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Abstra
tLet A be a dilation matrix, an n� n expansive matrix that maps a full-ranklatti
e � � Rn into itself. Let � be a �nite subset of �, and for k 2 � let 
k ber � r 
omplex matri
es. The re�nement equation 
orresponding to A, �, �, and
 = f
kgk2� is f(x) =Pk2� 
k f(Ax�k). A solution f : Rn ! Cr, if one exists, is
alled a re�nable ve
tor fun
tion or a ve
tor s
aling fun
tion of multipli
ity r. Inthis manus
ript we 
hara
terize the existen
e of 
ompa
tly supported Lp or 
on-tinuous solutions of the re�nement equation, in terms of the p-norm joint spe
tralradius of a �nite set of �nite matri
es determined by the 
oeÆ
ients 
k. We obtainsuÆ
ient 
onditions for the Lp 
onvergen
e (1 � p �1) of the Cas
ade Algorithmf (i+1)(x) = Pk2� 
k f (i)(Ax � k), and ne
essary 
onditions for the uniform 
on-vergen
e of the Cas
ade Algorithm to a 
ontinuous solution. We also 
hara
terizethose 
ompa
tly supported ve
tor s
aling fun
tions whi
h give rise to a multires-olution analysis for L2(Rn) of multipli
ity r, and provide 
onditions under whi
hthere exist 
orresponding multiwavelets whose dilations and translations form anorthonormal basis for L2(Rn).
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CHAPTER 1Introdu
tion1.1. Des
ription of ResultsLet � � Rn be a full-rank latti
e (the image of Zd under an invertible matrix).Let A be a dilation matrix, i.e., A is an expansive n�n matrix whi
h maps � intoitself. Let � be a �nite subset of �. Then given r � r matri
es 
k for k 2 �, there�nement equation asso
iated to A, �, �, and 
 = f
kgk2� isf(x) = Xk2� 
k f(Ax� k); x 2 Rn; (1.1)where a solution f , if one exists, is a ve
tor-valued fun
tion f : Rn ! Cr, i.e.,f(x) = 264 f1(x)...fr(x) 375 :We 
all a 
ompa
tly supported solution of the re�nement equation a re�nable (ve
-tor) fun
tion or a (ve
tor) s
aling fun
tion, and r is its multipli
ity.In this manus
ript we will 
hara
terize the existen
e of 
ompa
tly supportedLp or 
ontinuous solutions of the re�nement equation. The Cas
ade Algorithm isthe iteration f (i+1)(x) = Xk2� 
k f (i)(Ax� k): (1.2)We obtain suÆ
ient 
onditions for the Lp 
onvergen
e (1 � p � 1) of the Cas
adeAlgorithm, and ne
essary 
onditions for the uniform 
onvergen
e of the Cas
adeAlgorithm to a 
ontinuous solution. We also 
hara
terize when a solution of are�nement equation is a generator of a multiresolution analysis (see De�nition 4.1)for L2(Rn). Su
h a generator enables the 
onstru
tion of multiwavelet orthonormalbases for L2(Rn).The higher-dimensional setting of this manus
ript, allowing an arbitrary dila-tion matrix, 
reates signi�
ant geometri
al obsta
les to the analysis of the re�ne-ment equation. In Chapter 2 we prove a number of te
hni
al lemmas and developa set of geometri
al tools whi
h are needed to prove the main results of Chapters 3and 4. In parti
ular, we prove that the support of the s
aling fun
tion is a 
om-pa
t set that is 
ontained in the attra
tor of an iterated fun
tion system (IFS)determined by the set � (Theorem 2.2).Given a 
hoi
e of dilation matrix A and a 
hoi
e of digits D (a set of representa-tives of �=A�), there exists a unique 
ompa
t set Q that is the attra
tor of anotherIFS determined by A and D. Ex
ept for 
ertain dilation matri
es in dimensions 4and higher, there exists a 
hoi
e of digits for whi
h this attra
tor Q tiles Rn withoverlaps of measure zero using translations by � (see Theorem 2.3). We assume1



2 1. INTRODUCTIONthis is the 
ase for the dilation matri
es 
onsidered in this manus
ript. Althoughthe tile Q typi
ally has a fra
tal boundary, we prove in Proposition 2.10 that thereexists a subset ~Q of Q that tiles Rn using translations by � without overlaps.We transform the re�nement equation to an equivalent ve
tor equation overthe tile in Proposition 2.13 and Corollary 2.15. This will allow us in Chapter 3 toanalyze the 
onvergen
e of the Cas
ade Algorithm in terms of the spe
tral proper-ties of a �nite set of matri
es. To this end, in Proposition 2.17 we derive lower andupper bounds for the p-norm joint spe
tral radius of a set of matri
es in terms ofan appropriate matrix norm.In Theorem 3.1 we prove the existen
e of a �xed point of a general 
lass offun
tional equations. The solutions of these equations are 
alled generalized self-similar fun
tions. The re�nement equation is a parti
ular member of this 
lass.In Theorem 3.4 we give suÆ
ient time-domain 
onditions for the existen
eof a unique 
ontinuous or Lp ve
tor s
aling fun
tion in terms of the p-norm jointspe
tral radius (1 � p � 1) of a �nite set of �nite matri
es Td restri
ted to a spe
i�
subspa
e E0, all determined by the 
oeÆ
ients 
k. Furthermore, we show that ifthese 
onditions are satis�ed, then the Cas
ade Algorithm 
onverges geometri
allyin Lp to this unique solution.A ve
tor fun
tion g : Rn ! Cr has a

ura
y � if every polynomial q on Rnwith 
omplex 
oeÆ
ients and deg(q) < � 
an be writtenq(x) = Xk2� ak g(x+ k) a:e:for some 1 � r row ve
tors ak. We prove in Theorem 3.17 that if a s
aling fun
-tion f has a

ura
y � then the matri
es Td 
an be simultaneously brought into aparti
ular blo
k triangular form. The subspa
e E0 mentioned before is one of theinvariant subspa
es 
orresponding to this simultaneous triangularization. This is akey ingredient for obtaining ne
essary 
onditions for the existen
e of a 
ontinuoussolution to the re�nement equation.In Theorem 3.22 we prove that if a 
ontinuous solution to the re�nement equa-tion exists whi
h has L1-stable translates (see De�nition 3.18), then the Cas
adeAlgorithm 
onverges uniformly for the starting fun
tion � ~Q, where ~Q is the subsetof Q that tiles Rn without overlaps. In Theorem 3.26 we prove that if the Cas
adeAlgorithm 
onverges pointwise everywhere for the starting fun
tion � ~Q to a 
on-tinuous solution of the re�nement equation, then the 1-norm joint spe
tral radiusof the matri
es Td restri
ted to E0 is stri
tly less than 1. We bound the H�olderexponent of 
ontinuity of a 
ontinuous s
aling fun
tion in Proposition 3.27.In Theorem 4.4 we 
hara
terize all 
ompa
tly supported ve
tor-valued fun
-tions with orthonormal latti
e translates whi
h generate a multiresolution analysis(De�nition 4.1) of L2(Rn). In parti
ular, any su
h fun
tion is a solution of a re-�nement equation. On
e a multiresolution analysis is given, Theorem 4.11 provides
onditions under whi
h there exist 
orresponding multiwavelets whose dilates andtranslates form an orthonormal basis for L2(Rn).Finally, in Chapter 5, we apply the results of this manus
ript by numeri
ally
onstru
ting new examples of 
ontinuous, 
ompa
tly supported ve
tor s
aling fun
-tions with orthonormal latti
e translates and a

ura
y � = 2 that are re�nable withrespe
t to the quin
unx dilation A = � 1 11 �1 �. We also 
onstru
t the 
orrespondingmultiwavelets.



1.2. A HISTORICAL OVERVIEW 31.2. A Histori
al OverviewThe history of the study of re�nement equations is 
omplex, involving re-sear
hers from numerous �elds and dis
iplines. We brie
y outline some of thehighlights of that history here, emphasizing those results most dire
tly related tothis manus
ript. We will not attempt to give an exhaustive summary of all liter-ature related to re�nement equations. Additional related papers 
an be found inthe referen
es of the arti
les that we 
ite.Mi

helli and Prautzs
h [MP89℄ and Daube
hies and Lagarias [DL92℄ ea
hindependently introdu
ed a time-domain method for testing the smoothness of re-�nable fun
tions in the one-dimensional, single fun
tion 
ase (n = 1, r = 1). The
onditions developed in [MP89℄, [DL92℄ were based on the 
omputation of all pos-sible produ
ts of a set of �nite matri
es dire
tly determined by the 
oeÆ
ients 
k.In parti
ular, Daube
hies and Lagarias [DL92℄ redis
overed the uniform joint spe
-tral radius (JSR) of Rota and Strang [RS60℄, and used it as a fundamental toolfor formulating these 
onditions. Many papers, utilizing a variety of te
hniques,have sin
e studied additional properties of the s
aling fun
tion, su
h as Sobolev orBesov spa
e membership, e.g., [Eir92℄, [Vil94a℄. Of parti
ular relevan
e to thismanus
ript are the papers of Y. Wang [Wan96℄, who introdu
ed a 1-norm gener-alization of the JSR in order to formulate a test for the existen
e of L1-solutionsto the re�nement equation, and Jia [Jia95℄, who independently introdu
ed a p-norm generalization of the JSR to test for Lp-solutions. The p-JSR was also usedimpli
itly by Lau and J. Wang in [LauW95℄.The above-mentioned papers are all 
on
erned with one-dimensional, single-fun
tion re�nement equations. Cohen and Daube
hies [CD93℄ generalized some ofthe one-dimensional tests of [DL92℄ to the 
ase of two-dimensional, single fun
tionre�nement equations using a quin
unx dilation matrix. Some results giving testsfor the existen
e of 
ontinuous solutions or the Sobolev and H�older regularity ofthe solution in the multidimensional, single-fun
tion 
ase (n > 1, r = 1) appear in[Vil94b℄, [CGV99℄, [Jia99℄.The a

ura
y 
onditions for one-dimensional, multi-fun
tion re�nement equa-tions are 
onsiderably more involved than in the single-fun
tion 
ase. These 
on-ditions were derived independently by Heil, Strang, and Strela [HSS96℄ and byPlonka [Plo97℄. Plonka further dis
overed that these a

ura
y 
onditions imply afa
torization of the matrix-valued symbol of the re�nement equation (the Fouriertransform of the sequen
e of matrix 
oeÆ
ients f
kg). This fa
torization is notas 
onvenient as in the single-fun
tion 
ase, but it has been been useful for the
onstru
tion and analysis of multiwavelets in one dimension [MS97℄, [CDP97℄.The a

ura
y 
onditions for the multidimensional, multi-fun
tion 
ase were derivedin [CHM98℄, [CHM00℄, with some similar results for the 
ase of diagonalizabledilation matri
es in [Jng99℄. The order of approximation of f is 
losely relatedto its a

ura
y, but 
an be distin
t in higher dimensions. We refer to [BDR94a℄,[BDR94b℄ and related works for dis
ussions of order of approximation.There have been a few spe
i�
 
onstru
tions of non-tensor produ
t orthonor-mal wavelet bases in higher dimensions. Gr�o
henig and Mady
h [GM92℄ studiedthe parti
ular 
ase of higher-dimensional, single-fun
tion dilation equations whosesolution is the 
hara
teristi
 fun
tion of a tile. These spe
ial re�nement equationsyield dis
ontinuous wavelets that are higher-dimensional analogues of the Haar



4 1. INTRODUCTIONbasis for L2(R). Kova�
evi�
 and Vetterli [KoV92℄ 
onstru
ted a single spe
i�
 ex-ample of 
ontinuous s
aling fun
tion on R2 that is re�nable with respe
t to thequin
unx dilation matrix A = � 1 11 �1 � and whose Z2-translates are orthonormal(see [Vil94b℄ for the proof that this s
aling fun
tion is 
ontinuous, whi
h we alsoverify in Se
tion 5.2). This was for many years the only known example of a 
on-tinuous, nonseparable, two-dimensional, 
ompa
tly supported orthonormal s
alingfun
tion. More re
ent 
onstru
tions by Kova�
evi�
 and Vetterli are in [KoV95℄. Re-
ently, He and Lai 
onstru
ted some examples and then families of two-dimensional,nonseparable, 
ontinuous, 
ompa
tly supported s
aling fun
tions with orthonormaltranslates that are re�nable with respe
t to the uniform dilation A = 2I [HL97℄.By 
hoosing a spe
i�
 geometry for the support � of the 
oeÆ
ients 
k, Belogay andWang [BW99℄ were able to impose a limited fa
torization of the symbol and usethat to 
onstru
t a spe
i�
 family of two-dimensional, 
ompa
tly supported s
alingfun
tions with orthonormal translates and in
reasing regularity that are re�nablewith respe
t to the dilation A = [ 0 21 0 ℄. One-dimensional orthonormal multiwaveletswere 
onstru
ted in [Alp93℄, [GLT93℄, [GL94℄, [GHM94℄, [DGHM96℄. Dono-van, Geronimo, and Hardin 
onstru
ted two-dimensional multiwavelets that arere�nable with respe
t to the uniform dilation A = 3I [DGH95℄. Aya
he hassome 
onstru
tions using the uniform dilation A = 2I [Aya99a℄, [Aya99a℄. Wealso remark on some related 
onstru
tions with somewhat di�erent properties. Ex-amples of orthonormal, multidimensional wavelets whose Fourier transforms are
ompa
tly supported are presented in [DLS97℄, [Cal99℄, [BL01℄. Compa
tlysupported, multidimensional, biorthogonal wavelets are 
onstru
ted in [DM97℄,[Der99℄, [HL99℄, [JRS99℄, [KaV99℄, [KS00℄. Compa
tly supported, multidi-mensional wavelet frames are presented in [Han97℄, [GR98℄. The literature onthese topi
s is of 
ourse always expanding; the referen
es given above are typi
albut not exhaustive.



CHAPTER 2Matri
es, Tiles and the Joint Spe
tral Radius2.1. Mis
ellaneous NotationWe use the 
onventions 1=1 = 0, 1=0 =1, and 00 = 1.The absolute value of a real or 
omplex number z is denoted by jzj. The
omplex 
onjugate of z is �z.The transpose of a matrix B is BT. The Hermitian, or 
onjugate transpose,is B�.The 
ardinality of a �nite set F is denoted by #F .The interior of a set E � Rn is EÆ, the boundary of E is �E, and the 
losureof E is E. If E is measurable, its Lebesgue measure is denoted by jEj. The
hara
teristi
 fun
tion of E is denoted �E . The Krone
ker delta is denoted Æi;j .The open ball in Rn of radius " > 0 
entered at x 2 Rn isB(x; ") = fy 2 Rn : kx� yk < "g;measured with respe
t to whatever norm on Rn is 
urrently in for
e. Most 
om-putations in this manus
ript are independent of the 
hoi
e of norm on Rn; if notspe
i�
ally stated then the norm is taken to be the Eu
lidean norm on Rn.The support of a ve
tor-valued fun
tion g = (g1; : : : ; gr)T : Rn ! Cr is the
losure of fx 2 Rn : g(x) 6= 0g. Integrals of g are 
omputed 
omponentwise. Inparti
ular, if g is integrable then we de�ne its Fourier transform byĝ(!) = ZRn g(x) e�2�ix�! dx= �ZRn g1(x) e�2�ix�! dx; : : : ; ZRn gr(x) e�2�ix�! dx�T:The spa
e Lp(Rn) 
onsists of all 
omplex-valued fun
tions f on Rn for whi
hthe norm kfkp = �ZRn jf(x)jp dx�1=p; if 1 � p <1;or kfk1 = ess supx2Rn jf(x)j; if p =1;is �nite. We use the standard inner produ
t on L2(Rn):hg; hi = ZRn g(x)h(x) dx; g; h 2 L2(Rn):Let X be a 
losed subset of Rn, and let k � k be any �xed norm on Cr. Thenwe de�ne Lp(X;Cr) to be the Bana
h spa
e of all mappings g : X ! Cr su
h thatkgkpLp = ZX kg(x)kp dx < 1;5



6 2. MATRICES, TILES AND THE JOINT SPECTRAL RADIUSwith the usual modi�
ation if p =1. For simpli
ity, we de�ne Lp(X) = Lp(X;C).This de�nition of Lp(X;Cr) is independent of the 
hoi
e of norm k � k on Cr inthe sense that ea
h su
h 
hoi
e yields an equivalent norm for Lp(X;Cr). If E isa nonempty 
losed subset of Cr, then Lp(X;E) is the 
losed subset of Lp(X;Cr)
onsisting of fun
tions whi
h take values in E.We will assume throughout this manus
ript that A is a �xed dilation matrixwith asso
iated full-rank latti
e � � Rn. That is, A(�) � � and every eigenvalue �of A satis�es j�j > 1. We will 
onsider re�nement equations of multipli
ity r givenas in (1.1), i.e., f(x) = Xk2� 
k f(Ax� k); x 2 Rn;where � is a �xed �nite subset of � and the 
k are �xed r� r matri
es. A solutionof the re�nement equation is 
alled a ve
tor s
aling fun
tion or a re�nable ve
torfun
tion.The re�nement operator asso
iated with this re�nement equation is the map-ping S, a
ting on ve
tor fun
tions g : Rn ! Cr, de�ned bySg(x) = Xk2� 
k g(Ax� k); x 2 Rn: (2.1)A s
aling fun
tion is thus a �xed point of S. The 
as
ade algorithm de�ned in (1.2)is the iteration f (i+1) = Sf (i):We will use a generalized matrix notation whi
h allows matri
es or ve
torsto be indexed by arbitrary 
ountable sets. If desired, su
h generalized matri
es
an always be realized as ordinary matri
es by 
hoosing a spe
i�
 ordering forthe index set. The a
tual ordering used is not important, as long as the sameordering is used 
onsistently. To be pre
ise, let J and K be �nite or 
ountableindex sets. Let mj;k be r � s matri
es for j 2 J and k 2 K. Then we say thatM = [mj;k℄j2J;k2K 2 (Cr�s)J�K is a J �K matrix (with r � s blo
k entries). IfN = [nk;`℄k2K;`2L 2 (Cs�t)K�L, then the produ
t of the J �K matrix M withthe K � L matrix N is the J � L matrix formally de�ned byMN = "Xk2Kmj;k nk;`#j2J;`2L :Most summations en
ountered in this manus
ript will 
ontain only �nitely manynonzero terms. A \
olumn ve
tor" is a J � 1 matrix, whi
h we will denote byv = [vj ℄j2J . The entries vj may be s
alars or r � s blo
ks. In parti
ular,Cr = Cr�1 = 8><>:264u1...ur375 : u1; : : : ; ur 2 C9>=>;is the spa
e of 
olumn ve
tors of length r. Analogously, a \row ve
tor" is a 1� Jmatrix, whi
h we will denote by u = (uj)j2J . In parti
ular, C1�r is the spa
e ofall row ve
tors of length r, i.e.,C1�r = fuT : u 2 Crg = f(u1; : : : ; ur) : u1; : : : ; ur 2 Cg:



2.2. ATTRACTORS AND TILES 72.2. Attra
tors and TilesSin
e A(�) � �, the dilation matrix A ne
essarily has integer determinant. Wede�ne m = j det(A)j;and let D = fd1; : : : ; dmgbe a full set of digits with respe
t to A and �, i.e., a 
omplete set of representativesof the order-m group �=A(�). Be
ause D is a full set of digits, the latti
e � ispartitioned into the disjoint 
osets�d = A(�)� d = fAk � d : k 2 �g; d 2 D: (2.2)Let 
1; : : : ; 
n be a set of generators for the latti
e �, i.e., independent ve
torssu
h that � = fm1
1 + � � �+mn
n : mi 2 Zg:Then the re
tangular parallelepipedP = fx1
1 + � � �+ xn
n : 0 � xi < 1g (2.3)is a fundamental domain for the group Rn=�, and Rn is partitioned into the setsfP + kgk2�. For example, if � = Zn, then we 
an 
hoose 
1; : : : ; 
n so that P =[0; 1)n.2.2.1. Attra
tors. The spa
e H(Rn) 
onsisting of all nonempty, 
ompa
tsubsets of Rn is a 
omplete metri
 spa
e under the Hausdor� metri
 h(�; �) de�nedby h(B;C) = inff" > 0 : B � C" and C � B"g;where B" = fx 2 Rn : dist(x;B) < "g: (2.4)Thus h(B;C) < " () B � C" and C � B":Sin
e all norms on Rn are equivalent, the de�nition of the Hausdor� metri
 isindependent of the 
hoi
e of norm used to measure distan
e in (2.4).For ea
h k 2 �, let wk : Rn ! Rn be the aÆne mapwk(x) = A�1(x+ k): (2.5)Sin
e A�1 is 
ontra
tive, ea
h wk is a 
ontra
tive mapping on Rn. For ea
h �nitesubset H � �, de�ne wH : H(Rn)! H(Rn) bywH (B) = Sk2H wk(B) = A�1(B +H): (2.6)Using the fa
t that ea
h wk is 
ontra
tive on Rn under the Eu
lidean norm, it 
anbe shown that wH is 
ontra
tive on H(Rn) under the Hausdor� metri
 [Hut81℄.The Contra
tion Mapping Theorem therefore implies that there exists a uniquenonempty 
ompa
t set KH � Rn su
h thatwH(KH) = KH :That is, KH is de�ned by the propertyKH = A�1(KH +H): (2.7)



8 2. MATRICES, TILES AND THE JOINT SPECTRAL RADIUSThe set KH is 
alled the attra
tor of the iterated fun
tion system (IFS) gener-ated by fwkgk2H [Hut81℄. In parti
ular, the attra
tors K� and Q = KD of theIFS's generated by fwkgk2� and fwkgk2D, respe
tively, will play important rolesthroughout this manus
ript. Be
ause wH is a 
ontra
tion on H(Rn), the iterationK(i+1) = wH(K(i)) 
onverges in the Hausdor� metri
 to the attra
tor KH for anynonempty 
ompa
t starting set K(0). Therefore, any attra
tor KH 
an always beapproximated as 
losely as desired.We 
an use (2.7) to obtain another expression for KH . Iterating (2.7) k times,we see that KH = kXj=1A�j(H) +A�k(KH):Then, using the fa
t that A�1 is a 
ontra
tion, it follows thatKH = 1Xj=1A�j(H) = � 1Xj=1A�jhj : hj 2 H�: (2.8)The following properties of an attra
tor KH will be useful. Parts (a), (b), and(
) of the following lemma are also valid for more general iterated fun
tion systems[Ban91℄, while parts (d), (e), and (f) make use of the fa
t that the fun
tions wkde�ned in (2.5) are aÆne mappings.Lemma 2.1. Let B 2 H(Rn), and let H, H1, H2 be �nite subsets of �.(a) If B � wH (B), then B � KH .(b) If wH (B) � B, then KH � B.(
) If H1 � H2, then KH1 � KH2 .(d) wH (KÆH) � KÆH .(e) j�KH j = 0.(f) If 
 2 �, then KH+
 = KH + (A� I)�1
.Next, we prove that a s
aling fun
tion must be supported in K�.Proposition 2.2.(a) If g : Rn ! Cr is 
ompa
tly supported, then supp(Sg) � w�(supp(g)).(b) If f : Rn ! Cr is a 
ompa
tly supported solution of the re�nement equa-tion, then supp(f) � K�.Proof. (a) It follows from (2.1) thatsupp(Sg) � A�1(supp(g) + �) = w�(supp(g)):(b) If Sf = f then part (a) implies supp(f) � w�(supp(f)), so supp(f) � K�by Lemma 2.1(a). �



2.2. ATTRACTORS AND TILES 92.2.2. The Tile Q. Sin
e D = fd1; : : : ; dmg is a full set of digits with respe
ttoA and �, if we take any 
 2 � thenD+
 will also be a full set of digits with respe
tto A and �. Further, by Lemma 2.1(f), we have KD+
 = KD + (A� I)�1
. Hen
ewe 
an always translate the digit set D as we like, at the 
ost of 
orrespondinglytranslating the setQ = KD, whi
h is the attra
tor of the IFS generated by fwdgd2D.Without loss of generality, we therefore will always assume that 0 2 D. Equation(2.8) then implies that 0 2 Q.The following properties of Q will be useful [Ban91℄, 
f. also [GM92℄.Lemma 2.3. Let Q = KD, and let P be the fundamental domain de�ned in(2.3). Then the following statements hold.(a) Q+ � = Rn.(b) Q has nonempty interior, Q is the 
losure of QÆ, and j�Qj = 0.(
) jQ\ (Q+ k)j = 0 for all k 2 � n f0g if and only if jQj = jP j. In this 
ase,Q \ (Q+ k) � �Q for ea
h k 2 � n f0g.(d) #(QÆ \ �) � 1.In other words, part (
) above says that if jQj = jP j, then Q is a tile inthe sense that the �-translates fQ + kgk2� 
over Rn with overlaps of measurezero. A longstanding open problem was the question of whether for ea
h dilationmatrix A there exists a full set of digits D su
h that the 
orresponding attra
torQ is a tile. Lagarias and Wang proved that this is the 
ase if n = 1; 2; 3 or ifm = j det(A)j > n [LagW95a℄, [LagW96℄, [LagW97℄. Potiopa [Pot97℄ re
entlyshowed that if n = 4 and A = 2664 0 1 0 00 0 1 00 0 �1 2�1 0 �1 1 3775 ;then there is no set of digits D su
h that Q = KD is a tile, 
f. [LagW99℄. Notethat this matrix A has determinant 2.We will only deal in this manus
ript with the 
ase where a tile Q exists. Pre-
isely, the following standing assumption will always be in for
e.Standing Assumption 2.4. We will assume throughout this manus
ript thatwhenever a dilation matrix A and 
hoi
e of digits D are given, the 
orrespondingattra
tor Q = KD is a tile. That is, we always impli
itly assume that the �-translates of Q 
over Rn with overlaps of measure zero. }Equation (2.8) applied to the attra
tor Q = KD has the formQ = KD = 1Xj=1A�j(D) = � 1Xj=1A�j"j : "j 2 D�: (2.9)Thus, ea
h point x 2 Q 
an be written x = P1j=1 A�j"j for some "j 2 D. Wewrite x = :"1"2 � � � in this 
ase, and refer to this representation of x as an A-naryexpansion of x. Note that A-nary expansions need not be unique.



10 2. MATRICES, TILES AND THE JOINT SPECTRAL RADIUSExample 2.5. Let n = 1, � = Z, A = 2, and � = f0; : : : ; Ng (allowing thepossibility that 
k = 0 for some k 2 �). In this 
ase, the re�nement equation hasthe form f(x) =PNk=0 
k f(2x� k).We have m = j det(A)j = 2, and the sublatti
e A(�) is the set of even integers2Z. There are two 
osets, 2Z and 2Z+ 1. We 
hoose D = f0; 1g as our full set ofdigits. The aÆne maps wk de�ned by (2.5) are wk(x) = 12 (x + k) for k 2 Z. Theattra
tor Q = KD is de�ned by the requirement that (2.7) hold, whi
h translatesto the statement that Q = 12Q [ 12 (Q + 1). This is satis�ed for the 
ompa
t setQ = [0; 1℄. Sin
e f[0; 1℄ + kgk2Z 
overs R with overlaps of measure zero, thisattra
tor Q is indeed a tile. Moreover, equation (2.9) states that ea
h x 2 [0; 1℄ 
anbe written x = P1j=1 2�j"j with "j 2 D = f0; 1g, whi
h is the binary expansionof x. }
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Figure 2.1. Twin Dragon and Parallelogram Attra
tors.Example 2.6. The tile Q may have a fra
tal boundary. For example, ifA1 = � 1 �11 1 � and D = f(0; 0); (1; 0)g, then the tile Q is the 
elebrated \twindragon" fra
tal shown on the left in Figure 2.1. On the other hand, if we 
hooseA2 = � 1 11 �1 � and D = f(0; 0); (1; 0)g, then the tile Q is the parallelogram with ver-ti
es f(0; 0); (1; 0); (2; 1); (1; 1)g pi
tured on the right in Figure 2.1. For these twomatri
es A1 and A2, the sublatti
es A1(Z2) and A2(Z2) 
oin
ide. This sublatti
eis 
alled the quin
unx sublatti
e of Z2. As a 
onsequen
e, these two matri
es A1,A2 are often referred to as quin
unx dilation matri
es. }2.2.3. Covering by Translates of Q. We saw in Proposition 2.2 that if f is a
ompa
tly supported solution of the re�nement equation (1.1), then supp(f) � K�.Sin
e K� is 
ompa
t and Q is a tile, there exists a �nite set 
 � � su
h thatK� � Q+
;where Q+
 = S!2
(Q+ !) = fq + ! : q 2 Q; ! 2 
g:If the tile Q is fra
tal-like, it may be diÆ
ult to 
onstru
t su
h a set 
. The nextproposition gives one expli
it example of a �nite 
 with this property.



2.2. ATTRACTORS AND TILES 11Proposition 2.7. De�ne�0 = ��D = fk � d : k 2 �; d 2 Dg;and let K�0 be the attra
tor of the IFS generated by fwkgk2�0 . Then 
�0 = K�0 \�satis�es K� � Q+
�0 . Further, (Q+ k) \K� 6= ; for ea
h k 2 
�0 .Proof. Fix any x 2 K�. Sin
e Q is a tile, we 
an write x = q + k for someq 2 Q and k 2 �. By (2.8) applied to x 2 K� and q 2 Q = KD, we 
an writex =P1j=1 A�j�j and q =P1j=1 A�j"j with �j 2 � and "j 2 D. Therefore,k = x� q = 1Xj=1A�j(�j � "j) 2 K�0 \ � = 
�0 :Hen
e x = q + k 2 Q+
�0 .Finally, suppose that k 2 
�0 , say k = P1j=1 A�j(�j � "j). Then x =P1j=1 A�j�j 2 K� and q = P1j=1 A�j"j 2 Q, so k + q = x 2 (Q + k) \ K�,and therefore (Q+ k) \K� 6= ;. �Thus, translates of the tile Q by elements of 
�0 
over K�, and hen
e thesupport of f . Moreover, 
�0 is minimal in the sense that ea
h of the translatesQ + k for k 2 
�0 will interse
t K�, although it is possible that many of theseinterse
tions may have measure zero. It is often the 
ase that smaller sets 
 
an befound whi
h also have the property that K� � Q+
. In parti
ular, this is the 
asein the one-dimensional setting and also for the examples we present in Chapter 5.Example 2.8. Note that in the 1-D 
ase, if � = f0; : : : ; Ng then the attra
torK� of the IFS generated by fwkgk2� is the interval K� = [0; N ℄, and thereforethe s
aling fun
tion f must be supported in this interval. The set �0 de�ned inProposition 2.7 is �0 = � � D = f�1; : : : ; Ng. Then K�0 = [�1; N ℄ and 
�0 =f�1; : : : ; Ng = �0, so K� = [0; N ℄ � [�1; N +1℄ = [0; 1℄ + f�1; : : : ; Ng = Q+
�0 ,in a

ordan
e with Proposition 2.7. However, the smaller set 
 = f0; : : : ; N � 1galso has the property that K� � Q+
. Indeed, Q+
 = [0; 1℄ + f0; : : : ; N � 1g =[0; N ℄ = K� in this 
ase. }If 
 is a �nite subset of � su
h that K� � Q+
, and if y 2 K�, then y = x+kfor some x 2 Q and k 2 
. However, it might also be the 
ase that y = x0+k0 withx0 2 Q and k0 =2 
. The following lemma shows that this is impossible if y lies inthe interior KÆ� of K�.Lemma 2.9. Let 
 be a �nite subset of �. If x+ k 2 (Q+
)Æ with x 2 Q andk 2 �, then k 2 
. In parti
ular, if K� � Q+ 
 and x+ k 2 KÆ� with x 2 Q andk 2 �, then k 2 
.Proof. Let x 2 Q and k 2 �, and suppose that x+k 2 (Q+
)Æ. Then we 
an�nd an open ball B(x+k; ") entirely 
ontained in (Q+
)Æ. De�ne F = B(x; ") \ Q.By Lemma 2.3(b), the tile Q is the 
losure of its interior, so F must have positiveLebesgue measure, i.e., jF j > 0. If y = z+k 2 F+k, then j(x+k)�yj = jx�zj < ",so F + k � B(x+ k; ") � (Q+
)Æ � Q+
:



12 2. MATRICES, TILES AND THE JOINT SPECTRAL RADIUSHowever, F � Q, soF + k � (Q+ k) \ (Q+
) = Sj2
(Q+ k) \ (Q+ j):If k =2 
, then j(Q+ k) \ (Q+ j)j = 0 by Lemma 2.3(
), whi
h 
ontradi
ts the fa
tthat jF j > 0. Therefore we must have k 2 
. �By our Standing Assumption, the �-translates of Q 
over Rn with overlaps ofmeasure zero (in fa
t, by Lemma 2.3, the overlaps will o

ur only on the boundariesof the translates ofQ). We next prove thatQ 
an be modi�ed so that it tiles withoutoverlaps. This is analogous to removing one endpoint from the interval [0; 1℄ so thatinteger translates of the resulting interval [0; 1) 
over R without overlaps.Proposition 2.10. Assume that Q is a tile. Then there exists ~Q � Q, su
hthat the �-translates of ~Q 
over Rn without overlaps, i.e.,~Q+ � = Rn and ~Q \ ( ~Q+ k) = ; for k 2 � n f0g:Further, ~Q \ � 
ontains a single element.Proof. Divide the latti
e � into disjoint subsets �+, ��, and f0g in su
h a waythat �� = ��+ and both �+ and �� are 
losed under ve
tor addition. Spe
i�
ally,let �+ = nSi=1 fk 2 � : k = (k1; : : : ; ki; 0; : : : ; 0); ki > 0g (2.10)and let �� = ��+. De�ne ~Q = Q n Sk2�+(Q+ k):First we prove that the �-translates of ~Q are disjoint. Suppose that we hadx 2 ~Q\ ( ~Q+ k) for some k 2 �+. Then sin
e x 2 ~Q, we have x 2 Q but x =2 Q+ jfor any j 2 �+, whi
h 
ontradi
ts the fa
t that x 2 ~Q+ k. On the other hand, ifx 2 ~Q \ ( ~Q + k) for some k 2 �� then x � k 2 ~Q \ ( ~Q + (�k)) with (�k) 2 �+,whi
h redu
es to the previous 
ase. Sin
e �+ [ �� = � n f0g, we 
on
lude that�-translates of ~Q are indeed disjoint.Now we show that ~Q + � = Rn. Sin
e Q + � = Rn, it suÆ
es to show thatQ � ~Q+ �. So, suppose that x 2 Q but x =2 ~Q+ �. Then we 
annot have x 2 ~Q,so we must have x 2 Q n ~Q. Therefore, by de�nition of ~Q, there exists a j1 2 �+su
h that x� j1 2 Q. If x� j1 2 ~Q then we would have x 2 ~Q+ j1 � ~Q+�, whi
his a 
ontradi
tion. Hen
e x� j1 2 Q n ~Q. Sin
e we also 
learly have x� j1 =2 ~Q+�,we 
an repeat this argument to obtain a sequen
e of points ji 2 �+ su
h thatx�Pì=1 ji 2 Q n ~Q for ea
h `. However, it is easy to see from the de�nition of �+that 

Pì=1 ji

!1, so this 
ontradi
ts the fa
t that Q is 
ompa
t.Finally, sin
e the �-translates of ~Q do not overlap and 
over all of Rn, theremust be a unique element of � that lies in ~Q. �Remark 2.11. (a) Proposition 2.10 remains valid if the spe
i�
 sets �+ and ��de�ned by (2.10) are repla
ed by arbitrary subsets of � whi
h have the propertiesthat � = �+[��[f0g disjointly, �+ and �� are 
losed under ve
tor addition, and�� = ��+.



2.3. MATRIX FORM OF THE REFINEMENT OPERATOR 13(b) Sin
e we assume that 0 is one of the digits, the tile Q will 
ontain 0.However, while ~Q will 
ontain a unique element of �, that element need not be 0.For example, if n = 2, A = 2I , and D = f(0; 0); (1; 0); (0;�1); (1;�1)g, thenQ = [0; 1℄� [�1; 0℄ and ~Q = [0; 1)� [�1; 0). }2.3. Matrix Form of the Re�nement OperatorSuppose that f : R! C is a 
ompa
tly supported solution of the one-dimensional,single-fun
tion re�nement equationf(x) = NXk=0 
k f(2x� k); x 2 R: (2.11)Then f must be supported in the interval [0; N ℄. Further, the re�nement equation
an be re
ast into a matrix-ve
tor form as follows. De�ne a ve
tor-valued fun
tion�f : [0; 1℄! CN by�f(x) = [f(x+ k)℄N�1k=0 = 26664 f(x)f(x+ 1)...f(x+N � 1) 37775 ; x 2 [0; 1℄: (2.12)Sin
e supp(f) � [0; N ℄, the information in �f is \equivalent" to the informationin f . De�ne two matri
esT0 = [
2j�k℄N�1j;k=0 = 26664 
0 0 0 � � � 0 0
2 
1 
0 � � � 0 0... ... ... . . . ... ...0 0 0 � � � 
N 
N�1 37775 (2.13)and T1 = [
2j�k+1℄N�1j;k=0 = 26664 
1 
0 0 � � � 0 0
3 
2 
1 � � � 0 0... ... ... . . . ... ...0 0 0 � � � 0 
N 37775 : (2.14)Then the re�nement equation (2.11) is equivalent to the equation�f(x) = (T0�f(2x); 0 � x � 1=2;T1�f(2x� 1); 1=2 < x � 1: (2.15)Note that by using the 2x mod 1 map given by2x mod 1 = (2x; 0 � x � 1=2;2x� 1; 1=2 < x � 1: ;we 
an rewrite (2.15) as �f(x) = Td1�f(2x mod 1); (2.16)where x = :d1d2 : : : is the binary expansion of x (for x = 1=2, use 1=2 = :1000 : : : ).We next de�ne a fun
tion on Rn that is analogous to the 2x mod 1 map anduse it to obtain a matrix form of the general re�nement equation that is analogousto (2.16).



14 2. MATRICES, TILES AND THE JOINT SPECTRAL RADIUSDefinition 2.12. By de�nition, Q = Smi=1 wdi(Q). If x 2 Q is su
h thatx 2 wdi(Q) for a unique digit di, then we set�x = w�1di (x) = Ax� di: (2.17)Thus, if x = :"1"2 � � � is an A-nary expansion of su
h an x, then "1 = di and�x = :"2"3 � � � . For other x, the meaning of (2.1) is ambiguous. We eliminate thisambiguity by \disjointizing" the sets wdi(Q). Spe
i�
ally, we de�neQ1 = wd1(Q) and Qi = wdi(Q) n � Sj<i Qj� for i = 2; : : : ;m: (2.18)Then Qi � wdi(Q), and Q is the union of the disjoint sets Q1; : : : ; Qm. Hen
e ea
hx 2 Q lies in a unique Qi, and we de�ne �x by (2.17) using that unique value of i. }Now let 
 � � be any �xed �nite set su
h thatK� � Q+
:For example, the set 
�0 
onstru
ted in Proposition 2.7 is one possibility for 
.Given a fun
tion g : Rn ! Cr with supp(g) � K�, we de�ne the folding of gto be the fun
tion �g : Q! (Cr�1)
�1 given by�g(x) = [g(x+ k)℄k2
; x 2 Q:If we write (�g)k(x) = g(x+ k) for the kth 
omponent of �g(x), then this foldinghas the property that (�g)k1(x1) = (�g)k2(x2) whenever x1, x2 2 Q and k1, k2 2 
are su
h that x1 + k1 = x2 + k2 (by Lemma 2.3(
), su
h points x1, x2 would haveto lie on �Q).For ea
h d in our digit set D, de�ne an 
�
 matrix Td byTd = [
Aj�k+d℄j;k2
: (2.19)Let Q1; : : : ; Qm be de�ned as in (2.18). De�ne an operator T a
ting on ve
torfun
tions u(x) = [uk(x)℄k2
 : Q! (Cr�1)
�1by Tu(x) = mXi=1 �Qi(x) � Tdiu(Ax� di): (2.20)Or, equivalently, T 
an be de�ned byTu(x) = Tdiu(�x) if x 2 Qi: (2.21)This operator T is related to the re�nement operator S as follows.Proposition 2.13. Let 
 � � be su
h that K� � Q+
. Assume that g : Rn !Cr satis�es supp(g) � K� and g(x) = 0 for x 2 �K�:(a) If x 2 Q and d 2 D is su
h that Ax� d 2 Q, then�Sg(x) = Td�g(Ax� d): (2.22)(b) �Sg = T�g.



2.3. MATRIX FORM OF THE REFINEMENT OPERATOR 15Proof. (a) Let x 2 Q, and let y = Ax � d 2 Q. Suppose g(y + k) 6= 0 forsome k 2 �. Then y + k 2 KÆ�, and therefore k 2 
 by Lemma 2.9. Hen
e,�Sg(x) = [Sg(x+ j)℄j2
= "Xk2� 
k g(Ax� d+Aj � k + d)#j2
= "Xk2� 
Aj�k+d g(y + k)#j2
= "Xk2
 
Aj�k+d g(y + k)#j2
= Td�g(y)= Td�g(Ax� d): (2.23)(b) Let x 2 Q, and let d = di, where i is the unique integer su
h that x 2 Qi.Then �x = Ax�di 2 Q, so by (2.22) and (2.21) we have that �Sg(x) = Tdi�g(�x) =T�g(x), and this is valid for every x 2 Q. �Remark 2.14. Note that equation (2.22) is more general than the statement�Sg(x) = T�g(x). In parti
ular, (2.22) redu
es to the statement that �Sg(x) =Td�g(�x) = T�g(x) if it is the 
ase that d = di, where i is the unique integer su
hthat x 2 Qi. However, (2.22) is valid given only that Ax� d 2 Q, and we will needto use this more general statement later. }The equality in Proposition 2.13(b) is a pointwise everywhere equality. We shownext that if we instead require only equality almost everywhere then the hypothesisin Proposition 2.13 that g(x) vanish on the boundary of K� 
an be removed.Corollary 2.15. Let 
 � � be su
h that K� � Q + 
. If g : Rn ! Crsatis�es supp(g) � K�, then �Sg = T�g a.e.Proof. De�ne ~g(x) = g(x) for x 2 KÆ� and ~g(x) = 0 otherwise. Sin
e �K�has measure zero by Lemma 2.1(e), we have g = ~g a.e. Proposition 2.13 thereforeimplies that �S~g = T�~g pointwise everywhere. Sin
e Sg = S~g a.e. and T�g =T�~g a.e., the result follows. �Example 2.16. Consider the one-dimensional re�nement equation (2.11), butallow the multipli
ity r to be arbitrary. We have supp(f) � K� = [0; N ℄. Hen
e
 = f0; : : : ; N � 1g is the smallest subset of � = Z whi
h has the property thatK� � Q+
. With this 
hoi
e of 
, the folding of f is �f(x) = [f(x+k)℄N�1k=0 , whi
h
oin
ides with (2.12) ex
ept that the entries f(x + k) are now 
olumn ve
tors oflength r. The digit set is D = f0; 1g, so there are two matri
es T0 = [
2j�k℄N�1j;k=0 andT1 = [
2j�k+1℄N�1j;k=0. These 
oin
ide with the de�nitions in (2.13) and (2.14) ex
ept



16 2. MATRICES, TILES AND THE JOINT SPECTRAL RADIUSthat the entries 
k are now r � r blo
ks. Finally, the re
asting of the re�nementequation performed in Corollary 2.15 redu
es exa
tly to (2.16), ex
ept that themultipli
ity r is now arbitrary. }2.4. The Joint Spe
tral RadiusThe spe
tral radius of a square matrix M is�(M) = lim`!1 kM `k1=` = maxfj�j : � is an eigenvalue of Mg:For ea
h 1 � p � 1, the p-joint spe
tral radius (p-JSR) of a �nite 
olle
tion ofs� s matri
esM = fM1; : : : ;Mmg is�̂p(M) = 8>><>>: lim`!1�X�2P` k�kp�1=p`; 1 � p <1;lim`!1 max�2P` k�k1=`; p =1; (2.24)where P0 = fIg and P` = fMj1 � � �Mj` : 1 � ji � mg:It is easy to see that the limit in (2.24) exists and is independent of the 
hoi
e ofnorm k � k on Cs�s. Note that if p � q, then �̂p(M) � �̂q(M).We will refer to the1-JSR as the uniform joint spe
tral radius ; it is also knownas the generalized spe
tral radius, or simply as the joint spe
tral radius. Berger andWang [BW92℄ proved that �̂1(M) < 1 if and only if every produ
t Mj1 � � �Mj`
onverges to the zero matrix as `!1, and that�̂1(M) = lim`!1 max�2P` �(�)1=`: (2.25)The proof of (2.25) is nontrivial whenM 
ontains more than one matrix. It followsfrom (2.25) that�̂1(M) = sup fj�j1=` : ` > 0 and � is an eigenvalue of some � 2 P`g: (2.26)Note that if there is a norm su
h that �Pmj=1 kMjkp�1=p � Æ, then, by thede�nition of �̂, it is 
lear that �̂p(M) � Æ. We next prove the following partial
onverse to this fa
t.Proposition 2.17. Assume that M = fM1; : : : ;Mmg is a �nite 
olle
tion ofs� s matri
es. If �̂p(M) < Æ, then there exists a ve
tor norm k � k on Cs su
h that:(a) � mXj=1 kMjxkp�1=p � Æ kxk for ea
h x 2 Cs, if 1 � p <1, or(b) maxj kMjk � Æ, if p =1.Proof. Assume �rst that 1 � p <1. Let j � j be any ve
tor norm on Cs, andde�ne �̂p;` = �P�2P` j�jp�1=p`. Choose any number � su
h that �̂p(M) < � < Æ.Then sin
e �̂p;` ! �̂p(M), there must be some m su
h that �̂p;m � �. Given any `,write ` = mk + r with 0 � r � m� 1. De�neC = max�(�̂p;m)�i (�̂p;i)i : i = 0; : : : ;m� 1	:



2.4. THE JOINT SPECTRAL RADIUS 17Then (�̂p;`)p` = X�2P` j�jp= X�12Pm � � � X�k2Pm X�02Pr j�1 � � ��k�0jp� � X�12Pm j�1jp� � � �� X�k2Pm j�k jp�� X�02Pr j�0jp�= (�̂p;m)pkm (�̂p;r)pr= (�̂p;m)p` (�̂p;m)�pr (�̂p;r)pr� Cp �p`:Therefore, for ea
h x 2 Cs and ea
h ` � 0 we have1�p` X�2P` j�xjp � jxjp�p` X�2P` j�jp � Cp jxjp: (2.27)Let � > 1 be that number su
h that �1=p � = Æ. Then the fa
t that � > 1,
ombined with (2.27), implies that the series in the following de�nition 
onvergesfor ea
h x 2 Cs: kxk = � 1X̀=0 1�` 1�p` X�2P` j�xjp�1=p: (2.28)It is easy to verify that k � k de�ned by (2.28) is a ve
tor norm on Cs, and thatjxj � kxk � � ���1�1=p jxj. Finally, for ea
h x 2 Cs we havemXj=1 kMjxkp = mXj=1 1X̀=0 1�` 1�p` X�2P` j�Mjxjp= 1X̀=0 1�` 1�p` mXj=1 X�2P` j�Mjxjp= 1X̀=0 ��`+1 �p�p(`+1) X�2P`+1 j�xjp� � �p kxkp= Æp kxkp:This 
ompletes the proof for the 
ase 1 � p <1. The proof for the 
ase p =1 issimilar, using the norm kxk = sup`�0 max�2P` j�xjÆ`in pla
e of (2.28). �



18 2. MATRICES, TILES AND THE JOINT SPECTRAL RADIUSRemark 2.18. We brie
y illustrate why the joint spe
tral radius arises natu-rally in 
onne
tion with re�nement equations. Suppose that f : R! C is a 
ontinu-ous, 
ompa
tly supported solution of the re�nement equation f(x) =PNk=0 
k f(2x�k). Then by (2.16), we have for ea
h x 2 [0; 1℄ that �f(x) = T"1�f(�x), wherex = :d1d2 : : : is the binary representation of x.Suppose now that x` = :"1"2 � � � "`"`+1"`+2 � � � and y` = :"1"2 � � � "`"0̀+1"0̀+2 � � �are points whose binary expansions agree for the �rst ` digits. Then we 
an iterate(2.16) to obtain�f(x`)��f(y`) = T"1��f(�x`)��f(�y`)�= T"1T"2��f(�2x`)��f(�2y`)�= � � � = T"1 � � �T"`��f(� `x`)��f(� `y`)�:As ` in
reases, the points x` and y` grow 
loser together. Sin
e f and hen
e �fis 
ontinuous, the di�eren
e �f(x`) � �f(y`) must 
onverge to the zero ve
tor as` ! 1. Sin
e � `x` and � `y` 
an be arbitrary points in [0; 1℄, it follows that theprodu
t T"1 � � �T"` must 
onverge to zero as ` in
reases, at least when applied tove
tors in the subspa
eW0 = spanf�f(w)��f(z) : w; z 2 [0; 1℄g;whi
h 
an be shown to be a 
ommon invariant subspa
e for both T0 and T1. There-fore, a ne
essary 
ondition for the existen
e of a 
ontinuous solution to the re�ne-ment equation is that all produ
ts (T"1 � � �T"`)jW0 of T0 and T1 restri
ted to thisinvariant subspa
e W0 must 
onverge to zero as `!1. By [BW92℄, this o

urs ifand only if �̂1(fT0jW0 ; T1jW0g) < 1. The spa
e W0 as given above is de�ned onlyimpli
itly, and is usually diÆ
ult or impossible in pra
ti
e to determine expli
itly,whereas in Theorem 3.4 and 3.21 we determine expli
it subspa
es to use in pla
e ofW0 to 
hara
terize the Lp and 
ontinuous solutions of the re�nement equation. }



CHAPTER 3Generalized Self-Similarity and the Re�nementEquation3.1. Generalized Self-SimilarityA subset B of a set X is said to be self-similar if there exist inje
tive mapsw1; : : : ; wm : X ! X su
h that B = mSi=1wi(B):Let X and H be sets. A fun
tion f : X ! H is self-similar if its graph is self-similar,i.e., f(x) = f(w�1i (x)); x 2 wi(X); i = 1; : : : ;m:We say that f : X ! H is a generalized self-similar fun
tion if there exist fun
tions'i : X �H ! H and a fun
tion O : X �Hm ! H su
h thatf(x) = O(x; '1(x; f(w�11 (x))); : : : ; 'm(x; f(w�1m (x)))); x 2 X:The theory of generalized self-similar fun
tions was developed in [CM99℄.The following theorem is a variation on the results of [CM99℄Theorem 3.1. Let 1 � p � 1 be given. Let X be a 
ompa
t subset of Rn,and let H be a 
losed subset of Cr. Let k � k be any norm on Cr. Let m � 1, andassume that fun
tions wi, 'i, and O are 
hosen with the following properties.1. For ea
h i = 1; : : : ;m, let wi : X ! X be 
ontinuously di�erentiable,inje
tive maps.2. Let 'i : X �H ! H for i = 1; : : : ;m satisfy a Lips
hitz 
ondition in these
ond variable, i.e.,� mXi=1 k'i(x; u)� 'i(x; v)kp�1=p � C ku� vk; (3.1)with the usual modi�
ation if p =1.3. Let O : X �Hm ! H be non-expansive for ea
h x 2 X, i.e.,kO(x; u1; : : : ; um)�O(x; v1; : : : ; vm)k � � mXi=1 kui � vikp�1=p; (3.2)with the usual modi�
ation if p =1.Let t0 be an arbitrary point in H. For u 2 Lp(X;H), de�neTu(x) = O(x; '1(x; u(w�11 (x))); : : : ; 'm(x; u(w�1m (x)))); (3.3)19



20 3. GENERALIZED SELF-SIMILARITYwhere we interpret u(w�1i (x)) = t0 if x =2 wi(X): (3.4)De�ne s = max1�i�m supx2X j det((Di� wi)(x))j; (3.5)where Di� is the di�erential operator. If O and the 'i map bounded sets intobounded sets, then T maps Lp(X;H) into itself, and satis�eskTu� TvkLp � s1=p C ku� vkLp : (3.6)In parti
ular, if s1=p C < 1, then T is 
ontra
tive, and there exists a unique fun
tionv� 2 Lp(X;H) su
h that Tv� = v�. Moreover, in this 
ase, if v(0) is any fun
tionin Lp(X;H), then the iteration v(i+1) = Tv(i) 
onverges to v� in Lp(X;H).Proof. The fa
t that T maps Lp(X;H) into itself 
an be proved using thesame te
hniques as in [CM99℄. Therefore we will only prove that T satis�es theLips
hitz 
ondition in (3.6). Given u, v 2 Lp(X;H), we have thatkTu� TvkpLp= ZX kO(x; '1(x; u(w�11 (x))); : : : ; 'm(x; u(w�1m (x)))) �O(x; '1(x; v(w�11 (x))); : : : ; 'm(x; v(w�1m (x))))kp dx� ZX mXi=1 k'i(x; u(w�1i (x))) � 'i(x; v(w�1i (x)))kp dx by (3.2)= mXi=1 ZX k'i(x; u(w�1i (x))) � 'i(x; v(w�1i (x)))kp dx= mXi=1 Zwi(X) k'i(x; u(w�1i (x))) � 'i(x; v(w�1i (x)))kp dx by (3.4)� s mXi=1 ZX k'i(wi(x); u(x)) � 'i(wi(x); v(x))kp dx by (3.5)� sCp ZX ku(x)� v(x)kp dx by (3.1)= sCp ku� vkpLp : �3.2. SuÆ
ient Conditions for the Existen
e of Ve
tor S
aling Fun
tionsThe a

ura
y of a re�nable ve
tor fun
tion or distribution f is the largestinteger � > 0 su
h that every multivariate polynomial q(x) = q(x1; : : : ; xn) withdeg(q) < � 
an be writtenq(x) = Xk2� akf(x+ k) = Xk2� rXi=1 ak;ifi(x + k) a.e.; x 2 Rn;



3.2. SUFFICIENT CONDITIONS 21for some row ve
tors ak = (ak;1; : : : ; ak;r) 2 C1�r. If no polynomials are repro-du
ible from translates of f then we set � = 0. We say that translates of f along� are linearly independent if Pk2� akf(x+ k) = 0 implies ak = 0 for ea
h k.For the main result of this se
tion (Theorem 3.4), we will need to imposeonly the minimal a

ura
y 
ondition � = 1. The following lemma from [CHM98℄
hara
terizes minimal a

ura
y.Lemma 3.2. Let f be a 
ompa
tly supported distributional solution of the re-�nement equation (1.1). Let �d = A(�)� d denote the 
osets de�ned in (2.2).(a) If there exists a row ve
tor u0 2 C1�r su
h that u0f̂(0) 6= 0 andu0 = Xk2�d u0
k for ea
h d 2 D; (3.7)then f has a

ura
y � � 1, andXk2�u0f(x+ k) = 1 a.e. (3.8)(b) If f has a

ura
y � � 1 and if f has independent translates, then thereexists a row ve
tor u0 2 C1�r su
h that u0f̂(0) 6= 0 and (3.7) holds.The hypothesis of linear independen
e of translates in Lemma 3.2(b) 
an beweakened.In the single-fun
tion setting (r = 1), equation (3.7) redu
es to the requirementthat Pk2�d 
k = 1 for ea
h d 2 D.Note that if (3.7) holds then, sin
e the m 
osets �d for d 2 D partition �, u0is a left 1-eigenve
tor for the matrix � = 1mP 
k. If this eigenvalue is nondegen-erate and if the remaining eigenvalues are less than 1 in absolute value, then thefollowing proposition from [CHM00℄ implies that a distributional solution f to there�nement equation does exist.Proposition 3.3. If the matrix � = 1mPk2� 
k has eigenvalues �1 = � � � =�s = 1 and j�s+1j; : : : ; j�r j < 1 with the eigenvalue 1 nondegenerate, then there exist
ompa
tly supported distributions f1; : : : ; fr su
h that f = (f1; : : : ; fr)T satis�esthe re�nement equation (1.1) in the sense of distributions. Furthermore, f̂(!) is a
ontinuous ve
tor fun
tion, and f̂(0) 6= 0.To motivate the following result, suppose that f is a 
ontinuous, 
ompa
tlysupported ve
tor s
aling fun
tion with a

ura
y � � 1. By Lemma 2.2, we havesupp(f) � K�. Let 
 be any �nite subset of � su
h that K� � Q+ 
. Let u0 bethe row ve
tor su
h that (3.8) holds, i.e., Pk2� u0f(x+ k) = 1 a.e. If x 2 Q, thenLemma 2.9 implies that the only nonzero terms in this series o

ur when k 2 
.Hen
e, if we set e0 = (u0)k2
, i.e., e0 is the row ve
tor in (C1�r)1�
 obtained byrepeating the blo
k u0 on
e for ea
h k 2 
, thene0�f(x) = Xk2
 u0f(x+ k) = Xk2�u0f(x+ k) = 1 a.e.; x 2 Q:Thus the values of �f(x) are 
onstrained to lie in a parti
ular hyperplane Hin (Cr�1)
�1, namely, the 
olle
tion of ve
tors v = [vk℄k2
 su
h that e0v =Pk2
 u0vk = 1. Further, the set of di�eren
es E0 = H � H is the subspa
e



22 3. GENERALIZED SELF-SIMILARITY
onsisting of ve
tors v = [vk℄k2
 su
h that e0v = Pk2
 u0vk = 0. De�ne the dotprodu
t of two 
olumn ve
tors u = [uk℄k2
 and v = [vk℄k2
 2 (Cr�1)
�1 byu � v = u�v = Xk2
 u�kvk = Xk2
 rXi=1 �uk;ivk;i;where u� is the Hermitian, or 
onjugate transpose, of u. Then e0v = e�0 � v, so E0is simply the orthogonal 
omplement of the 
olumn ve
tor e�0.The following theorem gives 
onditions for the existen
e of a 
ontinuous or Lpve
tor s
aling fun
tion under the assumption of minimal a

ura
y.Theorem 3.4. Let 1 � p � 1 be �xed. Let 
 � � be a �nite set su
h thatK� � Q+
. Assume that there exists a nonzero ve
tor u0 2 C1�r su
h that u0 =Pk2�d u0
k for every d 2 D, 
f. equation (3.7). Let e0 = (u0)k2
 2 (C1�r)1�
,and de�ne E0 = (e�0)? = nv = [vk℄k2
 : e0v = Xk2
 u0vk = 0o: (3.9)SetIp0 = ng 2 Lp(Rn;Cr) : supp(g) � K� and Xk2�u0g(x+ k) = 1 a.e.o: (3.10)If Ip0 6= ; and �̂p(fTdjE0gd2D) < m1=p;then there exists a unique fun
tion f 2 Ip0 whi
h is a solution to the re�nementequation (1.1), and the 
as
ade algorithm f (i+1) = Sf (i) 
onverges geometri
allyin Lp-norm to f for ea
h f (0) 2 Ip0 . Furthermore, if p = 1 and I10 
ontains a
ontinuous fun
tion, then f is 
ontinuous.Proof. De�neH = fv = [vk℄k2
 2 (Cr�1)
�1 : e0v = Xk2
u0vk = 1g: (3.11)It follows from (3.7) that e0 is a 
ommon left 1-eigenve
tor for ea
h matrix Td, soif e0v = 1, then e0(Tdv) = (e0Td)v = e0v = 1. Thus H is right-invariant underea
h Td. Further, the set E0 given by (3.9) satis�es E0 = H �H , is a subspa
e of(Cr�1)
�1, and is right-invariant under ea
h matrix Td.Assume that 1 � p < 1. We will apply Theorem 3.1 with X = Q and H asgiven by (3.11). Our �rst step is to de�ne fun
tions wd, 'd, and O that satisfy thehypotheses of Theorem 3.1.For d 2 D, de�ne wd(x) = A�1(x + d). Then 
learly ea
h wd is inje
tive and
ontinuously di�erentiable. Further, det((Di� wd)(x)) = 1=m for every x.Let Æ be any number su
h that�̂p(fTdjE0gd2D) < Æ < m1=p:Then by Proposition 2.17 applied to the matri
es TdjE0 , there exists a ve
tor normk � kE0 on E0 su
h thatXd2D kTdwkpE0 � Æp kwkpE0 ; all w 2 E0:Let k � k denote any extension of this norm to all of (Cr�1)
�1.



3.2. SUFFICIENT CONDITIONS 23Sin
e Td(H) � H , we 
an de�ne 'd : Q � H ! H by 'd(x; u) = Tdu. Then,sin
e H �H � E0, we have for ea
h x 2 Q and u, v 2 H thatXd2D k'd(x; u)� 'd(x; v)kp = Xd2D kTd(u� v)kp � Æp ku� vkp:Therefore the fun
tions 'd satisfy the 
ondition (3.1) with 
onstant C = Æ. It iseasy to 
he
k that ea
h 'd maps bounded sets into bounded sets.LetQ1; : : : ; Qm be the disjoint subsets of Q de�ned by (2.18), and de�neO : Q�Hm ! H by O(x; u1; : : : ; um) = mXi=1 �Qi(x) � ui:That is, O(x; u1; : : : ; um) = ui if x 2 Qi. Then O maps bounded sets to boundedsets and satis�es the nonexpansivity 
ondition (3.2).Now let T be de�ned by (3.3), i.e., for u 2 Lp(Q;H) de�neTu(x) = mXi=1 �Qi(x) � Tdiu(Ax� di):That is, Tu(x) = Tdiu(�x) if x 2 Qi. Note that this operator T 
oin
ides with theoperator T de�ned in (2.20). Sin
e the number s de�ned by (3.5) has the values = 1=m, Theorem 3.1 implies that T maps Lp(Q;H) into itself, and satis�eskTu� TvkLp � m�1=p Æ ku� vkLp :Sin
e Æ < m1=p, it follows that T is 
ontra
tive on Lp(Q;H) and there exists aunique fun
tion v� 2 Lp(Q;H) su
h that Tv� = v�. Further, the iteration v(i+1) =Tv(i) 
onverges geometri
ally in Lp(Q;H) to v� for ea
h fun
tion v(0) 2 Lp(Q;H).Clearly Ip0 is a 
losed subset of Lp(Rn;Cr), and we 
laim that it is invariantunder the re�nement operator S. To see this, suppose that g 2 Ip0 . First, we
learly have Sg 2 Lp(Rn;Cr) sin
e g 2 Lp(Rn;Cr) and � is �nite. Se
ond, sin
esupp(g) � K�, we have supp(Sg) � K� by Proposition 2.2. Finally, to 
ompletethe 
laim we must show that Pk2� u0Sg(x+ k) = 1 a.e. Suppose that x 2 QÆ andk 2 � is su
h that x+ k 2 supp(g). Then we have x+ k 2 supp(g) � K� � Q+
.However, the fa
t that x lies in the interior of Q 
ombined with the fa
t that latti
etranslates of Q interse
t only on the boundaries of these translates implies thatx+ k 2 (Q+ 
)Æ. Lemma 2.9 therefore implies that k 2 
. Sin
e this is valid forevery x 2 QÆ and sin
e �Q has measure zero, we 
on
lude thate0�g(x) = Xk2
u0g(x+ k) = Xk2�u0g(x+ k) = 1; a.e. x 2 Q:Thus �g(x) 2 H for a.e. x 2 Q. By Corollary 2.15, �Sg = T�g. Sin
e H isinvariant under ea
h matrix Td, we therefore have �Sg(x) 2 H for a.e. x 2 Q.Sin
e supp(Sg) is also in
luded in K�, we 
an again apply Lemma 2.9 to 
on
ludethat 1 = e0�Sg(x) = Xk2
 u0Sg(x+ k) = Xk2�u0Sg(x+ k); a.e. x 2 Q:Sin
e Q tiles Rn by translates along �, we 
on
lude that this equality a
tually holdsfor a.e. x 2 Rn. Thus Sg 2 Ip0 , so Ip0 is invariant under S as 
laimed.



24 3. GENERALIZED SELF-SIMILARITYIn summary, the statements above 
ombined with Corollary 2.15 imply thatthe following diagram 
ommutes, with T in parti
ular being a 
ontra
tion:Ip0 �����! Lp(Q;H)S??y ??yTIp0 ����!� Lp(Q;H):Suppose that f (0) is any fun
tion in Ip0 , and de�ne f (i+1) = Sf (i). Then f (i) 2 Ip0for ea
h i. If we set v(i) = �f (i), thenv(i+1) = �f (i+1) = �Sf (i) = T�f (i) = Tv(i);so v(i) must 
onverge in Lp-norm to v�.We now 
hoose some parti
ular norms for these Lp spa
es. Let j � j be any �xednorm on Cr. ThenkgkpLp = ZRn jg(x)jp dx; g 2 Lp(Rn;Cr);de�nes an equivalent norm for Lp(Rn;Cr). Similarly,kGkpLp = ZQ kG(x)kp dx; G 2 Lp(Q; (Cr�1)
�1);de�nes an equivalent norm for Lp(Q; (Cr�1)
�1).Now de�ne a norm jjj � jjj on (Cr�1)
�1 byjjjwjjj = �Xk2
 jwk jp�1=p; w = [wk℄k2
 2 (Cr�1)
�1:Sin
e all norms on a �nite-dimensional spa
e are equivalent, we 
an �nd a 
onstantB > 0 su
h that jjj � jjj � B k � k. Therefore, if g 2 Lp(Rn;Cr) is supported in K�,then sin
e K� � Q+
 we havekgkpLp = ZQ+
 jg(x)jp dx;= Xk2
 ZQ jg(x+ k)jp dx= ZQ jjj�g(x)jjjp dx� Bp ZQ k�g(x)kp dx= Bp k�gkpLp:In parti
ular,kf (i) � f (j)kLp � B k�f (i) ��f (j)kLp = B kv(i) � v(j)kLp ;so f (i) must 
onverge in Lp-norm to some fun
tion f 2 Lp(Rn;Cr). We must havef 2 Ip0 sin
e Ip0 is a 
losed subset of Lp(Rn;Cr). Further,�f = v� = Tv� = T�f = �Sf a:e:;



3.2. SUFFICIENT CONDITIONS 25the last equality following from Corollary 2.15. Therefore f satis�es the re�nementequation (1.1) almost everywhere. Sin
e v� is unique, the 
as
ade algorithm must
onverge to this parti
ular f for any starting fun
tion f (0) 2 Ip0 .This 
ompletes the proof for the 
ase 1 � p < 1. The argument to this pointfor the 
ase p =1 is entirely similar. It therefore only remains observe that if anyf (0) 2 I10 is 
ontinuous, then the iterates f (i) obtained from f (0) are 
ontinuousand 
onverge uniformly to f , so f must itself be 
ontinuous. �Example 3.5. Consider the one-dimensional setting with A = 2, � = Z, D =f0; 1g, � = f0; : : : ; Ng, K� = [0; N ℄, and 
 = f0; : : : ; N �1g. There are two 
osets,�0 = 2Z and �1 = 2Z+ 1, so the minimal a

ura
y 
ondition (3.7) redu
es to therequirement that there exists a row ve
tor u0 2 C1�r su
h thatu0 = Xk2Zu0
2k = Xk2Zu0
2k+1:The row ve
tor e0 is formed by repeating the row ve
tor u0 on
e for ea
h k 2 
 =f0; : : : ; N � 1g, i.e.,e0 = (u0)N�1k=0 = (u0; : : : ; u0) 2 (C1�r)1�N :Hen
e E0 
onsists of all the 
olumn ve
tors v = (v0; : : : ; vN�1)T 2 (Cr�1)N�1 su
hthat e0v = N�1Xk=0 u0vk = 0:Further, Ip0 
onsists of those Lp ve
tor fun
tions g : R ! Cr whi
h are supportedin [0; N ℄ and whi
h have the property that Pu0g(x + k) = 1 a.e. In parti
ular, ifN � 2 and we let h be the hat fun
tion on [0; 2℄, i.e.,h(x) = maxf1� j1� xj; 0g;and let a 2 Cr�1 be a 
olumn ve
tor satisfying u0a = 1, then Ip0 will 
ontainthe 
ontinuous fun
tion g(x) = ah(x). Therefore, if �̂p(T0jE0 ; T1jE0) < 21=p, thenthere exists an Lp solution f to the re�nement equation, and the 
as
ade algorithm
onverges in Lp-norm to f for any starting fun
tion f (0) 
hosen from Ip0 . Further,if p =1, then f is 
ontinuous.There are further simpli�
ations in the single-fun
tion 
ase (r = 1). In parti
-ular, if r = 1 then u0 is a s
alar, and by normalizing we 
an simply let u0 = 1. }The same te
hniques used to prove Theorem 3.4 
an also be used to prove thefollowing more general result.Theorem 3.6. Let 1 � p � 1 be �xed. Let 
 � � be a �nite set su
h thatK� � Q+
. Let H be a nonempty 
losed subset of (Cr�1)
�1 su
h that Td(H) � Hfor ea
h d 2 D. Let E be a subspa
e of (Cr�1)
�1 whi
h 
ontains H�H and whi
his right-invariant under ea
h Td. De�neIp0 = ng 2 Lp(Rn;Cr) : supp(g) � K� and �g(Q) � Ho:If Ip0 6= ; and �̂p(fTdjEgd2D) < m1=p, then there exists a fun
tion f 2 Ip0 whi
his a solution to the re�nement equation (1.1), and the 
as
ade algorithm f (i+1) =Sf (i) 
onverges in Lp-norm to f for ea
h fun
tion f (0) 2 Ip0 . Furthermore, if



26 3. GENERALIZED SELF-SIMILARITY�̂1(fTdjEgd2D) < 1 and there exists any 
ontinuous fun
tion f (0) 2 I10 , then f is
ontinuous.3.3. Continuous Solutions and the Support of the Re�nement EquationCoeÆ
ientsThe set I10 de�ned by (3.10) is determined by two quantities: the set � andthe row ve
tor u0. The set � is the support of the set of 
oeÆ
ients 
k in there�nement equation; it is determined only by the lo
ation of the 
k and not theirvalues. The ve
tor u0, on the other hand, is determined by the values of the 
kas well as their lo
ations. In this se
tion we will 
onsider what requirements mustbe pla
ed on � and u0 so that I10 will 
ontain a 
ontinuous fun
tion. We will seethat, in fa
t, this is determined solely by � and not by u0, i.e., only the lo
ation ofthe 
oeÆ
ients 
k is important for this question, and not their a
tual values.Sin
e any 
ontinuous fun
tion supported in K� must be zero on the boundaryof K�, it is suÆ
ient to study the question of when the setI(�; u0) = ng 2 L1(Rn;Cr) : g(x) = 0 for x =2 KÆ� and Xk2� u0g(x+ k) = 1o
ontains a 
ontinuous fun
tion. Here the notation I(�; u0) is meant to emphasizethe dependen
e on � and u0. The following result shows that I(�; u0) 
ontains a
ontinuous fun
tion exa
tly when it 
ontains any fun
tions at all. Further, whetherI(�; u0) is nonempty or not is independent of the value of u0.Lemma 3.7. Let � � � be �nite, and let u0 2 C1�r be nonzero. Then thefollowing statements are equivalent.(a) I(�; u0) 6= ;.(b) I(�; u0) 
ontains a 
ontinuous fun
tion.(
) KÆ� + � = Rn, i.e., latti
e translates of KÆ� 
over Rn.Proof. (a) ) (
). Assume there exists a fun
tion g 2 I(�; u0). Then sin
ePk2� u0g(x + k) never vanishes but g(x + k) 6= 0 only for x + k 2 KÆ�, we musthave Sk2�(KÆ� + k) = Rn.(
)) (b). Suppose that Sk2�(KÆ�+k) = Rn. Then K� has nonempty interior,so there exist 
ontinuous s
alar-valued fun
tions h : Rn ! C supported in K� su
hthat h(x) > 0 for ea
h x 2 KÆ�. For example, h(x) = dist(x; (KÆ�)C) has thisproperty. Let a 2 Cr�1 be su
h that u0a = 1, and de�ne s(x) = Pk2� h(x + k).Then s is a 
ontinuous, s
alar-valued fun
tion whi
h never vanishes, and thereforeg(x) = ah(x)=s(x) is a 
ontinuous ve
tor fun
tion whi
h lies in I(�; u0). �Sin
e the size of the set � will determine the size of the matri
es Td, andtherefore the 
omplexity of the 
omputation of the JSR, it should be 
hosen to beas small as possible, while satisfying the requirements of Lemma 3.7. However, even\large" � may fail the ne
essary 
ondition KÆ�+� = Rn, as the following exampleshows.



3.4. HIGHER-ORDER ACCURACY 27Example 3.8. Let n = 2, and 
onsider the uniform dilation A = 2I . With� = Z2, a natural digit 
hoi
e is D = f(0; 0); (1; 0); (0; 1); (1; 1)g. Let s be anypositive integer, and de�ne � = f0; 1g� f0; : : : ; sg:Then K� = [0; 1℄� [0; s℄, so KÆ� = (0; 1)� (0; s). Hen
e Z2-translates of KÆ� do not
over Rn, so Lemma 3.7 implies that I(�; u0) is empty. }A related question is whether, for a given 
hoi
e of dilation matrix A and digitset D, there must exist some �nite set � � � su
h that KÆ� + � = Rn. Thiswill always be the 
ase. For example, if � = D + D then it follows from (2.7)that K� = KD +KD = Q + Q. Sin
e QÆ + Q = Sq2Q(QÆ + q) is open, we havethat QÆ + Q � (Q + Q)Æ = KÆ�. Sin
e Q is a tile, we know by Lemma 2.3(b)that QÆ 6= ;. Therefore KÆ� 
ontains some translate q0 + Q of Q, and thereforeKÆ� + � � (q0 +Q) + � = Rn.3.4. Higher-Order A

ura
yWe saw in Theorem 3.4 that if the 
oeÆ
ients 
k of the re�nement equationsatisfy (3.7), the 
ondition for minimal a

ura
y, then the spa
e E0 de�ned by (3.9)is right-invariant under ea
h matrix Td. We will show below that if the 
oeÆ
ients
k satisfy the 
onditions for higher-order a

ura
y then E0 is only the largest of ade
reasing 
hain of 
ommon invariant subspa
esE0 � E1 � � � � � E��1;and that, as a 
onsequen
e, the value of �̂1(fTdjE0gd2D) is determined by the valueof �̂1(fTdjE��1gd2D). Moreover, these invariant spa
es Es are dire
tly determinedfrom the 
oeÆ
ients 
k via the a

ura
y 
onditions, whi
h are a system of linearequations. Hen
e it is a simple matter to 
ompute the matri
es TdjE��1 .We will use the standard multi-index notation, i.e., x� = x�11 � � �x�nn where� = (�1; : : : ; �n) is an n-tuple of nonnegative integers and x 2 Rn. The degree of� is j�j = �1 + � � �+ �n:The number of multi-indi
es � of a given degree s isds = �s+ n� 1n� 1 �:In parti
ular, d0 = 1 and d1 = n. If n = 1 then ds = 1 for ea
h s, and if n = 2 thends = s+ 1 for ea
h s. We write � � � if �i � �i for i = 1; : : : ; n. We set���� = (��1�1� � � � ��n�n�; � � �;0; otherwise:We shall often deal with matrix-valued fun
tionsu = [uj;k℄j2J;k2K : Rn ! CJ�K ;ea
h of whose entries uj;k : Rn ! C is a polynomial. In this 
ase, we refer to u asa matrix of polynomials, and we say that the degree of u isdeg(u) = maxfdeg(uj;k)gj2J;k2K :



28 3. GENERALIZED SELF-SIMILARITYThe following lemma shows that the a

ura
y of any fun
tion supported in K�is ne
essarily �nite.Lemma 3.9. Assume g : Rn ! Cr satis�es supp(g) � K�. Let 
 � � be su
hthat K� � Q+
. Then the a

ura
y � of g is bounded by the requirement that��1Xs=0 ds � r �#
;Proof. Assume that g has a

ura
y �. Then for ea
h multi-index � withj�j < �, there exist row ve
tors y�(k) = (y�;1(k); : : : ; y�;r(k)) su
h thatx� = Xk2� y�(k) g(x+ k) = Xk2� rXi=1 y�;i(k) gi(x+ k):Let x 2 QÆ. If x + k 2 supp(g), then we have x + k 2 K� � Q + 
. But sin
ex 2 QÆ, this 
an only happen if x + k 2 (Q + 
)Æ. Lemma 2.9 therefore impliesthat k 2 
. Hen
e, if we restri
t our attention to the set QÆ, we havex�jQÆ 2 spanfgi(x + k)jQÆgk2
; i=1;:::;r:Sin
e QÆ is a nonempty open set, the polynomials x� restri
ted to QÆ are linearlyindependent. Hen
e the total number of su
h polynomials, whi
h is P��1s=0 ds, 
anbe at most the dimension of spanfgi(x + k)jQÆgk2
; i=1;:::;r, whi
h is bounded byr �#
. �We require some notation in order to dis
uss higher-order a

ura
y. Proofs ofthe fa
ts given below 
an be found in [CHM98℄, [CHM00℄. For a given degrees � 0, we 
olle
t the ds monomials x� of degree s together to form a 
olumn ve
torof monomials X[s℄ : Rn ! Cds . Spe
i�
ally, X[s℄ is de�ned byX[s℄(x) = [x�℄j�j=s ; x 2 Rn:The ordering of the multi-indi
es � of degree s is not important, as long as thesame ordering is used throughout.For ea
h integer 0 � t � s, de�ne a matrix of polynomials Q[s;t℄ : Rn ! Cds�dtby Q[s;t℄(y) = (�1)s�t ����� y����j�j=s;j�j=t ;where we use the 
onvention that 00 = 1. In parti
ular, Q[s;s℄(y) = I , the ds � dsidentity matrix. Translation of X[s℄(x) obeys the ruleX[s℄(x� y) = sXt=0 Q[s;t℄(y)X[t℄(x): (3.12)Given any n� n matrix B = [bi;j ℄i;j=1;:::;n with s
alar entries and given s � 0,let B[s℄ = [bs�;� ℄j�j=s;j�j=s be the ds�ds matrix whose s
alar entries bs�;� are de�nedby the equationXj�j=s bs�;� x� = (Bx)� = nYi=1 (bi;1x1 + � � �+ bi;nxn)�i :Dilation of X[s℄(x) by B obeys the ruleX[s℄(Bx) = B[s℄X[s℄(x): (3.13)



3.4. HIGHER-ORDER ACCURACY 29The matrix B[s℄ has a number of surprising properties. For example, if � =(�1; : : : ; �n)T is the ve
tor of all eigenvalues of B, then [��℄j�j=s is the ve
tor of alleigenvalues of B[s℄.Given a 
olle
tionfv� = (v�;1; : : : ; v�;r) 2 C1�r : 0 � j�j < �gof row ve
tors of length r, we shall asso
iate a number of spe
ial matri
es andfun
tions. First, we group the v� by degree to form ds � 1 
olumn ve
tors v[s℄ 2(C1�r)ds�1 with blo
k entries that are the 1� r row ve
tors v�, i.e.,v[s℄ = [v�℄j�j=s = 264 v�1;1 � � � v�1;r... . . . ...v�ds ;1 � � � v�ds ;r 375 :Note that v[0℄ = [v0℄ = v0. Later we will 
hoose v0 to 
oin
ide with the ve
tor u0appearing in (3.7).Se
ond, for ea
h �, we de�ne a row ve
tor of polynomials y� : Rn ! C1�r byy�(x) = X0���� (�1)j�j�j�j���� v� x��� : (3.14)Note that if v0 6= 0, then deg(y�) = j�j. We will see in Theorem 3.12 that, underappropriate 
onditions on the ve
tors v�, the row ve
tors y�(k) are pre
isely thoseve
tors su
h that Pk2� y�(k) f(x+ k) = x�.As with the ve
tors v�, we 
olle
t the ve
tors of polynomials y� by degree andarrange them as blo
k entries in a 
olumn ve
tor to form a matrix of polynomialsy[s℄ : Rn ! (C1�r)ds�1, i.e.,y[s℄(x) = [y�(x)℄j�j=s= 24 sXt=0 Xj�j=t (�1)s�t����x��� v�35j�j=s= sXt=0Q[s;t℄(x) v[t℄:Finally, for ea
h x we 
olle
t the blo
ks y[s℄(x + k) into an in�nite row ve
torto form a fun
tion Y[s℄ : Rn ! �(C1�r)ds�1�1��, i.e.,Y[s℄(x) = �y[s℄(x + k)�k2�:Note that Y[s℄(0) = �y[s℄(k)�k2� is the row ve
tor of evaluations of the matrix ofpolynomials y[s℄ at latti
e points k 2 �.Example 3.10. In the one-dimensional setting n = 1, there is a single polyno-mial xs of degree s. Therefore ds = 1 for every s, and the multi-index � that hasdegree s is simply the s
alar � = s. Thus A[s℄ is a s
alar and X[s℄ and Q[s;t℄ ares
alar-valued fun
tions on R. In parti
ular, with A = 2 and � = Z we haveA[s℄ = 2s; X[s℄(x) = xs; Q[s;t℄(y) = (�1)s�t�st� ys�t:



30 3. GENERALIZED SELF-SIMILARITYHen
e (3.12) is nothing more than the binomial theorem, and (3.13) is the statementthat (2x)s = 2sxs. The ve
tors v� = vs are \ordinary" row ve
tors of length r.Further, there is only one v� to \sta
k" to form v[s℄, so v[s℄ = vs. The fun
tionsy�(x) = ys(x) are row ve
tor-valued, and y[s℄(x) is a \sta
k" of ys(x) alone, soequals ys(x). Thus,v� = vs 2 C1�r;v[s℄ = [v�℄j�j=s = vs 2 C1�r;ys(x) = sXt=0 (�1)s�t�st�xs�t vt maps R! C1�r;y[s℄(x) = [y�(x)℄j�j=s = ys(x) maps R! C1�r;Y[s℄(x) = �ys(x+ k)�k2Z maps R! (C1�r)1�Z:In parti
ular, Y[s℄(x) is an in�nite row ve
tor whose entries are the 1�r row ve
torsys(x + k) with k 2 Z. Thus Y[s℄(x) is simply an \ordinary" in�nite row ve
tor ofthe form Y[s℄(x) = �� � � ; ys(x� 1); ys(x); ys(x + 1); � � ��;with blo
ks ys(x+ k) that are ordinary 1� r row ve
tors. }The following fa
t on the behavior of the matrix of polynomials y[s℄ undertranslation will be useful.Lemma 3.11. Given a 
olle
tion fv� 2 C1�r : 0 � j�j < �g of row ve
tors, lety[s℄(x) and Y[s℄(x) be as de�ned above. Theny[s℄(x+ y) = sXt=0 Q[s;t℄(y) y[t℄(x);Y[s℄(x+ y) = sXt=0 Q[s;t℄(y)Y[t℄(x):The following result provides suÆ
ient 
onditions for a re�nable distributionto have a

ura
y � [CHM98℄, [CHM00℄. These 
onditions are also ne
essary if fhas independent translates.Theorem 3.12. Assume that f is a 
ompa
tly supported distributional solutionof the re�nement equation (1.1). De�ne L = [
Ai�j ℄i;j2�, and 
onsider the followingstatements.(I) f has a

ura
y �.(II) There exists a 
olle
tion of row ve
tors fv� 2 C1�r : 0 � j�j < �g su
hthat(i) v0f̂(0) 6= 0, and(ii) Y[s℄(0) = A[s℄ Y[s℄(0)L for 0 � s < �.Then the following statements hold.



3.4. HIGHER-ORDER ACCURACY 31(a) If translates of f along � are independent, then statement (I) impliesstatement (II).(b) Statement (II) implies statement (I). Moreover, in this 
ase, after s
alingthe ve
tors v� by an appropriate 
onstant, we haveX[s℄(x) = Xk2� y[s℄(k) f(x+ k) = Y[s℄(0)F (x); 0 � s < �; (3.15)where F (x) = [f(x+ k)℄k2�.Note that (3.15) says exa
tly thatx� = Xk2� y�(k) f(x+ k); 0 � j�j < �:By (3.14), the 
oeÆ
ients y�(k) have the form of ve
tors of polynomials y�(x)evaluated at latti
e points k 2 �.Remark 3.13. The ve
tor v0 is a left 1-eigenve
tor for the matrix � = 1mP 
k,and f̂(0) is a right 1-eigenve
tor for this same matrix. In most appli
ations, thematrix � is 
hosen so that 1 is a simple eigenvalue (in parti
ular, this is a ne
essary
ondition for f to have linearly independent translates). In this 
ase v0 and f̂(0)are unique up to s
ale and automati
ally satisfy the 
ondition v0f̂(0) 6= 0. Inparti
ular, in the single-fun
tion setting v0 and f̂(0) are both nonzero s
alars, sotheir produ
t is automati
ally nonzero. }Remark 3.14. It is proved in [CHM98, Theorem 4.8℄ that the 
ondition thatY[s℄(0) = A[s℄ Y[s℄(0)L; for 0 � s < �; (3.16)
an be restated as:y[s℄(`) = A[s℄ Xk2� y[s℄(k) 
Ak�`; for 0 � s < � and ` 2 �; (3.17)and that the set of in�nitely many 
onditions on the ve
tors v� given by (3.17) isin fa
t equivalent to the following �nite system of �nite linear equations:v[s℄ = Xk2�d sXt=0Q[s;t℄(k)A[t℄ v[t℄ 
k; for 0 � s < � and d 2 D; (3.18)where �d = A(�) � d. Note that this system is in blo
k triangular form in thevariables v[t℄. The 
oeÆ
ients Q[s;t℄(k), A[t℄, and 
k are all known expli
itly. It 
anbe shown that in the single-fun
tion setting (r = 1), the system (3.18) is solvableif and only ifXk2� 
k = m and Xk2�d1 k�
k = � � � = Xk2�dm k�
k for 0 � j�j < �;where D = fd1; : : : ; dmg is a listing of the digits in some order. Note that thissystem of equations is determined by the 
oeÆ
ients 
k and the sublatti
e A(�),and does not depend dire
tly on the dilation matrix A, in 
ontrast to (3.16), (3.17),or (3.18). }



32 3. GENERALIZED SELF-SIMILARITY3.5. Invariant Subspa
esWe will now show that the assumption of higher-order a

ura
y 
onditions onthe 
oeÆ
ients 
k imposes 
onsiderable stru
ture on the matri
es Td. Spe
i�
ally,we will show that these matri
es share 
ommon eigenvalues and invariant subspa
es.Assume that the suÆ
ient 
onditions for a

ura
y � given in Statement II ofTheorem 3.12 are satis�ed. In parti
ular, v0 6= 0, and therefore the ve
tor ofpolynomials y� de�ned by (3.14) has degree j�j. The �nite row ve
torse� = (y�(k))k2
 2 (C1�r)1�
; 0 � j�j < �; (3.19)formed by restri
ting the in�nite row ve
tors (y�(k))k2� to 
omponents whoseindi
es lie in 
 will play an important role, as will their spansUs = spanfe� : 0 � j�j � sg:Example 3.15. In the one-dimensional setting n = 1 there is only one multi-index � for ea
h degree s, namely � = s, so Us = spanfe0; : : : ; esg. The ve
tor ofpolynomials ys : Rn ! C1�r de�ned by (3.14) has the formys(x) = sXt=0 (�1)s�t�st� vt xs�t;and sin
e 
 = f0; : : : ; N � 1g, we havees = (ys(k))k2
 = (ys(0); : : : ; ys(N � 1)):In parti
ular, e0 = (v0; : : : ; v0).Now further restri
t to the single-fun
tion setting r = 1. In this 
ase, ysis a s
alar -valued polynomial of degree s, and es is the row ve
tor of length Nwhose 
omponents are the evaluations of the polynomial ys at the integers k =0; : : : ; N � 1. In parti
ular, after res
aling f by an appropriate 
onstant, we 
antake e0 = (1; : : : ; 1). Sin
e es = (ys(0); : : : ; ys(N � 1)) and ys is a polynomial ofdegree s, it follows that the spa
e Us = spanfe0; : : : ; esg 
onsists of the ve
tors ofevaluations of all polynomials of degree at most s at the points 0; : : : ; N � 1. Thatis, if we letPs = fu : R! C : u = 0 or u is a polynomial with deg(u) � sg;then Us = f(u(0); : : : ; u(N � 1)) : u 2 Psg:Thus, while fe0; : : : ; esg is a natural basis for Us in the 
ontext of the a

ura
y
onditions presented in Se
tion 3.4, another natural basis for Us is fw0; : : : ; wsg,where wt = (0t; 1t; : : : ; (N � 1)t):Indeed, this basis often impli
itly appears in papers dealing with a

ura
y of s
al-ing fun
tions in the one-dimensional, single-fun
tion setting. To 
ompare these twobases, note that es = (ys(0); : : : ; ys(N � 1)) where ys that polynomial su
h thatPk2Z ys(k)f(x+ k) = xs, while ws = (qs(0); : : : ; qs(N � 1)) where qs is the mono-mial qs(x) = xs. In this 
ase Pk2Z qs(k)f(x+ k) is a polynomial in x of degree s,but in general it is not the polynomial xs.



3.5. INVARIANT SUBSPACES 33However, while both fe0; : : : ; esg and fw0; : : : ; wsg are natural bases for Us inthe single-fun
tion setting, only the basis fe0; : : : ; esg has a dire
t generalization tothe multi-fun
tion setting. This is be
ause if r > 1 and we letPs;r = fu : R! C1�r : u = 0 or u is a ve
tor polynomial with deg(u) � sg;then Us ( f(u(0); : : : ; u(N � 1)) : u 2 Ps;rg; (3.20)be
ause Us has dimension s + 1 while the set on the right-hand side of (3.20) hasdimension r(s+1). In other words, when r > 1 the spa
e Us 
ontains only some ofthe possible ve
tors of evaluations of polynomials of degree at most s. Hen
e, in themulti-fun
tion setting, the ve
tors e� must be 
omputed in order to 
ompute thespa
e Us. Analogues of these remarks 
arry over to the higher-dimensional settingas well. Fortunately, on
e the a

ura
y 
onditions in (3.18) are solved, the ve
torse� are easily and immediately 
omputable from (3.19) and (3.14). }We observe next that the ve
tors e� are linearly independent if a solution to there�nement equation does exist. We stipulate that whenever we 
onsider a 
olle
tionsu
h as fe� : 0 � j�j < �g, we assume that the ve
tors in this set are ordered fromlowest degree to highest, with the ordering within degree �xed but unimportant.Lemma 3.16. Assume that there exists a 
ompa
tly supported distributional so-lution f to the re�nement equation (1.1), and that Statement (II) of Theorem 3.12holds. Then the ve
tors e� de�ned in (3.19) are linearly independent.Proof. Theorem 3.12 implies that x� =Pk2� y�(k) f(x+k). If x 2 QÆ, thenLemma 2.9 implies that x+k 2 supp(f) 
an hold only when k 2 
. Hen
e, if thereexist s
alars h� su
h that P0�j�j<� h� e� = 0, then for x 2 QÆ we have0 = X0�j�j<�h� e��f(x) = X0�j�j<�h�Xk2
 y�(k) f(x+ k) = X0�j�j<�h� x�:Sin
e QÆ is nonempty, this implies h� = 0 for every �. �The next theorem states that the assumption of the higher-order a

ura
y 
on-ditions given by the equivalent equations (3.16){(3.18) implies that the matri
esTd share 
ommon invariant subspa
es. This result is essentially a statement aboutthe 
oeÆ
ients 
k in the re�nement equation and does not require the assumptionthat a solution to the re�nement equation exist. By Lemma 3.16, if a 
ompa
tlysupported solution does exist, even merely in the distributional sense, then the hy-pothesis in the following theorem that the ve
tors e� are independent is redundant.Re
all that B� denotes the Hermitian, or 
onjugate transpose, of a matrix B.Theorem 3.17. Let 
 � � be a �nite set su
h that K� � Q+
. Assume thatthere exist row ve
tors fv� 2 C1�r : 0 � j�j < �g su
h that (3.18) holds. Let e�be de�ned as in (3.19), and assume that the ve
tors fe� : 0 � j�j < �g are linearlyindependent. De�neUs = spanfe� : 0 � j�j � sg � (C1�r)1�
and Es = fe�� : 0 � j�j � sg? = fv 2 (Cr�1)
�1 : e�v = 0 for 0 � j�j � sg:Then the following statements hold.



34 3. GENERALIZED SELF-SIMILARITY(a) Us is left-invariant under Td for ea
h d 2 D.(b) Es is right-invariant under Td for ea
h d 2 D.(
) Let f~e� : 0 � j�j < �g be the result of applying the Gram{S
hmidt orthog-onalization pro
edure to the system fe� : 0 � j�j < �g. Let BE be anyorthonormal basis for E��1. ThenB = f~e �� : 0 � j�j < �g [ BE (3.21)is an orthonormal basis for (Cr�1)
�1, and the matrix for Td in this basishas the blo
k form[Td℄B = 2666664 B0 0B1 . . . B��1� Cd
3777775 ; (3.22)where ea
h Bs is a �xed ds� ds matrix whose Jordan form 
oin
ides withthe Jordan form for A�1[s℄ , and where Cd = [TdjE��1 ℄BE . In parti
ular, B0is the s
alar 1.(d) �̂1(fTdjE0gd2D) = max��(A�1); �̂1(fTdjE��1gd2D)	.Proof. (a) Let P
 be the proje
tion matrix de�ned byP
 = [Æj;kIr ℄j2�;k2
;where Ir is the r � r identity matrix and Æj;k = 1 if j = k and 0 otherwise.Then e� = (y�(k))k2� P
. Therefore, if we form the 
olumn ve
tor [e�℄j�j=s whose
omponents are the row ve
tors e�, then we 
an write[e�℄j�j=s = (y[s℄(k))k2� P
 = Y[s℄(0)P
: (3.23)Combining this with the fa
t thatP
 Td = [
Ak�`+d℄k2�;`2
; (3.24)we 
ompute that[e�Td℄j�j=s = Y[s℄(0)P
 Td by (3.23)= (y[s℄(k))k2� [
Ak�`+d℄k2�;`2
 by (3.24)= �Xk2� y[s℄(k) 
Ak�`+d�`2
= �A�1[s℄ y[s℄(`� d)�`2
 by (3.17)= A�1[s℄ Y[s℄(�d)P
 by de�nition of Y[s℄= A�1[s℄ sXt=0 Q[s;t℄(�d)Y[t℄(0)P
 by Lemma 3.11= A�1[s℄ sXt=0 Q[s;t℄(�d) [e� ℄j�j=t by (3.23):



3.5. INVARIANT SUBSPACES 35Therefore e�Td 2 spanfe� : j�j � sg = Us for ea
h j�j = s, so Us is left-invariantunder Td.(b) Follows immediately from (a).(
) Note that B0 = fe�� : 0 � j�j < �g [ BEis a basis for (Cr�1)
�1, and that the basis B is obtained from B0 via Gram{S
hmidt. Using the 
omputations from part (a) and the fa
t that Q[s;s℄(y) = I , wehave for ea
h 0 � s < � that[e�Td℄j�j=s = A�1[s℄ sXt=0 Q[s;t℄(�d) [e� ℄j�j=t= A�1[s℄ [e�℄j�j=s + A�1[s℄ s�1Xt=0 Q[s;t℄(�d) [e� ℄j�j=t: (3.25)As a 
onsequen
e, the matrix for T �d in the basis B0 has the form[T �d ℄B0 = 266664 (A�1[0℄ )� �. . . (A�1[��1℄)�0 ~C�d 377775for some matrix ~Cd. Re
all that the Gram{S
hmidt orthogonalization of ve
torsw1; : : : ; w` preserves spanfw1; : : : ; wkg for ea
h k = 1; : : : ; `. Therefore,[T �d ℄B = 26664 B�0 �. . . B���10 C�d 37775where Bs is a ds�ds matrix obtained from A�1[s℄ via a similarity transformation, andlikewise Cd is obtained from ~Cd via a similarity transformation. In parti
ular, B0 isthe s
alar 1 be
ause A[0℄ is the s
alar 1. Finally, sin
e B is an orthonormal basis, wehave that [Td℄B = ([T �d ℄B)�, so [Td℄B has the form given in (3.22). It therefore onlyremains to note that Cd = [TdjE��1 ℄BE simply be
ause B = f~e �� : 0 � j�j < �g [ BEand be
ause E��1 is right-invariant under Td.(d) Be
ause the spa
es Es are nested,Bs = f~e �� : s < j�j < �g [ BEis an orthonormal basis for Es. It therefore follows from (3.22) that [TdjEs ℄Bsis that bottom right submatrix of the right-side of (3.22) whi
h has the blo
ksBs+1; : : : ; B��1; Cd on the diagonal. In parti
ular, the operators TdjE0 are simulta-neously blo
k lower-triangularized in the basis B0, with the blo
ks B1; : : : ; B��1; Cdappearing along the diagonal of [TdjE0 ℄B0 . It therefore follows easily from (2.26)that �̂1(fTdjE0gd2D) = max��(B1); : : : ; �(B��1); �̂1(fCdgd2D)	:



36 3. GENERALIZED SELF-SIMILARITYHowever, the eigenvalues of Bs and A�1[s℄ 
oin
ide, and by [CHM98, Lemma 4.2℄,the spe
trum of A�1[s℄ is f��� : j�j = sg, where � = (�1; : : : ; �n)T is the ve
tor ofall eigenvalues of A. Sin
e j�ij > 1 for ea
h i, we therefore havemaxf�(B1); : : : ; �(B��1)g = maxfj���j : 1 � j�j � �� 1g= maxfj��11 j; : : : ; j��1n jg= �(A�1):The result then follows sin
e Cd = [TdjE��1 ℄BE . �Note from (3.25) that for the digit d = 0, we have[e�Td℄j�j=s = A�1[s℄ [e�℄j�j=s;sin
e Q[s;t℄(0) = 0 when t < s. If A is diagonalizable, then it is possible to makea 
hange of basis so that A�1[s℄ = diag(��� : j�j = s). Hen
e, in this basis theve
tors e� are left ���-eigenve
tors of T0. However, even in this basis they are noteigenve
tors of those Td with d 6= 0.3.6. Ne
essary Conditions for the Existen
e of Continuous Ve
torS
aling Fun
tionsWe saw in Theorem 3.4 that if the 
oeÆ
ients 
k of the re�nement equation sat-isfy the 
onditions for minimal a

ura
y, then a suÆ
ient 
ondition for the existen
eof a 
ontinuous ve
tor s
aling fun
tion is that �̂(fTdjE0gd2D) < 1.The matri
es Td = [
Ai�j+d℄i;j2
 and the subspa
e E0 = (e�0)? depend im-pli
itly on the 
hoi
e of 
 � �. In this se
tion we will show that if the minimala

ura
y 
onditions are satis�ed and if in addition the latti
e translates of f are\stable" and the set 
 is \admissible," then the 
ondition �̂(fTdjE0gd2D) < 1 isalso ne
essary for the existen
e of a 
ontinuous ve
tor s
aling fun
tion.The de�nition of \stable translates" that we shall use is as follows.Definition 3.18. A ve
tor fun
tion g 2 L1(Rn;Cr) is said to have L1-stabletranslates if there exist 
onstants C1, C2 > 0 su
h thatC1 supk2� maxi jak;ij � 



Xk2� ak g(x+ k)



L1 � C2 supk2� maxi jak;ijfor all �nitely supported sequen
es of row ve
tors fakgk2�, where we write ak =(ak;1; : : : ; ak;r) 2 C1�r for k 2 �. }Using the fa
t that all norms on a �nite-dimensional ve
tor spa
e are equivalent,it is easy to see that the de�nition of L1-stability 
an be re
ast into the followingform.Lemma 3.19. Let k � k be any norm on Cr�r. Then a ve
tor fun
tion g 2L1(Rn;Cr) has L1-stable translates if and only if there exist 
onstants C1, C2 > 0su
h that C1 supk2� kBkk � 



Xk2�Bk g(x+ k)



L1 � C2 supk2� kBkk



3.6. NECESSARY CONDITIONS 37for all �nitely supported sequen
es of matri
es fBkgk2�, where Bk 2 Cr�r fork 2 �.The notion of \admissible set" that we shall use is as follows.Definition 3.20. Let H be a �nite subset of �. Then we say that a nonempty,�nite set 
 � � is H-admissible ifwH(
) \ � � 
;where wH(
) = A�1(
 +H) is as de�ned in (2.6). }The notion of admissibility arises naturally in the study of re�nement equations.For example, if 
 is �-admissible then the spa
e`(
) = fa = [ak℄k2� 2 (Cr�1)��1 : supp(a) � 
gis right-invariant under the in�nite matrix L = [
Ai�j ℄i;j2� whi
h appears inthe statement of Theorem 3.12, and the right-eigenve
tors of L 
orresponding tononzero eigenvalues are ne
essarily elements of `(
). The eigenvalues and eigenve
-tors of L are intimately tied to the a

ura
y of the ve
tor s
aling fun
tion, a topi
whi
h is explored in more detail in [CHM00℄.In this se
tion, we will need to 
onsider sets 
 � � whi
h are admissible withrespe
t to the set �0 = ��D = fk � d : k 2 �; d 2 Dg:Sin
e we have assumed that 0 2 D, it follows that � � �0. The set �0 has alreadymade an appearan
e, in parti
ular, we showed in Proposition 2.7 that the set 
�0 =K�0 \ � satis�es K� � Q + 
�0 . It is easy to prove that this set 
�0 is both �-admissible and �0-admissible. For 
larity, we shall from now on write out thesymbols ��D instead of using the abbreviation �0.For later use, we remark that if 
 � �, then
 � � is (��D)-admissible () A�1(� + 
�D) \ � � 
: (3.26)Further, by [CHM00, Lemma 3℄, every �nite subset of � is 
ontained in a �nite(��D)-admissible set.Using the above notation, we 
an now formulate the major result of this se
tionas follows.Theorem 3.21. Let f be a 
ontinuous, 
ompa
tly supported solution to there�nement equation (1.1) su
h that f has L1-stable translates. Assume that thehypotheses of Lemma 3.2(a) are satis�ed, i.e., there exists a row ve
tor u0 2 C1�rsu
h that u0f̂(0) 6= 0 and u0 = Xk2�d u0
k for d 2 D:If 
 � � is any (��D)-admissible set su
h that K� � Q+
, then �̂(fTdjE0gd2D) <1. We will break the proof of Theorem 3.21 into two steps. First, we will provethat the existen
e of a 
ontinuous solution to the re�nement equation with stabletranslates implies that a matrix-valued version of the 
as
ade algorithm 
onvergespointwise everywhere when a spe
i�
 starting fun
tion is used. Se
ond, we will



38 3. GENERALIZED SELF-SIMILARITYprove that the 
onvergen
e of this version of the 
as
ade algorithm ne
essarilyimplies that the JSR in question is less than 1. Ea
h of these stages is of interestin itself. Moreover, the �rst stage requires the assumption of stable translates butdoes not require any admissibility assumptions on the set 
, while the se
ond stagerequires that the set 
 be (� � D)-admissible but does not require that f havestable translates.The matrix version of the 
as
ade algorithm referred to above is de�ned asfollows. Let ~Q be the subset of Q 
onstru
ted in Proposition 2.10. This set ~Q hasthe property that the �-translates of ~Q 
over Rn without overlaps. Further, ~Q
ontains a unique element 
0 of �, i.e.,~Q \ � = f
0g:De�ne '(0)(x) = � ~Q�
0(x) � Ir; (3.27)where Ir is the r � r identity matrix, and let '(i) 2 L1(Rn;Cr�r) be obtained byiterating the re�nement operator S, i.e.,'(i+1)(x) = S'(i)(x) = Xk2� 
k '(i)(Ax� k): (3.28)Note that we have abused notation somewhat in (3.28), sin
e the re�nement op-erator S is formally de�ned to a
t on ve
tor-valued fun
tions, while we are hereapplying it to matrix-valued fun
tions. However, the abuse is slight and the in-tended meaning is 
lear. We will perform similar abuses throughout this se
tionwithout further 
omment.Suppose now that the 
oeÆ
ients 
k of the re�nement equation satisfy the
onditions for minimal a

ura
y. Spe
i�
ally, these 
onditions are the hypothesesof Lemma 3.2(a). In this 
ase, there exists a row ve
tor u0 2 C1�r su
h thatPk2� u0f(x+k) = 1. We will show in the following theorem that if the translates off are L1-stable, then the fun
tions '(i) obtained via the matrix 
as
ade algorithm
onverge both uniformly (i.e., in L1-norm) and pointwise everywhere to the matrix-valued fun
tion f(x)u0 (note that this matrix has rank one for ea
h x). It will beimportant for the se
ond stage of the proof of Theorem 3.21 that this 
onvergen
eis pointwise everywhere, and not merely almost everywhere. In this �rst stage ofthe proof of Theorem 3.21 we do not require any admissibility assumptions on theset 
.Theorem 3.22. Let f be a 
ontinuous, 
ompa
tly supported solution to there�nement equation (1.1) su
h that f has L1-stable translates. Assume that thehypotheses of Lemma 3.2(a) are satis�ed, i.e., there exists u0 2 C1�r su
h thatu0f̂(0) 6= 0 and u0 =Pk2�d u0
k for d 2 D. Let '(0) be the 
hara
teristi
 fun
tionof the unique translate of ~Q that 
ontains the origin, and let '(i) be the ith iterationof the 
as
ade algorithm, 
f. equations (3.27) and (3.28). Then '(i) 
onvergesuniformly and pointwise everywhere to f(x)u0 as i!1:Proof. In order to distinguish between the norm of a ve
tor and the norm ofa fun
tion, we shall in this proof use the symbol j � jp to denote the `p-norm on a�nite-dimensional spa
e su
h as Rn or Cr, and use k � kLp to denote the norm ona fun
tion spa
e su
h as Lp(Rn;Cr).



3.6. NECESSARY CONDITIONS 39By Lemma 3.2(a), f has a

ura
y � � 1, and, in parti
ular,Xk2� u0f(x+ k) = 1: (3.29)Equality holds everywhere in this equation sin
e f is 
ontinuous. For ea
h i � 0,de�ne g(i) 2 L1(Rn;Cr) byg(i)(x) = Xk2� f(A�ik)u0f(Aix� k): (3.30)We 
laim that g(i) 
onverges both uniformly and pointwise everywhere to f .To see this, 
hoose any " > 0. Then sin
e f is 
ontinuous and is supported inthe 
ompa
t set K�, it is uniformly 
ontinuous. Hen
e, there exists a Æ > 0 su
hthat jx� yj1 < Æ =) jf(x)� f(y)j1 < ":Let i0 be su
h that diam(A�i0 (K�)) < Æ, where we measure diameter with respe
tto the `1-norm on Rn. Choose any i � i0, and de�neK(x) = fk 2 � : Aix� k 2 K�g:Note that sin
e K� � Q+
, the 
ardinality of K(x) is bounded by the 
ardinalityof 
. Further, if k 2 K(x), then x � A�ik 2 A�i(K�), so jx � A�ikj1 < Æ.Therefore, by using (3.29) and (3.30), we have for ea
h x 2 Rn thatjf(x)� g(i)(x)j1 = ����f(x)Xk2� u0f(Aix� k) � Xk2� f(A�ik)u0f(Aix� k)����1= ����Xk2��f(x)� f(A�ik)�u0f(Aix� k)����1� Xk2K(x)��f(x)� f(A�ik)��1 ju0f(Aix� k)j� Xk2K(x) " ju0j1 jf(Aix� k)j1� " ju0j1 kfkL1#
: (3.31)It follows immediately that g(i) 
onverges both uniformly and pointwise everywhereto f , 
ompleting the proof of our 
laim.Next, an easy indu
tion shows thatf(x) = Xk2�'(i)(A�ik) f(Aix� k)and '(i)(x) = Xk2�'(i)(A�ik)'(0)(Aix� k)for every i � 0. In parti
ular, '(i) is a \step fun
tion" that is 
onstant on ea
h\small tile" A�i( ~Q+k). Sin
e these small tiles 
overRn without overlaps as k variesthrough �, and sin
e f(x)u0 is uniformly 
ontinuous, to show that '(i)(x)! f(x)u0uniformly and pointwise everywhere it suÆ
es to prove thatsupk2� ��'(i)(A�ik)� f(A�ik)u0��1 ! 0:



40 3. GENERALIZED SELF-SIMILARITYHowever, we have by hypothesis that f has L1-stable translates, so it follows fromLemma 3.19 with Bk = '(i)(A�ik)� f(A�ik)u0 that, for some 
onstant C > 0,supk2� ��'(i)(A�ik)� f(A�ik)u0��1� C 



Xk2� �'(i)(A�ik)� f(A�ik)u0� f(Aix� k)



L1= C kf � g(i)kL1! 0: �Before presenting the se
ond stage of the proof of Theorem 3.21, we requiresome auxiliary notation and results. We shall in the remainder of this se
tion oftenen
ounter nested sets of the form
 � ~
 � ~~
 � �:When dealing with su
h sets, we will use a tilde or double-tilde to denote theanalogues for ~
 or ~~
 of obje
ts impli
itly asso
iated with 
. For example, inthe list following we show several obje
ts impli
itly asso
iated with 
 and the
orresponding 
ounterparts impli
itly asso
iated with ~
:Td = [
Ai�j+d℄i;j2
;e0 = (u0)k2
 2 (C1�r)1�
;E0 = (e�0)? � (Cr�1)
�1;�g(x) = [g(x+ k)℄k2
;
~Td = [
Ai�j+d℄i;j2~
;~e0 = (u0)k2~
 2 (C1�r)1�~
;~E0 = (e�0)? � (Cr�1)~
�1;~�g(x) = [g(x+ k)℄k2~
;and so forth. The need for these larger sets ~
 and ~~
 arises be
ause we will beapplying the 
as
ade algorithms to fun
tions that are 
ompa
tly supported butwhi
h need not be supported within the attra
tor K�. The next lemma allows usto 
ontrol the supports of the iterates of the 
as
ade algorithm by observing thatthese supports must 
onverge in Hausdor� metri
 to K�. For this purpose, re
allthe notation introdu
ed in Se
tion 2.2 in asso
iation with the Hausdor� metri
,spe
i�
ally the de�nition from (2.4) thatB" = fx 2 Rn : dist(x;B) < "g:Lemma 3.23. Let 
 � ~
 � � be su
h that(i) K� � Q+
,(ii) ~
 is (��D)-admissible.If g is any fun
tion su
h that supp(g) � Q + ~
, then supp(Sg) � Q + ~
 as well.Further, given " > 0 there exists i0 > 0 su
h that supp(Sig) � (Q + 
)" for alli � i0.



3.6. NECESSARY CONDITIONS 41Proof. Suppose that Sg(x) 6= 0. Sin
e Sg(x) = Pk2� 
k g(Ax � k), theremust exist some k 2 � su
h that Ax � k 2 Q + ~
. Hen
e Ax = y + k + ` forsome y 2 Q and ` 2 ~
. The point k + ` must lie in some 
oset �d = A(�) � d,so k + ` = Aj + d for some j 2 � and d 2 D. Sin
e ~
 is (� �D)-admissible, wetherefore have j = A�1(k + `� d) 2 A�1(� + ~
�D) \ � � ~
:Note that A�1(y+d) 2 Q sin
e y 2 Q and d 2 D and Q is the attra
tor Q = KD =A�1(KD +D). Therefore,x = A�1(y + k + `) = A�1(y + d) + A�1(k + `� d) 2 Q+ ~
:Sin
e Q+ ~
 is 
ompa
t, we 
on
lude that supp(Sg) � Q+ ~
.Now let " > 0 be given. Sin
e K� is the attra
tor of the IFS generated byfwkgk2�, for any nonempty 
ompa
t set B � Rn the sequen
e of sets wi�(B) must
onverge to K� in the Hausdor� metri
 as i ! 1. In parti
ular, for all i largeenough we must havesupp(Sig) � wi�(supp(g)) � (K�)" � (Q+
)": �Next, we observe that by 
hoosing a 
onvenient ordering of ~
, we 
an pla
e thelarge matrix ~Td into a blo
k diagonal form in whi
h the smaller matrix Td appearson the diagonal.Lemma 3.24. Let 
 � ~
 � � be su
h that 
 is (� �D)-admissible. Let ~
 beordered so that the elements of 
 pre
ede the elements of ~
 n 
. Then there existmatri
es Bd, Cd su
h that ~Td = [
Ai�j+d℄i;j2~
 has the blo
k form~Td = " Td Bd0 Cd # :Proof. Sin
e Td = [
Ai�j+d℄i;j2
 and we have 
hosen an ordering of ~
 inwhi
h the elements of 
 are listed �rst, we 
an 
ertainly write ~Td in the blo
k form~Td = " Td BdAd Cd # :Thus, our goal is show that Ad = [
Ai�j+d℄i2~
n
; j2
 is the zero matrix. Therefore,let j 2 
 be �xed, and suppose that 
Ai�j+d 6= 0 for some i 2 �. Then we musthave Ai� j + d 2 �. Sin
e 
 is (��D)-admissible, it therefore follows thati 2 A�1(� + j � d) \ � � A�1(� + 
�D) \ � � 
;whi
h proves that Ad = 0. �The following result is similar in nature to Proposition 2.13. The restri
tionin Proposition 2.13 that the support of g be 
ontained in the attra
tor K� is hererelaxed to requiring only that supp(g) be 
ontained in some possibly larger setQ+~
.The 
ost is that additional restri
tions must be pla
ed on ~
, and furthermore, the
on
lusion holds only for large enough iterations instead of for all iterations.Proposition 3.25. Let 
 � ~
 � � be su
h that



42 3. GENERALIZED SELF-SIMILARITY(i) K� � Q+
,(ii) 
 and ~
 are both (��D)-admissible, and(iii) (Q+
)" � Q+ ~
.Let g : Rn ! Cr be any fun
tion su
h that supp(g) � Q + ~
. Then there existsi0 > 0 su
h that if x 2 Q and x = :"1"2 � � � is any A-nary expansion of x, then8 i � i0; ~�Sig(x) = ~T"1 � � � ~T"i ~�g(yi); (3.32)where yi = :"i+1"i+2 � � � 2 Q:Consequently, 8 i � i0; ~�Sig = ~T i ~�g:Proof. Let ~~
 be �nite but large enough that we have both~
 � ~~
 � � and Q+ ~
 � (Q+ ~~
)Æ:Suppose that g : Rn ! Cr satis�es supp(g) � Q + ~
. Then by Lemma 3.23 thereis an i0 > 0 su
h that supp(Sig) � (Q+
)" for all i � i0.Now 
hoose x 2 Q, and let x = :"1"2 � � � be any parti
ular A-nary expansionof x. Then y1 = :"2"3 � � � = Ax� "1 2 Q. If g(y1 + k) 6= 0 for some k 2 �, then wemust have y1 + k 2 supp(g) � Q + ~
 � (Q + ~~
)Æ. Lemma 2.9, applied to the set~~
 instead of 
, therefore implies that k 2 ~~
. A 
al
ulation identi
al to the one in(2.23), ex
ept with 
 repla
ed by ~~
, shows that~~�Sg(x) = ~~T"1 ~~�g(y1): (3.33)By Lemma 3.23, we have that supp(Sg) � Q+ ~
, so we 
an iterate the 
al
ulationin (3.33) to obtain ~~�Sig(x) = ~~T"1 � � � ~~T"i ~~�g(yi): (3.34)Choose now any ordering of ~~
 su
h that the elements of ~
 pre
ede the elementsof ~~
 n ~
. Then Lemma 3.24, applied to the sets ~
 � ~~
 instead of 
 � ~
, impliesthat ~~Td has the blo
k form ~~Td = " ~Td ~Bd0 ~Cd # (3.35)for some matri
es ~Bd and ~Cd. We 
laim that the folding ~~�Sig(y) = [Sig(y+k)℄k2~~
similarly has the blo
k form~~�Sig(y) = " ~�Sig(y)0 # ; for y 2 Q and i � i0: (3.36)To show this we simply have to show that if y 2 Q and i � i0, then Sig(y+k) = 0 fork 2 ~~
 n ~
. However, if i � i0, then supp(Sig) � (Q+
)" � (Q+ ~
)Æ. Lemma 2.9,applied to the set ~
 instead of 
, therefore implies that if Sig(y + k) 6= 0 thenk 2 ~
. Hen
e (3.36) is valid.



3.6. NECESSARY CONDITIONS 43Finally, 
ombining (3.34), (3.35), and (3.36), we see that for i � i0," ~�Sig(x)0 # = ~~�Sig(x)= ~~T"1 � � � ~~T"i ~~�g(yi)= " ~T"1 � � � ~T"i �0 � # " ~�Sig(yi)0 #
= " ~T"1 � � � ~T"i ~�Sig(yi)0 # ;from whi
h the result follows. �Now we 
an 
omplete the se
ond stage of the proof of Theorem 3.21. Spe
i�-
ally, we show next that the pointwise 
onvergen
e of the matrix 
as
ade algorithmimplies a restri
tion on the uniform JSR. Note that this result does not require thatf have L1-stable translates.Theorem 3.26. Let f be a 
ontinuous, 
ompa
tly supported solution to the re-�nement equation (1.1). Assume that the hypotheses of Lemma 3.2(a) are satis�ed,i.e., there exists u0 2 C1�r su
h that u0f̂(0) 6= 0 and u0 =Pk2�d u0
k for d 2 D.Let 
 be any (� �D)-admissible subset of � su
h that K� � Q + 
. If the fun
-tions '(i) de�ned by (3.27) and (3.28) 
onverge pointwise everywhere to f(x)u0,then �̂(fTdjE0gd2D) < 1.Proof. By [CHM00, Lemma 4.7℄, every �nite subset of � is 
ontained in anadmissible set. Hen
e, if we �x an " > 0, then we 
an �nd a (��D)-admissible set~
 su
h that 
 � ~
 � � and (Q+
)" � (Q+ ~
)Æ:We will prove that if f"ig1i=1 is any sequen
e of digits "i 2 D, then the matrixprodu
t T"1 � � �T"i 
onverges as i ! 1 to the rank-one matrix ea
h of whose
olumns is �(f(x)u0), where x is the pointx = :"1"2 � � � = 1Xj=1A�j"j 2 Q:This will o

upy us for the majority of the proof of the theorem. From this fa
t wewill then dedu
e that �̂(fTdjE0gd2D) < 1.To begin, let a sequen
e of digits f"ig1i=1 be �xed, and set x = :"1"2 � � � 2 Q.By hypothesis, '(i)(x) ! f(x)u0 when '(0)(x) = � ~Q�
0(x) � Ir. Let �h denote thetranslation operator, i.e., �hg(x) = g(x� h). For ea
h h 2 ~
, set'(0)h (x) = ��h+
0'(0)�(x) = � ~Q+h(x) � Ir; (3.37)and de�ne'(i)h (x) = Si'(0)h (x) = Si��h+
0'(0)�(x) = �A�i(h+
0)(Si'(0))(x): (3.38)



44 3. GENERALIZED SELF-SIMILARITYNote that supp('(0)h ) � Q + h � Q + ~
 for ea
h h 2 ~
. Lemma 3.23 thereforeimplies that supp('(i)h ) � Q+ ~
 for all i, and moreover that supp('(i)h ) � (Q+
)"for all i large enough. Sin
e this is true for ea
h h in the �nite set ~
, there is somei0 su
h that 8h 2 ~
; 8 i � i0; supp('(i)h ) � (Q+
)":Now �x any parti
ular h 2 
 (not merely h 2 ~
 but spe
i�
ally h 2 
).Consider the points yi = :"i+1"i+2 � � � 2 Q:Re
all that ~Q was de�ned to have the property that the �-translates of ~Q 
over Rnwithout overlaps. Therefore, the point yi + h must lie in some unique translate of~Q. Hen
e, there exist unique points qi 2 ~Q and ki 2 � su
h thatyi + h = qi + ki: (3.39)Note that qi + ki = yi + h 2 Q+
 � (Q+ ~
)Æ:Lemma 2.9, applied to the set ~
 instead of 
, therefore implies that ki 2 ~
. Hen
e,if we let Æh;j denote the Krone
ker delta, then then folding of '(0)ki satis�es~�'(0)ki (yi) = h'(0)ki (yi + j)ij2~
 by de�nition of ~�= h� ~Q(yi + j � ki) � Irij2~
 by (3.37)= h� ~Q(qi � h+ j) � Irij2~
 by (3.39)= [Æh;j � Ir℄j2~
 by Proposition 2.10.Fix any ordering on ~
 su
h that the elements of 
 pre
ede the elements of ~
 n
.De�ne �h = [Æh;j � Ir℄j2
 and ~�h = [Æh;j � Ir ℄j2~
 = " �h0 # :That is, �h and ~�h are 
olumn ve
tors with the identity blo
k Ir appearing in \rowblo
k h" and zeros elsewhere. Multipli
ation of a matrix by �h or ~�h on the righttherefore sele
ts out \
olumn blo
k h" from that matrix. Thus, by Proposition 3.25,and equation (3.32) in parti
ular, we have for i � i0 that~�'(i)ki (x) = ~�Si'(0)ki (x) = ~T"1 � � � ~T"i ~�'(0)ki (yi) = ~T"1 � � � ~T"i ~�h (3.40)is \
olumn blo
k h" of ~T"1 � � � ~T"i . On the other hand, we have by hypothesis thatSi'(0)(x) = '(i)(x) ! f(x)u0: (3.41)Therefore, ~T"1 � � � ~T"i ~�h = ~�'(i)ki (x) by (3.40)= ~�(�A�i(ki+
0)Si'(0))(x) by (3.38)! ~�(f(x)u0);



3.6. NECESSARY CONDITIONS 45the 
on
lusion on the pre
eding line following from (3.41), the 
ontra
tivity of A�1,and the fa
t that ea
h ki lies in the �nite set ~
. Thus, \
olumn blo
k h" of ~T"1 � � � ~T"i
onverges to ~�(f(x)u0). This is true for ea
h h 2 
. However, the 
olumn blo
ksof ~T"1 � � � ~T"i are indexed by the larger set ~
, so let us examine the 
olumn blo
ks
orresponding to indi
es in 
 in more detail. Sin
e we have ordered ~
 so that theelements of 
 
ome �rst, Lemma 3.24 implies that ~Td has the blo
k form~Td = " Td Bd0 Cd #for some matri
es Bd, Cd. Consequently,~T"1 � � � ~T"i ~�h = " T"1 � � �T"i �0 � # " �h0 # = " T"1 � � �T"i�h0 # :Further, ~�(f(x)u0) = " �(f(x)u0)� # ;so we 
on
lude that T"1 � � �T"i�h ! �(f(x)u0): (3.42)Sin
e the 
olumns blo
ks of T"1 � � �T"i are indexed by 
, equation (3.42) impliesthat ea
h 
olumn blo
k of T"1 � � �T"i 
onverges to �(f(x)u0). Therefore, the produ
tT"1 � � �T"i 
onverges to to the matrix B(x) 
onsisting of 
 
olumn blo
ks ea
h equalto �(f(x)u0). That is,T"1 � � �T"i ! B(x) = ��(f(x)u0)�k2
:This matrix B(x) is rank-one be
ause ea
h 
olumn blo
k �(f(x)u0) 
onsists of rowsthat are multiples of the 1� r row ve
tor u0.Thus, we have demonstrated that T"1 � � �T"i 
onverges to a rank-one matrixfor ea
h sequen
e of digits f"ig1i=1. We will now show that this implies that(T"1 � � �T"i)jE0 
onverges to the zero matrix for ea
h su
h sequen
e of digits. Thekey ingredient is the hypothesis that the 
oeÆ
ients 
k satisfy the 
onditions forminimal a

ura
y. Be
ause of this, Theorem 3.17 implies that there exists an or-thonormal basis B for (Cr�1)
�1 su
h that ea
h matrix has in this basis the blo
kform [Td℄B = " 1 0� Cd # ;where 1 is the s
alar 1, and Cd = [TdjE0 ℄B0 is the matrix for Td restri
ted to E0 withrespe
t to an orthonormal basis B0 for E0. Consequently, working in this basis, wehave for ea
h i that [T"1 � � �T"i ℄B = " 1 0� C"1 � � �C"i # :Sin
e T"1 � � �T"i 
onverges to a rank-one matrix, the produ
t C"1 � � �C"i must there-fore 
onverge to the zero matrix as i! 1. This implies by [BW92, Thm. I℄ that�̂(fCdgd2D) < 1, and 
ompletes the proof. �Finally, the proof of Theorem 3.21 follows by 
ombining Theorems 3.22 and3.26.



46 3. GENERALIZED SELF-SIMILARITY3.7. H�older ContinuityOn
e a ve
tor s
aling fun
tion is known to be 
ontinuous, the joint spe
tralradius 
an be used to 
ompute the global H�older exponent of 
ontinuity of f .Let j � j be any norm on Rn and let k � k be any norm on Cr. A 
ontinuousfun
tion g : Rn ! Cr is H�older 
ontinuous with exponent � > 0 if there exists a
onstant K su
h that kg(x)� g(y)k � K jx � yj� for every x and y. The value of� is independent of the 
hoi
e of norms. This de�nition is global in the sense thatthe \worst" point x and the \least smooth" 
omponent gi of g will determine theglobal H�older exponent of g.Suppose that f is a 
ontinuous, 
ompa
tly supported solution to the re�nementequation (1.1). Then, by Proposition 2.13,8 d 2 D; 8x 2 wd(Q); �f(x) = Td�f(Ax� d): (3.43)As a 
onsequen
e, the subspa
eW0 = spanf�f(x)��f(y) : x; y 2 Qgis right-invariant under Td for ea
h d 2 D. Note that if f satis�es the hypothe-ses of Lemma 3.2(a), so f has a

ura
y � � 1 and W0 � E0 with E0 de�nedby (3.9). In Theorem 3.4 we saw that the 
ondition �̂1(fTdjE0gd2D) < 1, withappropriate additional hypotheses, is a suÆ
ient 
ondition for the existen
e of a
ontinuous ve
tor s
aling fun
tion f . The following result shows that the 
ondition�̂1(fTdjW0gd2D) < 1 is a ne
essary 
ondition for the existen
e of a 
ontinuous ve
-tor s
aling fun
tion, and also shows that the value of �̂1(fTdjW0gd2D) bounds thevalue of �sup = supf� : f is H�older 
ontinuous with exponent �g:This gives a ne
essary 
ondition for the existen
e of a 
ontinuous ve
tor s
alingfun
tion that is 
omplementary to the ne
essary 
onditions obtained in the pre
ed-ing se
tion. In parti
ular, this result does not require any information on whetherthe 
as
ade algorithm 
onverges, or whether f has stable translates. On the otherhand, this 
ondition is largely of theoreti
al value, be
ause the spa
e W0 is usuallydiÆ
ult to determine expli
itly ex
ept in 
ase of small numbers of 
oeÆ
ients in there�nement equation. On the other hand, in the one-dimensional, single-fun
tionsetting with minimal a

ura
y, it is known that W0 = E0 if and only if f has in-dependent translates [Sun91℄, 
ompare also [Hei94℄. It would be interesting toknow if su
h a 
hara
terization 
an also be proved in the multidimensional setting.The spe
tral radius of A�1 will play a role in the following result. Note thatA�1 is 
ontra
tive sin
e A is expansive, and therefore �(A�1) < 1.Proposition 3.27. Let 
 � � be a �nite set su
h that K� � Q+ 
. If thereexists a 
ontinuous, 
ompa
tly supported solution f : Rn ! Cr to the re�nementequation (1.1), then �̂1(fTdjW0gd2D) < 1 and�sup � log� �̂1(fTdjW0gd2D);where � = �(A�1).Proof. Choose � so that � < � < 1. Then there exists a norm j � j on Rn su
hthat the indu
ed operator norm of A�1 satis�es � � jA�1j < � < 1. Let k �k be any
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�1. Choose any produ
t � = T"1 � � �T"` , where "1; : : : ; "` 2 D,and let � be any eigenvalue of �jW0 . The spa
eU� = fw 2 W0 : (�� �)kw = 0 for some kgis right-invariant under �. By standard Jordan te
hniques, there exists a subspa
eZ that is also right-invariant under � and satis�es U��Z =W0. Sin
e the span ofa set of ve
tors is the smallest subspa
e 
ontaining those ve
tors, there must existsome x, y 2 Q su
h that �f(x)��f(y) = u�+z = w with 0 6= u� 2 U� and z 2 Z.Using Jordan arguments again, as in [CH94, Lemma 3℄, there exists a 
onstantC > 0 su
h that k�kwk � Cj�jk all k > 0:Let x = :x1x2 � � � and y = :y1y2 � � � be A-nary expansions of x and y. De�ne pointsXk = :"1 � � � "` � � � "1 � � � "`x1x2 � � � and Yk = :"1 � � � "` � � � "1 � � � "`y1y2 � � �in Q, where the sequen
e "1 � � � "` is repeated k times. Then, using (3.43), we havek�f(Xk)��f(Yk)k = k�k�f(x)��k�f(y)k = k�kwk � Cj�jk (3.44)for ea
h k > 0. Sin
e f is 
ontinuous and jXk�Ykj ! 0 as k !1, it follows that wemust have j�j < 1. We therefore 
on
lude from (2.26) that �̂1(fTdjW0gd2D) � 1.However, (3.44) also implies that every produ
t (T"1 � � �T"`)jW0 must 
onverge tozero as `!1, and therefore we must in fa
t have �̂1(fTdjW0gd2D) < 1.Next we will �nd an upper bound for �sup. By de�nition, if f has H�olderexponent � then there exists a K su
h thatk�f(Xk)��f(Yk)k � K jXk � Ykj�:However, jXk � Ykj = jA�`k(x� y)j � �`k jx� yj;so C j�jk � k�f(Xk)��f(Yk)k � K jXk � Ykj� � K jx� yj� ��`k:Therefore, for ea
h k > 0 we havej�j1=` � �K jx� yj�C �1=`k ��:Letting k !1, we 
on
lude that j�j1=` � ��. Sin
e this is true for every eigenvalue� of every produ
t � of length `, it follows from (2.26) that �̂1(fTdjW0gd2D) � ��.As this is true for every � > �, we must have �̂1(fTdjW0gd2D) � ��, and therefore� � log� �̂1(fTdjW0gd2D). �





CHAPTER 4Multiresolution Analysis4.1. Multiresolution AnalysisIn this se
tion we will give the de�nition and basi
 properties of multiresolutionanalyses of arbitrary multipli
ity with respe
t to an arbitrary dilation matrix.Definition 4.1. A multiresolution analysis (MRA) of multipli
ity r asso
iatedwith a dilation matrix A is a sequen
e of 
losed subspa
es fVjgj2Z of L2(Rn) whi
hsatisfy:(P1) Vj � Vj+1 for ea
h j 2 Z,(P2) g(x) 2 Vj () g(Ax) 2 Vj+1 for ea
h j 2 Z,(P3) Tj2ZVj = f0g,(P4) Sj2ZVj is dense in L2(Rn), and(P5) there exist fun
tions '1; : : : ; 'r 2 L2(Rn) su
h that the 
olle
tion of lat-ti
e translates f'i(x� k)gk2�; i=1;:::;r (4.1)forms an orthonormal basis for V0.If these 
onditions are satis�ed, then the ve
tor fun
tion ' = ('1; : : : ; 'r)T isreferred to as a ve
tor s
aling fun
tion for the MRA. }The de�nition of multiresolution analysis 
an be generalized to allow the 
ol-le
tion of latti
e translates of the fun
tions 'i to form merely a Riesz basis insteadof an orthonormal basis for V0. This leads then to biorthogonal wavelet basesfor L2(Rn). Sin
e we are interested mostly in orthonormal wavelet bases in thismanus
ript, we will not 
onsider this generalization.The usual te
hnique for 
onstru
ting a multiresolution analysis is to start froma ve
tor fun
tion ' = ('1; : : : ; 'r)T su
h that f'i(x � k)gk2�; i=1;:::;r is an or-thonormal system in L2(Rn), and then to 
onstru
t the subspa
es Vj � L2(Rn)appropriately. This is made pre
ise in the following de�nition. For simpli
ity, weshall from now on write that ' has orthonormal latti
e translates when we meanto say that f'i(x� k)gk2�; i=1;:::;r is an orthonormal system in L2(Rn).Definition 4.2. Assume that ' 2 L2(Rn;Cr) has orthonormal latti
e trans-lates. Let V0 be the 
losed linear span of the translates of the 
omponent fun
tions'i, i.e., V0 = spanf'i(x� k)gk2�; i=1;:::;r: (4.2)49



50 4. MULTIRESOLUTION ANALYSISThen, for ea
h j 2 Z, de�ne Vj to be the set of all dilations of fun
tions in V0 byAj , i.e., Vj = fg(Ajx) : g 2 V0g: (4.3)If fVjgj2Z de�ned in this way forms a multiresolution analysis for L2(Rn) then wesay that it is the MRA generated by '. }Example 4.3. In one dimension, the box fun
tion ' = �[0;1) generates a mul-tiresolution analysis for L2(R). This MRA is usually referred to as the Haar mul-tiresolution analysis, be
ause the wavelet basis it determines is the 
lassi
al Haarsystem f2n=2 (2nx� k)gn;k2Z, where  = �[0;1=2) � �[1=2;1).Gr�o
henig and Mady
h [GM92℄ proved that there is a Haar-like multiresolutionanalysis asso
iated to ea
h 
hoi
e of dilation matrix A and digit set D for whi
h theattra
tor Q = KD is a tile (whi
h is the standing assumption of this manus
ript).In parti
ular, they proved that if Q is a tile then the s
alar-valued fun
tion �Qgenerates a multiresolution analysis of L2(Rn) of multipli
ity 1. By extension ofthe one-dimensional terminology, this MRA is 
alled the Haar MRA asso
iated withA and D. Note that the fa
t that f�Q(x � k)gk2� forms an orthonormal basis forV0 is a restatement of the assumption that the latti
e translates of the tile Q haveoverlaps of measure zero. Further, �Q is re�nable be
ause Q is self-similar andbe
ause the latti
e translates of Q have overlaps of measure zero. }We will 
hara
terize those ' whi
h generate multiresolution analyses in Theo-rem 4.4, below. To motivate this result, note that property (P2) is a
hieved triviallywhen Vj is de�ned by (4.3). Moreover, property (P5) is simply a statement thatlatti
e translates of ' are orthonormal. We will see in the proof of Theorem 4.4that the fa
t that ' has orthonormal latti
e translates implies that property (P3)is also automati
ally satis�ed. Thus, the main problem in determining whether 'generates a multiresolution analysis is the question of when properties (P1) and(P4) are satis�ed. One ne
essary requirement for (P1) is 
lear. If ' does generatea multiresolution analysis, then (P1) implies that 'i 2 V0 � V1 for i = 1; : : : ; r.Sin
e (P2) and (P5) together imply that fm1=2 'j(Ax � k)gk2�; j=1;:::;r forms anorthonormal basis for V1, ea
h fun
tion 'i must therefore equal some (possiblyin�nite) linear 
ombination of the fun
tions 'j(Ax � k). Consequently, the ve
torfun
tion ' must satisfy a re�nement equation of the form'(x) = Xk2� 
k '(Ax � k) (4.4)for some 
hoi
e of r � r matri
es 
k. We will only 
onsider the 
ase where thefun
tions 'i have 
ompa
t support; sin
e ' has orthonormal latti
e translates, thisimplies that only �nitely many of the matri
es 
k in (4.4) 
an be nonzero. Hen
e,in this 
ase the re�nement equation in (4.4) has the same form as the re�nementequation (1.1) that was studied in the pre
eding 
hapters.Theorem 4.4. Assume that ' = ('1; : : : ; 'r)T 2 L2(Rn;Cr) is 
ompa
tlysupported and has orthonormal latti
e translates, i.e.,
'i(x� k); 'j(x� `)� = Z 'i(x� k)'j(x� `) dx = Æi;j Æk;`:Let Vj � L2(Rn) for j 2 Z be de�ned by (4.2) and (4.3). Then the followingstatements hold.



4.1. MULTIRESOLUTION ANALYSIS 51(a) Properties (P2), (P3), and (P5) are satis�ed.(b) Property (P1) is satis�ed if and only if ' satis�es a re�nement equationof the form '(x) = Xk2� 
k '(Ax � k) (4.5)for some r � r matri
es 
k and some �nite set � � �.(
) If k'̂(0)k2 = rXi=1 j'̂i(0)j2 = rXi=1 ����Z 'i(x) dx����2 = jQj; (4.6)then Property (P4) is satis�ed. If ' is re�nable, i.e., if (4.5) holds, thenProperty (P4) is satis�ed if and only if (4.6) holds.Note that the assumption that 'i is square-integrable and 
ompa
tly supportedimplies that 'i 2 L1(Rn), so '̂i(0) = R 'i(x) dx is well-de�ned. Also re
all thatjQj = jP j, where P is the fundamental domain for the latti
e � de�ned in (2.3) (inparti
ular, P is a re
tangular parallelepiped). For example, if � = Zn then we 
antake P = [0; 1)n, and therefore jQj = jP j = 1.Theorem 4.4 generalizes a result of Cohen [Coh90℄, whi
h applied spe
i�
allyto the 
ase of multipli
ity 1 and dilation A = 2I . Cohen's estimates used a de
om-position of Rn into dyadi
 
ubes, making essential use of the fa
t that the uniformdilation A = 2I maps dyadi
 
ubes into dyadi
 
ubes. However, this need not betrue for an arbitrary dilation matrix A, so this parti
ular de
omposition is no longerfeasible. Instead, we will use a de
omposition based on the tile Q, and make use ofthe asso
iated Haar multiresolution analysis dis
ussed in Example 4.3. Before we
an implement this de
omposition for the proof of Theorem 4.4, we require someauxiliary notation and results.In order to deal more 
on
isely with the dilations translations of a given fun
tionwe introdu
e the following notation. Given a fun
tion g : Rn ! Cr and given j 2 Zand k 2 �, we writegj;k(x) = mj=2 g(Ajx� k) = mj=2 g(Aj(x�A�jk))to denote a translation of g by A�jk followed by an L2-normalized dilation of gby Aj .Our �rst observation is an immediate 
onsequen
e of Gr�o
henig and Mady
h'sgeneralization of the Haar multiresolution analysis.Lemma 4.5. The 
olle
tionf�j;kQ gj2Z;k2� = fmj=2 �Q(Ajx� k)gj2Z;k2�is 
omplete in L2(Rn), i.e., its �nite linear span is dense in L2(Rn).Proof. Let fVjgj2Z be the Haar multiresolution analysis generated by �Q,as dis
ussed in Example 4.3. Then for ea
h �xed j, the 
olle
tion of translatesf�j;kQ gk2� forms an orthonormal basis for the subspa
e Vj . Sin
e the union ofthe Vj is dense in L2(Rn), the union of these orthonormal systems must form a
omplete set in L2(Rn). �



52 4. MULTIRESOLUTION ANALYSISNext, we will estimate the number of latti
e translates of Q whi
h lie in theinterior of a dilated tile AjQ, j � 1. Note that the fa
t that Q is self-similar
ombined with the fa
t that translates of Q tile Rn with overlaps with measurezero implies that AjQ is a union of exa
tly mj translates of Q, with ea
h su
htranslate lying entirely inside AjQ (but not ne
essarily in the interior of AjQ).Lemma 4.7 below will show that the ratio of the number of those translates Q+ kthat interse
t the boundary of AjQ to the total number lying inside AjQ 
onvergesto zero. To state this more pre
isely, let us de�ne for ea
h j � 1 the following �nitesubsets of �:Nj = fk 2 � : Q+ k � AjQg;NÆj = fk 2 � : Q+ k � (AjQ)Æg;N�j = fk 2 � : Q+ k � AjQ and (Q+ k) \ �(AjQ) 6= ;g: (4.7)By the remarks above, we have the following relationships:AjQ = Q+Nj ;#Nj = mj ;NÆj [N�j = Nj ;NÆj \N�j = ;: (4.8)Example 4.6. Consider the example of a uniform dilation of R2. That is, letn = 2, A = 2I , and � = Z2. Then m = j det(A)j = 4. If we 
hoose the digit set asD = f(0; 0); (1; 0); (0; 1); (1; 1)g, then the tile is the unit square Q = [0; 1℄2. Thedilated square AjQ = [0; 2j ℄2 is tiled by 4j translates of Q. It is easy to 
omputedire
tly the number of translates of Q that tou
h the boundary of AjQ. We �ndthat #NÆj = (2j � 2)2 = 4j � 2j+2 + 4;#N�j = 4j � (2j � 2)2 = 2j+2 � 4:Hen
e, the ratio #NÆj =4j approa
hes 1 as j in
reases, and the ratio #N�j =4j ap-proa
hes 0. }The following result generalizes Example 4.6 to the 
ase of an arbitrary dilationmatrix, showing that #NÆj is asymptoti
ally on the order of mj . This result 
analso be interpreted as an evaluation of the Beurling density of the latti
e �.Lemma 4.7. limj!1 #NÆjmj = 1 and limj!1 #N�jmj = 0: (4.9)Proof. For ea
h j � 1, de�neGj = A�j(Q+NÆj ) = Sk2NÆj A�j(Q+ k):By de�nition, Gj is the union of all translates A�j(Q + k) that are 
ontainedwithin QÆ. Ea
h su
h \small tile" A�j(Q + k) is itself tiled by \smaller tiles" ofthe form A�j�1(Q+ `). Those \smaller tiles" must be 
ontained in QÆ sin
e they
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ontained in A�j(Q+ k). Hen
e Gj is 
overed by translates A�j�1(Q+ `) thatare all 
ontained in QÆ, and therefore Gj � Gj+1 for all j � 1.Sin
e Gj � QÆ by de�nition, we have [Gj � QÆ. We 
laim that, in fa
t,[Gj = QÆ. To see this, note that sin
e A�1 is 
ontra
tive and Q is bounded, thediameter of A�jQ 
onverges to zero as j in
reases. Further, translates of A�jQ byelements of A�j� 
over all of Rn, i.e.,A�jQ+A�j� = Sk2�A�j(Q+ k) = Rn:Let x 2 QÆ be �xed. Then dist(x; �Q) > 0. Hen
e, if j is large enough then therewill exist some translate A�j(Q + k) that lies entirely within QÆ and 
ontains x.Hen
e x 2 Gj for that j. Thus QÆ � [Gj , as 
laimed.Now, sin
e the sets Gj are nested and their union is QÆ, their measures must
onverge to the measure ofQÆ, i.e., jGj j ! jQÆj = jQj. However, sin
e j det(A�1)j =m�1 and sin
e �-translates of Q have overlaps of measure zero, the Lebesgue mea-sure of Gj isjGj j = jA�j(Q+NÆj )j = m�j jQ+NÆj j = m�j jQj #NÆj :The �rst limit in (4.9) therefore follows. The se
ond limit in (4.9) follows from the�rst limit and the relationships in (4.8). �For later use, we now prove a te
hni
al lemma on the relationships among aset of tiles that 
over an open ball B in Rn. Let 
 be the minimal set of latti
epoints k 2 � su
h that Q+ k 
overs the ball B. The following lemma 
hara
terizesthose translates Q+ 
 of Q for whi
h it is possible to translate Q+ 
 by elementsof 
 so that one translate Q + 
 + k with k 2 
 lies entirely within AjQ andanother translate Q+ 
+ k0 with k0 2 
 lies entirely outside of AjQ (negle
ting itsboundary).Lemma 4.8. Let B be an open ball in Rn, and de�ne
 = fk 2 � : (Q+ k) \ B 6= ;g: (4.10)Let 
 2 �. If there exist k, k0 2 
 su
h thatQ+ k + 
 � AjQ and Q+ k0 + 
 � Rn n (AjQ)Æ; (4.11)then 
 2 N�j �
 = f`� ! : ` 2 N�j ; ! 2 
g.Proof. Note that 
 is �nite and that B � Q+
. Additionally, by de�nitionof 
, (Q+ k + 
)Æ \ (B + 
) 6= ; and (Q+ k0 + 
)Æ \ (B + 
) 6= ;:Combined with (4.11), this implies that(AjQ)Æ \ (B + 
) 6= ; and (Rn nAjQ) \ (B + 
) 6= ;:Sin
e B+
 is 
onvex, there must therefore exist a line segment L entirely 
ontainedwithin B + 
 having one endpoint in (AjQ)Æ and the other in Rn n AjQ. Lety 2 L\ �(AjQ). Then there is some " > 0 su
h that the open ball B(y; ") 
enteredat y with radius " lies entirely within B + 
.Sin
e y 2 �(AjQ), there exists some ` 2 N�j su
h that y 2 Q + `. ThenB(y; ") \ (Q + `)Æ 6= ;. Let z 2 B(y; ") \ (Q + `)Æ. Sin
e z lies in the interior of
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e translates of Q interse
t only on their boundaries, we know thatQ+ ` is the unique latti
e translate of Q that 
ontains z. However,z 2 B(y; ") � B + 
 � Q+
+ 
;so we must have ` = ! + 
 for some ! 2 
. Consequently, 
 = `� ! 2 N�j �
, asdesired. �Our �nal lemma re�nes the estimates made in Lemma 4.7.Lemma 4.9. If 
 is any �nite subset of �, thenlimj!1 #�NÆj n ((N�j �
) \Nj)�mj = 1:Proof. Note that#((N�j �
) \Nj) � #(N�j �
) � #N�j �#
:Hen
e, #NÆj �#N�j �#
 � #�NÆj n ((N�j �
) \Nj)� � #NÆj :The result then follows from Lemma 4.7. �Now we 
an give the proof of Theorem 4.4.Proof of Theorem 4.4. Suppose that the hypotheses of Theorem 4.4 aresatis�ed. Note that properties (P2) and (P5) are trivially satis�ed by the de�nitions(4.2) and (4.3).(b) Suppose that (P1) is satis�ed. It then follows from (P2) and (P5) thatfm1=2 'j(Ax � k)gk2�; j=1;:::;r (4.12)is an orthonormal basis for V1. By (P1) we have 'i 2 V0 � V1 for i = 1; : : : ; r. Theexpansion of 'i with respe
t to the orthonormal basis given in (4.12) is'i(x) = m rXj=1Xk2� 
'i(x); 'j(Ax � k)� 'j(Ax� k):However, sin
e 'i has 
ompa
t support, only �nitely many terms in this series 
anbe nonzero. Combining these equations for i = 1; : : : ; r, we �nd that ' satis�es are�nement equation of the form (4.5).Conversely, if ' satis�es a re�nement equation of the form (4.5), then ea
htranslate 'i(x� k) is a �nite linear 
ombination of the fun
tions 'j(Ax � `), ea
hof whi
h lies in V1. Sin
e V0 is the 
losed linear span of the fun
tions 'i(x� k), itfollows that V0 � V1. Property (P1) then follows from this and the de�nition (4.3).(a) As remarked above, the fa
t that (P2) and (P5) are satis�ed is trivial. Toshow that (P3) holds, note �rst that f'j;ki gk2�; i=1;:::;r is an orthonormal basis forthe subspa
e Vj . Therefore, if we let Pj denote the orthogonal proje
tion of L2(Rn)onto Vj , then for ea
h g 2 L2(Rn) we havekPjgk2L2 = rXi=1Xk2� jhg; 'j;ki ij2: (4.13)



4.1. MULTIRESOLUTION ANALYSIS 55To prove (P3), it suÆ
es to show that8 g 2 L2(Rn); limj!�1 kPjgkL2 = 0:Moreover, it suÆ
es to establish this limit for g 
ontained in a 
omplete subset ofL2(Rn), i.e., a subset whose �nite linear span is dense in L2(Rn). We will do thisfor the parti
ular 
omplete set given in Lemma 4.5, i.e., we will show that8 s 2 Z; 8 ` 2 �; limj!�1 kPj(�s;`Q )kL2 = 0:Fix any parti
ular s 2 Z and ` 2 �. Note that sin
e m = j det(A)j, we have forevery j 2 Z that jAj�s(Q+ `)j = mj�s jQ+ `j = mj�s jQj:Further, sin
e A�1 is 
ontra
tive, the sets Aj�s(Q+ `) for j � s are all 
ontainedinside a single 
ompa
t set F . Also, the fun
tions 'i are 
ompa
tly supported, soK = supp(') = rSi=1 supp('i)is 
ompa
t. Therefore, there 
an be at most �nitely many translates of K thatinterse
t F , i.e., the set J = fk 2 � : (K + k) \ F 6= ;gis �nite. Applying (4.13) to g = �s;`Q and using the fa
ts above, we therefore
ompute thatkPj(�s;`Q )k2L2 = rXi=1Xk2� ����Z ms=2 �Q(Asx� `)mj=2 'i(Ajx� k) dx����2= 1mj�s rXi=1Xk2� ����ZAj�s(Q+`) 'i(x� k) dx����2� jAj�s(Q+ `)jmj�s rXi=1Xk2J ZAj�s(Q+`) j'i(x� k)j2 dx= jQj rXi=1Xk2J ZAj�s(Q+`) j'i(x� k)j2 dx; (4.14)the inequality in this 
al
ulation following from Cau
hy{S
hwarz. Sin
e ea
h 'i liesin L2(Rn), sin
e the sums in (4.14) are �nite, and sin
e the measure of Aj�s(Q+`)
onverges to zero as j ! �1, it follows from (4.14) that kPj(�s;`Q )k2L2 ! 0 asj ! �1.(
) Note that if 8 g 2 L2(Rn); limj!1 kPjg � gkL2 = 0; (4.15)then Property (P4) is satis�ed. Further, if ' is re�nable, then by part (a) wehave Vj � Vj+1 for all j 2 Z, and therefore (4.15) is equivalent to Property (P4)when this additional assumption of re�nability is satis�ed. Therefore, to proveTheorem 4.4(
), it suÆ
es to show that equations (4.15) and (4.6) are equivalent.



56 4. MULTIRESOLUTION ANALYSISLet us �rst reformulate (4.15). By orthogonality we have kg�Pjgk2L2 = kgk2L2�kPjgk2L2 , so we 
an rewrite equation (4.15) as8 g 2 L2(Rn); limj!1 kPjgkL2 = kgkL2 : (4.16)As in the dis
ussion for the proof of part (a), equation (4.16) is valid for all g ifand only if it is valid for the spe
i�
 fun
tions g = �s;`Q with s 2 Z and ` 2 �. Forthe fun
tion �Q itself, we have from (4.13) thatkPj(�Q)k2L2 = rXi=1Xk2� ����Z �Q(x)mj=2 'i(Ajx� k) dx����2= 1mj rXi=1Xk2� ����ZAjQ 'i(x� k) dx����2: (4.17)For the fun
tion �s;`Q (x) = ms=2 �Q(Asx� `), we have for j � s thatkPj(�s;`Q )k2L2 = rXi=1Xk2� ����Z ms=2 �Q(Asx� `)mj=2 'i(Ajx� k) dx����2= 1mj�s rXi=1Xk2� ����ZAj�sQ 'i(x� (k �Aj�s`)) dx����2= 1mj�s rXi=1Xk2� ����ZAj�sQ 'i(x� k) dx����2= kPj�s�Qk2L2 : (4.18)For the third equality in this 
al
ulation, we re-indexed the summation over k,using the fa
t that Aj�s` 2 � sin
e j � s � 0. Comparing (4.17) and (4.18), we
on
lude that (4.16) is valid for all g if and only if it is valid for the single fun
tiong = �Q. Further, sin
e (4.15) and (4.16) are equivalent, we 
on
lude that (4.15) isequivalent to the statementlimj!1 kPj(�Q)k2L2 = k�Qk2L2 = jQj:Hen
e, to prove that (4.15) is equivalent to (4.6), it suÆ
es to show thatlimj!1 kPj(�Q)k2L2 = rXi=1 j'̂i(0)j2: (4.19)To estimate kPj(�Q)k2L2 , we will break the summation over � appearing in(4.17) into three regions related to the support of the fun
tions 'i, and then estimatethe integrals 
orresponding to ea
h of these regions in turn. The idea behind thisdivision is that if K = supp('), then the �rst region should essentially 
ontain onlyelements k of the latti
e � su
h that K + k is sure to lie in the interior of AjQ, these
ond region should 
ontain those k for whi
h this translation will interse
t theboundary of AjQ, and the last region should be the 
omplement of the �rst two.More pre
isely, let B be any open ball in Rn whi
h 
ontains both Q andK = supp('), and de�ne 
 by (4.10), i.e.,
 = fk 2 � : (Q+ k) \ B 6= ;g:
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 is �nite, that B � Q+
, and that 0 2 
 sin
e Q � B. Then for ea
hj � 1, de�ne: �1;j = NÆj n ((N�j �
) \Nj);�2;j = N�j �
;�3;j = � n (�1;j [ �2;j);where the sets Nj , NÆj and N�j are as de�ned in (4.7). Note that for ea
h j, thesets �1;j , �2;j , �3;j partition �. Further, by Lemmas 4.7 and 4.9 we havelimj!1 #�1;jmj = 1 and limj!1 #�2;jmj = 0: (4.20)Now de�ne R�;j = 1mj rXi=1 X
2��;j ����ZAjQ 'i(x� 
) dx����2; � = 1; 2; 3:Then, by (4.17), kPj(�Q)k2L2 = R1;j +R2;j +R3;j :Therefore, to prove (4.19), it suÆ
es to prove the following three statements:limj!1R1;j = rXi=1 j'̂i(0)j2; limj!1R2;j = 0; and R3;j = 0 for all j:(R3;j) Suppose that R3;j 6= 0 for some j. Then RAjQ 'i(x� 
) dx 6= 0 for some
 2 �3;j . This implies that AjQ \ (K + 
) must have positive Lebesgue measure.Sin
e K � B � Q + 
, and sin
e the only translates of Q whi
h interse
t AjQ insets of positive measure are translates lying entirely within AjQ, this implies thatQ+ k + 
 � AjQ for some k 2 
: (4.21)Now, we have that N�j � (N�j �
) \Nj sin
e 0 2 
 and N�j � Nj . Hen
eNj = NÆj [N�j � �1;j [ �2;j :Sin
e 
 2 �3;j , we must therefore have 
 =2 Nj . By de�nition of Nj , this impliesthat Q+
 is not 
ontained in AjQ. Therefore Q+
 � Rn n (AjQ)Æ. Consequently,Q+ 0 + 
 � Rn n (AjQ)Æ; (4.22)and sin
e 0 2 
, it follows from Lemma 4.8 applied to (4.21) and (4.22) that
 2 N�j �
 = �2;j . This is a 
ontradi
tion, so we must have R3;j = 0.
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e 'i is 
ompa
tly supported and square-integrable, it is integrable.Therefore, R2;j = 1mj rXi=1 Xk2�2;j ����ZAjQ 'i(x� k) dx����2� 1mj rXi=1 Xk2�2;j �ZRn j'i(x)j dx�2= C#�2;jmj ;so R2;j ! 0 by (4.20).(R1;j) Suppose that 
 2 �1;j . Then 
 2 NÆj and 
 =2 (N�j � 
). By de�nitionof NÆj , we therefore have Q+ 
 � (AjQ)Æ. Sin
e 0 2 
 and Q + 0 + 
 � (AjQ)Æ,Lemma 4.8 implies that Q+ k + 
 is not 
ontained in Rn n (AjQ)Æ for any k 2 
.Sin
e AjQ is 
losed, this implies Q+ k + 
 � AjQ for all k 2 
. Hen
eK + 
 � B + 
 � Q+
+ 
 � AjQ;so ZAjQ 'i(x � 
) dx = ZRn 'i(x � 
) dx = '̂i(0):Therefore, by (4.20),R1;j = 1mj rXi=1 X
2�1;j ����ZAjQ 'i(x� 
) dx����2= #�1;jmj rXi=1 j'̂i(0)j2! rXi=1 j'̂i(0)j2: �4.2. Wavelets Asso
iated with a Multiresolution AnalysisIn this se
tion we will assume that a multiresolution analysis of multipli
ity ris given, and we will dis
uss the problem of the existen
e and 
onstru
tion of anorthonormal wavelet basis for L2(Rn) asso
iated to this MRA.Assume that ' generates an MRA. Sin
e V0 � V1, there exists a subspa
eW0 � V1 that is the orthogonal 
omplement of V0 in V1. That is, all ve
tors inV0 are orthogonal to all ve
tors in W0, and V1 is the dire
t sum of V0 and W0,i.e., V1 = W0 � V0. For ea
h j 2 Z, let Wj be the subspa
e obtained from W0analogously to how the subspa
e Vj is obtained from V0. That is, we letWj 
onsistof the dilation by Aj of all the fun
tions in W0, i.e.,Wj = fg(Ajx) : g 2 W0g:
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omplement of Vj in Vj+1. Inparti
ular, Vj+1 = Wj � Vj for every j 2 Z. Iterating this fa
t, we have that ifj > 0, then Vj+1 = Wj � Vj= Wj �Wj�1 � Vj�1...= Wj �Wj�1 � � � � �W�j � V�j : (4.23)Sin
e [Vj is dense in L2(Rn) and \Vj = f0g, if we let j !1 in (4.23) we see thatL2(Rn) = Lj2ZWj : (4.24)Furthermore, Wj ? Wk when j 6= k, so (4.24) is a de
omposition of L2(Rn) as adire
t sum of orthogonal subspa
es. Hen
e, if we 
an �nd an orthonormal basis Bjfor ea
h spa
e Wj , then [Bj will be an orthonormal basis for L2(Rn). Moreover,sin
e ea
h spa
e Wj is a dilation of W0, on
e we have an orthonormal basis B0 forW0, we 
an obtain an an orthonormal basis Bj for Wj simply by dilating all theelements of B0 by Aj and normalizing the results.Hen
e our task redu
es to �nding an orthonormal basis for W0. We will seek abasis 
onsisting of the latti
e translates of a set of m� 1 ve
tor fun
tions ` = ( `;1; : : : ;  `;r)T 2 L2(Rn;Cr); ` = 1; : : : ;m� 1:That is, we seek an orthonormal basis B0 for W0 of the formB0 = f `;i(x� k)gk2�; i=1;:::;r; `=1;:::;m�1:This should be 
ompared to the orthonormal basis for V0 given by (4.1). If su
h abasis 
an be found, thenBj = fm1=2 `;i(Ajx� k)gk2�; i=1;:::;r; `=1;:::;m�1= f j;k`;i gk2�; i=1;:::;r; `=1;:::;m�1will be an orthonormal basis for Wj , and thereforeSj2ZBj = f j;k`;i gk2�; i=1;:::;r; `=1;:::;m�1; j2Z (4.25)will form the desired orthonormal multiwavelet basis for L2(Rn). In this 
ase, ther(m � 1) fun
tions f `;i : i = 1; : : : ; r; ` = 1; : : : ;m � 1g are the multiwavelets (orsimply the wavelets) that generate this basis.Example 4.10. For motivation, let us review the one-dimensional, single-fun
tion 
ase. Spe
i�
ally, 
onsider the 
ase n = 1, r = 1, A = 2, � = Z, andD = f0; 1g. Assume that ' 2 L2(R) generates an MRA for L2(R). Sin
e m = 2,we seek a single wavelet  2 L2(R) su
h that f (x�k)gk2Z forms an orthonormalbasis forW0. On
e this fun
tion is found, the orthonormal wavelet basis for L2(R)given by (4.25) will have the form f j;kgj;k2Z.The 
lassi
al te
hnique for �nding this wavelet  is as follows. The ve
tors
aling fun
tion ' satis�es a re�nement equation of the form '(x) =Pk2Z 
k '(2x�



60 4. MULTIRESOLUTION ANALYSISk). The symbol of this re�nement equation is the 1-periodi
 fun
tion m0 2 L2[0; 1)de�ned by m0(!) = 12 Xk2Z 
k e�2�ik! ; ! 2 R:Note that if only �nitely many 
oeÆ
ients 
k are nonzero, then m0 is a
tually atrigonometri
 polynomial. This symbol m0 is the unique fun
tion su
h that'̂(2!) = m0(!) '̂(!); ! 2 R:It 
an be shown that the fun
tion  2 L2(R) whose Fourier transform is de�nedby  ̂(2!) = m1(!) '̂(!); ! 2 R (4.26)is a valid wavelet asso
iated with this MRA if and only if m1(!) 2 L2[0; 1) is a1-periodi
 fun
tion su
h that the matrixM(!) = �mi(! + j2 )�i;j=0;1 = " m0(!) m0(! + 12 )m1(!) m1(! + 12 ) # (4.27)is unitary for almost every !. The su

ess of one-dimensional wavelet theory is, inpart, based on the fa
t that it is possible to 
onstru
tively �nd su
h fun
tions m1.For example, we 
an takem1(!) = 12 Xk2Z (�1)k �
1�k e�2�ik! ;in whi
h 
ase (4.26) implies that (x) = Xk2Z (�1)k �
1�k '(2x� k)generates a wavelet basis for L2(R) [Dau92℄. }The results stated in Example 4.10 
an be extended to the 
ase of multivariatewavelets with arbitrary multipli
ities and dilation matri
es. We will state the rel-evant results here without proof, and for simpli
ity of notation we will restri
t tothe 
ase where the latti
e is � = Zn.Let fVjgj2Z be an MRA of multipli
ity r with asso
iated ve
tor s
aling fun
tion' = ('1; : : : ; 'r)T 2 L2(Rn;Cr). Then ' satis�es a re�nement equation of the form'(x) = Xk2� 
k '(Ax � k)for some matri
es 
k in Cr�r. The symbol of this re�nement equation is the 1-periodi
 matrix-valued fun
tion M0 2 L2([0; 1); Cr�r) de�ned byM0(!) = 1mXk2� 
k e�2�ik�! ; ! 2 Rn:This is the unique fun
tion satisfying'̂(A�!) = M0(!) '̂(!); ! 2 Rn:Now suppose that M1; : : : ;Mm�1 are 1-periodi
 matrix-valued fun
tions inL2([0; 1); Cr�r). Let us write these fun
tions together with the fun
tion M0 asM`(!) = 1mXk2� 
`;k e�2�ik�!; ` = 0; : : : ;m� 1:
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ular, this means that 
k = 
0;k. Let  1; : : : ;  m�1 be the ve
tor fun
tionsin L2(Rn;Cr) whose Fourier transforms are de�ned by the formula ̂`(A�!) = M`(!) '̂(!); ` = 1; : : : ;m� 1:We seek ne
essary and suÆ
ient 
onditions on M1; : : : ;Mm�1 su
h that the latti
etranslates of f `;i : ` = 1; : : : ;m� 1; i = 1; : : : ; rg will form an orthonormal basisfor W0. These will be formulated in terms of a matrix M(!) analogous to the onede�ned in (4.27) for the one-dimensional 
ase. Spe
i�
ally, we 
hoose a 
ompleteset of representatives 
0; : : : ; 
m�1 of Zn=A�(Zn), and then de�ne a matrix-valuedfun
tion M(!) in blo
k form byM(!) = [Mi(! +B�
j)℄i;j=0;:::;m�1 ;where B = A�1. Note thatM(!) 2 (Cr�r)m�m for ea
h individual !. We will saythat M is unitary a.e. if for ea
h i, j = 0; : : : ;m� 1 we havem�1Xk=0 Mi(! +B�
k)M�j (! +B�
k) = Æi;jIr�r for a.e. ! 2 Rn:Then we have the following theorem, whose proof is straightforward.Theorem 4.11. Let fVjgj2Z be an MRA for L2(Rn) of multipli
ity r. Then,using the notation above, the following statements are equivalent.(a) f `;i(x� k)gk2�; i=1;:::;r; `=1;:::;m�1 forms an orthonormal basis for W0.(b) M is unitary a.e.(
) 1mPk2� 
i;k 
�j;k�A� = Æ0;� Æi;j Ir�r for � 2 � and i, j = 0; : : : ;m� 1.Thus, on
e an MRA has been found, we 
an 
onstru
t a wavelet basis forL2(Rn) if we 
an 
onstru
t a parti
ular unitary matrix fun
tion M(!). For ea
h!, the matrix M(!) is of size rm � rm, and the �rst r rows of this matrix areknown. If the remaining rows 
an be 
ompleted so that M(!) is unitary a.e., thenwe 
an �nd the wavelets that generate the wavelet bases. Equivalently, we 
an tryto solve the non-linear system of equations in (
).The question of whether this 
ompletion 
an always be a

omplished is a verydiÆ
ult open question. It has been shown that if (2m � 2)r � n then M(!) 
analways be 
ompleted so as to be unitary a.e. However, even in this 
ase it is usuallydiÆ
ult to 
omplete the matrix in su
h a way that the asso
iated wavelets havesome spe
i�
 properties. For example, it is not known whether, given a 
ompa
tlysupported ve
tor s
aling fun
tion, the matrix 
an be 
ompleted so that the waveletis 
ompa
tly supported. The existen
e of a wavelet set asso
iated to an MRA forthe 
ase of a uniform dilation of Rn was proved by Gr�o
henig [Gr�o87℄, and isreprodu
ed in [Mey92℄. Results for a general dilation matrix A with multipli
-ity 1 are des
ribed in [Woj97℄. The multivariable, multiwavelet 
ase for a uniformdilation is studied in [AK97℄, 
f. also [Che97℄.





CHAPTER 5ExamplesIn this 
hapter we will show how the results of the previous 
hapters 
an beused to 
onstru
t wavelet bases. We �rst apply them to a known example ofa nonseparable orthonormal wavelet basis, and then use them to 
onstru
t newexamples of nonseparable orthonormal multiwavelet bases.In Se
tion 5.2 we will dis
uss the Kova�
evi�
{Vetterli s
aling fun
tion. This is aknown example of a nonseparable, 
ontinuous, 
ompa
tly supported fun
tion thatis re�nable with respe
t to the quin
unx dilation matrixA = � 1 11 �1 � ; (5.1)and whi
h has orthonormal latti
e translates. We use our te
hniques to obtain anumeri
al veri�
ation of the 
ontinuity of this s
aling fun
tion.In Se
tion 5.3 we will 
onstru
t new examples of nonseparable, 
ontinuousve
tor s
aling fun
tions with multipli
ity r = 2 that are re�nable with respe
t tothe quin
unx dilation A, have orthonormal latti
e translates, and have a

ura
yequal or greater than the Kova�
evi�
{Vetterli s
aling fun
tion. Additionally, we
onstru
t the multiwavelets 
orresponding to the MRA generated by these s
alingfun
tions, thus obtaining new multiwavelet bases for L2(R2).Note that for the quin
unx dilation A given in (5.1), we havem = j det(A)j = 2.The 
orresponding latti
e is � = Z2, and we �x the digit set asD = f(0; 0); (1; 0)g:With this 
hoi
e, the tile Q is the parallelogram with verti
esf(0; 0); (1; 0); (2; 1); (1; 1)g:This tile is pi
tured in Figure 2.1 in Chapter 2.We will use the notation developed in previous 
hapters, applied now to thespe
i�
 setting of the quin
unx matrix. In parti
ular, the te
hniques for 
har-a
terizing the a

ura
y of a s
aling fun
tion were presented in the general set-ting in Se
tion 3.4. In the two-dimensional setting, the number of multi-indi
esof a given degree s is ds = s + 1. We 
hoose to order those multi-indi
es asf(s; 0); (s � 1; 1); : : : ; (0; s)g. With this ordering, the ve
tor of all monomials ofdegree s isX[s℄(x) = X[s℄(x1; x2) = 266664 xs1xs�11 x2...xs2
377775 ; x = (x1; x2) 2 R2:63



64 5. EXAMPLESFor s = 0; 1; 2; 3, the matri
es A[s℄ introdu
ed in Se
tion 3.4 are given expli
itly asA[0℄ = 1;A[1℄ = � 1 11 �1 � ;A[2℄ = 24 1 2 11 0 �11 �2 1 35 ;A[3℄ = 2664 1 3 3 11 1 �1 �11 �1 �1 11 �3 3 �1 3775 :5.1. Numeri
al Estimates of the Joint Spe
tral RadiusThe 2-JSR 
an often be 
omputed exa
tly in terms of the spe
tral radius of asingle matrix [LM97℄, [Zho98℄. For other values of p, it 
an be diÆ
ult to 
omputethe joint spe
tral radius exa
tly. In spe
ial 
ases, the uniform JSR 
an be 
omputedeasily from the eigenvalues of the matri
es Mj . For example, if the Mj 
ommute,or if they 
an be simultaneously triangularized or Hermitianized, then �̂1(M) isthe maximum of the absolute values of the eigenvalues of the Mj . However, thisneed not be true in general. It is true that if k � k is any matrix norm (i.e., a normon Cs�s whi
h satis�es kABk � kAk kBk), and we de�ne�̂1;` = max�2P` �(�)1=` and �̂1;` = max�2P` k�k1=`;then �̂1;` � �̂1(M) � �̂1;` for every `: (5.2)This provides one means for numeri
ally estimating a uniform JSR, although thenumber of matrix produ
t 
omputations involved grows exponentially with `. How-ever, the fa
t that the norm is submultipli
ative implies that the following bran
h-and-bound algorithm, based on [DL92, Lemma 4.6℄, 
an be used for testing upperbound 
onje
tures, 
f. [CH92℄.Proposition 5.1. Let M = fM1; : : : ;Mmg be a 
olle
tion of s � s matri
es,and let k � k be any matrix norm on Cs�s. Let Æ > 0 be given, and 
reate a set Qof matrix produ
ts by implementing the following re
ursion m times, starting with� =Mi in turn for i = 1; : : : ;m:� If � = M"1 � � �M"` and k�k1=` � Æ, then let � 2 Q. Otherwise, repeatthis step m times, repla
ing � by ea
h of �Mi in turn for i = 1; : : : ;m.If this re
ursion terminates, then�̂(M) � max�2Q k�k1=`(�) � Æ;where `(�) is the length of the produ
t �. Moreover, this re
ursion must terminateif Æ > �̂(M), and 
annot terminate if Æ < �̂(M).
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Figure 5.1. Attra
tor K�.This algorithm yields mu
h better estimates with far less 
omputation thanthe upper bound estimate given by (5.2), and often makes it possible to estimatethe uniform JSR of quite large matri
es with reasonable a

ura
y. Some analysisof the numeri
al a

ura
y of uniform JSR estimates is presented in [Gri96℄, andsome methods for evaluating the exa
t uniform JSR of some types of 
olle
tionsM that 
annot be simultaneously triangularized or Hermitianized 
an be found in[Mae95℄, [BZ00℄.5.2. The Kova�
evi�
{Vetterli S
aling Fun
tionThe Kova�
evi�
{Vetterli (KV) s
aling fun
tion was �rst 
onstru
ted in [KoV92℄.Until [BW99℄, it was the only known example of a nonseparable, 
ontinuous, 
om-pa
tly supported fun
tion f : R2 ! C that is re�nable with respe
t to the quin
unxmatrix A and whi
h has orthonormal latti
e translates. The 
ontinuity of this fun
-tion was 
onje
tured in [KoV92℄ and was proved numeri
ally in [Vil94b℄. We willapply our te
hniques to obtain another numeri
al veri�
ation of the 
ontinuity ofthis s
aling fun
tion.The KV s
aling fun
tion is the solution of the re�nement equation'(x) = Xk2� 
k '(Ax � k); x 2 R2; (5.3)for the following spe
i�
 
hoi
es of � and 
k. The support of the 
oeÆ
ients is thefollowing set of eight points in Z2:� = f(1; 1); (2; 1); (0; 0); (1; 0); (2; 0); (3; 0); (1;�1); (2;�1)g:The 
oeÆ
ients themselves are de�ned as follows. For k =2 � let 
k = 0. Thende�ne 
k for k 2 � by[
k℄k2� = � 264 �a1 �a0a1�a2 �a0a2 �a0 1a0a1a2 �a1a2 375 ;where the origin 
orresponds to the 
oeÆ
ient �a2 and the s
alar � is 
hosen sothatP 
k = 2. This gives a family of s
aling fun
tions, and the KV s
aling fun
tion
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(1;1) = � �0:2626160679713805 0:42981906620524530:0005574439165755 0:2030577672486814 �
(2;1) = � 0:0012426482475807 �0:4949250389580165�0:0408719784870414 �0:1920926795673339 �
(0;0) = � 0:4558392979832848 �0:10834340208752710:0706745015703368 �0:0873302642653203 �
(1;0) = � 1:0347430408665290 �0:33336960016903210:0986292192873546 �0:1130957347361869 �
(2;0) = � 0:0217227622514353 �0:1035804504304439�0:7252848187529292 0:3286159537916353 �
(3;0) = � 0:0135277690777398 0:10535487332395010:1754378582933197 �0:5539904957294699 �
(1;�1) = � 0:0618708039296100 �0:1876314721922069�0:2843099059597212 0:5949251108985801 �
(2;�1) = � �0:0110715449521254 �0:1958066410598297�0:1833149852352274 0:6670640666446144 �v[0℄ = � 0:7920665605596084 �0:6104347333198465 �v[1℄ = � 1:3824676038808285 �0:99057482746276780:7387595389423293 �0:8523956367846645 �Table 1. First set of s
aling fun
tion 
oeÆ
ients.
orresponds to the spe
i�
 
hoi
ea0 = a1 = p3; a2 = 2�p3:It follows from Proposition 3.3 that a 
ompa
tly supported distributional solution' to the re�nement equation (5.3) exists. We will use the results of Chapter 3to verify that this solution is in fa
t a 
ontinuous fun
tion, and to determine itsa

ura
y. It is shown in [Vil94b℄ that latti
e translates of ' are orthonormal.First, we need to 
onstru
t appropriate matri
es Td for d 2 D = f(0; 0); (1; 0)g.With � as given above, the attra
tor K� is the polygon with verti
esf(0; 0); (0; 2); (2; 4); (5; 4); (6; 3); (6; 1); (4;�1); (1;�1)g:This polygon is pi
tured in Figure 5.1. By Proposition 2.2, the KV s
aling fun
tion' will be supported within K�.Let 
 � Z2 be the set of 29 points with integer 
oordinates lo
ated within thepolygon with verti
esf(�1;�1); (�1; 1); (1; 3); (5; 3); (5; 1); (3;�1)g:This set 
 satis�es K� � Q+
, and, moreover, 
 is a minimal set with respe
t tothis property. Then T(0;0) and T(1;0) are the two 29�29 matri
es de�ned by (2.19),
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(1;1) = � �0:0591314043961276 0:44500037691199380:3321995579351313 0:0104446670717889 �
(2;1) = � 0:1114102151429672 0:22545908438480770:1195224265431005 �0:0593073985413613 �
(0;0) = � �0:2940058981215972 �0:4268371360660582�0:2507164723775025 �0:0683481992678018 �
(1;0) = � 0:6975221902082682 0:77581722358967740:1628550064232036 0:2857776144242880 �
(2;0) = � �0:2453928326496505 �0:02563140448638590:5286726350756744 0:8784799148003067 �
(3;0) = � 0:3472507659119894 �0:41930300119523960:0296262444198484 0:6570307353565332 �
(1;�1) = � 0:0439292340612756 �0:03864978960679170:0862583713567824 0:2000830628613316 �
(2;�1) = � �0:0603512059818823 0:1176289221695265�0:3549334936719044 �0:1969015485750640 �v[0℄ = � �0:4088232319356361 �0:9126135902060207 �v[1℄ = � �1:6584856779704104 �3:8822641730301039�0:5869518169744740 1:9243182275157703 �v[2℄ = 24 �6:5634917083549151 �16:5888850689201835�2:1313723063732684 �8:2979351401696652�0:7721381710076713 �4:0891841779249179 35Table 2. Se
ond set of s
aling fun
tion 
oeÆ
ients.i.e., T(0;0) = [
Aj�k℄j;k2
 and T(1;0) = [
Aj�k+(1;0)℄j;k2
: (5.4)Now that the notation has been set, Theorem 3.12 and the remarks followingimply that the a

ura
y of the KV s
aling fun
tion is determined by the system oflinear equations given in (3.18). All equations are given expli
itly and exa
tly, andit is easy to 
he
k that the system 
an be solved when � = 2, with solutionv[0℄ = [v(0;0)℄ = 1 and v[1℄ = � v(1;0)v(0;1) � = � (6 +p3)=23=2 � :Furthermore, the system 
annot be solved when � = 3, so Theorem 3.12 impliesthat the KV s
aling fun
tion has a

ura
y � = 2, i.e., latti
e translates of ' 
anreprodu
e exa
tly the 
onstant and linear polynomials.The ve
tors v� given above dire
tly determine the the polynomials y� de�nedby (3.14), and these in turn determine dire
tly the ve
tors e� de�ned in (3.19).



68 5. EXAMPLESd(1;1) = � �0:3241476668526600 �0:68916097817603600:1112621003242060 0:3700696672377430 �d(2;1) = � 0:2459217157892530 0:5440585582667560�0:1111644337484570 �0:3131767059736590 �d(0;0) = � 0:1342427066922970 0:38985868284044000:0008186524655252 �0:1911338850170830 �d(1;0) = � 0:6742751905644570 0:2690352672180090�0:1654413591601810 �0:1668405479326910 �d(2;0) = � 0:3023698075956100 0:17707067571356300:9358219858624430 0:2697411853489460 �d(3;0) = � �0:1360696696971580 �0:0664413982427058�0:3653701762481760 0:0578802392135144 �d(1;�1) = � �0:0602396080362104 0:3209360059587710�0:0280398654007565 0:4891511174577440 �d(2;�1) = � 0:1319145112771960 0:31101321333876100:3591016452044310 0:4405847665862590 �Table 3. Wavelet 
oeÆ
ients 
orresponding to Table 2.We now apply Theorems 3.4 and 3.17 to prove that ' is 
ontinuous. We apply theGram{S
hmidt pro
edure to fe(0;0); e(1;0); e(0;1)g to obtain an orthonormal basisf~e(0;0); ~e(1;0); ~e(0;1)g for their span, whi
h is the spa
e 
alled U1 in the statementof Theorem 3.17. At the same time, the Gram{S
hmidt pro
edure 
an be used to�nd an orthonormal basis BE for the spa
e E1 = fe�(0;0); e�(1;0); e�(0;1)g?. This yieldsan orthonormal basis for C29 of the form given by (3.21). In this basis, T(0;0) andT(1;0) have the form given in (3.22). Theorem 3.17 then implies that�̂1(fT(0;0)jV0 ; T(1;0)jV0g) = max� 1p2 ; �̂1(C0; C1)	; (5.5)where C0 and C1 are appropriate matri
es of size 26� 26. If this value is stri
tlyless than 1, then Theorem 3.4 implies that ' is 
ontinuous.To estimate the joint spe
tral radius in (5.5), we �x a norm and then implementthe bran
h-and-bound algorithm of Proposition 5.1. We 
hoose the norm to be thematrix norm indu
ed by the `1 ve
tor norm on C26. Then, following the re
ursiongiven in Proposition 5.1, a numeri
al 
omputation of 1724 produ
ts of C0 and C1yields the bound �̂1(C0; C1) � 0:999713 < 1:This therefore 
on�rms the numeri
al proof of [Vil94b℄ that the KV s
aling fun
-tion exists and is 
ontinuous. A deeper 
omputation of 42748 produ
ts of C0,C1, 
ombined with the fa
t that �(Ci) � �̂1(C0; C1), yields the numeri
al bounds0:93407 � �̂1(C0; C1) � 0:94.



5.3. NONSEPARABLE QUINCUNX MULTIWAVELETS 695.3. Nonseparable Quin
unx MultiwaveletsIn this se
tion we will present new examples of nonseparable, two-dimensional,
ompa
tly supported, 
ontinuous ve
tor s
aling fun
tions of multipli
ity 2 whi
hare re�nable with respe
t to the quin
unx matrix A, have a

ura
y � = 2 or 3,and have orthonormal latti
e translates. The 
oeÆ
ients for these examples wereprovided to us by Anita Ruedin, see [Rue02℄ for related results. Ruedin used the
hara
terization of higher-order a

ura
y developed in [CHM98℄, [CHM00℄ to
onstru
t 
andidate sets of 
oeÆ
ients. We will now give a numeri
al demonstrationthat these 
andidate ve
tor s
aling fun
tions are in fa
t 
ontinuous, and we will
onstru
t the 
orresponding multiwavelets as well.We use the same sets �, K�, and 
 as were used in the de�nition and evaluationof the KV s
aling fun
tion in Se
tion 5.2. Let 
k for k 2 � be 2� 2 matri
es withunknown entries (a total of 32 unknowns). Suppose that there existed a solution 'to the re�nement equation'(x) = Xk2� 
k '(Ax � k); x 2 R2: (5.6)If this solution has orthonormal latti
e translates, then ne
essarily8 j 2 Z2; Xk2Z2 
k 
�k+Aj = 2Æj;0I: (5.7)Taking into a

ount the support of the 
oeÆ
ients, there are only 5 values of jfor whi
h (5.7) is nontrivial. This yields a set of 20 quadrati
 equations in the 32unknown 
omponents of the 
k.Now let v[0℄ = [v(0;0)℄ and v[1℄ = � v(1;0)v(0;1) � ;where v(0;0), v(1;0), and v(0;1) are ea
h unknown row ve
tors of length 2 (a total of 6unknowns). If ' has a

ura
y � = 2, then ne
essarily the equations in (3.18) mustbe satis�ed, sin
e ' has independent translates. This is a set of 8 linear equationsin the variables that are the 
omponents of the 
k and the v[s℄.Thus, if there exists a solution to the re�nement equation (5.6) whi
h has bothorthonormal latti
e translates and a

ura
y � = 2, then a parti
ular system of 28linear and quadrati
s equations in 38 unknowns must be satis�ed. Ruedin used anumeri
al optimization routine to produ
e sets of 
oeÆ
ients whi
h satisfy ea
h ofthese equations to within an a

ura
y of 3� 10�13. This set of 
oeÆ
ients is givenin Table 1. A se
ond set of 
oeÆ
ients, given in Table 2, satis�es to within ana

ura
y of 2 � 10�12 all of the equations spe
ifying the ne
essary 
onditions fororthonormal latti
e translates and a

ura
y � = 3.This information is not yet suÆ
ient to imply that ve
tor s
aling fun
tionswith these properties do, in fa
t, exist. Proposition 3.3 does imply that 
ompa
tlysupported solutions to the re�nement equations whose 
oeÆ
ients are given byTables 1 and 2 do exist in at least the distributional sense. We will now demonstratenumeri
ally that these solutions are 
ontinuous ve
tor s
aling fun
tions. To do this,we apply Theorems 3.4 and 3.17, similarly to the veri�
ation that the KV s
alingfun
tion is 
ontinuous.Consider the values given in Table 1 �rst. The given ve
tors v[0℄ and v[1℄ dire
tlydetermine the polynomials y� de�ned in (3.14) and hen
e the ve
tors e� de�nedin (3.19). The matri
es T(0;0), T(1;0) are de�ned by the equations given in (5.4),



70 5. EXAMPLESex
ept that the entries 
k are now 2 � 2 blo
ks. Hen
e ea
h of these matri
es hassize 58� 58. We make the 
hange of basis to pla
e T(0;0) and T(1;0) into the formgiven in (3.22). Theorem 3.17 then implies that�̂1(fT(0;0)jV0 ; T(1;0)jV0g) = max� 1p2 ; �̂1(C0; C1)	;where C0 and C1 are appropriate matri
es of size 55 � 55. We use the matrixnorm indu
ed by the `1 ve
tor norm on C55. Then, following the re
ursion givenin Proposition 5.1, a numeri
al 
omputation of 1856 produ
ts of C0 and C1 yieldsthe bound �̂1(C0; C1) � 0:999924 < 1:Theorem 3.4 therefore implies that a 
ontinuous, 
ompa
tly supported solution tothis re�nement equation does exist. A deeper 
omputation of 226130 produ
ts ofC0, C1, 
ombined with the fa
t that �(Ci) � �̂1(C0; C1), yields the numeri
albounds 0:714262 � �̂1(C0; C1) � 0:85.Theorem 3.4 also guarantees that the 
as
ade algorithm 
onverges. The ve
tors
aling fun
tion ' = ('1; '2)T is pi
tured in Figure 5.2 using a grid size of 1=16.The values at these grid points allow us to 
ompute a Riemann sum approximationto the inner produ
ts h'i(x� k); 'j(x � `)i. These values equal ÆijÆk` to within apre
ision of 8�10�3, whi
h we take as a numeri
al veri�
ation that latti
e translatesare orthonormal. Theorem 3.12 therefore implies that ' has a

ura
y � = 2, i.e.,translates of ' 
an reprodu
e 
onstant and linear polynomials exa
tly. For example,we must have Pk y(1;0)(k)'(x + k) = x1. In Figure 5.3 we show a partial sum ofthis series. Numeri
ally, the full seriesPk y(1;0)(k) f(x+ k) equals x1 to within ana

ura
y of 4� 10�13.Sin
e ' has orthonormal latti
e translates and k'̂(0)k2 = 1, it follows fromTheorem 4.4 that ' generates a multiresolution analysis fVjg for L2(R2). We 
antherefore use Theorem 4.11 to 
onstru
t the 
orresponding multiwavelet basis forL2(R2). Spe
i�
ally, sin
e m = 2, we seek matri
es dk = 
1;k for k 2 � so thatthe 
onditions in Theorem 4.11(
) are satis�ed. The 
oeÆ
ients in Table 3 satisfythese 
onditions numeri
ally to within an a

ura
y of 5�10�11. The 
orrespondingwavelets are shown in Figure 5.4.Finally, 
onsider the 
oeÆ
ients given in Table 2. These satisfy the ne
essary
onditions for a

ura
y � = 3. Be
ause of the in
reased a

ura
y, we now have�̂1(fT(0;0)jV0 ; T(1;0)jV0g) = max� 1p2 ; �̂1(C0; C1)	with C0 and C1 being appropriate matri
es of size 52�52. A numeri
al 
omputationof 403850 produ
ts of C0 and C1, 
ombined with the fa
t that �(Ci) � �̂1(C0; C1),yields the numeri
al bounds0:91127 � �̂1(C0; C1) � 0:999999 < 1:Hen
e a 
ontinuous ve
tor s
aling fun
tion exists, and is pi
tured in Figure 5.5.Translates of this ve
tor s
aling fun
tion 
an reprodu
e 
onstant, linear, and qua-drati
 polynomials exa
tly. In parti
ular, we must haveXk �y(2;0)(k) + y(0;2)(k)� f(x+ k) = x21 + x22:In Figure 5.6 we show a partial sum of this series. The 
orresponding wavelets
an again be 
onstru
ted by numeri
ally solving the 
onditions presented in Theo-rem 4.11(
).
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APPENDIX AIndex of SymbolsSymbol Meaning Dis
ussionBT transpose of a matrix B 2.1B� Hermitian of a matrix B 2.1B" = fx 2 Rn : dist(B; x) < "g 4.2.1#F 
ardinality of a set F 2.1EÆ interior of E � Rn 2.1�E boundary of E � Rn 2.1E 
losure of E � Rn 2.1jEj Lebesgue measure of E � Rn 2.1f (i) iterate in the Cas
ade algorithm 2.1f̂ Fourier transform of f 2.1gj;k = mj=2g(Ajx� k) 4.1:"1"2 : : : A-nary expansion 2.2.1A dilation matrix 1.1, 2.1A[s℄ matrix related to dilation of X[s℄ by A 3.4B(x; ") open ball 
entered at x with radius " 2.1CJ�K spa
e of J �K 
omplex matri
es 2.1
k 
oeÆ
ient in the re�nement equation 1.1, 2.1D = fd1; : : : ; dmg, digit set asso
iated with A 2.2ds number of multi-indi
es of degree s 3.4e� = (y�(k))k2
 3.5Es = spanfe�� : 0 � j�j � sg? 3.5H(Rn) Hausdor� spa
e 2.2.1h(�; �) Hausdor� metri
 2.2.1KH attra
tor of IFS fwkgk2H 2.2.1L = [
Ai�j ℄i;j2� 3.4Lp(X) spa
e of p-integrable fun
tions g : X ! C 2.1Lp(X;Y ) spa
e of p-integrable fun
tions g : X ! Y 2.1m = j det(A)j 2.2m0(!) symbol of the re�nement equation 4.2n dimension of domain of s
aling fun
tion 1.1, 2.1P fundamental domain for �=A(�) 2.2Pj orthogonal proje
tion of L2(Rn) onto Vj 4.1Q = KD, tile asso
iated with A and D 2.2.2~Q subset of Q, tiles without overlaps 2.2.3Qi \disjointization" of wdi(Q) 2.3Q[s;t℄ a matrix of polynomials related to a

ura
y 3.481



82 A. INDEX OF SYMBOLSr multipli
ity of s
aling fun
tion 1.1, 2.1S re�nement operator 2.1supp(f) support of f 2.1T matrix version of re�nement operator S 2.3Td = [
Aj�k+d℄j;k2
 2.3Us = spanfe� : 0 � j�j � sg 3.5Vj subspa
es in a multiresolution analysis 4.1v� row ve
tors related to a

ura
y 3.4v[s℄ = [v�℄j�j=s 3.4Wj orthogonal 
omplement of Vj in Vj+1 4.1wk aÆne map, wk(x) = A�1(x+ k) 2.2.1wH wH(B) = [k2Hwk(B) 2.2.1X[s℄ ve
tor of all monomials of degree s 3.4y� a ve
tor of polynomials related to a

ura
y 3.4y[s℄ = [y�℄j�j=s 3.4Y[s℄ = �y[(℄x+ k)�k2� 3.4� = 1mP 
k 3.2Æi;j Krone
ker delta 2.1� latti
e in Rn invariant under A 1.1, 2.1�d 
osets of A(�) 2.2
0 unique element of ~Q \ � 3.6
i generators of the latti
e � 2.2� a

ura
y 1.1, 3.2� support of 
oeÆ
ients in re�nement equation 1.1, 2.1�0 = ��D 2.2.3, 3.5�g folding of g 2.3�(M) spe
tral radius of matrix M 2.4�̂p(M) p-norm joint spe
tral radius of set of matri
es M 2.4� analogue of 2x mod 1 map 2.3
 subset of � su
h that K� � Q+
 2.2.3�E 
hara
teristi
 fun
tion of a set E 2.1


