF`
(ω + k) Φ̂(ω + k)) (ĈF`

(ω + k) Φ̂(ω + k))∗

=
∑

k

ĈF`
(ω + k) Φ̂(ω + k) Φ̂∗(ω + k) ĈF`

∗

(ω + k)

= ĈF`
(ω)GΦ(ω) ĈF`

∗

(ω),

since ĈF`
(ω) is 1-periodic.

Moreover, since Φ induces a Riesz basis, it follows that GΦ is positive
definite. It is also true that ĈF`

(ω) is non-singular for a.e. ω ∈ B`. Thus, GF`

is self-adjoint and positive definite on B`.
Therefore, if we define Ψ as in (14.5), then it can be seen that the set

{ψi(x− k) : i = 1, . . . , n, k ∈ Zd} forms an orthonormal basis for V (Φ).
For the converse see [3]. ut

Remark 14.5. (i) Theorem 14.4 provides a method for checking whether and
when a set of functions generates a fixed (yet unknown) shift-invariant
space generated by some unknown Φ of known size n. Since other than
the value n, the only requirement is that the set of functions must be-
long to the same (unknown) shift-invariant space, we can apply the theo-
rem to a set of observed functions (the data) if we know that they are all
from some shift-invariant space V . We can either determine the space, or
conclude that we do not have enough data to do so and need to acquire
more data. If we cannot acquire more data, we can still determine the space
S(F) = closureL2 (span{fi(· − k) : i = 1, . . . ,m, k ∈ Z}), which is a subspace
of the unknown space V . However, the subspace S(F) is not necessarily gen-
erated by a Riesz basis.
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(ii) The functions of the orthonormal basis constructed in Theorem 14.4
are in L2 but not in L1 ∩ L2 in general. Further investigation is needed for
the construction of better-localized bases.

14.4 Problem II

The intuition—or idea—behind Problem II is that one has a large amount of
data (for example the data base of all chest X-rays during the last 10 years).
The space

S(F) = closureL2
(span{fi(x− k) : fi ∈ F})

generated by our set of experimental data contains all the data as possible
signals, but it is too large to be an appropriate model for use in applications. A
space with a “small” number of generators is more suitable, since if the space
is chosen correctly, it would reduce noise, and would give a computationally
manageable model for a given application. Since in general the data does not
belong to a shift-invariant space with n generators (n small), the goal is to
find—among all possible shift-invariant spaces with n generators—the one
that fits the data optimally.

Accordingly, in this section we do not assume that F = {f1, . . . , fm} be-
longs to a space V with exactly n generators.

Let us consider the function

r(ω) = rank GF (ω),

where GF(ω) is the Grammian matrix at ω. Let rmin and rmax denote the
minimum and the maximum value that r(ω) can attain in [0, 1]d, i.e.,

rmin = min
ω∈[0,1]d

r(ω) and rmax = max
ω∈[0,1]d

r(ω).

Clearly, if rmax is already small, the problem is not interesting. So we will
assume that rmin ≥ n, where n is the number of generators for the space V
that we are seeking to model the observed data F . This hypothesis is not
strictly necessary for our results, but we will impose it for simplicity.

Consider as before the class V of all the shift-invariant spaces that are
generated by some set of n generators Φ with the property that {φi(·−k) : k ∈
Zd, i = 1, . . . , n} is an orthogonal basis for V (Φ). Note that the assumption
of orthogonality does not change the class V considered in the introduction.
Let w = (w1, . . . , wm) be a vector of weights, (i.e., wi ∈ R, wi > 0).

Our goal is, given F , to find a space V ∈ V such that V minimizes the
least square error

E(F , w, n) =
m∑

i=1

wi ‖fi − PV fi‖
2,
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where PV is the orthogonal projection onto V . This problem can be viewed
as a nonlinear infinite-dimensional constrained minimization problem. It is
remarkable that it has a constructive solution, as shown in [2]. This problem
may also be viewed in the framework of the recent learning theory developed
in [7] and estimates of “model fit” in terms of noise and approximation space
may be derived (see the next section).

The first question that arises is if such a space exists at all. In the case
that it exists, in order to be useful for applications, it will be important to
have a way to construct the generators of the space and to estimate the error
E(F , w, n).

Surprisingly, in [2] the following theorem is proved.

Theorem 14.6. With the previous notation, let n be given, assume that n ≤
rmin, and let w be a vector of weights, w = (w1, . . . , wm). Then there exists a
space V ∈ V such that

m∑

i=1

wi ‖fi − PV fi‖
2 ≤

m∑

i=1

wi ‖fi − PV ′fi‖
2, ∀V ′ ∈ V . (14.6)

Proof (Sketch). The proof is quite technical and therefore not suitable for this
chapter (see [2]); however, it is constructive. We will skip the details and try
to give an idea of the construction of the space V .

We consider the space S(F) and look at the Grammian matrix GF . Since
rmin ≥ n, we always have at least n non-zero eigenvalues. For i = 1, . . . , n,
consider ĝi(ω) = vi

1f̂1 + · · · + vi
mf̂m(ω) where vi ∈ Cm are some choice of

eigenvectors associated to the n largest eigenvalues of GF(ω). If this choice can
be made in such a way that the resulting functions are linearly independent
functions in S(F), then the space generated by these n functions will be the
space V we are looking for.

Note that it is not immediate to see that the functions obtained in this
way belong to L2 (or are even measurable functions!). However, after solving
this technical part ([2]), one sees that if rmin is greater than or equal to n, we
can always solve Problem II. ut

We will call a space V ∈ V satisfying (14.6) an optimal space (for the
data F). Moreover, it can be seen that the space V is (under minor assump-
tions) unique.

In view of the preceding construction, we can now state two consequences
of the previous theorem that are relevant for this chapter.

Theorem 14.7. Let V ∈ V be an optimal space. Then V ⊂ S(F).

This shows that every optimal space should be contained in the space
S(F) spanned by the data.

Further, we have the following estimate for the error.
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Theorem 14.8. Let again V ∈ V be an optimal space, w = (w1, . . . , wm) a
vector of weights, and λ1(ω) ≥ λ2(ω) ≥ · · · ≥ λrmax

(ω) the eigenvalues of GF

at ω. Then

E(F , w, n) =

m∑

i=1

wi ‖fi − PV fi‖
2 =

rmax∑

i=n+1

wi

∫

[0,1]d
λi(ω)dω.

Remark 14.9. Obviously, if n = m then the error between the model and the
observation is null. However, by plotting the error in Theorem 14.8 in terms of
the number of generators, an optimal number n may be derived if the behavior
of the error in terms of n shows a horizontal asymptote.

14.5 Problem II as a Learning Problem

Problem II has an interpretation as a learning problem as defined in [7].
Consider a class of signals or images (e.g., electroencephalograms or MRI

images). This class of signals belongs to some unknown space that we can
assume to be a shift-invariant space T ⊂ L2(Rd). The space T (the target
space) is often very large. For processing, analysis, and manipulation of the
data it is necessary to restrict the model to a smaller class of spaces with
enough structure. For example, shift-invariant spaces that can be generated
by a Riesz basis are appropriate, and are often used in many signal processing
applications.

Therefore, we fix a positive integer n, and consider the class V (the hypoth-
esis class) as before. We want to learn about the space T from some sample
elements. Assume that we have m sample signals, say F = {f1, . . . , fm} (the
training set). Using Theorem 14.6, we see that from our data set F we can
obtain some space VF ∈ V that best fits our data.

However, a realistic assumption should consider that our samples are noisy.
Therefore, they may not belong to the space T . This means that the space
VF will, in general, be different from the space V eF

that we would have found
from signals that are not corrupted by noise.

The noisy data introduces an error. This error can be quantified using some
distance between the subspaces VF and V eF

. (We can, for example, consider
the distance between the orthogonal projections in some operator norm.) This
error is usually called the sample error in learning theory.

There is another error (the approximation error) due to the fact that our
family of spaces is constrained to have only n generators.

Estimation of these errors in terms of the number of samples and the
number of generators is an ongoing research by the authors.
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