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AbstratLet A be a dilation matrix, an n� n expansive matrix that maps a full-ranklattie � � Rn into itself. Let � be a �nite subset of �, and for k 2 � let k ber � r omplex matries. The re�nement equation orresponding to A, �, �, and = fkgk2� is f(x) =Pk2� k f(Ax�k). A solution f : Rn ! Cr, if one exists, isalled a re�nable vetor funtion or a vetor saling funtion of multipliity r. Inthis manusript we haraterize the existene of ompatly supported Lp or on-tinuous solutions of the re�nement equation, in terms of the p-norm joint spetralradius of a �nite set of �nite matries determined by the oeÆients k. We obtainsuÆient onditions for the Lp onvergene (1 � p �1) of the Casade Algorithmf (i+1)(x) = Pk2� k f (i)(Ax � k), and neessary onditions for the uniform on-vergene of the Casade Algorithm to a ontinuous solution. We also haraterizethose ompatly supported vetor saling funtions whih give rise to a multires-olution analysis for L2(Rn) of multipliity r, and provide onditions under whihthere exist orresponding multiwavelets whose dilations and translations form anorthonormal basis for L2(Rn).
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CHAPTER 1Introdution1.1. Desription of ResultsLet � � Rn be a full-rank lattie (the image of Zd under an invertible matrix).Let A be a dilation matrix, i.e., A is an expansive n�n matrix whih maps � intoitself. Let � be a �nite subset of �. Then given r � r matries k for k 2 �, there�nement equation assoiated to A, �, �, and  = fkgk2� isf(x) = Xk2� k f(Ax� k); x 2 Rn; (1.1)where a solution f , if one exists, is a vetor-valued funtion f : Rn ! Cr, i.e.,f(x) = 264 f1(x)...fr(x) 375 :We all a ompatly supported solution of the re�nement equation a re�nable (ve-tor) funtion or a (vetor) saling funtion, and r is its multipliity.In this manusript we will haraterize the existene of ompatly supportedLp or ontinuous solutions of the re�nement equation. The Casade Algorithm isthe iteration f (i+1)(x) = Xk2� k f (i)(Ax� k): (1.2)We obtain suÆient onditions for the Lp onvergene (1 � p � 1) of the CasadeAlgorithm, and neessary onditions for the uniform onvergene of the CasadeAlgorithm to a ontinuous solution. We also haraterize when a solution of are�nement equation is a generator of a multiresolution analysis (see De�nition 4.1)for L2(Rn). Suh a generator enables the onstrution of multiwavelet orthonormalbases for L2(Rn).The higher-dimensional setting of this manusript, allowing an arbitrary dila-tion matrix, reates signi�ant geometrial obstales to the analysis of the re�ne-ment equation. In Chapter 2 we prove a number of tehnial lemmas and developa set of geometrial tools whih are needed to prove the main results of Chapters 3and 4. In partiular, we prove that the support of the saling funtion is a om-pat set that is ontained in the attrator of an iterated funtion system (IFS)determined by the set � (Theorem 2.2).Given a hoie of dilation matrix A and a hoie of digits D (a set of representa-tives of �=A�), there exists a unique ompat set Q that is the attrator of anotherIFS determined by A and D. Exept for ertain dilation matries in dimensions 4and higher, there exists a hoie of digits for whih this attrator Q tiles Rn withoverlaps of measure zero using translations by � (see Theorem 2.3). We assume1



2 1. INTRODUCTIONthis is the ase for the dilation matries onsidered in this manusript. Althoughthe tile Q typially has a fratal boundary, we prove in Proposition 2.10 that thereexists a subset ~Q of Q that tiles Rn using translations by � without overlaps.We transform the re�nement equation to an equivalent vetor equation overthe tile in Proposition 2.13 and Corollary 2.15. This will allow us in Chapter 3 toanalyze the onvergene of the Casade Algorithm in terms of the spetral proper-ties of a �nite set of matries. To this end, in Proposition 2.17 we derive lower andupper bounds for the p-norm joint spetral radius of a set of matries in terms ofan appropriate matrix norm.In Theorem 3.1 we prove the existene of a �xed point of a general lass offuntional equations. The solutions of these equations are alled generalized self-similar funtions. The re�nement equation is a partiular member of this lass.In Theorem 3.4 we give suÆient time-domain onditions for the existeneof a unique ontinuous or Lp vetor saling funtion in terms of the p-norm jointspetral radius (1 � p � 1) of a �nite set of �nite matries Td restrited to a spei�subspae E0, all determined by the oeÆients k. Furthermore, we show that ifthese onditions are satis�ed, then the Casade Algorithm onverges geometriallyin Lp to this unique solution.A vetor funtion g : Rn ! Cr has auray � if every polynomial q on Rnwith omplex oeÆients and deg(q) < � an be writtenq(x) = Xk2� ak g(x+ k) a:e:for some 1 � r row vetors ak. We prove in Theorem 3.17 that if a saling fun-tion f has auray � then the matries Td an be simultaneously brought into apartiular blok triangular form. The subspae E0 mentioned before is one of theinvariant subspaes orresponding to this simultaneous triangularization. This is akey ingredient for obtaining neessary onditions for the existene of a ontinuoussolution to the re�nement equation.In Theorem 3.22 we prove that if a ontinuous solution to the re�nement equa-tion exists whih has L1-stable translates (see De�nition 3.18), then the CasadeAlgorithm onverges uniformly for the starting funtion � ~Q, where ~Q is the subsetof Q that tiles Rn without overlaps. In Theorem 3.26 we prove that if the CasadeAlgorithm onverges pointwise everywhere for the starting funtion � ~Q to a on-tinuous solution of the re�nement equation, then the 1-norm joint spetral radiusof the matries Td restrited to E0 is stritly less than 1. We bound the H�olderexponent of ontinuity of a ontinuous saling funtion in Proposition 3.27.In Theorem 4.4 we haraterize all ompatly supported vetor-valued fun-tions with orthonormal lattie translates whih generate a multiresolution analysis(De�nition 4.1) of L2(Rn). In partiular, any suh funtion is a solution of a re-�nement equation. One a multiresolution analysis is given, Theorem 4.11 providesonditions under whih there exist orresponding multiwavelets whose dilates andtranslates form an orthonormal basis for L2(Rn).Finally, in Chapter 5, we apply the results of this manusript by numeriallyonstruting new examples of ontinuous, ompatly supported vetor saling fun-tions with orthonormal lattie translates and auray � = 2 that are re�nable withrespet to the quinunx dilation A = � 1 11 �1 �. We also onstrut the orrespondingmultiwavelets.



1.2. A HISTORICAL OVERVIEW 31.2. A Historial OverviewThe history of the study of re�nement equations is omplex, involving re-searhers from numerous �elds and disiplines. We briey outline some of thehighlights of that history here, emphasizing those results most diretly related tothis manusript. We will not attempt to give an exhaustive summary of all liter-ature related to re�nement equations. Additional related papers an be found inthe referenes of the artiles that we ite.Mihelli and Prautzsh [MP89℄ and Daubehies and Lagarias [DL92℄ eahindependently introdued a time-domain method for testing the smoothness of re-�nable funtions in the one-dimensional, single funtion ase (n = 1, r = 1). Theonditions developed in [MP89℄, [DL92℄ were based on the omputation of all pos-sible produts of a set of �nite matries diretly determined by the oeÆients k.In partiular, Daubehies and Lagarias [DL92℄ redisovered the uniform joint spe-tral radius (JSR) of Rota and Strang [RS60℄, and used it as a fundamental toolfor formulating these onditions. Many papers, utilizing a variety of tehniques,have sine studied additional properties of the saling funtion, suh as Sobolev orBesov spae membership, e.g., [Eir92℄, [Vil94a℄. Of partiular relevane to thismanusript are the papers of Y. Wang [Wan96℄, who introdued a 1-norm gener-alization of the JSR in order to formulate a test for the existene of L1-solutionsto the re�nement equation, and Jia [Jia95℄, who independently introdued a p-norm generalization of the JSR to test for Lp-solutions. The p-JSR was also usedimpliitly by Lau and J. Wang in [LauW95℄.The above-mentioned papers are all onerned with one-dimensional, single-funtion re�nement equations. Cohen and Daubehies [CD93℄ generalized some ofthe one-dimensional tests of [DL92℄ to the ase of two-dimensional, single funtionre�nement equations using a quinunx dilation matrix. Some results giving testsfor the existene of ontinuous solutions or the Sobolev and H�older regularity ofthe solution in the multidimensional, single-funtion ase (n > 1, r = 1) appear in[Vil94b℄, [CGV99℄, [Jia99℄.The auray onditions for one-dimensional, multi-funtion re�nement equa-tions are onsiderably more involved than in the single-funtion ase. These on-ditions were derived independently by Heil, Strang, and Strela [HSS96℄ and byPlonka [Plo97℄. Plonka further disovered that these auray onditions imply afatorization of the matrix-valued symbol of the re�nement equation (the Fouriertransform of the sequene of matrix oeÆients fkg). This fatorization is notas onvenient as in the single-funtion ase, but it has been been useful for theonstrution and analysis of multiwavelets in one dimension [MS97℄, [CDP97℄.The auray onditions for the multidimensional, multi-funtion ase were derivedin [CHM98℄, [CHM00℄, with some similar results for the ase of diagonalizabledilation matries in [Jng99℄. The order of approximation of f is losely relatedto its auray, but an be distint in higher dimensions. We refer to [BDR94a℄,[BDR94b℄ and related works for disussions of order of approximation.There have been a few spei� onstrutions of non-tensor produt orthonor-mal wavelet bases in higher dimensions. Gr�ohenig and Madyh [GM92℄ studiedthe partiular ase of higher-dimensional, single-funtion dilation equations whosesolution is the harateristi funtion of a tile. These speial re�nement equationsyield disontinuous wavelets that are higher-dimensional analogues of the Haar



4 1. INTRODUCTIONbasis for L2(R). Kova�evi� and Vetterli [KoV92℄ onstruted a single spei� ex-ample of ontinuous saling funtion on R2 that is re�nable with respet to thequinunx dilation matrix A = � 1 11 �1 � and whose Z2-translates are orthonormal(see [Vil94b℄ for the proof that this saling funtion is ontinuous, whih we alsoverify in Setion 5.2). This was for many years the only known example of a on-tinuous, nonseparable, two-dimensional, ompatly supported orthonormal salingfuntion. More reent onstrutions by Kova�evi� and Vetterli are in [KoV95℄. Re-ently, He and Lai onstruted some examples and then families of two-dimensional,nonseparable, ontinuous, ompatly supported saling funtions with orthonormaltranslates that are re�nable with respet to the uniform dilation A = 2I [HL97℄.By hoosing a spei� geometry for the support � of the oeÆients k, Belogay andWang [BW99℄ were able to impose a limited fatorization of the symbol and usethat to onstrut a spei� family of two-dimensional, ompatly supported salingfuntions with orthonormal translates and inreasing regularity that are re�nablewith respet to the dilation A = [ 0 21 0 ℄. One-dimensional orthonormal multiwaveletswere onstruted in [Alp93℄, [GLT93℄, [GL94℄, [GHM94℄, [DGHM96℄. Dono-van, Geronimo, and Hardin onstruted two-dimensional multiwavelets that arere�nable with respet to the uniform dilation A = 3I [DGH95℄. Ayahe hassome onstrutions using the uniform dilation A = 2I [Aya99a℄, [Aya99a℄. Wealso remark on some related onstrutions with somewhat di�erent properties. Ex-amples of orthonormal, multidimensional wavelets whose Fourier transforms areompatly supported are presented in [DLS97℄, [Cal99℄, [BL01℄. Compatlysupported, multidimensional, biorthogonal wavelets are onstruted in [DM97℄,[Der99℄, [HL99℄, [JRS99℄, [KaV99℄, [KS00℄. Compatly supported, multidi-mensional wavelet frames are presented in [Han97℄, [GR98℄. The literature onthese topis is of ourse always expanding; the referenes given above are typialbut not exhaustive.



CHAPTER 2Matries, Tiles and the Joint Spetral Radius2.1. Misellaneous NotationWe use the onventions 1=1 = 0, 1=0 =1, and 00 = 1.The absolute value of a real or omplex number z is denoted by jzj. Theomplex onjugate of z is �z.The transpose of a matrix B is BT. The Hermitian, or onjugate transpose,is B�.The ardinality of a �nite set F is denoted by #F .The interior of a set E � Rn is EÆ, the boundary of E is �E, and the losureof E is E. If E is measurable, its Lebesgue measure is denoted by jEj. Theharateristi funtion of E is denoted �E . The Kroneker delta is denoted Æi;j .The open ball in Rn of radius " > 0 entered at x 2 Rn isB(x; ") = fy 2 Rn : kx� yk < "g;measured with respet to whatever norm on Rn is urrently in fore. Most om-putations in this manusript are independent of the hoie of norm on Rn; if notspei�ally stated then the norm is taken to be the Eulidean norm on Rn.The support of a vetor-valued funtion g = (g1; : : : ; gr)T : Rn ! Cr is thelosure of fx 2 Rn : g(x) 6= 0g. Integrals of g are omputed omponentwise. Inpartiular, if g is integrable then we de�ne its Fourier transform byĝ(!) = ZRn g(x) e�2�ix�! dx= �ZRn g1(x) e�2�ix�! dx; : : : ; ZRn gr(x) e�2�ix�! dx�T:The spae Lp(Rn) onsists of all omplex-valued funtions f on Rn for whihthe norm kfkp = �ZRn jf(x)jp dx�1=p; if 1 � p <1;or kfk1 = ess supx2Rn jf(x)j; if p =1;is �nite. We use the standard inner produt on L2(Rn):hg; hi = ZRn g(x)h(x) dx; g; h 2 L2(Rn):Let X be a losed subset of Rn, and let k � k be any �xed norm on Cr. Thenwe de�ne Lp(X;Cr) to be the Banah spae of all mappings g : X ! Cr suh thatkgkpLp = ZX kg(x)kp dx < 1;5



6 2. MATRICES, TILES AND THE JOINT SPECTRAL RADIUSwith the usual modi�ation if p =1. For simpliity, we de�ne Lp(X) = Lp(X;C).This de�nition of Lp(X;Cr) is independent of the hoie of norm k � k on Cr inthe sense that eah suh hoie yields an equivalent norm for Lp(X;Cr). If E isa nonempty losed subset of Cr, then Lp(X;E) is the losed subset of Lp(X;Cr)onsisting of funtions whih take values in E.We will assume throughout this manusript that A is a �xed dilation matrixwith assoiated full-rank lattie � � Rn. That is, A(�) � � and every eigenvalue �of A satis�es j�j > 1. We will onsider re�nement equations of multipliity r givenas in (1.1), i.e., f(x) = Xk2� k f(Ax� k); x 2 Rn;where � is a �xed �nite subset of � and the k are �xed r� r matries. A solutionof the re�nement equation is alled a vetor saling funtion or a re�nable vetorfuntion.The re�nement operator assoiated with this re�nement equation is the map-ping S, ating on vetor funtions g : Rn ! Cr, de�ned bySg(x) = Xk2� k g(Ax� k); x 2 Rn: (2.1)A saling funtion is thus a �xed point of S. The asade algorithm de�ned in (1.2)is the iteration f (i+1) = Sf (i):We will use a generalized matrix notation whih allows matries or vetorsto be indexed by arbitrary ountable sets. If desired, suh generalized matriesan always be realized as ordinary matries by hoosing a spei� ordering forthe index set. The atual ordering used is not important, as long as the sameordering is used onsistently. To be preise, let J and K be �nite or ountableindex sets. Let mj;k be r � s matries for j 2 J and k 2 K. Then we say thatM = [mj;k℄j2J;k2K 2 (Cr�s)J�K is a J �K matrix (with r � s blok entries). IfN = [nk;`℄k2K;`2L 2 (Cs�t)K�L, then the produt of the J �K matrix M withthe K � L matrix N is the J � L matrix formally de�ned byMN = "Xk2Kmj;k nk;`#j2J;`2L :Most summations enountered in this manusript will ontain only �nitely manynonzero terms. A \olumn vetor" is a J � 1 matrix, whih we will denote byv = [vj ℄j2J . The entries vj may be salars or r � s bloks. In partiular,Cr = Cr�1 = 8><>:264u1...ur375 : u1; : : : ; ur 2 C9>=>;is the spae of olumn vetors of length r. Analogously, a \row vetor" is a 1� Jmatrix, whih we will denote by u = (uj)j2J . In partiular, C1�r is the spae ofall row vetors of length r, i.e.,C1�r = fuT : u 2 Crg = f(u1; : : : ; ur) : u1; : : : ; ur 2 Cg:



2.2. ATTRACTORS AND TILES 72.2. Attrators and TilesSine A(�) � �, the dilation matrix A neessarily has integer determinant. Wede�ne m = j det(A)j;and let D = fd1; : : : ; dmgbe a full set of digits with respet to A and �, i.e., a omplete set of representativesof the order-m group �=A(�). Beause D is a full set of digits, the lattie � ispartitioned into the disjoint osets�d = A(�)� d = fAk � d : k 2 �g; d 2 D: (2.2)Let 1; : : : ; n be a set of generators for the lattie �, i.e., independent vetorssuh that � = fm11 + � � �+mnn : mi 2 Zg:Then the retangular parallelepipedP = fx11 + � � �+ xnn : 0 � xi < 1g (2.3)is a fundamental domain for the group Rn=�, and Rn is partitioned into the setsfP + kgk2�. For example, if � = Zn, then we an hoose 1; : : : ; n so that P =[0; 1)n.2.2.1. Attrators. The spae H(Rn) onsisting of all nonempty, ompatsubsets of Rn is a omplete metri spae under the Hausdor� metri h(�; �) de�nedby h(B;C) = inff" > 0 : B � C" and C � B"g;where B" = fx 2 Rn : dist(x;B) < "g: (2.4)Thus h(B;C) < " () B � C" and C � B":Sine all norms on Rn are equivalent, the de�nition of the Hausdor� metri isindependent of the hoie of norm used to measure distane in (2.4).For eah k 2 �, let wk : Rn ! Rn be the aÆne mapwk(x) = A�1(x+ k): (2.5)Sine A�1 is ontrative, eah wk is a ontrative mapping on Rn. For eah �nitesubset H � �, de�ne wH : H(Rn)! H(Rn) bywH (B) = Sk2H wk(B) = A�1(B +H): (2.6)Using the fat that eah wk is ontrative on Rn under the Eulidean norm, it anbe shown that wH is ontrative on H(Rn) under the Hausdor� metri [Hut81℄.The Contration Mapping Theorem therefore implies that there exists a uniquenonempty ompat set KH � Rn suh thatwH(KH) = KH :That is, KH is de�ned by the propertyKH = A�1(KH +H): (2.7)



8 2. MATRICES, TILES AND THE JOINT SPECTRAL RADIUSThe set KH is alled the attrator of the iterated funtion system (IFS) gener-ated by fwkgk2H [Hut81℄. In partiular, the attrators K� and Q = KD of theIFS's generated by fwkgk2� and fwkgk2D, respetively, will play important rolesthroughout this manusript. Beause wH is a ontration on H(Rn), the iterationK(i+1) = wH(K(i)) onverges in the Hausdor� metri to the attrator KH for anynonempty ompat starting set K(0). Therefore, any attrator KH an always beapproximated as losely as desired.We an use (2.7) to obtain another expression for KH . Iterating (2.7) k times,we see that KH = kXj=1A�j(H) +A�k(KH):Then, using the fat that A�1 is a ontration, it follows thatKH = 1Xj=1A�j(H) = � 1Xj=1A�jhj : hj 2 H�: (2.8)The following properties of an attrator KH will be useful. Parts (a), (b), and() of the following lemma are also valid for more general iterated funtion systems[Ban91℄, while parts (d), (e), and (f) make use of the fat that the funtions wkde�ned in (2.5) are aÆne mappings.Lemma 2.1. Let B 2 H(Rn), and let H, H1, H2 be �nite subsets of �.(a) If B � wH (B), then B � KH .(b) If wH (B) � B, then KH � B.() If H1 � H2, then KH1 � KH2 .(d) wH (KÆH) � KÆH .(e) j�KH j = 0.(f) If  2 �, then KH+ = KH + (A� I)�1.Next, we prove that a saling funtion must be supported in K�.Proposition 2.2.(a) If g : Rn ! Cr is ompatly supported, then supp(Sg) � w�(supp(g)).(b) If f : Rn ! Cr is a ompatly supported solution of the re�nement equa-tion, then supp(f) � K�.Proof. (a) It follows from (2.1) thatsupp(Sg) � A�1(supp(g) + �) = w�(supp(g)):(b) If Sf = f then part (a) implies supp(f) � w�(supp(f)), so supp(f) � K�by Lemma 2.1(a). �



2.2. ATTRACTORS AND TILES 92.2.2. The Tile Q. Sine D = fd1; : : : ; dmg is a full set of digits with respettoA and �, if we take any  2 � thenD+ will also be a full set of digits with respetto A and �. Further, by Lemma 2.1(f), we have KD+ = KD + (A� I)�1. Henewe an always translate the digit set D as we like, at the ost of orrespondinglytranslating the setQ = KD, whih is the attrator of the IFS generated by fwdgd2D.Without loss of generality, we therefore will always assume that 0 2 D. Equation(2.8) then implies that 0 2 Q.The following properties of Q will be useful [Ban91℄, f. also [GM92℄.Lemma 2.3. Let Q = KD, and let P be the fundamental domain de�ned in(2.3). Then the following statements hold.(a) Q+ � = Rn.(b) Q has nonempty interior, Q is the losure of QÆ, and j�Qj = 0.() jQ\ (Q+ k)j = 0 for all k 2 � n f0g if and only if jQj = jP j. In this ase,Q \ (Q+ k) � �Q for eah k 2 � n f0g.(d) #(QÆ \ �) � 1.In other words, part () above says that if jQj = jP j, then Q is a tile inthe sense that the �-translates fQ + kgk2� over Rn with overlaps of measurezero. A longstanding open problem was the question of whether for eah dilationmatrix A there exists a full set of digits D suh that the orresponding attratorQ is a tile. Lagarias and Wang proved that this is the ase if n = 1; 2; 3 or ifm = j det(A)j > n [LagW95a℄, [LagW96℄, [LagW97℄. Potiopa [Pot97℄ reentlyshowed that if n = 4 and A = 2664 0 1 0 00 0 1 00 0 �1 2�1 0 �1 1 3775 ;then there is no set of digits D suh that Q = KD is a tile, f. [LagW99℄. Notethat this matrix A has determinant 2.We will only deal in this manusript with the ase where a tile Q exists. Pre-isely, the following standing assumption will always be in fore.Standing Assumption 2.4. We will assume throughout this manusript thatwhenever a dilation matrix A and hoie of digits D are given, the orrespondingattrator Q = KD is a tile. That is, we always impliitly assume that the �-translates of Q over Rn with overlaps of measure zero. }Equation (2.8) applied to the attrator Q = KD has the formQ = KD = 1Xj=1A�j(D) = � 1Xj=1A�j"j : "j 2 D�: (2.9)Thus, eah point x 2 Q an be written x = P1j=1 A�j"j for some "j 2 D. Wewrite x = :"1"2 � � � in this ase, and refer to this representation of x as an A-naryexpansion of x. Note that A-nary expansions need not be unique.



10 2. MATRICES, TILES AND THE JOINT SPECTRAL RADIUSExample 2.5. Let n = 1, � = Z, A = 2, and � = f0; : : : ; Ng (allowing thepossibility that k = 0 for some k 2 �). In this ase, the re�nement equation hasthe form f(x) =PNk=0 k f(2x� k).We have m = j det(A)j = 2, and the sublattie A(�) is the set of even integers2Z. There are two osets, 2Z and 2Z+ 1. We hoose D = f0; 1g as our full set ofdigits. The aÆne maps wk de�ned by (2.5) are wk(x) = 12 (x + k) for k 2 Z. Theattrator Q = KD is de�ned by the requirement that (2.7) hold, whih translatesto the statement that Q = 12Q [ 12 (Q + 1). This is satis�ed for the ompat setQ = [0; 1℄. Sine f[0; 1℄ + kgk2Z overs R with overlaps of measure zero, thisattrator Q is indeed a tile. Moreover, equation (2.9) states that eah x 2 [0; 1℄ anbe written x = P1j=1 2�j"j with "j 2 D = f0; 1g, whih is the binary expansionof x. }
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Figure 2.1. Twin Dragon and Parallelogram Attrators.Example 2.6. The tile Q may have a fratal boundary. For example, ifA1 = � 1 �11 1 � and D = f(0; 0); (1; 0)g, then the tile Q is the elebrated \twindragon" fratal shown on the left in Figure 2.1. On the other hand, if we hooseA2 = � 1 11 �1 � and D = f(0; 0); (1; 0)g, then the tile Q is the parallelogram with ver-ties f(0; 0); (1; 0); (2; 1); (1; 1)g pitured on the right in Figure 2.1. For these twomatries A1 and A2, the sublatties A1(Z2) and A2(Z2) oinide. This sublattieis alled the quinunx sublattie of Z2. As a onsequene, these two matries A1,A2 are often referred to as quinunx dilation matries. }2.2.3. Covering by Translates of Q. We saw in Proposition 2.2 that if f is aompatly supported solution of the re�nement equation (1.1), then supp(f) � K�.Sine K� is ompat and Q is a tile, there exists a �nite set 
 � � suh thatK� � Q+
;where Q+
 = S!2
(Q+ !) = fq + ! : q 2 Q; ! 2 
g:If the tile Q is fratal-like, it may be diÆult to onstrut suh a set 
. The nextproposition gives one expliit example of a �nite 
 with this property.



2.2. ATTRACTORS AND TILES 11Proposition 2.7. De�ne�0 = ��D = fk � d : k 2 �; d 2 Dg;and let K�0 be the attrator of the IFS generated by fwkgk2�0 . Then 
�0 = K�0 \�satis�es K� � Q+
�0 . Further, (Q+ k) \K� 6= ; for eah k 2 
�0 .Proof. Fix any x 2 K�. Sine Q is a tile, we an write x = q + k for someq 2 Q and k 2 �. By (2.8) applied to x 2 K� and q 2 Q = KD, we an writex =P1j=1 A�j�j and q =P1j=1 A�j"j with �j 2 � and "j 2 D. Therefore,k = x� q = 1Xj=1A�j(�j � "j) 2 K�0 \ � = 
�0 :Hene x = q + k 2 Q+
�0 .Finally, suppose that k 2 
�0 , say k = P1j=1 A�j(�j � "j). Then x =P1j=1 A�j�j 2 K� and q = P1j=1 A�j"j 2 Q, so k + q = x 2 (Q + k) \ K�,and therefore (Q+ k) \K� 6= ;. �Thus, translates of the tile Q by elements of 
�0 over K�, and hene thesupport of f . Moreover, 
�0 is minimal in the sense that eah of the translatesQ + k for k 2 
�0 will interset K�, although it is possible that many of theseintersetions may have measure zero. It is often the ase that smaller sets 
 an befound whih also have the property that K� � Q+
. In partiular, this is the asein the one-dimensional setting and also for the examples we present in Chapter 5.Example 2.8. Note that in the 1-D ase, if � = f0; : : : ; Ng then the attratorK� of the IFS generated by fwkgk2� is the interval K� = [0; N ℄, and thereforethe saling funtion f must be supported in this interval. The set �0 de�ned inProposition 2.7 is �0 = � � D = f�1; : : : ; Ng. Then K�0 = [�1; N ℄ and 
�0 =f�1; : : : ; Ng = �0, so K� = [0; N ℄ � [�1; N +1℄ = [0; 1℄ + f�1; : : : ; Ng = Q+
�0 ,in aordane with Proposition 2.7. However, the smaller set 
 = f0; : : : ; N � 1galso has the property that K� � Q+
. Indeed, Q+
 = [0; 1℄ + f0; : : : ; N � 1g =[0; N ℄ = K� in this ase. }If 
 is a �nite subset of � suh that K� � Q+
, and if y 2 K�, then y = x+kfor some x 2 Q and k 2 
. However, it might also be the ase that y = x0+k0 withx0 2 Q and k0 =2 
. The following lemma shows that this is impossible if y lies inthe interior KÆ� of K�.Lemma 2.9. Let 
 be a �nite subset of �. If x+ k 2 (Q+
)Æ with x 2 Q andk 2 �, then k 2 
. In partiular, if K� � Q+ 
 and x+ k 2 KÆ� with x 2 Q andk 2 �, then k 2 
.Proof. Let x 2 Q and k 2 �, and suppose that x+k 2 (Q+
)Æ. Then we an�nd an open ball B(x+k; ") entirely ontained in (Q+
)Æ. De�ne F = B(x; ") \ Q.By Lemma 2.3(b), the tile Q is the losure of its interior, so F must have positiveLebesgue measure, i.e., jF j > 0. If y = z+k 2 F+k, then j(x+k)�yj = jx�zj < ",so F + k � B(x+ k; ") � (Q+
)Æ � Q+
:



12 2. MATRICES, TILES AND THE JOINT SPECTRAL RADIUSHowever, F � Q, soF + k � (Q+ k) \ (Q+
) = Sj2
(Q+ k) \ (Q+ j):If k =2 
, then j(Q+ k) \ (Q+ j)j = 0 by Lemma 2.3(), whih ontradits the fatthat jF j > 0. Therefore we must have k 2 
. �By our Standing Assumption, the �-translates of Q over Rn with overlaps ofmeasure zero (in fat, by Lemma 2.3, the overlaps will our only on the boundariesof the translates ofQ). We next prove thatQ an be modi�ed so that it tiles withoutoverlaps. This is analogous to removing one endpoint from the interval [0; 1℄ so thatinteger translates of the resulting interval [0; 1) over R without overlaps.Proposition 2.10. Assume that Q is a tile. Then there exists ~Q � Q, suhthat the �-translates of ~Q over Rn without overlaps, i.e.,~Q+ � = Rn and ~Q \ ( ~Q+ k) = ; for k 2 � n f0g:Further, ~Q \ � ontains a single element.Proof. Divide the lattie � into disjoint subsets �+, ��, and f0g in suh a waythat �� = ��+ and both �+ and �� are losed under vetor addition. Spei�ally,let �+ = nSi=1 fk 2 � : k = (k1; : : : ; ki; 0; : : : ; 0); ki > 0g (2.10)and let �� = ��+. De�ne ~Q = Q n Sk2�+(Q+ k):First we prove that the �-translates of ~Q are disjoint. Suppose that we hadx 2 ~Q\ ( ~Q+ k) for some k 2 �+. Then sine x 2 ~Q, we have x 2 Q but x =2 Q+ jfor any j 2 �+, whih ontradits the fat that x 2 ~Q+ k. On the other hand, ifx 2 ~Q \ ( ~Q + k) for some k 2 �� then x � k 2 ~Q \ ( ~Q + (�k)) with (�k) 2 �+,whih redues to the previous ase. Sine �+ [ �� = � n f0g, we onlude that�-translates of ~Q are indeed disjoint.Now we show that ~Q + � = Rn. Sine Q + � = Rn, it suÆes to show thatQ � ~Q+ �. So, suppose that x 2 Q but x =2 ~Q+ �. Then we annot have x 2 ~Q,so we must have x 2 Q n ~Q. Therefore, by de�nition of ~Q, there exists a j1 2 �+suh that x� j1 2 Q. If x� j1 2 ~Q then we would have x 2 ~Q+ j1 � ~Q+�, whihis a ontradition. Hene x� j1 2 Q n ~Q. Sine we also learly have x� j1 =2 ~Q+�,we an repeat this argument to obtain a sequene of points ji 2 �+ suh thatx�Pì=1 ji 2 Q n ~Q for eah `. However, it is easy to see from the de�nition of �+that Pì=1 ji!1, so this ontradits the fat that Q is ompat.Finally, sine the �-translates of ~Q do not overlap and over all of Rn, theremust be a unique element of � that lies in ~Q. �Remark 2.11. (a) Proposition 2.10 remains valid if the spei� sets �+ and ��de�ned by (2.10) are replaed by arbitrary subsets of � whih have the propertiesthat � = �+[��[f0g disjointly, �+ and �� are losed under vetor addition, and�� = ��+.



2.3. MATRIX FORM OF THE REFINEMENT OPERATOR 13(b) Sine we assume that 0 is one of the digits, the tile Q will ontain 0.However, while ~Q will ontain a unique element of �, that element need not be 0.For example, if n = 2, A = 2I , and D = f(0; 0); (1; 0); (0;�1); (1;�1)g, thenQ = [0; 1℄� [�1; 0℄ and ~Q = [0; 1)� [�1; 0). }2.3. Matrix Form of the Re�nement OperatorSuppose that f : R! C is a ompatly supported solution of the one-dimensional,single-funtion re�nement equationf(x) = NXk=0 k f(2x� k); x 2 R: (2.11)Then f must be supported in the interval [0; N ℄. Further, the re�nement equationan be reast into a matrix-vetor form as follows. De�ne a vetor-valued funtion�f : [0; 1℄! CN by�f(x) = [f(x+ k)℄N�1k=0 = 26664 f(x)f(x+ 1)...f(x+N � 1) 37775 ; x 2 [0; 1℄: (2.12)Sine supp(f) � [0; N ℄, the information in �f is \equivalent" to the informationin f . De�ne two matriesT0 = [2j�k℄N�1j;k=0 = 26664 0 0 0 � � � 0 02 1 0 � � � 0 0... ... ... . . . ... ...0 0 0 � � � N N�1 37775 (2.13)and T1 = [2j�k+1℄N�1j;k=0 = 26664 1 0 0 � � � 0 03 2 1 � � � 0 0... ... ... . . . ... ...0 0 0 � � � 0 N 37775 : (2.14)Then the re�nement equation (2.11) is equivalent to the equation�f(x) = (T0�f(2x); 0 � x � 1=2;T1�f(2x� 1); 1=2 < x � 1: (2.15)Note that by using the 2x mod 1 map given by2x mod 1 = (2x; 0 � x � 1=2;2x� 1; 1=2 < x � 1: ;we an rewrite (2.15) as �f(x) = Td1�f(2x mod 1); (2.16)where x = :d1d2 : : : is the binary expansion of x (for x = 1=2, use 1=2 = :1000 : : : ).We next de�ne a funtion on Rn that is analogous to the 2x mod 1 map anduse it to obtain a matrix form of the general re�nement equation that is analogousto (2.16).



14 2. MATRICES, TILES AND THE JOINT SPECTRAL RADIUSDefinition 2.12. By de�nition, Q = Smi=1 wdi(Q). If x 2 Q is suh thatx 2 wdi(Q) for a unique digit di, then we set�x = w�1di (x) = Ax� di: (2.17)Thus, if x = :"1"2 � � � is an A-nary expansion of suh an x, then "1 = di and�x = :"2"3 � � � . For other x, the meaning of (2.1) is ambiguous. We eliminate thisambiguity by \disjointizing" the sets wdi(Q). Spei�ally, we de�neQ1 = wd1(Q) and Qi = wdi(Q) n � Sj<i Qj� for i = 2; : : : ;m: (2.18)Then Qi � wdi(Q), and Q is the union of the disjoint sets Q1; : : : ; Qm. Hene eahx 2 Q lies in a unique Qi, and we de�ne �x by (2.17) using that unique value of i. }Now let 
 � � be any �xed �nite set suh thatK� � Q+
:For example, the set 
�0 onstruted in Proposition 2.7 is one possibility for 
.Given a funtion g : Rn ! Cr with supp(g) � K�, we de�ne the folding of gto be the funtion �g : Q! (Cr�1)
�1 given by�g(x) = [g(x+ k)℄k2
; x 2 Q:If we write (�g)k(x) = g(x+ k) for the kth omponent of �g(x), then this foldinghas the property that (�g)k1(x1) = (�g)k2(x2) whenever x1, x2 2 Q and k1, k2 2 
are suh that x1 + k1 = x2 + k2 (by Lemma 2.3(), suh points x1, x2 would haveto lie on �Q).For eah d in our digit set D, de�ne an 
�
 matrix Td byTd = [Aj�k+d℄j;k2
: (2.19)Let Q1; : : : ; Qm be de�ned as in (2.18). De�ne an operator T ating on vetorfuntions u(x) = [uk(x)℄k2
 : Q! (Cr�1)
�1by Tu(x) = mXi=1 �Qi(x) � Tdiu(Ax� di): (2.20)Or, equivalently, T an be de�ned byTu(x) = Tdiu(�x) if x 2 Qi: (2.21)This operator T is related to the re�nement operator S as follows.Proposition 2.13. Let 
 � � be suh that K� � Q+
. Assume that g : Rn !Cr satis�es supp(g) � K� and g(x) = 0 for x 2 �K�:(a) If x 2 Q and d 2 D is suh that Ax� d 2 Q, then�Sg(x) = Td�g(Ax� d): (2.22)(b) �Sg = T�g.



2.3. MATRIX FORM OF THE REFINEMENT OPERATOR 15Proof. (a) Let x 2 Q, and let y = Ax � d 2 Q. Suppose g(y + k) 6= 0 forsome k 2 �. Then y + k 2 KÆ�, and therefore k 2 
 by Lemma 2.9. Hene,�Sg(x) = [Sg(x+ j)℄j2
= "Xk2� k g(Ax� d+Aj � k + d)#j2
= "Xk2� Aj�k+d g(y + k)#j2
= "Xk2
 Aj�k+d g(y + k)#j2
= Td�g(y)= Td�g(Ax� d): (2.23)(b) Let x 2 Q, and let d = di, where i is the unique integer suh that x 2 Qi.Then �x = Ax�di 2 Q, so by (2.22) and (2.21) we have that �Sg(x) = Tdi�g(�x) =T�g(x), and this is valid for every x 2 Q. �Remark 2.14. Note that equation (2.22) is more general than the statement�Sg(x) = T�g(x). In partiular, (2.22) redues to the statement that �Sg(x) =Td�g(�x) = T�g(x) if it is the ase that d = di, where i is the unique integer suhthat x 2 Qi. However, (2.22) is valid given only that Ax� d 2 Q, and we will needto use this more general statement later. }The equality in Proposition 2.13(b) is a pointwise everywhere equality. We shownext that if we instead require only equality almost everywhere then the hypothesisin Proposition 2.13 that g(x) vanish on the boundary of K� an be removed.Corollary 2.15. Let 
 � � be suh that K� � Q + 
. If g : Rn ! Crsatis�es supp(g) � K�, then �Sg = T�g a.e.Proof. De�ne ~g(x) = g(x) for x 2 KÆ� and ~g(x) = 0 otherwise. Sine �K�has measure zero by Lemma 2.1(e), we have g = ~g a.e. Proposition 2.13 thereforeimplies that �S~g = T�~g pointwise everywhere. Sine Sg = S~g a.e. and T�g =T�~g a.e., the result follows. �Example 2.16. Consider the one-dimensional re�nement equation (2.11), butallow the multipliity r to be arbitrary. We have supp(f) � K� = [0; N ℄. Hene
 = f0; : : : ; N � 1g is the smallest subset of � = Z whih has the property thatK� � Q+
. With this hoie of 
, the folding of f is �f(x) = [f(x+k)℄N�1k=0 , whihoinides with (2.12) exept that the entries f(x + k) are now olumn vetors oflength r. The digit set is D = f0; 1g, so there are two matries T0 = [2j�k℄N�1j;k=0 andT1 = [2j�k+1℄N�1j;k=0. These oinide with the de�nitions in (2.13) and (2.14) exept



16 2. MATRICES, TILES AND THE JOINT SPECTRAL RADIUSthat the entries k are now r � r bloks. Finally, the reasting of the re�nementequation performed in Corollary 2.15 redues exatly to (2.16), exept that themultipliity r is now arbitrary. }2.4. The Joint Spetral RadiusThe spetral radius of a square matrix M is�(M) = lim`!1 kM `k1=` = maxfj�j : � is an eigenvalue of Mg:For eah 1 � p � 1, the p-joint spetral radius (p-JSR) of a �nite olletion ofs� s matriesM = fM1; : : : ;Mmg is�̂p(M) = 8>><>>: lim`!1�X�2P` k�kp�1=p`; 1 � p <1;lim`!1 max�2P` k�k1=`; p =1; (2.24)where P0 = fIg and P` = fMj1 � � �Mj` : 1 � ji � mg:It is easy to see that the limit in (2.24) exists and is independent of the hoie ofnorm k � k on Cs�s. Note that if p � q, then �̂p(M) � �̂q(M).We will refer to the1-JSR as the uniform joint spetral radius ; it is also knownas the generalized spetral radius, or simply as the joint spetral radius. Berger andWang [BW92℄ proved that �̂1(M) < 1 if and only if every produt Mj1 � � �Mj`onverges to the zero matrix as `!1, and that�̂1(M) = lim`!1 max�2P` �(�)1=`: (2.25)The proof of (2.25) is nontrivial whenM ontains more than one matrix. It followsfrom (2.25) that�̂1(M) = sup fj�j1=` : ` > 0 and � is an eigenvalue of some � 2 P`g: (2.26)Note that if there is a norm suh that �Pmj=1 kMjkp�1=p � Æ, then, by thede�nition of �̂, it is lear that �̂p(M) � Æ. We next prove the following partialonverse to this fat.Proposition 2.17. Assume that M = fM1; : : : ;Mmg is a �nite olletion ofs� s matries. If �̂p(M) < Æ, then there exists a vetor norm k � k on Cs suh that:(a) � mXj=1 kMjxkp�1=p � Æ kxk for eah x 2 Cs, if 1 � p <1, or(b) maxj kMjk � Æ, if p =1.Proof. Assume �rst that 1 � p <1. Let j � j be any vetor norm on Cs, andde�ne �̂p;` = �P�2P` j�jp�1=p`. Choose any number � suh that �̂p(M) < � < Æ.Then sine �̂p;` ! �̂p(M), there must be some m suh that �̂p;m � �. Given any `,write ` = mk + r with 0 � r � m� 1. De�neC = max�(�̂p;m)�i (�̂p;i)i : i = 0; : : : ;m� 1	:



2.4. THE JOINT SPECTRAL RADIUS 17Then (�̂p;`)p` = X�2P` j�jp= X�12Pm � � � X�k2Pm X�02Pr j�1 � � ��k�0jp� � X�12Pm j�1jp� � � �� X�k2Pm j�k jp�� X�02Pr j�0jp�= (�̂p;m)pkm (�̂p;r)pr= (�̂p;m)p` (�̂p;m)�pr (�̂p;r)pr� Cp �p`:Therefore, for eah x 2 Cs and eah ` � 0 we have1�p` X�2P` j�xjp � jxjp�p` X�2P` j�jp � Cp jxjp: (2.27)Let � > 1 be that number suh that �1=p � = Æ. Then the fat that � > 1,ombined with (2.27), implies that the series in the following de�nition onvergesfor eah x 2 Cs: kxk = � 1X̀=0 1�` 1�p` X�2P` j�xjp�1=p: (2.28)It is easy to verify that k � k de�ned by (2.28) is a vetor norm on Cs, and thatjxj � kxk � � ���1�1=p jxj. Finally, for eah x 2 Cs we havemXj=1 kMjxkp = mXj=1 1X̀=0 1�` 1�p` X�2P` j�Mjxjp= 1X̀=0 1�` 1�p` mXj=1 X�2P` j�Mjxjp= 1X̀=0 ��`+1 �p�p(`+1) X�2P`+1 j�xjp� � �p kxkp= Æp kxkp:This ompletes the proof for the ase 1 � p <1. The proof for the ase p =1 issimilar, using the norm kxk = sup`�0 max�2P` j�xjÆ`in plae of (2.28). �



18 2. MATRICES, TILES AND THE JOINT SPECTRAL RADIUSRemark 2.18. We briey illustrate why the joint spetral radius arises natu-rally in onnetion with re�nement equations. Suppose that f : R! C is a ontinu-ous, ompatly supported solution of the re�nement equation f(x) =PNk=0 k f(2x�k). Then by (2.16), we have for eah x 2 [0; 1℄ that �f(x) = T"1�f(�x), wherex = :d1d2 : : : is the binary representation of x.Suppose now that x` = :"1"2 � � � "`"`+1"`+2 � � � and y` = :"1"2 � � � "`"0̀+1"0̀+2 � � �are points whose binary expansions agree for the �rst ` digits. Then we an iterate(2.16) to obtain�f(x`)��f(y`) = T"1��f(�x`)��f(�y`)�= T"1T"2��f(�2x`)��f(�2y`)�= � � � = T"1 � � �T"`��f(� `x`)��f(� `y`)�:As ` inreases, the points x` and y` grow loser together. Sine f and hene �fis ontinuous, the di�erene �f(x`) � �f(y`) must onverge to the zero vetor as` ! 1. Sine � `x` and � `y` an be arbitrary points in [0; 1℄, it follows that theprodut T"1 � � �T"` must onverge to zero as ` inreases, at least when applied tovetors in the subspaeW0 = spanf�f(w)��f(z) : w; z 2 [0; 1℄g;whih an be shown to be a ommon invariant subspae for both T0 and T1. There-fore, a neessary ondition for the existene of a ontinuous solution to the re�ne-ment equation is that all produts (T"1 � � �T"`)jW0 of T0 and T1 restrited to thisinvariant subspae W0 must onverge to zero as `!1. By [BW92℄, this ours ifand only if �̂1(fT0jW0 ; T1jW0g) < 1. The spae W0 as given above is de�ned onlyimpliitly, and is usually diÆult or impossible in pratie to determine expliitly,whereas in Theorem 3.4 and 3.21 we determine expliit subspaes to use in plae ofW0 to haraterize the Lp and ontinuous solutions of the re�nement equation. }



CHAPTER 3Generalized Self-Similarity and the Re�nementEquation3.1. Generalized Self-SimilarityA subset B of a set X is said to be self-similar if there exist injetive mapsw1; : : : ; wm : X ! X suh that B = mSi=1wi(B):Let X and H be sets. A funtion f : X ! H is self-similar if its graph is self-similar,i.e., f(x) = f(w�1i (x)); x 2 wi(X); i = 1; : : : ;m:We say that f : X ! H is a generalized self-similar funtion if there exist funtions'i : X �H ! H and a funtion O : X �Hm ! H suh thatf(x) = O(x; '1(x; f(w�11 (x))); : : : ; 'm(x; f(w�1m (x)))); x 2 X:The theory of generalized self-similar funtions was developed in [CM99℄.The following theorem is a variation on the results of [CM99℄Theorem 3.1. Let 1 � p � 1 be given. Let X be a ompat subset of Rn,and let H be a losed subset of Cr. Let k � k be any norm on Cr. Let m � 1, andassume that funtions wi, 'i, and O are hosen with the following properties.1. For eah i = 1; : : : ;m, let wi : X ! X be ontinuously di�erentiable,injetive maps.2. Let 'i : X �H ! H for i = 1; : : : ;m satisfy a Lipshitz ondition in theseond variable, i.e.,� mXi=1 k'i(x; u)� 'i(x; v)kp�1=p � C ku� vk; (3.1)with the usual modi�ation if p =1.3. Let O : X �Hm ! H be non-expansive for eah x 2 X, i.e.,kO(x; u1; : : : ; um)�O(x; v1; : : : ; vm)k � � mXi=1 kui � vikp�1=p; (3.2)with the usual modi�ation if p =1.Let t0 be an arbitrary point in H. For u 2 Lp(X;H), de�neTu(x) = O(x; '1(x; u(w�11 (x))); : : : ; 'm(x; u(w�1m (x)))); (3.3)19



20 3. GENERALIZED SELF-SIMILARITYwhere we interpret u(w�1i (x)) = t0 if x =2 wi(X): (3.4)De�ne s = max1�i�m supx2X j det((Di� wi)(x))j; (3.5)where Di� is the di�erential operator. If O and the 'i map bounded sets intobounded sets, then T maps Lp(X;H) into itself, and satis�eskTu� TvkLp � s1=p C ku� vkLp : (3.6)In partiular, if s1=p C < 1, then T is ontrative, and there exists a unique funtionv� 2 Lp(X;H) suh that Tv� = v�. Moreover, in this ase, if v(0) is any funtionin Lp(X;H), then the iteration v(i+1) = Tv(i) onverges to v� in Lp(X;H).Proof. The fat that T maps Lp(X;H) into itself an be proved using thesame tehniques as in [CM99℄. Therefore we will only prove that T satis�es theLipshitz ondition in (3.6). Given u, v 2 Lp(X;H), we have thatkTu� TvkpLp= ZX kO(x; '1(x; u(w�11 (x))); : : : ; 'm(x; u(w�1m (x)))) �O(x; '1(x; v(w�11 (x))); : : : ; 'm(x; v(w�1m (x))))kp dx� ZX mXi=1 k'i(x; u(w�1i (x))) � 'i(x; v(w�1i (x)))kp dx by (3.2)= mXi=1 ZX k'i(x; u(w�1i (x))) � 'i(x; v(w�1i (x)))kp dx= mXi=1 Zwi(X) k'i(x; u(w�1i (x))) � 'i(x; v(w�1i (x)))kp dx by (3.4)� s mXi=1 ZX k'i(wi(x); u(x)) � 'i(wi(x); v(x))kp dx by (3.5)� sCp ZX ku(x)� v(x)kp dx by (3.1)= sCp ku� vkpLp : �3.2. SuÆient Conditions for the Existene of Vetor Saling FuntionsThe auray of a re�nable vetor funtion or distribution f is the largestinteger � > 0 suh that every multivariate polynomial q(x) = q(x1; : : : ; xn) withdeg(q) < � an be writtenq(x) = Xk2� akf(x+ k) = Xk2� rXi=1 ak;ifi(x + k) a.e.; x 2 Rn;



3.2. SUFFICIENT CONDITIONS 21for some row vetors ak = (ak;1; : : : ; ak;r) 2 C1�r. If no polynomials are repro-duible from translates of f then we set � = 0. We say that translates of f along� are linearly independent if Pk2� akf(x+ k) = 0 implies ak = 0 for eah k.For the main result of this setion (Theorem 3.4), we will need to imposeonly the minimal auray ondition � = 1. The following lemma from [CHM98℄haraterizes minimal auray.Lemma 3.2. Let f be a ompatly supported distributional solution of the re-�nement equation (1.1). Let �d = A(�)� d denote the osets de�ned in (2.2).(a) If there exists a row vetor u0 2 C1�r suh that u0f̂(0) 6= 0 andu0 = Xk2�d u0k for eah d 2 D; (3.7)then f has auray � � 1, andXk2�u0f(x+ k) = 1 a.e. (3.8)(b) If f has auray � � 1 and if f has independent translates, then thereexists a row vetor u0 2 C1�r suh that u0f̂(0) 6= 0 and (3.7) holds.The hypothesis of linear independene of translates in Lemma 3.2(b) an beweakened.In the single-funtion setting (r = 1), equation (3.7) redues to the requirementthat Pk2�d k = 1 for eah d 2 D.Note that if (3.7) holds then, sine the m osets �d for d 2 D partition �, u0is a left 1-eigenvetor for the matrix � = 1mP k. If this eigenvalue is nondegen-erate and if the remaining eigenvalues are less than 1 in absolute value, then thefollowing proposition from [CHM00℄ implies that a distributional solution f to there�nement equation does exist.Proposition 3.3. If the matrix � = 1mPk2� k has eigenvalues �1 = � � � =�s = 1 and j�s+1j; : : : ; j�r j < 1 with the eigenvalue 1 nondegenerate, then there existompatly supported distributions f1; : : : ; fr suh that f = (f1; : : : ; fr)T satis�esthe re�nement equation (1.1) in the sense of distributions. Furthermore, f̂(!) is aontinuous vetor funtion, and f̂(0) 6= 0.To motivate the following result, suppose that f is a ontinuous, ompatlysupported vetor saling funtion with auray � � 1. By Lemma 2.2, we havesupp(f) � K�. Let 
 be any �nite subset of � suh that K� � Q+ 
. Let u0 bethe row vetor suh that (3.8) holds, i.e., Pk2� u0f(x+ k) = 1 a.e. If x 2 Q, thenLemma 2.9 implies that the only nonzero terms in this series our when k 2 
.Hene, if we set e0 = (u0)k2
, i.e., e0 is the row vetor in (C1�r)1�
 obtained byrepeating the blok u0 one for eah k 2 
, thene0�f(x) = Xk2
 u0f(x+ k) = Xk2�u0f(x+ k) = 1 a.e.; x 2 Q:Thus the values of �f(x) are onstrained to lie in a partiular hyperplane Hin (Cr�1)
�1, namely, the olletion of vetors v = [vk℄k2
 suh that e0v =Pk2
 u0vk = 1. Further, the set of di�erenes E0 = H � H is the subspae



22 3. GENERALIZED SELF-SIMILARITYonsisting of vetors v = [vk℄k2
 suh that e0v = Pk2
 u0vk = 0. De�ne the dotprodut of two olumn vetors u = [uk℄k2
 and v = [vk℄k2
 2 (Cr�1)
�1 byu � v = u�v = Xk2
 u�kvk = Xk2
 rXi=1 �uk;ivk;i;where u� is the Hermitian, or onjugate transpose, of u. Then e0v = e�0 � v, so E0is simply the orthogonal omplement of the olumn vetor e�0.The following theorem gives onditions for the existene of a ontinuous or Lpvetor saling funtion under the assumption of minimal auray.Theorem 3.4. Let 1 � p � 1 be �xed. Let 
 � � be a �nite set suh thatK� � Q+
. Assume that there exists a nonzero vetor u0 2 C1�r suh that u0 =Pk2�d u0k for every d 2 D, f. equation (3.7). Let e0 = (u0)k2
 2 (C1�r)1�
,and de�ne E0 = (e�0)? = nv = [vk℄k2
 : e0v = Xk2
 u0vk = 0o: (3.9)SetIp0 = ng 2 Lp(Rn;Cr) : supp(g) � K� and Xk2�u0g(x+ k) = 1 a.e.o: (3.10)If Ip0 6= ; and �̂p(fTdjE0gd2D) < m1=p;then there exists a unique funtion f 2 Ip0 whih is a solution to the re�nementequation (1.1), and the asade algorithm f (i+1) = Sf (i) onverges geometriallyin Lp-norm to f for eah f (0) 2 Ip0 . Furthermore, if p = 1 and I10 ontains aontinuous funtion, then f is ontinuous.Proof. De�neH = fv = [vk℄k2
 2 (Cr�1)
�1 : e0v = Xk2
u0vk = 1g: (3.11)It follows from (3.7) that e0 is a ommon left 1-eigenvetor for eah matrix Td, soif e0v = 1, then e0(Tdv) = (e0Td)v = e0v = 1. Thus H is right-invariant undereah Td. Further, the set E0 given by (3.9) satis�es E0 = H �H , is a subspae of(Cr�1)
�1, and is right-invariant under eah matrix Td.Assume that 1 � p < 1. We will apply Theorem 3.1 with X = Q and H asgiven by (3.11). Our �rst step is to de�ne funtions wd, 'd, and O that satisfy thehypotheses of Theorem 3.1.For d 2 D, de�ne wd(x) = A�1(x + d). Then learly eah wd is injetive andontinuously di�erentiable. Further, det((Di� wd)(x)) = 1=m for every x.Let Æ be any number suh that�̂p(fTdjE0gd2D) < Æ < m1=p:Then by Proposition 2.17 applied to the matries TdjE0 , there exists a vetor normk � kE0 on E0 suh thatXd2D kTdwkpE0 � Æp kwkpE0 ; all w 2 E0:Let k � k denote any extension of this norm to all of (Cr�1)
�1.



3.2. SUFFICIENT CONDITIONS 23Sine Td(H) � H , we an de�ne 'd : Q � H ! H by 'd(x; u) = Tdu. Then,sine H �H � E0, we have for eah x 2 Q and u, v 2 H thatXd2D k'd(x; u)� 'd(x; v)kp = Xd2D kTd(u� v)kp � Æp ku� vkp:Therefore the funtions 'd satisfy the ondition (3.1) with onstant C = Æ. It iseasy to hek that eah 'd maps bounded sets into bounded sets.LetQ1; : : : ; Qm be the disjoint subsets of Q de�ned by (2.18), and de�neO : Q�Hm ! H by O(x; u1; : : : ; um) = mXi=1 �Qi(x) � ui:That is, O(x; u1; : : : ; um) = ui if x 2 Qi. Then O maps bounded sets to boundedsets and satis�es the nonexpansivity ondition (3.2).Now let T be de�ned by (3.3), i.e., for u 2 Lp(Q;H) de�neTu(x) = mXi=1 �Qi(x) � Tdiu(Ax� di):That is, Tu(x) = Tdiu(�x) if x 2 Qi. Note that this operator T oinides with theoperator T de�ned in (2.20). Sine the number s de�ned by (3.5) has the values = 1=m, Theorem 3.1 implies that T maps Lp(Q;H) into itself, and satis�eskTu� TvkLp � m�1=p Æ ku� vkLp :Sine Æ < m1=p, it follows that T is ontrative on Lp(Q;H) and there exists aunique funtion v� 2 Lp(Q;H) suh that Tv� = v�. Further, the iteration v(i+1) =Tv(i) onverges geometrially in Lp(Q;H) to v� for eah funtion v(0) 2 Lp(Q;H).Clearly Ip0 is a losed subset of Lp(Rn;Cr), and we laim that it is invariantunder the re�nement operator S. To see this, suppose that g 2 Ip0 . First, welearly have Sg 2 Lp(Rn;Cr) sine g 2 Lp(Rn;Cr) and � is �nite. Seond, sinesupp(g) � K�, we have supp(Sg) � K� by Proposition 2.2. Finally, to ompletethe laim we must show that Pk2� u0Sg(x+ k) = 1 a.e. Suppose that x 2 QÆ andk 2 � is suh that x+ k 2 supp(g). Then we have x+ k 2 supp(g) � K� � Q+
.However, the fat that x lies in the interior of Q ombined with the fat that lattietranslates of Q interset only on the boundaries of these translates implies thatx+ k 2 (Q+ 
)Æ. Lemma 2.9 therefore implies that k 2 
. Sine this is valid forevery x 2 QÆ and sine �Q has measure zero, we onlude thate0�g(x) = Xk2
u0g(x+ k) = Xk2�u0g(x+ k) = 1; a.e. x 2 Q:Thus �g(x) 2 H for a.e. x 2 Q. By Corollary 2.15, �Sg = T�g. Sine H isinvariant under eah matrix Td, we therefore have �Sg(x) 2 H for a.e. x 2 Q.Sine supp(Sg) is also inluded in K�, we an again apply Lemma 2.9 to onludethat 1 = e0�Sg(x) = Xk2
 u0Sg(x+ k) = Xk2�u0Sg(x+ k); a.e. x 2 Q:Sine Q tiles Rn by translates along �, we onlude that this equality atually holdsfor a.e. x 2 Rn. Thus Sg 2 Ip0 , so Ip0 is invariant under S as laimed.



24 3. GENERALIZED SELF-SIMILARITYIn summary, the statements above ombined with Corollary 2.15 imply thatthe following diagram ommutes, with T in partiular being a ontration:Ip0 �����! Lp(Q;H)S??y ??yTIp0 ����!� Lp(Q;H):Suppose that f (0) is any funtion in Ip0 , and de�ne f (i+1) = Sf (i). Then f (i) 2 Ip0for eah i. If we set v(i) = �f (i), thenv(i+1) = �f (i+1) = �Sf (i) = T�f (i) = Tv(i);so v(i) must onverge in Lp-norm to v�.We now hoose some partiular norms for these Lp spaes. Let j � j be any �xednorm on Cr. ThenkgkpLp = ZRn jg(x)jp dx; g 2 Lp(Rn;Cr);de�nes an equivalent norm for Lp(Rn;Cr). Similarly,kGkpLp = ZQ kG(x)kp dx; G 2 Lp(Q; (Cr�1)
�1);de�nes an equivalent norm for Lp(Q; (Cr�1)
�1).Now de�ne a norm jjj � jjj on (Cr�1)
�1 byjjjwjjj = �Xk2
 jwk jp�1=p; w = [wk℄k2
 2 (Cr�1)
�1:Sine all norms on a �nite-dimensional spae are equivalent, we an �nd a onstantB > 0 suh that jjj � jjj � B k � k. Therefore, if g 2 Lp(Rn;Cr) is supported in K�,then sine K� � Q+
 we havekgkpLp = ZQ+
 jg(x)jp dx;= Xk2
 ZQ jg(x+ k)jp dx= ZQ jjj�g(x)jjjp dx� Bp ZQ k�g(x)kp dx= Bp k�gkpLp:In partiular,kf (i) � f (j)kLp � B k�f (i) ��f (j)kLp = B kv(i) � v(j)kLp ;so f (i) must onverge in Lp-norm to some funtion f 2 Lp(Rn;Cr). We must havef 2 Ip0 sine Ip0 is a losed subset of Lp(Rn;Cr). Further,�f = v� = Tv� = T�f = �Sf a:e:;



3.2. SUFFICIENT CONDITIONS 25the last equality following from Corollary 2.15. Therefore f satis�es the re�nementequation (1.1) almost everywhere. Sine v� is unique, the asade algorithm mustonverge to this partiular f for any starting funtion f (0) 2 Ip0 .This ompletes the proof for the ase 1 � p < 1. The argument to this pointfor the ase p =1 is entirely similar. It therefore only remains observe that if anyf (0) 2 I10 is ontinuous, then the iterates f (i) obtained from f (0) are ontinuousand onverge uniformly to f , so f must itself be ontinuous. �Example 3.5. Consider the one-dimensional setting with A = 2, � = Z, D =f0; 1g, � = f0; : : : ; Ng, K� = [0; N ℄, and 
 = f0; : : : ; N �1g. There are two osets,�0 = 2Z and �1 = 2Z+ 1, so the minimal auray ondition (3.7) redues to therequirement that there exists a row vetor u0 2 C1�r suh thatu0 = Xk2Zu02k = Xk2Zu02k+1:The row vetor e0 is formed by repeating the row vetor u0 one for eah k 2 
 =f0; : : : ; N � 1g, i.e.,e0 = (u0)N�1k=0 = (u0; : : : ; u0) 2 (C1�r)1�N :Hene E0 onsists of all the olumn vetors v = (v0; : : : ; vN�1)T 2 (Cr�1)N�1 suhthat e0v = N�1Xk=0 u0vk = 0:Further, Ip0 onsists of those Lp vetor funtions g : R ! Cr whih are supportedin [0; N ℄ and whih have the property that Pu0g(x + k) = 1 a.e. In partiular, ifN � 2 and we let h be the hat funtion on [0; 2℄, i.e.,h(x) = maxf1� j1� xj; 0g;and let a 2 Cr�1 be a olumn vetor satisfying u0a = 1, then Ip0 will ontainthe ontinuous funtion g(x) = ah(x). Therefore, if �̂p(T0jE0 ; T1jE0) < 21=p, thenthere exists an Lp solution f to the re�nement equation, and the asade algorithmonverges in Lp-norm to f for any starting funtion f (0) hosen from Ip0 . Further,if p =1, then f is ontinuous.There are further simpli�ations in the single-funtion ase (r = 1). In parti-ular, if r = 1 then u0 is a salar, and by normalizing we an simply let u0 = 1. }The same tehniques used to prove Theorem 3.4 an also be used to prove thefollowing more general result.Theorem 3.6. Let 1 � p � 1 be �xed. Let 
 � � be a �nite set suh thatK� � Q+
. Let H be a nonempty losed subset of (Cr�1)
�1 suh that Td(H) � Hfor eah d 2 D. Let E be a subspae of (Cr�1)
�1 whih ontains H�H and whihis right-invariant under eah Td. De�neIp0 = ng 2 Lp(Rn;Cr) : supp(g) � K� and �g(Q) � Ho:If Ip0 6= ; and �̂p(fTdjEgd2D) < m1=p, then there exists a funtion f 2 Ip0 whihis a solution to the re�nement equation (1.1), and the asade algorithm f (i+1) =Sf (i) onverges in Lp-norm to f for eah funtion f (0) 2 Ip0 . Furthermore, if



26 3. GENERALIZED SELF-SIMILARITY�̂1(fTdjEgd2D) < 1 and there exists any ontinuous funtion f (0) 2 I10 , then f isontinuous.3.3. Continuous Solutions and the Support of the Re�nement EquationCoeÆientsThe set I10 de�ned by (3.10) is determined by two quantities: the set � andthe row vetor u0. The set � is the support of the set of oeÆients k in there�nement equation; it is determined only by the loation of the k and not theirvalues. The vetor u0, on the other hand, is determined by the values of the kas well as their loations. In this setion we will onsider what requirements mustbe plaed on � and u0 so that I10 will ontain a ontinuous funtion. We will seethat, in fat, this is determined solely by � and not by u0, i.e., only the loation ofthe oeÆients k is important for this question, and not their atual values.Sine any ontinuous funtion supported in K� must be zero on the boundaryof K�, it is suÆient to study the question of when the setI(�; u0) = ng 2 L1(Rn;Cr) : g(x) = 0 for x =2 KÆ� and Xk2� u0g(x+ k) = 1oontains a ontinuous funtion. Here the notation I(�; u0) is meant to emphasizethe dependene on � and u0. The following result shows that I(�; u0) ontains aontinuous funtion exatly when it ontains any funtions at all. Further, whetherI(�; u0) is nonempty or not is independent of the value of u0.Lemma 3.7. Let � � � be �nite, and let u0 2 C1�r be nonzero. Then thefollowing statements are equivalent.(a) I(�; u0) 6= ;.(b) I(�; u0) ontains a ontinuous funtion.() KÆ� + � = Rn, i.e., lattie translates of KÆ� over Rn.Proof. (a) ) (). Assume there exists a funtion g 2 I(�; u0). Then sinePk2� u0g(x + k) never vanishes but g(x + k) 6= 0 only for x + k 2 KÆ�, we musthave Sk2�(KÆ� + k) = Rn.()) (b). Suppose that Sk2�(KÆ�+k) = Rn. Then K� has nonempty interior,so there exist ontinuous salar-valued funtions h : Rn ! C supported in K� suhthat h(x) > 0 for eah x 2 KÆ�. For example, h(x) = dist(x; (KÆ�)C) has thisproperty. Let a 2 Cr�1 be suh that u0a = 1, and de�ne s(x) = Pk2� h(x + k).Then s is a ontinuous, salar-valued funtion whih never vanishes, and thereforeg(x) = ah(x)=s(x) is a ontinuous vetor funtion whih lies in I(�; u0). �Sine the size of the set � will determine the size of the matries Td, andtherefore the omplexity of the omputation of the JSR, it should be hosen to beas small as possible, while satisfying the requirements of Lemma 3.7. However, even\large" � may fail the neessary ondition KÆ�+� = Rn, as the following exampleshows.



3.4. HIGHER-ORDER ACCURACY 27Example 3.8. Let n = 2, and onsider the uniform dilation A = 2I . With� = Z2, a natural digit hoie is D = f(0; 0); (1; 0); (0; 1); (1; 1)g. Let s be anypositive integer, and de�ne � = f0; 1g� f0; : : : ; sg:Then K� = [0; 1℄� [0; s℄, so KÆ� = (0; 1)� (0; s). Hene Z2-translates of KÆ� do notover Rn, so Lemma 3.7 implies that I(�; u0) is empty. }A related question is whether, for a given hoie of dilation matrix A and digitset D, there must exist some �nite set � � � suh that KÆ� + � = Rn. Thiswill always be the ase. For example, if � = D + D then it follows from (2.7)that K� = KD +KD = Q + Q. Sine QÆ + Q = Sq2Q(QÆ + q) is open, we havethat QÆ + Q � (Q + Q)Æ = KÆ�. Sine Q is a tile, we know by Lemma 2.3(b)that QÆ 6= ;. Therefore KÆ� ontains some translate q0 + Q of Q, and thereforeKÆ� + � � (q0 +Q) + � = Rn.3.4. Higher-Order AurayWe saw in Theorem 3.4 that if the oeÆients k of the re�nement equationsatisfy (3.7), the ondition for minimal auray, then the spae E0 de�ned by (3.9)is right-invariant under eah matrix Td. We will show below that if the oeÆientsk satisfy the onditions for higher-order auray then E0 is only the largest of adereasing hain of ommon invariant subspaesE0 � E1 � � � � � E��1;and that, as a onsequene, the value of �̂1(fTdjE0gd2D) is determined by the valueof �̂1(fTdjE��1gd2D). Moreover, these invariant spaes Es are diretly determinedfrom the oeÆients k via the auray onditions, whih are a system of linearequations. Hene it is a simple matter to ompute the matries TdjE��1 .We will use the standard multi-index notation, i.e., x� = x�11 � � �x�nn where� = (�1; : : : ; �n) is an n-tuple of nonnegative integers and x 2 Rn. The degree of� is j�j = �1 + � � �+ �n:The number of multi-indies � of a given degree s isds = �s+ n� 1n� 1 �:In partiular, d0 = 1 and d1 = n. If n = 1 then ds = 1 for eah s, and if n = 2 thends = s+ 1 for eah s. We write � � � if �i � �i for i = 1; : : : ; n. We set���� = (��1�1� � � � ��n�n�; � � �;0; otherwise:We shall often deal with matrix-valued funtionsu = [uj;k℄j2J;k2K : Rn ! CJ�K ;eah of whose entries uj;k : Rn ! C is a polynomial. In this ase, we refer to u asa matrix of polynomials, and we say that the degree of u isdeg(u) = maxfdeg(uj;k)gj2J;k2K :



28 3. GENERALIZED SELF-SIMILARITYThe following lemma shows that the auray of any funtion supported in K�is neessarily �nite.Lemma 3.9. Assume g : Rn ! Cr satis�es supp(g) � K�. Let 
 � � be suhthat K� � Q+
. Then the auray � of g is bounded by the requirement that��1Xs=0 ds � r �#
;Proof. Assume that g has auray �. Then for eah multi-index � withj�j < �, there exist row vetors y�(k) = (y�;1(k); : : : ; y�;r(k)) suh thatx� = Xk2� y�(k) g(x+ k) = Xk2� rXi=1 y�;i(k) gi(x+ k):Let x 2 QÆ. If x + k 2 supp(g), then we have x + k 2 K� � Q + 
. But sinex 2 QÆ, this an only happen if x + k 2 (Q + 
)Æ. Lemma 2.9 therefore impliesthat k 2 
. Hene, if we restrit our attention to the set QÆ, we havex�jQÆ 2 spanfgi(x + k)jQÆgk2
; i=1;:::;r:Sine QÆ is a nonempty open set, the polynomials x� restrited to QÆ are linearlyindependent. Hene the total number of suh polynomials, whih is P��1s=0 ds, anbe at most the dimension of spanfgi(x + k)jQÆgk2
; i=1;:::;r, whih is bounded byr �#
. �We require some notation in order to disuss higher-order auray. Proofs ofthe fats given below an be found in [CHM98℄, [CHM00℄. For a given degrees � 0, we ollet the ds monomials x� of degree s together to form a olumn vetorof monomials X[s℄ : Rn ! Cds . Spei�ally, X[s℄ is de�ned byX[s℄(x) = [x�℄j�j=s ; x 2 Rn:The ordering of the multi-indies � of degree s is not important, as long as thesame ordering is used throughout.For eah integer 0 � t � s, de�ne a matrix of polynomials Q[s;t℄ : Rn ! Cds�dtby Q[s;t℄(y) = (�1)s�t ����� y����j�j=s;j�j=t ;where we use the onvention that 00 = 1. In partiular, Q[s;s℄(y) = I , the ds � dsidentity matrix. Translation of X[s℄(x) obeys the ruleX[s℄(x� y) = sXt=0 Q[s;t℄(y)X[t℄(x): (3.12)Given any n� n matrix B = [bi;j ℄i;j=1;:::;n with salar entries and given s � 0,let B[s℄ = [bs�;� ℄j�j=s;j�j=s be the ds�ds matrix whose salar entries bs�;� are de�nedby the equationXj�j=s bs�;� x� = (Bx)� = nYi=1 (bi;1x1 + � � �+ bi;nxn)�i :Dilation of X[s℄(x) by B obeys the ruleX[s℄(Bx) = B[s℄X[s℄(x): (3.13)



3.4. HIGHER-ORDER ACCURACY 29The matrix B[s℄ has a number of surprising properties. For example, if � =(�1; : : : ; �n)T is the vetor of all eigenvalues of B, then [��℄j�j=s is the vetor of alleigenvalues of B[s℄.Given a olletionfv� = (v�;1; : : : ; v�;r) 2 C1�r : 0 � j�j < �gof row vetors of length r, we shall assoiate a number of speial matries andfuntions. First, we group the v� by degree to form ds � 1 olumn vetors v[s℄ 2(C1�r)ds�1 with blok entries that are the 1� r row vetors v�, i.e.,v[s℄ = [v�℄j�j=s = 264 v�1;1 � � � v�1;r... . . . ...v�ds ;1 � � � v�ds ;r 375 :Note that v[0℄ = [v0℄ = v0. Later we will hoose v0 to oinide with the vetor u0appearing in (3.7).Seond, for eah �, we de�ne a row vetor of polynomials y� : Rn ! C1�r byy�(x) = X0���� (�1)j�j�j�j���� v� x��� : (3.14)Note that if v0 6= 0, then deg(y�) = j�j. We will see in Theorem 3.12 that, underappropriate onditions on the vetors v�, the row vetors y�(k) are preisely thosevetors suh that Pk2� y�(k) f(x+ k) = x�.As with the vetors v�, we ollet the vetors of polynomials y� by degree andarrange them as blok entries in a olumn vetor to form a matrix of polynomialsy[s℄ : Rn ! (C1�r)ds�1, i.e.,y[s℄(x) = [y�(x)℄j�j=s= 24 sXt=0 Xj�j=t (�1)s�t����x��� v�35j�j=s= sXt=0Q[s;t℄(x) v[t℄:Finally, for eah x we ollet the bloks y[s℄(x + k) into an in�nite row vetorto form a funtion Y[s℄ : Rn ! �(C1�r)ds�1�1��, i.e.,Y[s℄(x) = �y[s℄(x + k)�k2�:Note that Y[s℄(0) = �y[s℄(k)�k2� is the row vetor of evaluations of the matrix ofpolynomials y[s℄ at lattie points k 2 �.Example 3.10. In the one-dimensional setting n = 1, there is a single polyno-mial xs of degree s. Therefore ds = 1 for every s, and the multi-index � that hasdegree s is simply the salar � = s. Thus A[s℄ is a salar and X[s℄ and Q[s;t℄ aresalar-valued funtions on R. In partiular, with A = 2 and � = Z we haveA[s℄ = 2s; X[s℄(x) = xs; Q[s;t℄(y) = (�1)s�t�st� ys�t:



30 3. GENERALIZED SELF-SIMILARITYHene (3.12) is nothing more than the binomial theorem, and (3.13) is the statementthat (2x)s = 2sxs. The vetors v� = vs are \ordinary" row vetors of length r.Further, there is only one v� to \stak" to form v[s℄, so v[s℄ = vs. The funtionsy�(x) = ys(x) are row vetor-valued, and y[s℄(x) is a \stak" of ys(x) alone, soequals ys(x). Thus,v� = vs 2 C1�r;v[s℄ = [v�℄j�j=s = vs 2 C1�r;ys(x) = sXt=0 (�1)s�t�st�xs�t vt maps R! C1�r;y[s℄(x) = [y�(x)℄j�j=s = ys(x) maps R! C1�r;Y[s℄(x) = �ys(x+ k)�k2Z maps R! (C1�r)1�Z:In partiular, Y[s℄(x) is an in�nite row vetor whose entries are the 1�r row vetorsys(x + k) with k 2 Z. Thus Y[s℄(x) is simply an \ordinary" in�nite row vetor ofthe form Y[s℄(x) = �� � � ; ys(x� 1); ys(x); ys(x + 1); � � ��;with bloks ys(x+ k) that are ordinary 1� r row vetors. }The following fat on the behavior of the matrix of polynomials y[s℄ undertranslation will be useful.Lemma 3.11. Given a olletion fv� 2 C1�r : 0 � j�j < �g of row vetors, lety[s℄(x) and Y[s℄(x) be as de�ned above. Theny[s℄(x+ y) = sXt=0 Q[s;t℄(y) y[t℄(x);Y[s℄(x+ y) = sXt=0 Q[s;t℄(y)Y[t℄(x):The following result provides suÆient onditions for a re�nable distributionto have auray � [CHM98℄, [CHM00℄. These onditions are also neessary if fhas independent translates.Theorem 3.12. Assume that f is a ompatly supported distributional solutionof the re�nement equation (1.1). De�ne L = [Ai�j ℄i;j2�, and onsider the followingstatements.(I) f has auray �.(II) There exists a olletion of row vetors fv� 2 C1�r : 0 � j�j < �g suhthat(i) v0f̂(0) 6= 0, and(ii) Y[s℄(0) = A[s℄ Y[s℄(0)L for 0 � s < �.Then the following statements hold.



3.4. HIGHER-ORDER ACCURACY 31(a) If translates of f along � are independent, then statement (I) impliesstatement (II).(b) Statement (II) implies statement (I). Moreover, in this ase, after salingthe vetors v� by an appropriate onstant, we haveX[s℄(x) = Xk2� y[s℄(k) f(x+ k) = Y[s℄(0)F (x); 0 � s < �; (3.15)where F (x) = [f(x+ k)℄k2�.Note that (3.15) says exatly thatx� = Xk2� y�(k) f(x+ k); 0 � j�j < �:By (3.14), the oeÆients y�(k) have the form of vetors of polynomials y�(x)evaluated at lattie points k 2 �.Remark 3.13. The vetor v0 is a left 1-eigenvetor for the matrix � = 1mP k,and f̂(0) is a right 1-eigenvetor for this same matrix. In most appliations, thematrix � is hosen so that 1 is a simple eigenvalue (in partiular, this is a neessaryondition for f to have linearly independent translates). In this ase v0 and f̂(0)are unique up to sale and automatially satisfy the ondition v0f̂(0) 6= 0. Inpartiular, in the single-funtion setting v0 and f̂(0) are both nonzero salars, sotheir produt is automatially nonzero. }Remark 3.14. It is proved in [CHM98, Theorem 4.8℄ that the ondition thatY[s℄(0) = A[s℄ Y[s℄(0)L; for 0 � s < �; (3.16)an be restated as:y[s℄(`) = A[s℄ Xk2� y[s℄(k) Ak�`; for 0 � s < � and ` 2 �; (3.17)and that the set of in�nitely many onditions on the vetors v� given by (3.17) isin fat equivalent to the following �nite system of �nite linear equations:v[s℄ = Xk2�d sXt=0Q[s;t℄(k)A[t℄ v[t℄ k; for 0 � s < � and d 2 D; (3.18)where �d = A(�) � d. Note that this system is in blok triangular form in thevariables v[t℄. The oeÆients Q[s;t℄(k), A[t℄, and k are all known expliitly. It anbe shown that in the single-funtion setting (r = 1), the system (3.18) is solvableif and only ifXk2� k = m and Xk2�d1 k�k = � � � = Xk2�dm k�k for 0 � j�j < �;where D = fd1; : : : ; dmg is a listing of the digits in some order. Note that thissystem of equations is determined by the oeÆients k and the sublattie A(�),and does not depend diretly on the dilation matrix A, in ontrast to (3.16), (3.17),or (3.18). }



32 3. GENERALIZED SELF-SIMILARITY3.5. Invariant SubspaesWe will now show that the assumption of higher-order auray onditions onthe oeÆients k imposes onsiderable struture on the matries Td. Spei�ally,we will show that these matries share ommon eigenvalues and invariant subspaes.Assume that the suÆient onditions for auray � given in Statement II ofTheorem 3.12 are satis�ed. In partiular, v0 6= 0, and therefore the vetor ofpolynomials y� de�ned by (3.14) has degree j�j. The �nite row vetorse� = (y�(k))k2
 2 (C1�r)1�
; 0 � j�j < �; (3.19)formed by restriting the in�nite row vetors (y�(k))k2� to omponents whoseindies lie in 
 will play an important role, as will their spansUs = spanfe� : 0 � j�j � sg:Example 3.15. In the one-dimensional setting n = 1 there is only one multi-index � for eah degree s, namely � = s, so Us = spanfe0; : : : ; esg. The vetor ofpolynomials ys : Rn ! C1�r de�ned by (3.14) has the formys(x) = sXt=0 (�1)s�t�st� vt xs�t;and sine 
 = f0; : : : ; N � 1g, we havees = (ys(k))k2
 = (ys(0); : : : ; ys(N � 1)):In partiular, e0 = (v0; : : : ; v0).Now further restrit to the single-funtion setting r = 1. In this ase, ysis a salar -valued polynomial of degree s, and es is the row vetor of length Nwhose omponents are the evaluations of the polynomial ys at the integers k =0; : : : ; N � 1. In partiular, after resaling f by an appropriate onstant, we antake e0 = (1; : : : ; 1). Sine es = (ys(0); : : : ; ys(N � 1)) and ys is a polynomial ofdegree s, it follows that the spae Us = spanfe0; : : : ; esg onsists of the vetors ofevaluations of all polynomials of degree at most s at the points 0; : : : ; N � 1. Thatis, if we letPs = fu : R! C : u = 0 or u is a polynomial with deg(u) � sg;then Us = f(u(0); : : : ; u(N � 1)) : u 2 Psg:Thus, while fe0; : : : ; esg is a natural basis for Us in the ontext of the aurayonditions presented in Setion 3.4, another natural basis for Us is fw0; : : : ; wsg,where wt = (0t; 1t; : : : ; (N � 1)t):Indeed, this basis often impliitly appears in papers dealing with auray of sal-ing funtions in the one-dimensional, single-funtion setting. To ompare these twobases, note that es = (ys(0); : : : ; ys(N � 1)) where ys that polynomial suh thatPk2Z ys(k)f(x+ k) = xs, while ws = (qs(0); : : : ; qs(N � 1)) where qs is the mono-mial qs(x) = xs. In this ase Pk2Z qs(k)f(x+ k) is a polynomial in x of degree s,but in general it is not the polynomial xs.



3.5. INVARIANT SUBSPACES 33However, while both fe0; : : : ; esg and fw0; : : : ; wsg are natural bases for Us inthe single-funtion setting, only the basis fe0; : : : ; esg has a diret generalization tothe multi-funtion setting. This is beause if r > 1 and we letPs;r = fu : R! C1�r : u = 0 or u is a vetor polynomial with deg(u) � sg;then Us ( f(u(0); : : : ; u(N � 1)) : u 2 Ps;rg; (3.20)beause Us has dimension s + 1 while the set on the right-hand side of (3.20) hasdimension r(s+1). In other words, when r > 1 the spae Us ontains only some ofthe possible vetors of evaluations of polynomials of degree at most s. Hene, in themulti-funtion setting, the vetors e� must be omputed in order to ompute thespae Us. Analogues of these remarks arry over to the higher-dimensional settingas well. Fortunately, one the auray onditions in (3.18) are solved, the vetorse� are easily and immediately omputable from (3.19) and (3.14). }We observe next that the vetors e� are linearly independent if a solution to there�nement equation does exist. We stipulate that whenever we onsider a olletionsuh as fe� : 0 � j�j < �g, we assume that the vetors in this set are ordered fromlowest degree to highest, with the ordering within degree �xed but unimportant.Lemma 3.16. Assume that there exists a ompatly supported distributional so-lution f to the re�nement equation (1.1), and that Statement (II) of Theorem 3.12holds. Then the vetors e� de�ned in (3.19) are linearly independent.Proof. Theorem 3.12 implies that x� =Pk2� y�(k) f(x+k). If x 2 QÆ, thenLemma 2.9 implies that x+k 2 supp(f) an hold only when k 2 
. Hene, if thereexist salars h� suh that P0�j�j<� h� e� = 0, then for x 2 QÆ we have0 = X0�j�j<�h� e��f(x) = X0�j�j<�h�Xk2
 y�(k) f(x+ k) = X0�j�j<�h� x�:Sine QÆ is nonempty, this implies h� = 0 for every �. �The next theorem states that the assumption of the higher-order auray on-ditions given by the equivalent equations (3.16){(3.18) implies that the matriesTd share ommon invariant subspaes. This result is essentially a statement aboutthe oeÆients k in the re�nement equation and does not require the assumptionthat a solution to the re�nement equation exist. By Lemma 3.16, if a ompatlysupported solution does exist, even merely in the distributional sense, then the hy-pothesis in the following theorem that the vetors e� are independent is redundant.Reall that B� denotes the Hermitian, or onjugate transpose, of a matrix B.Theorem 3.17. Let 
 � � be a �nite set suh that K� � Q+
. Assume thatthere exist row vetors fv� 2 C1�r : 0 � j�j < �g suh that (3.18) holds. Let e�be de�ned as in (3.19), and assume that the vetors fe� : 0 � j�j < �g are linearlyindependent. De�neUs = spanfe� : 0 � j�j � sg � (C1�r)1�
and Es = fe�� : 0 � j�j � sg? = fv 2 (Cr�1)
�1 : e�v = 0 for 0 � j�j � sg:Then the following statements hold.



34 3. GENERALIZED SELF-SIMILARITY(a) Us is left-invariant under Td for eah d 2 D.(b) Es is right-invariant under Td for eah d 2 D.() Let f~e� : 0 � j�j < �g be the result of applying the Gram{Shmidt orthog-onalization proedure to the system fe� : 0 � j�j < �g. Let BE be anyorthonormal basis for E��1. ThenB = f~e �� : 0 � j�j < �g [ BE (3.21)is an orthonormal basis for (Cr�1)
�1, and the matrix for Td in this basishas the blok form[Td℄B = 2666664 B0 0B1 . . . B��1� Cd
3777775 ; (3.22)where eah Bs is a �xed ds� ds matrix whose Jordan form oinides withthe Jordan form for A�1[s℄ , and where Cd = [TdjE��1 ℄BE . In partiular, B0is the salar 1.(d) �̂1(fTdjE0gd2D) = max��(A�1); �̂1(fTdjE��1gd2D)	.Proof. (a) Let P
 be the projetion matrix de�ned byP
 = [Æj;kIr ℄j2�;k2
;where Ir is the r � r identity matrix and Æj;k = 1 if j = k and 0 otherwise.Then e� = (y�(k))k2� P
. Therefore, if we form the olumn vetor [e�℄j�j=s whoseomponents are the row vetors e�, then we an write[e�℄j�j=s = (y[s℄(k))k2� P
 = Y[s℄(0)P
: (3.23)Combining this with the fat thatP
 Td = [Ak�`+d℄k2�;`2
; (3.24)we ompute that[e�Td℄j�j=s = Y[s℄(0)P
 Td by (3.23)= (y[s℄(k))k2� [Ak�`+d℄k2�;`2
 by (3.24)= �Xk2� y[s℄(k) Ak�`+d�`2
= �A�1[s℄ y[s℄(`� d)�`2
 by (3.17)= A�1[s℄ Y[s℄(�d)P
 by de�nition of Y[s℄= A�1[s℄ sXt=0 Q[s;t℄(�d)Y[t℄(0)P
 by Lemma 3.11= A�1[s℄ sXt=0 Q[s;t℄(�d) [e� ℄j�j=t by (3.23):



3.5. INVARIANT SUBSPACES 35Therefore e�Td 2 spanfe� : j�j � sg = Us for eah j�j = s, so Us is left-invariantunder Td.(b) Follows immediately from (a).() Note that B0 = fe�� : 0 � j�j < �g [ BEis a basis for (Cr�1)
�1, and that the basis B is obtained from B0 via Gram{Shmidt. Using the omputations from part (a) and the fat that Q[s;s℄(y) = I , wehave for eah 0 � s < � that[e�Td℄j�j=s = A�1[s℄ sXt=0 Q[s;t℄(�d) [e� ℄j�j=t= A�1[s℄ [e�℄j�j=s + A�1[s℄ s�1Xt=0 Q[s;t℄(�d) [e� ℄j�j=t: (3.25)As a onsequene, the matrix for T �d in the basis B0 has the form[T �d ℄B0 = 266664 (A�1[0℄ )� �. . . (A�1[��1℄)�0 ~C�d 377775for some matrix ~Cd. Reall that the Gram{Shmidt orthogonalization of vetorsw1; : : : ; w` preserves spanfw1; : : : ; wkg for eah k = 1; : : : ; `. Therefore,[T �d ℄B = 26664 B�0 �. . . B���10 C�d 37775where Bs is a ds�ds matrix obtained from A�1[s℄ via a similarity transformation, andlikewise Cd is obtained from ~Cd via a similarity transformation. In partiular, B0 isthe salar 1 beause A[0℄ is the salar 1. Finally, sine B is an orthonormal basis, wehave that [Td℄B = ([T �d ℄B)�, so [Td℄B has the form given in (3.22). It therefore onlyremains to note that Cd = [TdjE��1 ℄BE simply beause B = f~e �� : 0 � j�j < �g [ BEand beause E��1 is right-invariant under Td.(d) Beause the spaes Es are nested,Bs = f~e �� : s < j�j < �g [ BEis an orthonormal basis for Es. It therefore follows from (3.22) that [TdjEs ℄Bsis that bottom right submatrix of the right-side of (3.22) whih has the bloksBs+1; : : : ; B��1; Cd on the diagonal. In partiular, the operators TdjE0 are simulta-neously blok lower-triangularized in the basis B0, with the bloks B1; : : : ; B��1; Cdappearing along the diagonal of [TdjE0 ℄B0 . It therefore follows easily from (2.26)that �̂1(fTdjE0gd2D) = max��(B1); : : : ; �(B��1); �̂1(fCdgd2D)	:



36 3. GENERALIZED SELF-SIMILARITYHowever, the eigenvalues of Bs and A�1[s℄ oinide, and by [CHM98, Lemma 4.2℄,the spetrum of A�1[s℄ is f��� : j�j = sg, where � = (�1; : : : ; �n)T is the vetor ofall eigenvalues of A. Sine j�ij > 1 for eah i, we therefore havemaxf�(B1); : : : ; �(B��1)g = maxfj���j : 1 � j�j � �� 1g= maxfj��11 j; : : : ; j��1n jg= �(A�1):The result then follows sine Cd = [TdjE��1 ℄BE . �Note from (3.25) that for the digit d = 0, we have[e�Td℄j�j=s = A�1[s℄ [e�℄j�j=s;sine Q[s;t℄(0) = 0 when t < s. If A is diagonalizable, then it is possible to makea hange of basis so that A�1[s℄ = diag(��� : j�j = s). Hene, in this basis thevetors e� are left ���-eigenvetors of T0. However, even in this basis they are noteigenvetors of those Td with d 6= 0.3.6. Neessary Conditions for the Existene of Continuous VetorSaling FuntionsWe saw in Theorem 3.4 that if the oeÆients k of the re�nement equation sat-isfy the onditions for minimal auray, then a suÆient ondition for the existeneof a ontinuous vetor saling funtion is that �̂(fTdjE0gd2D) < 1.The matries Td = [Ai�j+d℄i;j2
 and the subspae E0 = (e�0)? depend im-pliitly on the hoie of 
 � �. In this setion we will show that if the minimalauray onditions are satis�ed and if in addition the lattie translates of f are\stable" and the set 
 is \admissible," then the ondition �̂(fTdjE0gd2D) < 1 isalso neessary for the existene of a ontinuous vetor saling funtion.The de�nition of \stable translates" that we shall use is as follows.Definition 3.18. A vetor funtion g 2 L1(Rn;Cr) is said to have L1-stabletranslates if there exist onstants C1, C2 > 0 suh thatC1 supk2� maxi jak;ij � Xk2� ak g(x+ k)L1 � C2 supk2� maxi jak;ijfor all �nitely supported sequenes of row vetors fakgk2�, where we write ak =(ak;1; : : : ; ak;r) 2 C1�r for k 2 �. }Using the fat that all norms on a �nite-dimensional vetor spae are equivalent,it is easy to see that the de�nition of L1-stability an be reast into the followingform.Lemma 3.19. Let k � k be any norm on Cr�r. Then a vetor funtion g 2L1(Rn;Cr) has L1-stable translates if and only if there exist onstants C1, C2 > 0suh that C1 supk2� kBkk � Xk2�Bk g(x+ k)L1 � C2 supk2� kBkk



3.6. NECESSARY CONDITIONS 37for all �nitely supported sequenes of matries fBkgk2�, where Bk 2 Cr�r fork 2 �.The notion of \admissible set" that we shall use is as follows.Definition 3.20. Let H be a �nite subset of �. Then we say that a nonempty,�nite set 
 � � is H-admissible ifwH(
) \ � � 
;where wH(
) = A�1(
 +H) is as de�ned in (2.6). }The notion of admissibility arises naturally in the study of re�nement equations.For example, if 
 is �-admissible then the spae`(
) = fa = [ak℄k2� 2 (Cr�1)��1 : supp(a) � 
gis right-invariant under the in�nite matrix L = [Ai�j ℄i;j2� whih appears inthe statement of Theorem 3.12, and the right-eigenvetors of L orresponding tononzero eigenvalues are neessarily elements of `(
). The eigenvalues and eigenve-tors of L are intimately tied to the auray of the vetor saling funtion, a topiwhih is explored in more detail in [CHM00℄.In this setion, we will need to onsider sets 
 � � whih are admissible withrespet to the set �0 = ��D = fk � d : k 2 �; d 2 Dg:Sine we have assumed that 0 2 D, it follows that � � �0. The set �0 has alreadymade an appearane, in partiular, we showed in Proposition 2.7 that the set 
�0 =K�0 \ � satis�es K� � Q + 
�0 . It is easy to prove that this set 
�0 is both �-admissible and �0-admissible. For larity, we shall from now on write out thesymbols ��D instead of using the abbreviation �0.For later use, we remark that if 
 � �, then
 � � is (��D)-admissible () A�1(� + 
�D) \ � � 
: (3.26)Further, by [CHM00, Lemma 3℄, every �nite subset of � is ontained in a �nite(��D)-admissible set.Using the above notation, we an now formulate the major result of this setionas follows.Theorem 3.21. Let f be a ontinuous, ompatly supported solution to there�nement equation (1.1) suh that f has L1-stable translates. Assume that thehypotheses of Lemma 3.2(a) are satis�ed, i.e., there exists a row vetor u0 2 C1�rsuh that u0f̂(0) 6= 0 and u0 = Xk2�d u0k for d 2 D:If 
 � � is any (��D)-admissible set suh that K� � Q+
, then �̂(fTdjE0gd2D) <1. We will break the proof of Theorem 3.21 into two steps. First, we will provethat the existene of a ontinuous solution to the re�nement equation with stabletranslates implies that a matrix-valued version of the asade algorithm onvergespointwise everywhere when a spei� starting funtion is used. Seond, we will



38 3. GENERALIZED SELF-SIMILARITYprove that the onvergene of this version of the asade algorithm neessarilyimplies that the JSR in question is less than 1. Eah of these stages is of interestin itself. Moreover, the �rst stage requires the assumption of stable translates butdoes not require any admissibility assumptions on the set 
, while the seond stagerequires that the set 
 be (� � D)-admissible but does not require that f havestable translates.The matrix version of the asade algorithm referred to above is de�ned asfollows. Let ~Q be the subset of Q onstruted in Proposition 2.10. This set ~Q hasthe property that the �-translates of ~Q over Rn without overlaps. Further, ~Qontains a unique element 0 of �, i.e.,~Q \ � = f0g:De�ne '(0)(x) = � ~Q�0(x) � Ir; (3.27)where Ir is the r � r identity matrix, and let '(i) 2 L1(Rn;Cr�r) be obtained byiterating the re�nement operator S, i.e.,'(i+1)(x) = S'(i)(x) = Xk2� k '(i)(Ax� k): (3.28)Note that we have abused notation somewhat in (3.28), sine the re�nement op-erator S is formally de�ned to at on vetor-valued funtions, while we are hereapplying it to matrix-valued funtions. However, the abuse is slight and the in-tended meaning is lear. We will perform similar abuses throughout this setionwithout further omment.Suppose now that the oeÆients k of the re�nement equation satisfy theonditions for minimal auray. Spei�ally, these onditions are the hypothesesof Lemma 3.2(a). In this ase, there exists a row vetor u0 2 C1�r suh thatPk2� u0f(x+k) = 1. We will show in the following theorem that if the translates off are L1-stable, then the funtions '(i) obtained via the matrix asade algorithmonverge both uniformly (i.e., in L1-norm) and pointwise everywhere to the matrix-valued funtion f(x)u0 (note that this matrix has rank one for eah x). It will beimportant for the seond stage of the proof of Theorem 3.21 that this onvergeneis pointwise everywhere, and not merely almost everywhere. In this �rst stage ofthe proof of Theorem 3.21 we do not require any admissibility assumptions on theset 
.Theorem 3.22. Let f be a ontinuous, ompatly supported solution to there�nement equation (1.1) suh that f has L1-stable translates. Assume that thehypotheses of Lemma 3.2(a) are satis�ed, i.e., there exists u0 2 C1�r suh thatu0f̂(0) 6= 0 and u0 =Pk2�d u0k for d 2 D. Let '(0) be the harateristi funtionof the unique translate of ~Q that ontains the origin, and let '(i) be the ith iterationof the asade algorithm, f. equations (3.27) and (3.28). Then '(i) onvergesuniformly and pointwise everywhere to f(x)u0 as i!1:Proof. In order to distinguish between the norm of a vetor and the norm ofa funtion, we shall in this proof use the symbol j � jp to denote the `p-norm on a�nite-dimensional spae suh as Rn or Cr, and use k � kLp to denote the norm ona funtion spae suh as Lp(Rn;Cr).



3.6. NECESSARY CONDITIONS 39By Lemma 3.2(a), f has auray � � 1, and, in partiular,Xk2� u0f(x+ k) = 1: (3.29)Equality holds everywhere in this equation sine f is ontinuous. For eah i � 0,de�ne g(i) 2 L1(Rn;Cr) byg(i)(x) = Xk2� f(A�ik)u0f(Aix� k): (3.30)We laim that g(i) onverges both uniformly and pointwise everywhere to f .To see this, hoose any " > 0. Then sine f is ontinuous and is supported inthe ompat set K�, it is uniformly ontinuous. Hene, there exists a Æ > 0 suhthat jx� yj1 < Æ =) jf(x)� f(y)j1 < ":Let i0 be suh that diam(A�i0 (K�)) < Æ, where we measure diameter with respetto the `1-norm on Rn. Choose any i � i0, and de�neK(x) = fk 2 � : Aix� k 2 K�g:Note that sine K� � Q+
, the ardinality of K(x) is bounded by the ardinalityof 
. Further, if k 2 K(x), then x � A�ik 2 A�i(K�), so jx � A�ikj1 < Æ.Therefore, by using (3.29) and (3.30), we have for eah x 2 Rn thatjf(x)� g(i)(x)j1 = ����f(x)Xk2� u0f(Aix� k) � Xk2� f(A�ik)u0f(Aix� k)����1= ����Xk2��f(x)� f(A�ik)�u0f(Aix� k)����1� Xk2K(x)��f(x)� f(A�ik)��1 ju0f(Aix� k)j� Xk2K(x) " ju0j1 jf(Aix� k)j1� " ju0j1 kfkL1#
: (3.31)It follows immediately that g(i) onverges both uniformly and pointwise everywhereto f , ompleting the proof of our laim.Next, an easy indution shows thatf(x) = Xk2�'(i)(A�ik) f(Aix� k)and '(i)(x) = Xk2�'(i)(A�ik)'(0)(Aix� k)for every i � 0. In partiular, '(i) is a \step funtion" that is onstant on eah\small tile" A�i( ~Q+k). Sine these small tiles overRn without overlaps as k variesthrough �, and sine f(x)u0 is uniformly ontinuous, to show that '(i)(x)! f(x)u0uniformly and pointwise everywhere it suÆes to prove thatsupk2� ��'(i)(A�ik)� f(A�ik)u0��1 ! 0:



40 3. GENERALIZED SELF-SIMILARITYHowever, we have by hypothesis that f has L1-stable translates, so it follows fromLemma 3.19 with Bk = '(i)(A�ik)� f(A�ik)u0 that, for some onstant C > 0,supk2� ��'(i)(A�ik)� f(A�ik)u0��1� C Xk2� �'(i)(A�ik)� f(A�ik)u0� f(Aix� k)L1= C kf � g(i)kL1! 0: �Before presenting the seond stage of the proof of Theorem 3.21, we requiresome auxiliary notation and results. We shall in the remainder of this setion oftenenounter nested sets of the form
 � ~
 � ~~
 � �:When dealing with suh sets, we will use a tilde or double-tilde to denote theanalogues for ~
 or ~~
 of objets impliitly assoiated with 
. For example, inthe list following we show several objets impliitly assoiated with 
 and theorresponding ounterparts impliitly assoiated with ~
:Td = [Ai�j+d℄i;j2
;e0 = (u0)k2
 2 (C1�r)1�
;E0 = (e�0)? � (Cr�1)
�1;�g(x) = [g(x+ k)℄k2
;
~Td = [Ai�j+d℄i;j2~
;~e0 = (u0)k2~
 2 (C1�r)1�~
;~E0 = (e�0)? � (Cr�1)~
�1;~�g(x) = [g(x+ k)℄k2~
;and so forth. The need for these larger sets ~
 and ~~
 arises beause we will beapplying the asade algorithms to funtions that are ompatly supported butwhih need not be supported within the attrator K�. The next lemma allows usto ontrol the supports of the iterates of the asade algorithm by observing thatthese supports must onverge in Hausdor� metri to K�. For this purpose, reallthe notation introdued in Setion 2.2 in assoiation with the Hausdor� metri,spei�ally the de�nition from (2.4) thatB" = fx 2 Rn : dist(x;B) < "g:Lemma 3.23. Let 
 � ~
 � � be suh that(i) K� � Q+
,(ii) ~
 is (��D)-admissible.If g is any funtion suh that supp(g) � Q + ~
, then supp(Sg) � Q + ~
 as well.Further, given " > 0 there exists i0 > 0 suh that supp(Sig) � (Q + 
)" for alli � i0.



3.6. NECESSARY CONDITIONS 41Proof. Suppose that Sg(x) 6= 0. Sine Sg(x) = Pk2� k g(Ax � k), theremust exist some k 2 � suh that Ax � k 2 Q + ~
. Hene Ax = y + k + ` forsome y 2 Q and ` 2 ~
. The point k + ` must lie in some oset �d = A(�) � d,so k + ` = Aj + d for some j 2 � and d 2 D. Sine ~
 is (� �D)-admissible, wetherefore have j = A�1(k + `� d) 2 A�1(� + ~
�D) \ � � ~
:Note that A�1(y+d) 2 Q sine y 2 Q and d 2 D and Q is the attrator Q = KD =A�1(KD +D). Therefore,x = A�1(y + k + `) = A�1(y + d) + A�1(k + `� d) 2 Q+ ~
:Sine Q+ ~
 is ompat, we onlude that supp(Sg) � Q+ ~
.Now let " > 0 be given. Sine K� is the attrator of the IFS generated byfwkgk2�, for any nonempty ompat set B � Rn the sequene of sets wi�(B) mustonverge to K� in the Hausdor� metri as i ! 1. In partiular, for all i largeenough we must havesupp(Sig) � wi�(supp(g)) � (K�)" � (Q+
)": �Next, we observe that by hoosing a onvenient ordering of ~
, we an plae thelarge matrix ~Td into a blok diagonal form in whih the smaller matrix Td appearson the diagonal.Lemma 3.24. Let 
 � ~
 � � be suh that 
 is (� �D)-admissible. Let ~
 beordered so that the elements of 
 preede the elements of ~
 n 
. Then there existmatries Bd, Cd suh that ~Td = [Ai�j+d℄i;j2~
 has the blok form~Td = " Td Bd0 Cd # :Proof. Sine Td = [Ai�j+d℄i;j2
 and we have hosen an ordering of ~
 inwhih the elements of 
 are listed �rst, we an ertainly write ~Td in the blok form~Td = " Td BdAd Cd # :Thus, our goal is show that Ad = [Ai�j+d℄i2~
n
; j2
 is the zero matrix. Therefore,let j 2 
 be �xed, and suppose that Ai�j+d 6= 0 for some i 2 �. Then we musthave Ai� j + d 2 �. Sine 
 is (��D)-admissible, it therefore follows thati 2 A�1(� + j � d) \ � � A�1(� + 
�D) \ � � 
;whih proves that Ad = 0. �The following result is similar in nature to Proposition 2.13. The restritionin Proposition 2.13 that the support of g be ontained in the attrator K� is hererelaxed to requiring only that supp(g) be ontained in some possibly larger setQ+~
.The ost is that additional restritions must be plaed on ~
, and furthermore, theonlusion holds only for large enough iterations instead of for all iterations.Proposition 3.25. Let 
 � ~
 � � be suh that



42 3. GENERALIZED SELF-SIMILARITY(i) K� � Q+
,(ii) 
 and ~
 are both (��D)-admissible, and(iii) (Q+
)" � Q+ ~
.Let g : Rn ! Cr be any funtion suh that supp(g) � Q + ~
. Then there existsi0 > 0 suh that if x 2 Q and x = :"1"2 � � � is any A-nary expansion of x, then8 i � i0; ~�Sig(x) = ~T"1 � � � ~T"i ~�g(yi); (3.32)where yi = :"i+1"i+2 � � � 2 Q:Consequently, 8 i � i0; ~�Sig = ~T i ~�g:Proof. Let ~~
 be �nite but large enough that we have both~
 � ~~
 � � and Q+ ~
 � (Q+ ~~
)Æ:Suppose that g : Rn ! Cr satis�es supp(g) � Q + ~
. Then by Lemma 3.23 thereis an i0 > 0 suh that supp(Sig) � (Q+
)" for all i � i0.Now hoose x 2 Q, and let x = :"1"2 � � � be any partiular A-nary expansionof x. Then y1 = :"2"3 � � � = Ax� "1 2 Q. If g(y1 + k) 6= 0 for some k 2 �, then wemust have y1 + k 2 supp(g) � Q + ~
 � (Q + ~~
)Æ. Lemma 2.9, applied to the set~~
 instead of 
, therefore implies that k 2 ~~
. A alulation idential to the one in(2.23), exept with 
 replaed by ~~
, shows that~~�Sg(x) = ~~T"1 ~~�g(y1): (3.33)By Lemma 3.23, we have that supp(Sg) � Q+ ~
, so we an iterate the alulationin (3.33) to obtain ~~�Sig(x) = ~~T"1 � � � ~~T"i ~~�g(yi): (3.34)Choose now any ordering of ~~
 suh that the elements of ~
 preede the elementsof ~~
 n ~
. Then Lemma 3.24, applied to the sets ~
 � ~~
 instead of 
 � ~
, impliesthat ~~Td has the blok form ~~Td = " ~Td ~Bd0 ~Cd # (3.35)for some matries ~Bd and ~Cd. We laim that the folding ~~�Sig(y) = [Sig(y+k)℄k2~~
similarly has the blok form~~�Sig(y) = " ~�Sig(y)0 # ; for y 2 Q and i � i0: (3.36)To show this we simply have to show that if y 2 Q and i � i0, then Sig(y+k) = 0 fork 2 ~~
 n ~
. However, if i � i0, then supp(Sig) � (Q+
)" � (Q+ ~
)Æ. Lemma 2.9,applied to the set ~
 instead of 
, therefore implies that if Sig(y + k) 6= 0 thenk 2 ~
. Hene (3.36) is valid.



3.6. NECESSARY CONDITIONS 43Finally, ombining (3.34), (3.35), and (3.36), we see that for i � i0," ~�Sig(x)0 # = ~~�Sig(x)= ~~T"1 � � � ~~T"i ~~�g(yi)= " ~T"1 � � � ~T"i �0 � # " ~�Sig(yi)0 #
= " ~T"1 � � � ~T"i ~�Sig(yi)0 # ;from whih the result follows. �Now we an omplete the seond stage of the proof of Theorem 3.21. Spei�-ally, we show next that the pointwise onvergene of the matrix asade algorithmimplies a restrition on the uniform JSR. Note that this result does not require thatf have L1-stable translates.Theorem 3.26. Let f be a ontinuous, ompatly supported solution to the re-�nement equation (1.1). Assume that the hypotheses of Lemma 3.2(a) are satis�ed,i.e., there exists u0 2 C1�r suh that u0f̂(0) 6= 0 and u0 =Pk2�d u0k for d 2 D.Let 
 be any (� �D)-admissible subset of � suh that K� � Q + 
. If the fun-tions '(i) de�ned by (3.27) and (3.28) onverge pointwise everywhere to f(x)u0,then �̂(fTdjE0gd2D) < 1.Proof. By [CHM00, Lemma 4.7℄, every �nite subset of � is ontained in anadmissible set. Hene, if we �x an " > 0, then we an �nd a (��D)-admissible set~
 suh that 
 � ~
 � � and (Q+
)" � (Q+ ~
)Æ:We will prove that if f"ig1i=1 is any sequene of digits "i 2 D, then the matrixprodut T"1 � � �T"i onverges as i ! 1 to the rank-one matrix eah of whoseolumns is �(f(x)u0), where x is the pointx = :"1"2 � � � = 1Xj=1A�j"j 2 Q:This will oupy us for the majority of the proof of the theorem. From this fat wewill then dedue that �̂(fTdjE0gd2D) < 1.To begin, let a sequene of digits f"ig1i=1 be �xed, and set x = :"1"2 � � � 2 Q.By hypothesis, '(i)(x) ! f(x)u0 when '(0)(x) = � ~Q�0(x) � Ir. Let �h denote thetranslation operator, i.e., �hg(x) = g(x� h). For eah h 2 ~
, set'(0)h (x) = ��h+0'(0)�(x) = � ~Q+h(x) � Ir; (3.37)and de�ne'(i)h (x) = Si'(0)h (x) = Si��h+0'(0)�(x) = �A�i(h+0)(Si'(0))(x): (3.38)



44 3. GENERALIZED SELF-SIMILARITYNote that supp('(0)h ) � Q + h � Q + ~
 for eah h 2 ~
. Lemma 3.23 thereforeimplies that supp('(i)h ) � Q+ ~
 for all i, and moreover that supp('(i)h ) � (Q+
)"for all i large enough. Sine this is true for eah h in the �nite set ~
, there is somei0 suh that 8h 2 ~
; 8 i � i0; supp('(i)h ) � (Q+
)":Now �x any partiular h 2 
 (not merely h 2 ~
 but spei�ally h 2 
).Consider the points yi = :"i+1"i+2 � � � 2 Q:Reall that ~Q was de�ned to have the property that the �-translates of ~Q over Rnwithout overlaps. Therefore, the point yi + h must lie in some unique translate of~Q. Hene, there exist unique points qi 2 ~Q and ki 2 � suh thatyi + h = qi + ki: (3.39)Note that qi + ki = yi + h 2 Q+
 � (Q+ ~
)Æ:Lemma 2.9, applied to the set ~
 instead of 
, therefore implies that ki 2 ~
. Hene,if we let Æh;j denote the Kroneker delta, then then folding of '(0)ki satis�es~�'(0)ki (yi) = h'(0)ki (yi + j)ij2~
 by de�nition of ~�= h� ~Q(yi + j � ki) � Irij2~
 by (3.37)= h� ~Q(qi � h+ j) � Irij2~
 by (3.39)= [Æh;j � Ir℄j2~
 by Proposition 2.10.Fix any ordering on ~
 suh that the elements of 
 preede the elements of ~
 n
.De�ne �h = [Æh;j � Ir℄j2
 and ~�h = [Æh;j � Ir ℄j2~
 = " �h0 # :That is, �h and ~�h are olumn vetors with the identity blok Ir appearing in \rowblok h" and zeros elsewhere. Multipliation of a matrix by �h or ~�h on the righttherefore selets out \olumn blok h" from that matrix. Thus, by Proposition 3.25,and equation (3.32) in partiular, we have for i � i0 that~�'(i)ki (x) = ~�Si'(0)ki (x) = ~T"1 � � � ~T"i ~�'(0)ki (yi) = ~T"1 � � � ~T"i ~�h (3.40)is \olumn blok h" of ~T"1 � � � ~T"i . On the other hand, we have by hypothesis thatSi'(0)(x) = '(i)(x) ! f(x)u0: (3.41)Therefore, ~T"1 � � � ~T"i ~�h = ~�'(i)ki (x) by (3.40)= ~�(�A�i(ki+0)Si'(0))(x) by (3.38)! ~�(f(x)u0);



3.6. NECESSARY CONDITIONS 45the onlusion on the preeding line following from (3.41), the ontrativity of A�1,and the fat that eah ki lies in the �nite set ~
. Thus, \olumn blok h" of ~T"1 � � � ~T"ionverges to ~�(f(x)u0). This is true for eah h 2 
. However, the olumn bloksof ~T"1 � � � ~T"i are indexed by the larger set ~
, so let us examine the olumn bloksorresponding to indies in 
 in more detail. Sine we have ordered ~
 so that theelements of 
 ome �rst, Lemma 3.24 implies that ~Td has the blok form~Td = " Td Bd0 Cd #for some matries Bd, Cd. Consequently,~T"1 � � � ~T"i ~�h = " T"1 � � �T"i �0 � # " �h0 # = " T"1 � � �T"i�h0 # :Further, ~�(f(x)u0) = " �(f(x)u0)� # ;so we onlude that T"1 � � �T"i�h ! �(f(x)u0): (3.42)Sine the olumns bloks of T"1 � � �T"i are indexed by 
, equation (3.42) impliesthat eah olumn blok of T"1 � � �T"i onverges to �(f(x)u0). Therefore, the produtT"1 � � �T"i onverges to to the matrix B(x) onsisting of 
 olumn bloks eah equalto �(f(x)u0). That is,T"1 � � �T"i ! B(x) = ��(f(x)u0)�k2
:This matrix B(x) is rank-one beause eah olumn blok �(f(x)u0) onsists of rowsthat are multiples of the 1� r row vetor u0.Thus, we have demonstrated that T"1 � � �T"i onverges to a rank-one matrixfor eah sequene of digits f"ig1i=1. We will now show that this implies that(T"1 � � �T"i)jE0 onverges to the zero matrix for eah suh sequene of digits. Thekey ingredient is the hypothesis that the oeÆients k satisfy the onditions forminimal auray. Beause of this, Theorem 3.17 implies that there exists an or-thonormal basis B for (Cr�1)
�1 suh that eah matrix has in this basis the blokform [Td℄B = " 1 0� Cd # ;where 1 is the salar 1, and Cd = [TdjE0 ℄B0 is the matrix for Td restrited to E0 withrespet to an orthonormal basis B0 for E0. Consequently, working in this basis, wehave for eah i that [T"1 � � �T"i ℄B = " 1 0� C"1 � � �C"i # :Sine T"1 � � �T"i onverges to a rank-one matrix, the produt C"1 � � �C"i must there-fore onverge to the zero matrix as i! 1. This implies by [BW92, Thm. I℄ that�̂(fCdgd2D) < 1, and ompletes the proof. �Finally, the proof of Theorem 3.21 follows by ombining Theorems 3.22 and3.26.



46 3. GENERALIZED SELF-SIMILARITY3.7. H�older ContinuityOne a vetor saling funtion is known to be ontinuous, the joint spetralradius an be used to ompute the global H�older exponent of ontinuity of f .Let j � j be any norm on Rn and let k � k be any norm on Cr. A ontinuousfuntion g : Rn ! Cr is H�older ontinuous with exponent � > 0 if there exists aonstant K suh that kg(x)� g(y)k � K jx � yj� for every x and y. The value of� is independent of the hoie of norms. This de�nition is global in the sense thatthe \worst" point x and the \least smooth" omponent gi of g will determine theglobal H�older exponent of g.Suppose that f is a ontinuous, ompatly supported solution to the re�nementequation (1.1). Then, by Proposition 2.13,8 d 2 D; 8x 2 wd(Q); �f(x) = Td�f(Ax� d): (3.43)As a onsequene, the subspaeW0 = spanf�f(x)��f(y) : x; y 2 Qgis right-invariant under Td for eah d 2 D. Note that if f satis�es the hypothe-ses of Lemma 3.2(a), so f has auray � � 1 and W0 � E0 with E0 de�nedby (3.9). In Theorem 3.4 we saw that the ondition �̂1(fTdjE0gd2D) < 1, withappropriate additional hypotheses, is a suÆient ondition for the existene of aontinuous vetor saling funtion f . The following result shows that the ondition�̂1(fTdjW0gd2D) < 1 is a neessary ondition for the existene of a ontinuous ve-tor saling funtion, and also shows that the value of �̂1(fTdjW0gd2D) bounds thevalue of �sup = supf� : f is H�older ontinuous with exponent �g:This gives a neessary ondition for the existene of a ontinuous vetor salingfuntion that is omplementary to the neessary onditions obtained in the preed-ing setion. In partiular, this result does not require any information on whetherthe asade algorithm onverges, or whether f has stable translates. On the otherhand, this ondition is largely of theoretial value, beause the spae W0 is usuallydiÆult to determine expliitly exept in ase of small numbers of oeÆients in there�nement equation. On the other hand, in the one-dimensional, single-funtionsetting with minimal auray, it is known that W0 = E0 if and only if f has in-dependent translates [Sun91℄, ompare also [Hei94℄. It would be interesting toknow if suh a haraterization an also be proved in the multidimensional setting.The spetral radius of A�1 will play a role in the following result. Note thatA�1 is ontrative sine A is expansive, and therefore �(A�1) < 1.Proposition 3.27. Let 
 � � be a �nite set suh that K� � Q+ 
. If thereexists a ontinuous, ompatly supported solution f : Rn ! Cr to the re�nementequation (1.1), then �̂1(fTdjW0gd2D) < 1 and�sup � log� �̂1(fTdjW0gd2D);where � = �(A�1).Proof. Choose � so that � < � < 1. Then there exists a norm j � j on Rn suhthat the indued operator norm of A�1 satis�es � � jA�1j < � < 1. Let k �k be any



3.7. H�OLDER CONTINUITY 47norm on (Cr�1)
�1. Choose any produt � = T"1 � � �T"` , where "1; : : : ; "` 2 D,and let � be any eigenvalue of �jW0 . The spaeU� = fw 2 W0 : (�� �)kw = 0 for some kgis right-invariant under �. By standard Jordan tehniques, there exists a subspaeZ that is also right-invariant under � and satis�es U��Z =W0. Sine the span ofa set of vetors is the smallest subspae ontaining those vetors, there must existsome x, y 2 Q suh that �f(x)��f(y) = u�+z = w with 0 6= u� 2 U� and z 2 Z.Using Jordan arguments again, as in [CH94, Lemma 3℄, there exists a onstantC > 0 suh that k�kwk � Cj�jk all k > 0:Let x = :x1x2 � � � and y = :y1y2 � � � be A-nary expansions of x and y. De�ne pointsXk = :"1 � � � "` � � � "1 � � � "`x1x2 � � � and Yk = :"1 � � � "` � � � "1 � � � "`y1y2 � � �in Q, where the sequene "1 � � � "` is repeated k times. Then, using (3.43), we havek�f(Xk)��f(Yk)k = k�k�f(x)��k�f(y)k = k�kwk � Cj�jk (3.44)for eah k > 0. Sine f is ontinuous and jXk�Ykj ! 0 as k !1, it follows that wemust have j�j < 1. We therefore onlude from (2.26) that �̂1(fTdjW0gd2D) � 1.However, (3.44) also implies that every produt (T"1 � � �T"`)jW0 must onverge tozero as `!1, and therefore we must in fat have �̂1(fTdjW0gd2D) < 1.Next we will �nd an upper bound for �sup. By de�nition, if f has H�olderexponent � then there exists a K suh thatk�f(Xk)��f(Yk)k � K jXk � Ykj�:However, jXk � Ykj = jA�`k(x� y)j � �`k jx� yj;so C j�jk � k�f(Xk)��f(Yk)k � K jXk � Ykj� � K jx� yj� ��`k:Therefore, for eah k > 0 we havej�j1=` � �K jx� yj�C �1=`k ��:Letting k !1, we onlude that j�j1=` � ��. Sine this is true for every eigenvalue� of every produt � of length `, it follows from (2.26) that �̂1(fTdjW0gd2D) � ��.As this is true for every � > �, we must have �̂1(fTdjW0gd2D) � ��, and therefore� � log� �̂1(fTdjW0gd2D). �





CHAPTER 4Multiresolution Analysis4.1. Multiresolution AnalysisIn this setion we will give the de�nition and basi properties of multiresolutionanalyses of arbitrary multipliity with respet to an arbitrary dilation matrix.Definition 4.1. A multiresolution analysis (MRA) of multipliity r assoiatedwith a dilation matrix A is a sequene of losed subspaes fVjgj2Z of L2(Rn) whihsatisfy:(P1) Vj � Vj+1 for eah j 2 Z,(P2) g(x) 2 Vj () g(Ax) 2 Vj+1 for eah j 2 Z,(P3) Tj2ZVj = f0g,(P4) Sj2ZVj is dense in L2(Rn), and(P5) there exist funtions '1; : : : ; 'r 2 L2(Rn) suh that the olletion of lat-tie translates f'i(x� k)gk2�; i=1;:::;r (4.1)forms an orthonormal basis for V0.If these onditions are satis�ed, then the vetor funtion ' = ('1; : : : ; 'r)T isreferred to as a vetor saling funtion for the MRA. }The de�nition of multiresolution analysis an be generalized to allow the ol-letion of lattie translates of the funtions 'i to form merely a Riesz basis insteadof an orthonormal basis for V0. This leads then to biorthogonal wavelet basesfor L2(Rn). Sine we are interested mostly in orthonormal wavelet bases in thismanusript, we will not onsider this generalization.The usual tehnique for onstruting a multiresolution analysis is to start froma vetor funtion ' = ('1; : : : ; 'r)T suh that f'i(x � k)gk2�; i=1;:::;r is an or-thonormal system in L2(Rn), and then to onstrut the subspaes Vj � L2(Rn)appropriately. This is made preise in the following de�nition. For simpliity, weshall from now on write that ' has orthonormal lattie translates when we meanto say that f'i(x� k)gk2�; i=1;:::;r is an orthonormal system in L2(Rn).Definition 4.2. Assume that ' 2 L2(Rn;Cr) has orthonormal lattie trans-lates. Let V0 be the losed linear span of the translates of the omponent funtions'i, i.e., V0 = spanf'i(x� k)gk2�; i=1;:::;r: (4.2)49



50 4. MULTIRESOLUTION ANALYSISThen, for eah j 2 Z, de�ne Vj to be the set of all dilations of funtions in V0 byAj , i.e., Vj = fg(Ajx) : g 2 V0g: (4.3)If fVjgj2Z de�ned in this way forms a multiresolution analysis for L2(Rn) then wesay that it is the MRA generated by '. }Example 4.3. In one dimension, the box funtion ' = �[0;1) generates a mul-tiresolution analysis for L2(R). This MRA is usually referred to as the Haar mul-tiresolution analysis, beause the wavelet basis it determines is the lassial Haarsystem f2n=2 (2nx� k)gn;k2Z, where  = �[0;1=2) � �[1=2;1).Gr�ohenig and Madyh [GM92℄ proved that there is a Haar-like multiresolutionanalysis assoiated to eah hoie of dilation matrix A and digit set D for whih theattrator Q = KD is a tile (whih is the standing assumption of this manusript).In partiular, they proved that if Q is a tile then the salar-valued funtion �Qgenerates a multiresolution analysis of L2(Rn) of multipliity 1. By extension ofthe one-dimensional terminology, this MRA is alled the Haar MRA assoiated withA and D. Note that the fat that f�Q(x � k)gk2� forms an orthonormal basis forV0 is a restatement of the assumption that the lattie translates of the tile Q haveoverlaps of measure zero. Further, �Q is re�nable beause Q is self-similar andbeause the lattie translates of Q have overlaps of measure zero. }We will haraterize those ' whih generate multiresolution analyses in Theo-rem 4.4, below. To motivate this result, note that property (P2) is ahieved triviallywhen Vj is de�ned by (4.3). Moreover, property (P5) is simply a statement thatlattie translates of ' are orthonormal. We will see in the proof of Theorem 4.4that the fat that ' has orthonormal lattie translates implies that property (P3)is also automatially satis�ed. Thus, the main problem in determining whether 'generates a multiresolution analysis is the question of when properties (P1) and(P4) are satis�ed. One neessary requirement for (P1) is lear. If ' does generatea multiresolution analysis, then (P1) implies that 'i 2 V0 � V1 for i = 1; : : : ; r.Sine (P2) and (P5) together imply that fm1=2 'j(Ax � k)gk2�; j=1;:::;r forms anorthonormal basis for V1, eah funtion 'i must therefore equal some (possiblyin�nite) linear ombination of the funtions 'j(Ax � k). Consequently, the vetorfuntion ' must satisfy a re�nement equation of the form'(x) = Xk2� k '(Ax � k) (4.4)for some hoie of r � r matries k. We will only onsider the ase where thefuntions 'i have ompat support; sine ' has orthonormal lattie translates, thisimplies that only �nitely many of the matries k in (4.4) an be nonzero. Hene,in this ase the re�nement equation in (4.4) has the same form as the re�nementequation (1.1) that was studied in the preeding hapters.Theorem 4.4. Assume that ' = ('1; : : : ; 'r)T 2 L2(Rn;Cr) is ompatlysupported and has orthonormal lattie translates, i.e.,
'i(x� k); 'j(x� `)� = Z 'i(x� k)'j(x� `) dx = Æi;j Æk;`:Let Vj � L2(Rn) for j 2 Z be de�ned by (4.2) and (4.3). Then the followingstatements hold.



4.1. MULTIRESOLUTION ANALYSIS 51(a) Properties (P2), (P3), and (P5) are satis�ed.(b) Property (P1) is satis�ed if and only if ' satis�es a re�nement equationof the form '(x) = Xk2� k '(Ax � k) (4.5)for some r � r matries k and some �nite set � � �.() If k'̂(0)k2 = rXi=1 j'̂i(0)j2 = rXi=1 ����Z 'i(x) dx����2 = jQj; (4.6)then Property (P4) is satis�ed. If ' is re�nable, i.e., if (4.5) holds, thenProperty (P4) is satis�ed if and only if (4.6) holds.Note that the assumption that 'i is square-integrable and ompatly supportedimplies that 'i 2 L1(Rn), so '̂i(0) = R 'i(x) dx is well-de�ned. Also reall thatjQj = jP j, where P is the fundamental domain for the lattie � de�ned in (2.3) (inpartiular, P is a retangular parallelepiped). For example, if � = Zn then we antake P = [0; 1)n, and therefore jQj = jP j = 1.Theorem 4.4 generalizes a result of Cohen [Coh90℄, whih applied spei�allyto the ase of multipliity 1 and dilation A = 2I . Cohen's estimates used a deom-position of Rn into dyadi ubes, making essential use of the fat that the uniformdilation A = 2I maps dyadi ubes into dyadi ubes. However, this need not betrue for an arbitrary dilation matrix A, so this partiular deomposition is no longerfeasible. Instead, we will use a deomposition based on the tile Q, and make use ofthe assoiated Haar multiresolution analysis disussed in Example 4.3. Before wean implement this deomposition for the proof of Theorem 4.4, we require someauxiliary notation and results.In order to deal more onisely with the dilations translations of a given funtionwe introdue the following notation. Given a funtion g : Rn ! Cr and given j 2 Zand k 2 �, we writegj;k(x) = mj=2 g(Ajx� k) = mj=2 g(Aj(x�A�jk))to denote a translation of g by A�jk followed by an L2-normalized dilation of gby Aj .Our �rst observation is an immediate onsequene of Gr�ohenig and Madyh'sgeneralization of the Haar multiresolution analysis.Lemma 4.5. The olletionf�j;kQ gj2Z;k2� = fmj=2 �Q(Ajx� k)gj2Z;k2�is omplete in L2(Rn), i.e., its �nite linear span is dense in L2(Rn).Proof. Let fVjgj2Z be the Haar multiresolution analysis generated by �Q,as disussed in Example 4.3. Then for eah �xed j, the olletion of translatesf�j;kQ gk2� forms an orthonormal basis for the subspae Vj . Sine the union ofthe Vj is dense in L2(Rn), the union of these orthonormal systems must form aomplete set in L2(Rn). �



52 4. MULTIRESOLUTION ANALYSISNext, we will estimate the number of lattie translates of Q whih lie in theinterior of a dilated tile AjQ, j � 1. Note that the fat that Q is self-similarombined with the fat that translates of Q tile Rn with overlaps with measurezero implies that AjQ is a union of exatly mj translates of Q, with eah suhtranslate lying entirely inside AjQ (but not neessarily in the interior of AjQ).Lemma 4.7 below will show that the ratio of the number of those translates Q+ kthat interset the boundary of AjQ to the total number lying inside AjQ onvergesto zero. To state this more preisely, let us de�ne for eah j � 1 the following �nitesubsets of �:Nj = fk 2 � : Q+ k � AjQg;NÆj = fk 2 � : Q+ k � (AjQ)Æg;N�j = fk 2 � : Q+ k � AjQ and (Q+ k) \ �(AjQ) 6= ;g: (4.7)By the remarks above, we have the following relationships:AjQ = Q+Nj ;#Nj = mj ;NÆj [N�j = Nj ;NÆj \N�j = ;: (4.8)Example 4.6. Consider the example of a uniform dilation of R2. That is, letn = 2, A = 2I , and � = Z2. Then m = j det(A)j = 4. If we hoose the digit set asD = f(0; 0); (1; 0); (0; 1); (1; 1)g, then the tile is the unit square Q = [0; 1℄2. Thedilated square AjQ = [0; 2j ℄2 is tiled by 4j translates of Q. It is easy to omputediretly the number of translates of Q that touh the boundary of AjQ. We �ndthat #NÆj = (2j � 2)2 = 4j � 2j+2 + 4;#N�j = 4j � (2j � 2)2 = 2j+2 � 4:Hene, the ratio #NÆj =4j approahes 1 as j inreases, and the ratio #N�j =4j ap-proahes 0. }The following result generalizes Example 4.6 to the ase of an arbitrary dilationmatrix, showing that #NÆj is asymptotially on the order of mj . This result analso be interpreted as an evaluation of the Beurling density of the lattie �.Lemma 4.7. limj!1 #NÆjmj = 1 and limj!1 #N�jmj = 0: (4.9)Proof. For eah j � 1, de�neGj = A�j(Q+NÆj ) = Sk2NÆj A�j(Q+ k):By de�nition, Gj is the union of all translates A�j(Q + k) that are ontainedwithin QÆ. Eah suh \small tile" A�j(Q + k) is itself tiled by \smaller tiles" ofthe form A�j�1(Q+ `). Those \smaller tiles" must be ontained in QÆ sine they



4.1. MULTIRESOLUTION ANALYSIS 53are ontained in A�j(Q+ k). Hene Gj is overed by translates A�j�1(Q+ `) thatare all ontained in QÆ, and therefore Gj � Gj+1 for all j � 1.Sine Gj � QÆ by de�nition, we have [Gj � QÆ. We laim that, in fat,[Gj = QÆ. To see this, note that sine A�1 is ontrative and Q is bounded, thediameter of A�jQ onverges to zero as j inreases. Further, translates of A�jQ byelements of A�j� over all of Rn, i.e.,A�jQ+A�j� = Sk2�A�j(Q+ k) = Rn:Let x 2 QÆ be �xed. Then dist(x; �Q) > 0. Hene, if j is large enough then therewill exist some translate A�j(Q + k) that lies entirely within QÆ and ontains x.Hene x 2 Gj for that j. Thus QÆ � [Gj , as laimed.Now, sine the sets Gj are nested and their union is QÆ, their measures mustonverge to the measure ofQÆ, i.e., jGj j ! jQÆj = jQj. However, sine j det(A�1)j =m�1 and sine �-translates of Q have overlaps of measure zero, the Lebesgue mea-sure of Gj isjGj j = jA�j(Q+NÆj )j = m�j jQ+NÆj j = m�j jQj #NÆj :The �rst limit in (4.9) therefore follows. The seond limit in (4.9) follows from the�rst limit and the relationships in (4.8). �For later use, we now prove a tehnial lemma on the relationships among aset of tiles that over an open ball B in Rn. Let 
 be the minimal set of lattiepoints k 2 � suh that Q+ k overs the ball B. The following lemma haraterizesthose translates Q+  of Q for whih it is possible to translate Q+  by elementsof 
 so that one translate Q +  + k with k 2 
 lies entirely within AjQ andanother translate Q+ + k0 with k0 2 
 lies entirely outside of AjQ (negleting itsboundary).Lemma 4.8. Let B be an open ball in Rn, and de�ne
 = fk 2 � : (Q+ k) \ B 6= ;g: (4.10)Let  2 �. If there exist k, k0 2 
 suh thatQ+ k +  � AjQ and Q+ k0 +  � Rn n (AjQ)Æ; (4.11)then  2 N�j �
 = f`� ! : ` 2 N�j ; ! 2 
g.Proof. Note that 
 is �nite and that B � Q+
. Additionally, by de�nitionof 
, (Q+ k + )Æ \ (B + ) 6= ; and (Q+ k0 + )Æ \ (B + ) 6= ;:Combined with (4.11), this implies that(AjQ)Æ \ (B + ) 6= ; and (Rn nAjQ) \ (B + ) 6= ;:Sine B+ is onvex, there must therefore exist a line segment L entirely ontainedwithin B +  having one endpoint in (AjQ)Æ and the other in Rn n AjQ. Lety 2 L\ �(AjQ). Then there is some " > 0 suh that the open ball B(y; ") enteredat y with radius " lies entirely within B + .Sine y 2 �(AjQ), there exists some ` 2 N�j suh that y 2 Q + `. ThenB(y; ") \ (Q + `)Æ 6= ;. Let z 2 B(y; ") \ (Q + `)Æ. Sine z lies in the interior of



54 4. MULTIRESOLUTION ANALYSISQ + ` and sine translates of Q interset only on their boundaries, we know thatQ+ ` is the unique lattie translate of Q that ontains z. However,z 2 B(y; ") � B +  � Q+
+ ;so we must have ` = ! +  for some ! 2 
. Consequently,  = `� ! 2 N�j �
, asdesired. �Our �nal lemma re�nes the estimates made in Lemma 4.7.Lemma 4.9. If 
 is any �nite subset of �, thenlimj!1 #�NÆj n ((N�j �
) \Nj)�mj = 1:Proof. Note that#((N�j �
) \Nj) � #(N�j �
) � #N�j �#
:Hene, #NÆj �#N�j �#
 � #�NÆj n ((N�j �
) \Nj)� � #NÆj :The result then follows from Lemma 4.7. �Now we an give the proof of Theorem 4.4.Proof of Theorem 4.4. Suppose that the hypotheses of Theorem 4.4 aresatis�ed. Note that properties (P2) and (P5) are trivially satis�ed by the de�nitions(4.2) and (4.3).(b) Suppose that (P1) is satis�ed. It then follows from (P2) and (P5) thatfm1=2 'j(Ax � k)gk2�; j=1;:::;r (4.12)is an orthonormal basis for V1. By (P1) we have 'i 2 V0 � V1 for i = 1; : : : ; r. Theexpansion of 'i with respet to the orthonormal basis given in (4.12) is'i(x) = m rXj=1Xk2� 
'i(x); 'j(Ax � k)� 'j(Ax� k):However, sine 'i has ompat support, only �nitely many terms in this series anbe nonzero. Combining these equations for i = 1; : : : ; r, we �nd that ' satis�es are�nement equation of the form (4.5).Conversely, if ' satis�es a re�nement equation of the form (4.5), then eahtranslate 'i(x� k) is a �nite linear ombination of the funtions 'j(Ax � `), eahof whih lies in V1. Sine V0 is the losed linear span of the funtions 'i(x� k), itfollows that V0 � V1. Property (P1) then follows from this and the de�nition (4.3).(a) As remarked above, the fat that (P2) and (P5) are satis�ed is trivial. Toshow that (P3) holds, note �rst that f'j;ki gk2�; i=1;:::;r is an orthonormal basis forthe subspae Vj . Therefore, if we let Pj denote the orthogonal projetion of L2(Rn)onto Vj , then for eah g 2 L2(Rn) we havekPjgk2L2 = rXi=1Xk2� jhg; 'j;ki ij2: (4.13)



4.1. MULTIRESOLUTION ANALYSIS 55To prove (P3), it suÆes to show that8 g 2 L2(Rn); limj!�1 kPjgkL2 = 0:Moreover, it suÆes to establish this limit for g ontained in a omplete subset ofL2(Rn), i.e., a subset whose �nite linear span is dense in L2(Rn). We will do thisfor the partiular omplete set given in Lemma 4.5, i.e., we will show that8 s 2 Z; 8 ` 2 �; limj!�1 kPj(�s;`Q )kL2 = 0:Fix any partiular s 2 Z and ` 2 �. Note that sine m = j det(A)j, we have forevery j 2 Z that jAj�s(Q+ `)j = mj�s jQ+ `j = mj�s jQj:Further, sine A�1 is ontrative, the sets Aj�s(Q+ `) for j � s are all ontainedinside a single ompat set F . Also, the funtions 'i are ompatly supported, soK = supp(') = rSi=1 supp('i)is ompat. Therefore, there an be at most �nitely many translates of K thatinterset F , i.e., the set J = fk 2 � : (K + k) \ F 6= ;gis �nite. Applying (4.13) to g = �s;`Q and using the fats above, we thereforeompute thatkPj(�s;`Q )k2L2 = rXi=1Xk2� ����Z ms=2 �Q(Asx� `)mj=2 'i(Ajx� k) dx����2= 1mj�s rXi=1Xk2� ����ZAj�s(Q+`) 'i(x� k) dx����2� jAj�s(Q+ `)jmj�s rXi=1Xk2J ZAj�s(Q+`) j'i(x� k)j2 dx= jQj rXi=1Xk2J ZAj�s(Q+`) j'i(x� k)j2 dx; (4.14)the inequality in this alulation following from Cauhy{Shwarz. Sine eah 'i liesin L2(Rn), sine the sums in (4.14) are �nite, and sine the measure of Aj�s(Q+`)onverges to zero as j ! �1, it follows from (4.14) that kPj(�s;`Q )k2L2 ! 0 asj ! �1.() Note that if 8 g 2 L2(Rn); limj!1 kPjg � gkL2 = 0; (4.15)then Property (P4) is satis�ed. Further, if ' is re�nable, then by part (a) wehave Vj � Vj+1 for all j 2 Z, and therefore (4.15) is equivalent to Property (P4)when this additional assumption of re�nability is satis�ed. Therefore, to proveTheorem 4.4(), it suÆes to show that equations (4.15) and (4.6) are equivalent.



56 4. MULTIRESOLUTION ANALYSISLet us �rst reformulate (4.15). By orthogonality we have kg�Pjgk2L2 = kgk2L2�kPjgk2L2 , so we an rewrite equation (4.15) as8 g 2 L2(Rn); limj!1 kPjgkL2 = kgkL2 : (4.16)As in the disussion for the proof of part (a), equation (4.16) is valid for all g ifand only if it is valid for the spei� funtions g = �s;`Q with s 2 Z and ` 2 �. Forthe funtion �Q itself, we have from (4.13) thatkPj(�Q)k2L2 = rXi=1Xk2� ����Z �Q(x)mj=2 'i(Ajx� k) dx����2= 1mj rXi=1Xk2� ����ZAjQ 'i(x� k) dx����2: (4.17)For the funtion �s;`Q (x) = ms=2 �Q(Asx� `), we have for j � s thatkPj(�s;`Q )k2L2 = rXi=1Xk2� ����Z ms=2 �Q(Asx� `)mj=2 'i(Ajx� k) dx����2= 1mj�s rXi=1Xk2� ����ZAj�sQ 'i(x� (k �Aj�s`)) dx����2= 1mj�s rXi=1Xk2� ����ZAj�sQ 'i(x� k) dx����2= kPj�s�Qk2L2 : (4.18)For the third equality in this alulation, we re-indexed the summation over k,using the fat that Aj�s` 2 � sine j � s � 0. Comparing (4.17) and (4.18), weonlude that (4.16) is valid for all g if and only if it is valid for the single funtiong = �Q. Further, sine (4.15) and (4.16) are equivalent, we onlude that (4.15) isequivalent to the statementlimj!1 kPj(�Q)k2L2 = k�Qk2L2 = jQj:Hene, to prove that (4.15) is equivalent to (4.6), it suÆes to show thatlimj!1 kPj(�Q)k2L2 = rXi=1 j'̂i(0)j2: (4.19)To estimate kPj(�Q)k2L2 , we will break the summation over � appearing in(4.17) into three regions related to the support of the funtions 'i, and then estimatethe integrals orresponding to eah of these regions in turn. The idea behind thisdivision is that if K = supp('), then the �rst region should essentially ontain onlyelements k of the lattie � suh that K + k is sure to lie in the interior of AjQ, theseond region should ontain those k for whih this translation will interset theboundary of AjQ, and the last region should be the omplement of the �rst two.More preisely, let B be any open ball in Rn whih ontains both Q andK = supp('), and de�ne 
 by (4.10), i.e.,
 = fk 2 � : (Q+ k) \ B 6= ;g:



4.1. MULTIRESOLUTION ANALYSIS 57Note that 
 is �nite, that B � Q+
, and that 0 2 
 sine Q � B. Then for eahj � 1, de�ne: �1;j = NÆj n ((N�j �
) \Nj);�2;j = N�j �
;�3;j = � n (�1;j [ �2;j);where the sets Nj , NÆj and N�j are as de�ned in (4.7). Note that for eah j, thesets �1;j , �2;j , �3;j partition �. Further, by Lemmas 4.7 and 4.9 we havelimj!1 #�1;jmj = 1 and limj!1 #�2;jmj = 0: (4.20)Now de�ne R�;j = 1mj rXi=1 X2��;j ����ZAjQ 'i(x� ) dx����2; � = 1; 2; 3:Then, by (4.17), kPj(�Q)k2L2 = R1;j +R2;j +R3;j :Therefore, to prove (4.19), it suÆes to prove the following three statements:limj!1R1;j = rXi=1 j'̂i(0)j2; limj!1R2;j = 0; and R3;j = 0 for all j:(R3;j) Suppose that R3;j 6= 0 for some j. Then RAjQ 'i(x� ) dx 6= 0 for some 2 �3;j . This implies that AjQ \ (K + ) must have positive Lebesgue measure.Sine K � B � Q + 
, and sine the only translates of Q whih interset AjQ insets of positive measure are translates lying entirely within AjQ, this implies thatQ+ k +  � AjQ for some k 2 
: (4.21)Now, we have that N�j � (N�j �
) \Nj sine 0 2 
 and N�j � Nj . HeneNj = NÆj [N�j � �1;j [ �2;j :Sine  2 �3;j , we must therefore have  =2 Nj . By de�nition of Nj , this impliesthat Q+ is not ontained in AjQ. Therefore Q+ � Rn n (AjQ)Æ. Consequently,Q+ 0 +  � Rn n (AjQ)Æ; (4.22)and sine 0 2 
, it follows from Lemma 4.8 applied to (4.21) and (4.22) that 2 N�j �
 = �2;j . This is a ontradition, so we must have R3;j = 0.



58 4. MULTIRESOLUTION ANALYSIS(R2;j) Sine 'i is ompatly supported and square-integrable, it is integrable.Therefore, R2;j = 1mj rXi=1 Xk2�2;j ����ZAjQ 'i(x� k) dx����2� 1mj rXi=1 Xk2�2;j �ZRn j'i(x)j dx�2= C#�2;jmj ;so R2;j ! 0 by (4.20).(R1;j) Suppose that  2 �1;j . Then  2 NÆj and  =2 (N�j � 
). By de�nitionof NÆj , we therefore have Q+  � (AjQ)Æ. Sine 0 2 
 and Q + 0 +  � (AjQ)Æ,Lemma 4.8 implies that Q+ k +  is not ontained in Rn n (AjQ)Æ for any k 2 
.Sine AjQ is losed, this implies Q+ k +  � AjQ for all k 2 
. HeneK +  � B +  � Q+
+  � AjQ;so ZAjQ 'i(x � ) dx = ZRn 'i(x � ) dx = '̂i(0):Therefore, by (4.20),R1;j = 1mj rXi=1 X2�1;j ����ZAjQ 'i(x� ) dx����2= #�1;jmj rXi=1 j'̂i(0)j2! rXi=1 j'̂i(0)j2: �4.2. Wavelets Assoiated with a Multiresolution AnalysisIn this setion we will assume that a multiresolution analysis of multipliity ris given, and we will disuss the problem of the existene and onstrution of anorthonormal wavelet basis for L2(Rn) assoiated to this MRA.Assume that ' generates an MRA. Sine V0 � V1, there exists a subspaeW0 � V1 that is the orthogonal omplement of V0 in V1. That is, all vetors inV0 are orthogonal to all vetors in W0, and V1 is the diret sum of V0 and W0,i.e., V1 = W0 � V0. For eah j 2 Z, let Wj be the subspae obtained from W0analogously to how the subspae Vj is obtained from V0. That is, we letWj onsistof the dilation by Aj of all the funtions in W0, i.e.,Wj = fg(Ajx) : g 2 W0g:



4.2. WAVELETS ASSOCIATED WITH A MULTIRESOLUTION ANALYSIS 59Then we see immediately that Wj is the orthogonal omplement of Vj in Vj+1. Inpartiular, Vj+1 = Wj � Vj for every j 2 Z. Iterating this fat, we have that ifj > 0, then Vj+1 = Wj � Vj= Wj �Wj�1 � Vj�1...= Wj �Wj�1 � � � � �W�j � V�j : (4.23)Sine [Vj is dense in L2(Rn) and \Vj = f0g, if we let j !1 in (4.23) we see thatL2(Rn) = Lj2ZWj : (4.24)Furthermore, Wj ? Wk when j 6= k, so (4.24) is a deomposition of L2(Rn) as adiret sum of orthogonal subspaes. Hene, if we an �nd an orthonormal basis Bjfor eah spae Wj , then [Bj will be an orthonormal basis for L2(Rn). Moreover,sine eah spae Wj is a dilation of W0, one we have an orthonormal basis B0 forW0, we an obtain an an orthonormal basis Bj for Wj simply by dilating all theelements of B0 by Aj and normalizing the results.Hene our task redues to �nding an orthonormal basis for W0. We will seek abasis onsisting of the lattie translates of a set of m� 1 vetor funtions ` = ( `;1; : : : ;  `;r)T 2 L2(Rn;Cr); ` = 1; : : : ;m� 1:That is, we seek an orthonormal basis B0 for W0 of the formB0 = f `;i(x� k)gk2�; i=1;:::;r; `=1;:::;m�1:This should be ompared to the orthonormal basis for V0 given by (4.1). If suh abasis an be found, thenBj = fm1=2 `;i(Ajx� k)gk2�; i=1;:::;r; `=1;:::;m�1= f j;k`;i gk2�; i=1;:::;r; `=1;:::;m�1will be an orthonormal basis for Wj , and thereforeSj2ZBj = f j;k`;i gk2�; i=1;:::;r; `=1;:::;m�1; j2Z (4.25)will form the desired orthonormal multiwavelet basis for L2(Rn). In this ase, ther(m � 1) funtions f `;i : i = 1; : : : ; r; ` = 1; : : : ;m � 1g are the multiwavelets (orsimply the wavelets) that generate this basis.Example 4.10. For motivation, let us review the one-dimensional, single-funtion ase. Spei�ally, onsider the ase n = 1, r = 1, A = 2, � = Z, andD = f0; 1g. Assume that ' 2 L2(R) generates an MRA for L2(R). Sine m = 2,we seek a single wavelet  2 L2(R) suh that f (x�k)gk2Z forms an orthonormalbasis forW0. One this funtion is found, the orthonormal wavelet basis for L2(R)given by (4.25) will have the form f j;kgj;k2Z.The lassial tehnique for �nding this wavelet  is as follows. The vetorsaling funtion ' satis�es a re�nement equation of the form '(x) =Pk2Z k '(2x�



60 4. MULTIRESOLUTION ANALYSISk). The symbol of this re�nement equation is the 1-periodi funtion m0 2 L2[0; 1)de�ned by m0(!) = 12 Xk2Z k e�2�ik! ; ! 2 R:Note that if only �nitely many oeÆients k are nonzero, then m0 is atually atrigonometri polynomial. This symbol m0 is the unique funtion suh that'̂(2!) = m0(!) '̂(!); ! 2 R:It an be shown that the funtion  2 L2(R) whose Fourier transform is de�nedby  ̂(2!) = m1(!) '̂(!); ! 2 R (4.26)is a valid wavelet assoiated with this MRA if and only if m1(!) 2 L2[0; 1) is a1-periodi funtion suh that the matrixM(!) = �mi(! + j2 )�i;j=0;1 = " m0(!) m0(! + 12 )m1(!) m1(! + 12 ) # (4.27)is unitary for almost every !. The suess of one-dimensional wavelet theory is, inpart, based on the fat that it is possible to onstrutively �nd suh funtions m1.For example, we an takem1(!) = 12 Xk2Z (�1)k �1�k e�2�ik! ;in whih ase (4.26) implies that (x) = Xk2Z (�1)k �1�k '(2x� k)generates a wavelet basis for L2(R) [Dau92℄. }The results stated in Example 4.10 an be extended to the ase of multivariatewavelets with arbitrary multipliities and dilation matries. We will state the rel-evant results here without proof, and for simpliity of notation we will restrit tothe ase where the lattie is � = Zn.Let fVjgj2Z be an MRA of multipliity r with assoiated vetor saling funtion' = ('1; : : : ; 'r)T 2 L2(Rn;Cr). Then ' satis�es a re�nement equation of the form'(x) = Xk2� k '(Ax � k)for some matries k in Cr�r. The symbol of this re�nement equation is the 1-periodi matrix-valued funtion M0 2 L2([0; 1); Cr�r) de�ned byM0(!) = 1mXk2� k e�2�ik�! ; ! 2 Rn:This is the unique funtion satisfying'̂(A�!) = M0(!) '̂(!); ! 2 Rn:Now suppose that M1; : : : ;Mm�1 are 1-periodi matrix-valued funtions inL2([0; 1); Cr�r). Let us write these funtions together with the funtion M0 asM`(!) = 1mXk2� `;k e�2�ik�!; ` = 0; : : : ;m� 1:



4.2. WAVELETS ASSOCIATED WITH A MULTIRESOLUTION ANALYSIS 61In partiular, this means that k = 0;k. Let  1; : : : ;  m�1 be the vetor funtionsin L2(Rn;Cr) whose Fourier transforms are de�ned by the formula ̂`(A�!) = M`(!) '̂(!); ` = 1; : : : ;m� 1:We seek neessary and suÆient onditions on M1; : : : ;Mm�1 suh that the lattietranslates of f `;i : ` = 1; : : : ;m� 1; i = 1; : : : ; rg will form an orthonormal basisfor W0. These will be formulated in terms of a matrix M(!) analogous to the onede�ned in (4.27) for the one-dimensional ase. Spei�ally, we hoose a ompleteset of representatives 0; : : : ; m�1 of Zn=A�(Zn), and then de�ne a matrix-valuedfuntion M(!) in blok form byM(!) = [Mi(! +B�j)℄i;j=0;:::;m�1 ;where B = A�1. Note thatM(!) 2 (Cr�r)m�m for eah individual !. We will saythat M is unitary a.e. if for eah i, j = 0; : : : ;m� 1 we havem�1Xk=0 Mi(! +B�k)M�j (! +B�k) = Æi;jIr�r for a.e. ! 2 Rn:Then we have the following theorem, whose proof is straightforward.Theorem 4.11. Let fVjgj2Z be an MRA for L2(Rn) of multipliity r. Then,using the notation above, the following statements are equivalent.(a) f `;i(x� k)gk2�; i=1;:::;r; `=1;:::;m�1 forms an orthonormal basis for W0.(b) M is unitary a.e.() 1mPk2� i;k �j;k�A� = Æ0;� Æi;j Ir�r for � 2 � and i, j = 0; : : : ;m� 1.Thus, one an MRA has been found, we an onstrut a wavelet basis forL2(Rn) if we an onstrut a partiular unitary matrix funtion M(!). For eah!, the matrix M(!) is of size rm � rm, and the �rst r rows of this matrix areknown. If the remaining rows an be ompleted so that M(!) is unitary a.e., thenwe an �nd the wavelets that generate the wavelet bases. Equivalently, we an tryto solve the non-linear system of equations in ().The question of whether this ompletion an always be aomplished is a verydiÆult open question. It has been shown that if (2m � 2)r � n then M(!) analways be ompleted so as to be unitary a.e. However, even in this ase it is usuallydiÆult to omplete the matrix in suh a way that the assoiated wavelets havesome spei� properties. For example, it is not known whether, given a ompatlysupported vetor saling funtion, the matrix an be ompleted so that the waveletis ompatly supported. The existene of a wavelet set assoiated to an MRA forthe ase of a uniform dilation of Rn was proved by Gr�ohenig [Gr�o87℄, and isreprodued in [Mey92℄. Results for a general dilation matrix A with multipli-ity 1 are desribed in [Woj97℄. The multivariable, multiwavelet ase for a uniformdilation is studied in [AK97℄, f. also [Che97℄.





CHAPTER 5ExamplesIn this hapter we will show how the results of the previous hapters an beused to onstrut wavelet bases. We �rst apply them to a known example ofa nonseparable orthonormal wavelet basis, and then use them to onstrut newexamples of nonseparable orthonormal multiwavelet bases.In Setion 5.2 we will disuss the Kova�evi�{Vetterli saling funtion. This is aknown example of a nonseparable, ontinuous, ompatly supported funtion thatis re�nable with respet to the quinunx dilation matrixA = � 1 11 �1 � ; (5.1)and whih has orthonormal lattie translates. We use our tehniques to obtain anumerial veri�ation of the ontinuity of this saling funtion.In Setion 5.3 we will onstrut new examples of nonseparable, ontinuousvetor saling funtions with multipliity r = 2 that are re�nable with respet tothe quinunx dilation A, have orthonormal lattie translates, and have aurayequal or greater than the Kova�evi�{Vetterli saling funtion. Additionally, weonstrut the multiwavelets orresponding to the MRA generated by these salingfuntions, thus obtaining new multiwavelet bases for L2(R2).Note that for the quinunx dilation A given in (5.1), we havem = j det(A)j = 2.The orresponding lattie is � = Z2, and we �x the digit set asD = f(0; 0); (1; 0)g:With this hoie, the tile Q is the parallelogram with vertiesf(0; 0); (1; 0); (2; 1); (1; 1)g:This tile is pitured in Figure 2.1 in Chapter 2.We will use the notation developed in previous hapters, applied now to thespei� setting of the quinunx matrix. In partiular, the tehniques for har-aterizing the auray of a saling funtion were presented in the general set-ting in Setion 3.4. In the two-dimensional setting, the number of multi-indiesof a given degree s is ds = s + 1. We hoose to order those multi-indies asf(s; 0); (s � 1; 1); : : : ; (0; s)g. With this ordering, the vetor of all monomials ofdegree s isX[s℄(x) = X[s℄(x1; x2) = 266664 xs1xs�11 x2...xs2
377775 ; x = (x1; x2) 2 R2:63



64 5. EXAMPLESFor s = 0; 1; 2; 3, the matries A[s℄ introdued in Setion 3.4 are given expliitly asA[0℄ = 1;A[1℄ = � 1 11 �1 � ;A[2℄ = 24 1 2 11 0 �11 �2 1 35 ;A[3℄ = 2664 1 3 3 11 1 �1 �11 �1 �1 11 �3 3 �1 3775 :5.1. Numerial Estimates of the Joint Spetral RadiusThe 2-JSR an often be omputed exatly in terms of the spetral radius of asingle matrix [LM97℄, [Zho98℄. For other values of p, it an be diÆult to omputethe joint spetral radius exatly. In speial ases, the uniform JSR an be omputedeasily from the eigenvalues of the matries Mj . For example, if the Mj ommute,or if they an be simultaneously triangularized or Hermitianized, then �̂1(M) isthe maximum of the absolute values of the eigenvalues of the Mj . However, thisneed not be true in general. It is true that if k � k is any matrix norm (i.e., a normon Cs�s whih satis�es kABk � kAk kBk), and we de�ne�̂1;` = max�2P` �(�)1=` and �̂1;` = max�2P` k�k1=`;then �̂1;` � �̂1(M) � �̂1;` for every `: (5.2)This provides one means for numerially estimating a uniform JSR, although thenumber of matrix produt omputations involved grows exponentially with `. How-ever, the fat that the norm is submultipliative implies that the following branh-and-bound algorithm, based on [DL92, Lemma 4.6℄, an be used for testing upperbound onjetures, f. [CH92℄.Proposition 5.1. Let M = fM1; : : : ;Mmg be a olletion of s � s matries,and let k � k be any matrix norm on Cs�s. Let Æ > 0 be given, and reate a set Qof matrix produts by implementing the following reursion m times, starting with� =Mi in turn for i = 1; : : : ;m:� If � = M"1 � � �M"` and k�k1=` � Æ, then let � 2 Q. Otherwise, repeatthis step m times, replaing � by eah of �Mi in turn for i = 1; : : : ;m.If this reursion terminates, then�̂(M) � max�2Q k�k1=`(�) � Æ;where `(�) is the length of the produt �. Moreover, this reursion must terminateif Æ > �̂(M), and annot terminate if Æ < �̂(M).
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Figure 5.1. Attrator K�.This algorithm yields muh better estimates with far less omputation thanthe upper bound estimate given by (5.2), and often makes it possible to estimatethe uniform JSR of quite large matries with reasonable auray. Some analysisof the numerial auray of uniform JSR estimates is presented in [Gri96℄, andsome methods for evaluating the exat uniform JSR of some types of olletionsM that annot be simultaneously triangularized or Hermitianized an be found in[Mae95℄, [BZ00℄.5.2. The Kova�evi�{Vetterli Saling FuntionThe Kova�evi�{Vetterli (KV) saling funtion was �rst onstruted in [KoV92℄.Until [BW99℄, it was the only known example of a nonseparable, ontinuous, om-patly supported funtion f : R2 ! C that is re�nable with respet to the quinunxmatrix A and whih has orthonormal lattie translates. The ontinuity of this fun-tion was onjetured in [KoV92℄ and was proved numerially in [Vil94b℄. We willapply our tehniques to obtain another numerial veri�ation of the ontinuity ofthis saling funtion.The KV saling funtion is the solution of the re�nement equation'(x) = Xk2� k '(Ax � k); x 2 R2; (5.3)for the following spei� hoies of � and k. The support of the oeÆients is thefollowing set of eight points in Z2:� = f(1; 1); (2; 1); (0; 0); (1; 0); (2; 0); (3; 0); (1;�1); (2;�1)g:The oeÆients themselves are de�ned as follows. For k =2 � let k = 0. Thende�ne k for k 2 � by[k℄k2� = � 264 �a1 �a0a1�a2 �a0a2 �a0 1a0a1a2 �a1a2 375 ;where the origin orresponds to the oeÆient �a2 and the salar � is hosen sothatP k = 2. This gives a family of saling funtions, and the KV saling funtion



66 5. EXAMPLES(1;1) = � �0:2626160679713805 0:42981906620524530:0005574439165755 0:2030577672486814 �(2;1) = � 0:0012426482475807 �0:4949250389580165�0:0408719784870414 �0:1920926795673339 �(0;0) = � 0:4558392979832848 �0:10834340208752710:0706745015703368 �0:0873302642653203 �(1;0) = � 1:0347430408665290 �0:33336960016903210:0986292192873546 �0:1130957347361869 �(2;0) = � 0:0217227622514353 �0:1035804504304439�0:7252848187529292 0:3286159537916353 �(3;0) = � 0:0135277690777398 0:10535487332395010:1754378582933197 �0:5539904957294699 �(1;�1) = � 0:0618708039296100 �0:1876314721922069�0:2843099059597212 0:5949251108985801 �(2;�1) = � �0:0110715449521254 �0:1958066410598297�0:1833149852352274 0:6670640666446144 �v[0℄ = � 0:7920665605596084 �0:6104347333198465 �v[1℄ = � 1:3824676038808285 �0:99057482746276780:7387595389423293 �0:8523956367846645 �Table 1. First set of saling funtion oeÆients.orresponds to the spei� hoiea0 = a1 = p3; a2 = 2�p3:It follows from Proposition 3.3 that a ompatly supported distributional solution' to the re�nement equation (5.3) exists. We will use the results of Chapter 3to verify that this solution is in fat a ontinuous funtion, and to determine itsauray. It is shown in [Vil94b℄ that lattie translates of ' are orthonormal.First, we need to onstrut appropriate matries Td for d 2 D = f(0; 0); (1; 0)g.With � as given above, the attrator K� is the polygon with vertiesf(0; 0); (0; 2); (2; 4); (5; 4); (6; 3); (6; 1); (4;�1); (1;�1)g:This polygon is pitured in Figure 5.1. By Proposition 2.2, the KV saling funtion' will be supported within K�.Let 
 � Z2 be the set of 29 points with integer oordinates loated within thepolygon with vertiesf(�1;�1); (�1; 1); (1; 3); (5; 3); (5; 1); (3;�1)g:This set 
 satis�es K� � Q+
, and, moreover, 
 is a minimal set with respet tothis property. Then T(0;0) and T(1;0) are the two 29�29 matries de�ned by (2.19),



5.2. THE KOVA�CEVI�C{VETTERLI SCALING FUNCTION 67(1;1) = � �0:0591314043961276 0:44500037691199380:3321995579351313 0:0104446670717889 �(2;1) = � 0:1114102151429672 0:22545908438480770:1195224265431005 �0:0593073985413613 �(0;0) = � �0:2940058981215972 �0:4268371360660582�0:2507164723775025 �0:0683481992678018 �(1;0) = � 0:6975221902082682 0:77581722358967740:1628550064232036 0:2857776144242880 �(2;0) = � �0:2453928326496505 �0:02563140448638590:5286726350756744 0:8784799148003067 �(3;0) = � 0:3472507659119894 �0:41930300119523960:0296262444198484 0:6570307353565332 �(1;�1) = � 0:0439292340612756 �0:03864978960679170:0862583713567824 0:2000830628613316 �(2;�1) = � �0:0603512059818823 0:1176289221695265�0:3549334936719044 �0:1969015485750640 �v[0℄ = � �0:4088232319356361 �0:9126135902060207 �v[1℄ = � �1:6584856779704104 �3:8822641730301039�0:5869518169744740 1:9243182275157703 �v[2℄ = 24 �6:5634917083549151 �16:5888850689201835�2:1313723063732684 �8:2979351401696652�0:7721381710076713 �4:0891841779249179 35Table 2. Seond set of saling funtion oeÆients.i.e., T(0;0) = [Aj�k℄j;k2
 and T(1;0) = [Aj�k+(1;0)℄j;k2
: (5.4)Now that the notation has been set, Theorem 3.12 and the remarks followingimply that the auray of the KV saling funtion is determined by the system oflinear equations given in (3.18). All equations are given expliitly and exatly, andit is easy to hek that the system an be solved when � = 2, with solutionv[0℄ = [v(0;0)℄ = 1 and v[1℄ = � v(1;0)v(0;1) � = � (6 +p3)=23=2 � :Furthermore, the system annot be solved when � = 3, so Theorem 3.12 impliesthat the KV saling funtion has auray � = 2, i.e., lattie translates of ' anreprodue exatly the onstant and linear polynomials.The vetors v� given above diretly determine the the polynomials y� de�nedby (3.14), and these in turn determine diretly the vetors e� de�ned in (3.19).



68 5. EXAMPLESd(1;1) = � �0:3241476668526600 �0:68916097817603600:1112621003242060 0:3700696672377430 �d(2;1) = � 0:2459217157892530 0:5440585582667560�0:1111644337484570 �0:3131767059736590 �d(0;0) = � 0:1342427066922970 0:38985868284044000:0008186524655252 �0:1911338850170830 �d(1;0) = � 0:6742751905644570 0:2690352672180090�0:1654413591601810 �0:1668405479326910 �d(2;0) = � 0:3023698075956100 0:17707067571356300:9358219858624430 0:2697411853489460 �d(3;0) = � �0:1360696696971580 �0:0664413982427058�0:3653701762481760 0:0578802392135144 �d(1;�1) = � �0:0602396080362104 0:3209360059587710�0:0280398654007565 0:4891511174577440 �d(2;�1) = � 0:1319145112771960 0:31101321333876100:3591016452044310 0:4405847665862590 �Table 3. Wavelet oeÆients orresponding to Table 2.We now apply Theorems 3.4 and 3.17 to prove that ' is ontinuous. We apply theGram{Shmidt proedure to fe(0;0); e(1;0); e(0;1)g to obtain an orthonormal basisf~e(0;0); ~e(1;0); ~e(0;1)g for their span, whih is the spae alled U1 in the statementof Theorem 3.17. At the same time, the Gram{Shmidt proedure an be used to�nd an orthonormal basis BE for the spae E1 = fe�(0;0); e�(1;0); e�(0;1)g?. This yieldsan orthonormal basis for C29 of the form given by (3.21). In this basis, T(0;0) andT(1;0) have the form given in (3.22). Theorem 3.17 then implies that�̂1(fT(0;0)jV0 ; T(1;0)jV0g) = max� 1p2 ; �̂1(C0; C1)	; (5.5)where C0 and C1 are appropriate matries of size 26� 26. If this value is stritlyless than 1, then Theorem 3.4 implies that ' is ontinuous.To estimate the joint spetral radius in (5.5), we �x a norm and then implementthe branh-and-bound algorithm of Proposition 5.1. We hoose the norm to be thematrix norm indued by the `1 vetor norm on C26. Then, following the reursiongiven in Proposition 5.1, a numerial omputation of 1724 produts of C0 and C1yields the bound �̂1(C0; C1) � 0:999713 < 1:This therefore on�rms the numerial proof of [Vil94b℄ that the KV saling fun-tion exists and is ontinuous. A deeper omputation of 42748 produts of C0,C1, ombined with the fat that �(Ci) � �̂1(C0; C1), yields the numerial bounds0:93407 � �̂1(C0; C1) � 0:94.



5.3. NONSEPARABLE QUINCUNX MULTIWAVELETS 695.3. Nonseparable Quinunx MultiwaveletsIn this setion we will present new examples of nonseparable, two-dimensional,ompatly supported, ontinuous vetor saling funtions of multipliity 2 whihare re�nable with respet to the quinunx matrix A, have auray � = 2 or 3,and have orthonormal lattie translates. The oeÆients for these examples wereprovided to us by Anita Ruedin, see [Rue02℄ for related results. Ruedin used theharaterization of higher-order auray developed in [CHM98℄, [CHM00℄ toonstrut andidate sets of oeÆients. We will now give a numerial demonstrationthat these andidate vetor saling funtions are in fat ontinuous, and we willonstrut the orresponding multiwavelets as well.We use the same sets �, K�, and 
 as were used in the de�nition and evaluationof the KV saling funtion in Setion 5.2. Let k for k 2 � be 2� 2 matries withunknown entries (a total of 32 unknowns). Suppose that there existed a solution 'to the re�nement equation'(x) = Xk2� k '(Ax � k); x 2 R2: (5.6)If this solution has orthonormal lattie translates, then neessarily8 j 2 Z2; Xk2Z2 k �k+Aj = 2Æj;0I: (5.7)Taking into aount the support of the oeÆients, there are only 5 values of jfor whih (5.7) is nontrivial. This yields a set of 20 quadrati equations in the 32unknown omponents of the k.Now let v[0℄ = [v(0;0)℄ and v[1℄ = � v(1;0)v(0;1) � ;where v(0;0), v(1;0), and v(0;1) are eah unknown row vetors of length 2 (a total of 6unknowns). If ' has auray � = 2, then neessarily the equations in (3.18) mustbe satis�ed, sine ' has independent translates. This is a set of 8 linear equationsin the variables that are the omponents of the k and the v[s℄.Thus, if there exists a solution to the re�nement equation (5.6) whih has bothorthonormal lattie translates and auray � = 2, then a partiular system of 28linear and quadratis equations in 38 unknowns must be satis�ed. Ruedin used anumerial optimization routine to produe sets of oeÆients whih satisfy eah ofthese equations to within an auray of 3� 10�13. This set of oeÆients is givenin Table 1. A seond set of oeÆients, given in Table 2, satis�es to within anauray of 2 � 10�12 all of the equations speifying the neessary onditions fororthonormal lattie translates and auray � = 3.This information is not yet suÆient to imply that vetor saling funtionswith these properties do, in fat, exist. Proposition 3.3 does imply that ompatlysupported solutions to the re�nement equations whose oeÆients are given byTables 1 and 2 do exist in at least the distributional sense. We will now demonstratenumerially that these solutions are ontinuous vetor saling funtions. To do this,we apply Theorems 3.4 and 3.17, similarly to the veri�ation that the KV salingfuntion is ontinuous.Consider the values given in Table 1 �rst. The given vetors v[0℄ and v[1℄ diretlydetermine the polynomials y� de�ned in (3.14) and hene the vetors e� de�nedin (3.19). The matries T(0;0), T(1;0) are de�ned by the equations given in (5.4),



70 5. EXAMPLESexept that the entries k are now 2 � 2 bloks. Hene eah of these matries hassize 58� 58. We make the hange of basis to plae T(0;0) and T(1;0) into the formgiven in (3.22). Theorem 3.17 then implies that�̂1(fT(0;0)jV0 ; T(1;0)jV0g) = max� 1p2 ; �̂1(C0; C1)	;where C0 and C1 are appropriate matries of size 55 � 55. We use the matrixnorm indued by the `1 vetor norm on C55. Then, following the reursion givenin Proposition 5.1, a numerial omputation of 1856 produts of C0 and C1 yieldsthe bound �̂1(C0; C1) � 0:999924 < 1:Theorem 3.4 therefore implies that a ontinuous, ompatly supported solution tothis re�nement equation does exist. A deeper omputation of 226130 produts ofC0, C1, ombined with the fat that �(Ci) � �̂1(C0; C1), yields the numerialbounds 0:714262 � �̂1(C0; C1) � 0:85.Theorem 3.4 also guarantees that the asade algorithm onverges. The vetorsaling funtion ' = ('1; '2)T is pitured in Figure 5.2 using a grid size of 1=16.The values at these grid points allow us to ompute a Riemann sum approximationto the inner produts h'i(x� k); 'j(x � `)i. These values equal ÆijÆk` to within apreision of 8�10�3, whih we take as a numerial veri�ation that lattie translatesare orthonormal. Theorem 3.12 therefore implies that ' has auray � = 2, i.e.,translates of ' an reprodue onstant and linear polynomials exatly. For example,we must have Pk y(1;0)(k)'(x + k) = x1. In Figure 5.3 we show a partial sum ofthis series. Numerially, the full seriesPk y(1;0)(k) f(x+ k) equals x1 to within anauray of 4� 10�13.Sine ' has orthonormal lattie translates and k'̂(0)k2 = 1, it follows fromTheorem 4.4 that ' generates a multiresolution analysis fVjg for L2(R2). We antherefore use Theorem 4.11 to onstrut the orresponding multiwavelet basis forL2(R2). Spei�ally, sine m = 2, we seek matries dk = 1;k for k 2 � so thatthe onditions in Theorem 4.11() are satis�ed. The oeÆients in Table 3 satisfythese onditions numerially to within an auray of 5�10�11. The orrespondingwavelets are shown in Figure 5.4.Finally, onsider the oeÆients given in Table 2. These satisfy the neessaryonditions for auray � = 3. Beause of the inreased auray, we now have�̂1(fT(0;0)jV0 ; T(1;0)jV0g) = max� 1p2 ; �̂1(C0; C1)	with C0 and C1 being appropriate matries of size 52�52. A numerial omputationof 403850 produts of C0 and C1, ombined with the fat that �(Ci) � �̂1(C0; C1),yields the numerial bounds0:91127 � �̂1(C0; C1) � 0:999999 < 1:Hene a ontinuous vetor saling funtion exists, and is pitured in Figure 5.5.Translates of this vetor saling funtion an reprodue onstant, linear, and qua-drati polynomials exatly. In partiular, we must haveXk �y(2;0)(k) + y(0;2)(k)� f(x+ k) = x21 + x22:In Figure 5.6 we show a partial sum of this series. The orresponding waveletsan again be onstruted by numerially solving the onditions presented in Theo-rem 4.11().
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APPENDIX AIndex of SymbolsSymbol Meaning DisussionBT transpose of a matrix B 2.1B� Hermitian of a matrix B 2.1B" = fx 2 Rn : dist(B; x) < "g 4.2.1#F ardinality of a set F 2.1EÆ interior of E � Rn 2.1�E boundary of E � Rn 2.1E losure of E � Rn 2.1jEj Lebesgue measure of E � Rn 2.1f (i) iterate in the Casade algorithm 2.1f̂ Fourier transform of f 2.1gj;k = mj=2g(Ajx� k) 4.1:"1"2 : : : A-nary expansion 2.2.1A dilation matrix 1.1, 2.1A[s℄ matrix related to dilation of X[s℄ by A 3.4B(x; ") open ball entered at x with radius " 2.1CJ�K spae of J �K omplex matries 2.1k oeÆient in the re�nement equation 1.1, 2.1D = fd1; : : : ; dmg, digit set assoiated with A 2.2ds number of multi-indies of degree s 3.4e� = (y�(k))k2
 3.5Es = spanfe�� : 0 � j�j � sg? 3.5H(Rn) Hausdor� spae 2.2.1h(�; �) Hausdor� metri 2.2.1KH attrator of IFS fwkgk2H 2.2.1L = [Ai�j ℄i;j2� 3.4Lp(X) spae of p-integrable funtions g : X ! C 2.1Lp(X;Y ) spae of p-integrable funtions g : X ! Y 2.1m = j det(A)j 2.2m0(!) symbol of the re�nement equation 4.2n dimension of domain of saling funtion 1.1, 2.1P fundamental domain for �=A(�) 2.2Pj orthogonal projetion of L2(Rn) onto Vj 4.1Q = KD, tile assoiated with A and D 2.2.2~Q subset of Q, tiles without overlaps 2.2.3Qi \disjointization" of wdi(Q) 2.3Q[s;t℄ a matrix of polynomials related to auray 3.481



82 A. INDEX OF SYMBOLSr multipliity of saling funtion 1.1, 2.1S re�nement operator 2.1supp(f) support of f 2.1T matrix version of re�nement operator S 2.3Td = [Aj�k+d℄j;k2
 2.3Us = spanfe� : 0 � j�j � sg 3.5Vj subspaes in a multiresolution analysis 4.1v� row vetors related to auray 3.4v[s℄ = [v�℄j�j=s 3.4Wj orthogonal omplement of Vj in Vj+1 4.1wk aÆne map, wk(x) = A�1(x+ k) 2.2.1wH wH(B) = [k2Hwk(B) 2.2.1X[s℄ vetor of all monomials of degree s 3.4y� a vetor of polynomials related to auray 3.4y[s℄ = [y�℄j�j=s 3.4Y[s℄ = �y[(℄x+ k)�k2� 3.4� = 1mP k 3.2Æi;j Kroneker delta 2.1� lattie in Rn invariant under A 1.1, 2.1�d osets of A(�) 2.20 unique element of ~Q \ � 3.6i generators of the lattie � 2.2� auray 1.1, 3.2� support of oeÆients in re�nement equation 1.1, 2.1�0 = ��D 2.2.3, 3.5�g folding of g 2.3�(M) spetral radius of matrix M 2.4�̂p(M) p-norm joint spetral radius of set of matries M 2.4� analogue of 2x mod 1 map 2.3
 subset of � suh that K� � Q+
 2.2.3�E harateristi funtion of a set E 2.1


