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1. Introduction

The recurrent iterated function system (RIFS) [1-3] represents an extension of the "usual" IFS
method, which has its origins in the works of Hutchinson (4] and Barnsley et al. [5]. (For a complete and
readable treatment of normal IFS theory, see Ref. [6].) The flexibility of RIFS permits the construction of
more general sets and measures which do not have to exhibit the strict self-similarity of the IFS case. Its
consequences and utility in image generation have been discussed in several papers. In all of these treat-
ments, the focus was on a probabilistic interpretation of RIFS: indeed, from the very definition, this is
the most natural viewpoint. In this paper, we wish to consider a more general RIFS from the perspective
of invariant measures. First, a "Markov"” operator is constructed in a fashion analogous to the usual IFS ,
case. This operator is shown to be contractive on a complete space of measures, from which follows the
existence of. a "fixed point" invariant measure. This provides a Collage Theorem for Measures for RIFS.
Also, for the case of linear maps in R", the invariance of measure permits the recursive computation of
moments over the unique attractor A of the RIFS.

In order to allow those unfamiliar with the RIFS to become acquainted with it, we begin the follow-
ing Section with a motivating example of a rather simple RIF'S. In Section 3, we generalize this RIFS and
even those introduced by Barnsley et al. in Ref. [1]. The appropriate space of measures and correspond-
ing Markov operators are then defined and the theorems proved. In Section 4, for linear generalized
RIFS, the invariance relations are used to derive recursion relations for moments over the attractor.

2. Simple Recurrent Iterated Function Systems

In this section we present a simple formulation of RIFS. The connection with the usual IFS will be
apparent. Since many of the important features of IFS have been listed in another paper which appears
in this Volume (7], we defer from repeating them here. We have attempted to preserve, as much as possi-
ble, the notation adopted in [7].

As in the usual IFS, (K ,d), denotes a compact metric space with metric d. Let there exist N con-
traction maps on K: w; : K—K. We now associate with these maps a matrix of probabilities P = p;;

which is row stochastic, i.e. Ejp,-j=l, t=1,.,N. From a probabilistic viewpoint, we consider a random

"chaos game" sequence,
2K, Tpyy = w,,'(:c,'), n=01,2,.. . (2.1)

The fundamental difference between this process and the usual chaos game (Eq. (2.9) in Ref. [7]) is that
the indices o, are not chosen independently, but rather with a probability that depends on the previous

index o, _;:
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P(on+l=i) = pan,i: £=1;2r"1N- (22)

Thus, at each step in Eq. (2.1), to compute Z, 41, We look at the index 0n. The o,th row of P then gives
the probabilities of choosing the next map to apply to z,. Clearly, in the case that all rows of P are

identical and given by the vector p, then the RIFS {K,w,P} reduces to the usual IFS {K,w, p}. In all
cases, we assume the matrix P to be srreducible [8], ie. for any 1<¢,7<N, there exists a sequence
1,82, .. . ,8, with $1=¢ and {,=4 such that PisiPiyy " * " Pi,_i >0. (In other words, for any s,5, if we
apply map w; in the sequence, there is a nonzero probability that we will apply map w, in the future.) A
major result (we are not intending to be complete in this section) for RIFS is the following [1]:
There exists a unique stationary or invariant measure # of the random walk in Eq. (2.1). If A is the
support of y, then there exist unique compact sets A;, $=1,...,N, such that

. N N

A=UA, 4= U wa,) (2:)
§m=] ) ‘ J:p,-:)O i )

Note how the transition matrix P determines which maps w; can act on A;. The reader will note a fun-

damental difference between RIFS attractors and IFS attractors: the RIFS attractors need not exhibit

the self-similarity or self-tiling properties characteristic of IFS attractors, where

A=U A, A=u(a), (2.4)

Barnsley et al. [1] showed that the random walk of Eq. (2.1) is not Markov on K itself but rather
on the product K X{1,2,..,N}. Again assuming that the matrix P is irreducible, it admits a stationary

distribution {m,,m,, ..., m ~}, where the m; are solutions of the linear equations [8]
N N
Ep_,-,-m,- =m;, i=12,..N, and Y m; = 1. (2.5)
J=1 fm]

A convenient way to picture the RIFS is to imagine a stack of transparent planes K;$=12,...N each of
which is a copy of K, cf. [1-3]. Each A;CK; and we "see" A by superimposing all planes. On the other
hand, we can "see" A; by plotting points obtained immediately after applying map w;. During the itera-
tion sequence in Eq. (2.1), motion from K to K; under the action of w; is permitted only if 27#>0. The
invariant distribution on the indices 1 to N is {m,, ..., my}. This may be interpreted as follows: the
proportional amount of time spent by the random sequence in Eq. (2.1) on each plane K is precisely m;.

We illustrate the ideas mentioned to this point with some examples.

Example 1: N=2, wy(z)=Y%z,wiz)=%z+%. Two cases:
w: e = 3 sl @ e- & g;g]. (25

In both cases, A=[0,1], A1=[0,%],A2=[%,1]. Histogram approximations of the invariant measures are
presented in Fig, 1. Qualitatively, in case (1), the measure is seen to “spread out” toward the ends of
[0,1], but in a self-similar way throughout the interval. We can understand this from a look at the transi-
tion matrix in (1): when either map is applied, there is a greater probability that the same map will be
applied again, thus pulling the point closer to jts respective fixed point. In case (2), when a map is
applied, there is a greater probability that the other map will then be applied. The result is to focus
orbits toward the center. Some moments over this invariant measure will be calculated in Section 4.
Example 2: on R?, N=4, the following four maps whose fixed points lie at the vertices of the unit square
[0,1]x[0,1]: |
wi(z,y) = (%, %y) + b;, i=1,.4: 6,=(0,0), by=(%,0), by=(%,%), by=(0%).

along with a 4xX4 matrix P. In the normal IFS case, i.e. Pij=p;>0, j=1,...,4, the attractor A is the unit
square [0,1]x[0,1].



(1)  For p;;=0 but all other Pi;>0, the attractor A is shown in Fig. 2.1. Note that changing the nonzero
pi; will change the invariant measure living on A, [ts Hausdorff dimension is

~ dim(A)=Un(%(3+V2D))[in 2).

(2) For P11=Pu=p33=py=0, and all other pi;>0, the attractor A has the shape shown in Fig. 2.2.
dim(A)=(in 3)AIn 2).

For both cases, the reader can deduce how the zero elements in P produce the “holes" in [0,1]x[0,1]. A

symbolic dynamics viewpoint [6] helps here. The dimensions were calculated using Theorem 4.1 of [1].

3. Generalized RIFS and Invariant Measures

In this section, we consider the generalization of the RIFS introduced in Section 2. It is similar in
form to that which first appeared in Ref. [1], Section 3.4, however, we are interested not only in the
geometry but also the measures which are supported on each space. To begin, we let (Kl,dl),...,(KN,dN)
denote compact metric spaces (they need not be copies of each other), and P=[p,;] be an NXN row sto-
chastic irreducible matrix for a Markov chain with state space {1,..,N}. The fact that we consider the
transition probability matrix instead of the index sets I(s)={y [ps>0}, t=1,..,N, represents a deviation
from [1]. For each pair of indices (1,5), we let w;;:K ;~+K; be a contractive map:

di(w;j(z),w;(y)) < sijdi(z,y), v TYEK; , 0<s;<1. (3.1)

We also define
- <l 3.2
8 15sn‘1,?§N(8")<1 (32)

(In fact, we don’t need w;; in the case that p;=0.) In Ref. [1] it was shown that there exist unique com-
pact sets A,, ¢=1,... N, with A;CK;, such that

; = i(A4;),  i=1,..N. 3.3
A= U wia), s (33)

The set A=(A,,...,Ay), called the attractor of the RIFS {(K',-,d,-).,(p'-j),(w,-j),lsi,j_<_N}, is the fixed point of
an operator W (cf. [1], Section 3.4) that reflects the dynamics of the w;;. We shall show below that by
choosing a suitable combination of measures over the spaces K, the action of the maps w;; between these
different spaces defines an invariant measure which is supported over the attractor A. This will represent

& generalization of the case K;=K, V¢ and Wi;=w;, V 5 presented in Section 3.4 of [1].
— N
The Markov process (or "chaos game") can be thought of as "living” in the space K= 'Ux({i IXK;).
$ nm
Starting with the element Zo=(ig,z0)EX, 1<i<N, 2o€K; , choose ¢; with the distribution given by the ¢gth
row of P. Then define = ,-l;o(:ro) to give 2)=(1,,z,), etc.. Note that z',,=(i,,,x,,) implies 2:,,61{,-.. {z,} is

a Markov process on K& » Where the transition probability function is given by
- N
p((e,:t),B) = Zp.jlé'(fych(x))r (34)
jual

which represents the probability to transfer from (s,z) to a Borel set BCK in one step of the process.

Now let {m,, ... »my} be the stationary initial distribution of the Markov chain associated with
the p,;, as given by the solutions of Eq. (2.5). For an arbitrary metric space (K,d), define M(K) as the set
of Borel regular measures on X , and

M, = {I‘EM(K:‘”#(K-’)="1:'} (3.5)
and M=M;}XMyX - - x M ~- We define the distance between two measures 7,0€M as
N - N i
dH(/‘-l)D) = Ed}?)(ﬂi,”.‘), (36)

il
where df) denotes the Hutchinson metric [4] between measures in M i- It is straightforward to show that
(M ,JH) i8 a complete metric space.



We now define an appropriate "Markov;' operator T:M —M gs
Ww)=Tv,... yUN) = (;VJNlpjlujowJ’, . ,?lep_,wv,-owﬁ}). (3.7)
Note that T is well defined:
(TV)(K) = ﬁpﬂuj(wgl(f{,,)) = f_:lpﬁmj =m;, k=I1,.,N. (3.8)
- o

Its construction and the proof of its contractivity are quite analogous to the original treatment by
Hutchinson [4].

Proposition: T:M —sM is a contraction map in the metric JH with constant s.

Proof:
. N .
dH(TiI;TV) = Ed#)[(Tﬁ). ’(W)t] (39)
im1
> Tp d(Tv
= d g - v s 1 3.10
§,égfxi)[£f(#) L )] (3.10)
where Lip(X) denotes the set of Lipshitz-1 functions on X. Using the fact that
N
f fd(Tl_i).' = Ep,.f f°wijdl‘j, (3-11)
K" j-l Kj‘
we have |
- N N
dH(T/T,TU) = E 8Uf7 Ep.ﬁ f fO w"jdﬂj — f fO w”dl’] (3.12)
i= TSP 5oy T K,
N N
SEZ})” 8u ffowudp_,— fjowuduj (3.13)
imljm  SEPIK) K K;
N N
= . cidpt; — A 3.14
ggp"/é};f’m)[,{jf°‘”: B }.{jf“”J UJJ (3.14)
It f=s7Y(fow,;), with J€Lip(K;), then it follows from Eq. (3.1), that JeLip(K,). Now define
F(K;) = {TGLip(Kj) l7=s"l(fow,-j), where f€Lip(K;), for some i € {1,..,N}}. (3.15)
It then follows that F{K ;)JCLip(K;). The right side of Eq. (3.14) becomes
N N - - N -
23 ps _sup | [ fdu; ~ [Tdv,| < D3 6dfuw ;) = sdy(@,?), (3.16)
F=liml  JEF(K)) K; K; j=i1

where we have used the fact that Dpi=1.
i

Now let & denote the fixed point of the Markov operator T in M. We call & the invariant measure
of the RIFS defined at the beginning of this section. The property Tu=p thus implies

' N
Bi = Ypapow;, i=1.. N (3.17)
Jml

Proposition: Let B=(B,, ...,By), where Bi=supp(p;)CK;, i=1,..,N. Then
(1) Bi= U wyB,), i=1,..N, and
j:Pﬁ>0

(2) B=A, the attractor of the RIFS defined in Eq. (3.3).



Proof: (1):in two steps. First, we prove the following inclusion by contradiction:
B; C U wyB,).
H j:p’->0 CJ( J)

1

Let z€B; so that for any neigbourhood Wz), #;(V(2))>0, and let us suppose that for all 5 such that
P >0, z&w;i(B;). Since B; is closed, therefore compact, w;;(B;,) is closed in K;. It then follows that for
each j there exists a neighbourhood of z, Uyz), such that Ui(z)Nw;;(B,)= and p Awi (Ugz))=0. 1t
V(a:)=j?n>oU,-(:r) » then V() is a neighbourhood of z such that V(z)CU,(z),V ;. Thus, we have

TR

m(V(z)) = z"':lp,-.-u,(w.-;*(vzz» o,

which contradicts the original hypothesis.
We now prove the other inclusion:

ABCB. .
J’:pL,~J,->Ow”( ’)C :
Let j5 be such that p;i>0. If :rEw,-jo(Bjo), and U(z) is any neighbourhood of z, then for ajoeu'.;l(z),
0

w,-}ol(U(z)) is a neighbourhood of q i From the definition of the support of a measure, it follows that
p,b(w,-};(U(x)))>0. Then

MU = Span s (V) 2 pgiyfuid @) > 0.
Therefore, z € supp(u;)=B;.

(2): Since A is the unique set satisfying the relations in Eq. (3.3), ie. W(A)=4, it is enough to show that
W (B)=B. But this is the result of (1), so the proof is complete. '

From these results, a collage theorem for invariant measures on recurrent IFS now follows, in com-
Plete analogy to that for normal IFS|6]:
RIFS Collage Theorem: Let V€M be a measure over the metric spaces (K;.d;), t=1..N as defined
earlier, and suppose that there exists a RIFS {(K;,d;),P,w, t=1,...,N} with contractivity factor 8, so that

du(7,T(P)) < e. | (3.18)
Then
WD) < (3.19)

- where & is the invariant measure of the RIFS.

4. Moments of Invariant Measures of RIFS
We now consider the special case where the compact metric spaces (K;,d;) are subsets K;CR",

with usual Euclidean metric. For a given RIFS with attractor A and invariant measure 4, we define the
power moments of % by the integrals

Just as for the usual IFS, when the maps w;; are linear, then the invariance property for integrals, Eq.

(8.17) permits a recursive computation of the moments. We illustrate this property for the one dimen-
sional case, i.e. i;CR. The maps w;; will assume the following general form

w,.j(;z:) = 8;;T + a, "9:';" <1, i=1,. N. (4'2)



(Note that the maps w;;, j=1,...N are not necessarily identical, as in the usual IFS case.) We first define
the power moments over A as

N N
j o = [2"df = b)) f"'"d/‘:' = a1, (4.3)
A j-l A, j-l
Using the Markov operator of Eq. (3.7), we have
. N
= [2"dus = Ypa [ (siz+ai)rdu,. (4.4)
Ay J=1 Aj

Expanding the polynomials, and integrating, we obtain the relations

» N i 1
o= 3ps3 [Z J’f'?ﬂ{‘;“gé” (4.5)
J=1 kw0

N . 7 ~1 N .
2(pﬁ8.-';—5,~1-)yn('7) =- 2 [Z] [2 ss'ai}_kpﬁgk(j)], t=1,.,N, n>l. (46)
Ju=1 k=0 J=1

When n=0, Eq. (4.5) yields precisely the linear equations of (2.5). We thus set g(‘)=m;, so that gy=1.
This is in agreement with the definition of the measure space M constructed from the measures in Eq.
(3.5). With this normalization, the higher moments g9 t=1,2,..,N are calculated for n=12_. recur-

sively. The special case

w,‘j(l‘)=w,-(t) = &Ix+a;, J.=17"-7N; (47)

corresponds to the simple RIFS of Section 2.

It follows that derivatives of moments with respect to the RIFS parameters could also be expressed
in closed form as solutions of simultaneous linear equations. This method could be extended, in principle,
to RIFS on R2 The relations would be rather complicated as are their counterparts for the usual IFS in
two dimensions [9].

4.1 Some Simple Moment Calculations

From Egs. (4.8) and (4.7), the first five moments over the attractor [0,1] for the simple RIFS of
Example 1 in Section 1 have been computed. The results are ‘

1 19 5 2449 425

1): T e T —— e s T me————— = 4.8

W o=g a= 5 9= 35 0 10530 %~ 2106 (8)
2): g=1, g=t gmd o=, =125
LT 2 T gy By 9 G 9 g0

In fact, let us extend our analysis of this simple two-map RIFS. Suppose that the transition probability
matrix P for this system is given by the general form

P(e) = {Z.' T ;’ZIEJ- (49)

The two cases given in Eq. (4.8) correspond to (1) e=1/10 and (2) e=—1,10, respectively. Note that we
have chosen to expand P about the "unperturbed” matrix

PO = [Z :J (4.10)

In this case, for €=0, the RIFS reduces to the IFS {w),w,,p,=p,=%} with A=[0,1] and p= uniform Lebes-
gue measure. Hence, the moments are



gn = n=0,12,.. (4.11)
¢

n4l’

Two other special cases are easy to determine:
1. e=%, P=I (not irreducible). Invariant measure K= %by+ %5, (§, denotes unit mass of measure
at z). Hence g, = %, n>0.

2. €= —% (two-cycle at (1/3,2/3)). u = %6,5 + %&,4, with moments

S

Using the algebraic computation language Maple [10], the first five moments for P(e) in Eq. (4.9)
have been computed:
_ 1 12 11 _ L (e=8)(e=3) 1 5et8
Ny T I ST T T 3 (e—4)(e=1)" %= T2 (e—d)(e—1)"

(4.12)

the invariant measure for the RIFS, This provides a Collage Theorem for Measures on RIFS. As well,
the moments for RIFS on R" can be computed recursively. These results may prove useful in extending
techniques for the inverse problem of fractal/measure construction using IFS to the RIFS. For a discus-
sion of some inverse methods for IFS, the reader js referred to [7].
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Figure 2: Attractors for RIFS of Example 2 plotted in [0,1]%(0,1].



