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Abstract

Let A be a dilation matrix, an n X n expansive matrix that maps a full-rank
lattice ' C R™ into itself. Let A be a finite subset of I, and for k € A let ¢; be
r x r complex matrices. The refinement equation corresponding to A, I'; A, and
c={cktren is f(z) = D e ek f(Az —k). A solution f: R" — C’, if one exists, is
called a refinable vector function or a vector scaling function of multiplicity r. In
this manuscript we characterize the existence of compactly supported L? or con-
tinuous solutions of the refinement equation, in terms of the p-norm joint spectral
radius of a finite set of finite matrices determined by the coefficients c¢;. We obtain
sufficient conditions for the LP convergence (1 < p < 0o0) of the Cascade Algorithm
fOD(@) = 3o ek £ (Az — k), and necessary conditions for the uniform con-
vergence of the Cascade Algorithm to a continuous solution. We also characterize
those compactly supported vector scaling functions which give rise to a multires-
olution analysis for L2(R"™) of multiplicity r, and provide conditions under which
there exist corresponding multiwavelets whose dilations and translations form an
orthonormal basis for L?(R").
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CHAPTER 1

Introduction

1.1. Description of Results

Let [ C R” be a full-rank lattice (the image of Z¢ under an invertible matrix).
Let A be a dilation matrix, i.e., A is an expansive n X n matrix which maps I" into
itself. Let A be a finite subset of I'. Then given r X r matrices ¢, for k € A, the
refinement equation associated to A, T', A, and ¢ = {cg }ren is

f@) = > cr f(Ax — k), z€R", (1.1)

keA

where a solution f, if one exists, is a vector-valued function f: R™ — C", i.e.,

fi(z)
flx) = :
fr(2)

We call a compactly supported solution of the refinement equation a refinable (vec-
tor) function or a (vector) scaling function, and r is its multiplicity.

In this manuscript we will characterize the existence of compactly supported
LP or continuous solutions of the refinement equation. The Cascade Algorithm is
the iteration

FO @) = e fU(Ax — k). (1.2)

kEA

We obtain sufficient conditions for the L? convergence (1 < p < 00) of the Cascade
Algorithm, and necessary conditions for the uniform convergence of the Cascade
Algorithm to a continuous solution. We also characterize when a solution of a
refinement equation is a generator of a multiresolution analysis (see Definition 4.1)
for L2(R™). Such a generator enables the construction of multiwavelet orthonormal
bases for L2(R™).

The higher-dimensional setting of this manuscript, allowing an arbitrary dila-
tion matrix, creates significant geometrical obstacles to the analysis of the refine-
ment equation. In Chapter 2 we prove a number of technical lemmas and develop
a set of geometrical tools which are needed to prove the main results of Chapters 3
and 4. In particular, we prove that the support of the scaling function is a com-
pact set that is contained in the attractor of an iterated function system (IFS)
determined by the set A (Theorem 2.2).

Given a choice of dilation matrix A and a choice of digits D (a set of representa-
tives of I'/AT"), there exists a unique compact set ) that is the attractor of another
IFS determined by A and D. Except for certain dilation matrices in dimensions 4
and higher, there exists a choice of digits for which this attractor @) tiles R™ with
overlaps of measure zero using translations by I' (see Theorem 2.3). We assume

1



2 1. INTRODUCTION

this is the case for the dilation matrices considered in this manuscript. Although
the tile @) typically has a fractal boundary, we prove in Proposition 2.10 that there
exists a subset @ of Q that tiles R” using translations by T’ without overlaps.

We transform the refinement equation to an equivalent vector equation over
the tile in Proposition 2.13 and Corollary 2.15. This will allow us in Chapter 3 to
analyze the convergence of the Cascade Algorithm in terms of the spectral proper-
ties of a finite set of matrices. To this end, in Proposition 2.17 we derive lower and
upper bounds for the p-norm joint spectral radius of a set of matrices in terms of
an appropriate matrix norm.

In Theorem 3.1 we prove the existence of a fixed point of a general class of
functional equations. The solutions of these equations are called generalized self-
similar functions. The refinement equation is a particular member of this class.

In Theorem 3.4 we give sufficient time-domain conditions for the existence
of a unique continuous or L? vector scaling function in terms of the p-norm joint
spectral radius (1 < p < 00) of a finite set of finite matrices T, restricted to a specific
subspace Ejy, all determined by the coefficients ¢;. Furthermore, we show that if
these conditions are satisfied, then the Cascade Algorithm converges geometrically
in LP to this unique solution.

A vector function g: R® — C" has accuracy k if every polynomial ¢ on R"
with complex coefficients and deg(q) < & can be written

q(z) = Zak gz + k) ae.

kel

for some 1 x r row vectors ag. We prove in Theorem 3.17 that if a scaling func-
tion f has accuracy s then the matrices Ty can be simultaneously brought into a
particular block triangular form. The subspace Ey mentioned before is one of the
invariant subspaces corresponding to this simultaneous triangularization. This is a
key ingredient for obtaining necessary conditions for the existence of a continuous
solution to the refinement equation.

In Theorem 3.22 we prove that if a continuous solution to the refinement equa-
tion exists which has L*-stable translates (see Definition 3.18), then the Cascade
Algorithm converges uniformly for the starting function X4, where Q is the subset
of () that tiles R™ without overlaps. In Theorem 3.26 we prove that if the Cascade
Algorithm converges pointwise everywhere for the starting function Xg to a con-
tinuous solution of the refinement equation, then the co-norm joint spectral radius
of the matrices T, restricted to Ej is strictly less than 1. We bound the Hélder
exponent of continuity of a continuous scaling function in Proposition 3.27.

In Theorem 4.4 we characterize all compactly supported vector-valued func-
tions with orthonormal lattice translates which generate a multiresolution analysis
(Definition 4.1) of L?(R"). In particular, any such function is a solution of a re-
finement equation. Once a multiresolution analysis is given, Theorem 4.11 provides
conditions under which there exist corresponding multiwavelets whose dilates and
translates form an orthonormal basis for L?(R™).

Finally, in Chapter 5, we apply the results of this manuscript by numerically
constructing new examples of continuous, compactly supported vector scaling func-
tions with orthonormal lattice translates and accuracy x = 2 that are refinable with
respect to the quincunx dilation A = [] _{]. We also construct the corresponding
multiwavelets.
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1.2. A Historical Overview

The history of the study of refinement equations is complex, involving re-
searchers from numerous fields and disciplines. We briefly outline some of the
highlights of that history here, emphasizing those results most directly related to
this manuscript. We will not attempt to give an exhaustive summary of all liter-
ature related to refinement equations. Additional related papers can be found in
the references of the articles that we cite.

Micchelli and Prautzsch [MP89] and Daubechies and Lagarias [DL92] each
independently introduced a time-domain method for testing the smoothness of re-
finable functions in the one-dimensional, single function case (n = 1, r = 1). The
conditions developed in [MP89], [DL92] were based on the computation of all pos-
sible products of a set of finite matrices directly determined by the coefficients c.
In particular, Daubechies and Lagarias [DL92] rediscovered the uniform joint spec-
tral radius (JSR) of Rota and Strang [RS60], and used it as a fundamental tool
for formulating these conditions. Many papers, utilizing a variety of techniques,
have since studied additional properties of the scaling function, such as Sobolev or
Besov space membership, e.g., [Eir92], [Vil94a]. Of particular relevance to this
manuscript are the papers of Y. Wang [Wan96], who introduced a 1-norm gener-
alization of the JSR in order to formulate a test for the existence of L'-solutions
to the refinement equation, and Jia [Jia95], who independently introduced a p-
norm generalization of the JSR to test for LP-solutions. The p-JSR was also used
implicitly by Lau and J. Wang in [LauW95].

The above-mentioned papers are all concerned with one-dimensional, single-
function refinement equations. Cohen and Daubechies [CD93] generalized some of
the one-dimensional tests of [DL92] to the case of two-dimensional, single function
refinement equations using a quincunx dilation matrix. Some results giving tests
for the existence of continuous solutions or the Sobolev and Hélder regularity of
the solution in the multidimensional, single-function case (n > 1, r = 1) appear in
[Vil94b], [CGV99], [Jia99].

The accuracy conditions for one-dimensional, multi-function refinement equa-
tions are considerably more involved than in the single-function case. These con-
ditions were derived independently by Heil, Strang, and Strela [HSS96] and by
Plonka [P1097]. Plonka further discovered that these accuracy conditions imply a
factorization of the matrix-valued symbol of the refinement equation (the Fourier
transform of the sequence of matrix coefficients {c;}). This factorization is not
as convenient as in the single-function case, but it has been been useful for the
construction and analysis of multiwavelets in one dimension [MS97], [CDP97].
The accuracy conditions for the multidimensional, multi-function case were derived
in [CHM98], [CHMO00], with some similar results for the case of diagonalizable
dilation matrices in [Jng99]. The order of approzimation of f is closely related
to its accuracy, but can be distinct in higher dimensions. We refer to [BDR94a],
[BDR94b] and related works for discussions of order of approximation.

There have been a few specific constructions of non-tensor product orthonor-
mal wavelet bases in higher dimensions. Grochenig and Madych [GM92] studied
the particular case of higher-dimensional, single-function dilation equations whose
solution is the characteristic function of a tile. These special refinement equations
yield discontinuous wavelets that are higher-dimensional analogues of the Haar
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basis for L?(R). Kovacevi¢ and Vetterli [KoV92] constructed a single specific ex-
ample of continuous scaling function on R? that is refinable with respect to the
quincunx dilation matrix A = [} _{] and whose Z>-translates are orthonormal
(see [Vil94b] for the proof that this scaling function is continuous, which we also
verify in Section 5.2). This was for many years the only known example of a con-
tinuous, nonseparable, two-dimensional, compactly supported orthonormal scaling
function. More recent constructions by Kovacevi¢ and Vetterli are in [KoV95]. Re-
cently, He and Lai constructed some examples and then families of two-dimensional,
nonseparable, continuous, compactly supported scaling functions with orthonormal
translates that are refinable with respect to the uniform dilation A = 27 [HL97].
By choosing a specific geometry for the support A of the coefficients ¢, Belogay and
Wang [BW99] were able to impose a limited factorization of the symbol and use
that to construct a specific family of two-dimensional, compactly supported scaling
functions with orthonormal translates and increasing regularity that are refinable
with respect to the dilation A = [{ 2]. One-dimensional orthonormal multiwavelets
were constructed in [Alp93], [GLT93], [GL94], [GHM94|, [DGHM96]. Dono-
van, Geronimo, and Hardin constructed two-dimensional multiwavelets that are
refinable with respect to the uniform dilation A = 3I [DGH95]. Ayache has
some constructions using the uniform dilation A = 21 [Aya99a], [Aya99a]. We
also remark on some related constructions with somewhat different properties. Ex-
amples of orthonormal, multidimensional wavelets whose Fourier transforms are
compactly supported are presented in [DLS97], [Cal99], [BLO1]. Compactly
supported, multidimensional, biorthogonal wavelets are constructed in [DM97],
[Der99], [HL99], [JRS99], [KaV99], [KS00]. Compactly supported, multidi-
mensional wavelet frames are presented in [Han97], [GR98]. The literature on
these topics is of course always expanding; the references given above are typical
but not exhaustive.



CHAPTER 2

Matrices, Tiles and the Joint Spectral Radius

2.1. Miscellaneous Notation

We use the conventions 1/0c = 0, 1/0 = oo, and 0° = 1.

The absolute value of a real or complex number z is denoted by |z|. The
complex conjugate of z is Zz.

The transpose of a matrix B is BT. The Hermitian, or conjugate transpose,
is B*.

The cardinality of a finite set F' is denoted by #F.

The interior of a set £ C R"™ is E°, the boundary of E is 0F, and the closure
of E is E. If E is measurable, its Lebesgue measure is denoted by |E|. The
characteristic function of E is denoted Xg. The Kronecker delta is denoted §; ;.

The open ball in R"™ of radius € > 0 centered at z € R" is

Bla,e) = {y € R": [z —yl| < e},

measured with respect to whatever norm on R" is currently in force. Most com-
putations in this manuscript are independent of the choice of norm on R"; if not
specifically stated then the norm is taken to be the Euclidean norm on R"™.

The support of a vector-valued function g = (g1,...,9,)7: R® — C" is the
closure of {x € R™ : g(x) # 0}. Integrals of g are computed componentwise. In
particular, if g is integrable then we define its Fourier transform by

i) = [ gla)e s

T
= </ g1(x) e ™ dy, ,/ gr(x) e 2T d.?:) .

The space LP(R™) consists of all complex-valued functions f on R" for which
the norm

1/p
Il = (/ f(:v)pd:v> . f1<p<oo
Rn
or
Iflleo = esssup|f@),  if p= oo,
rzeR"™

is finite. We use the standard inner product on L*(R"):
G = [ 9@ i@ ds,  ghe LR,

Let X be a closed subset of R™, and let || - || be any fixed norm on C". Then
we define LP(X,C") to be the Banach space of all mappings g: X — C” such that

lgllz, = /X lg(@)| dz < oo,

5




6 2. MATRICES, TILES AND THE JOINT SPECTRAL RADIUS

with the usual modification if p = oo. For simplicity, we define LP(X) = LP(X, C).
This definition of LP(X, C") is independent of the choice of norm || - || on C” in
the sense that each such choice yields an equivalent norm for LP(X,C"). If E is
a nonempty closed subset of C”, then LP(X, E) is the closed subset of L?(X,C")
consisting of functions which take values in E.

We will assume throughout this manuscript that A is a fixed dilation matrix
with associated full-rank lattice I' C R™. That is, A(T') C I and every eigenvalue A
of A satisfies |A|] > 1. We will consider refinement equations of multiplicity r given
as in (1.1), i.e.,

fle) = > e f(Aw —k), =z €R",
keA
where A is a fixed finite subset of I' and the ¢ are fixed r x r matrices. A solution
of the refinement equation is called a wvector scaling function or a refinable vector
function.
The refinement operator associated with this refinement equation is the map-
ping S, acting on vector functions g: R” — C”, defined by

Sg(x) = Y crg(Az — k), z€R™ (2.1)
keA

A scaling function is thus a fixed point of S. The cascade algorithm defined in (1.2)
is the iteration

FEtD = gr@,

We will use a generalized matrix notation which allows matrices or vectors
to be indexed by arbitrary countable sets. If desired, such generalized matrices
can always be realized as ordinary matrices by choosing a specific ordering for
the index set. The actual ordering used is not important, as long as the same
ordering is used consistently. To be precise, let J and K be finite or countable
index sets. Let m;; be r x s matrices for j € J and k € K. Then we say that
M = [mjiljesrex € (C™*#)7*K is a J x K matrix (with 7 x s block entries). If
N = [ngrer e, € (C*1)K*L then the product of the J x K matrix M with
the K X L matrix N is the J x L matrix formally defined by

MN = [Z mj gk Mk,¢

keK ]jeJ’[eL

Most summations encountered in this manuscript will contain only finitely many
nonzero terms. A “column vector” is a J x 1 matrix, which we will denote by
v = [vj]jes. The entries v; may be scalars or r x s blocks. In particular,

Ccr = Ccr! = | rug,. ., ur € C

3

is the space of column vectors of length r. Analogously, a “row vector” is a 1 x J
matrix, which we will denote by u = (u;)jes. In particular, C'*" is the space of
all row vectors of length r, i.e.,

clxr — {uT;ueC”} = {(u1,...,uy) 1 up,...,u. € Ch
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2.2. Attractors and Tiles

Since A(T') C T, the dilation matrix A necessarily has integer determinant. We

define
m = |det(A)],
and let
D = {d,....,dn}

be a full set of digits with respect to A and I, i.e., a complete set of representatives
of the order-m group I'/A(T"). Because D is a full set of digits, the lattice T is
partitioned into the disjoint cosets

I, = AT)—d = {Ak—d:keT}, deD. (2.2)

Let v1,...,7v, be a set of generators for the lattice ', i.e., independent vectors
such that
L = {miy+- - +muyy,:m; €Z}.
Then the rectangular parallelepiped

P={syymi+ - +xpym:0< 2 <1} (2.3)

is a fundamental domain for the group R"/T’, and R" is partitioned into the sets
{P + k}rer. For example, if ' = Z", then we can choose 71, ...,7, so that P =
[0,1)™.

2.2.1. Attractors. The space H(R") consisting of all nonempty, compact
subsets of R™ is a complete metric space under the Hausdorff metric h(-,-) defined
b

’ h(B,C) = inf{e >0: B C C. and C C B.},
where
B. = {z € R":dist(z, B) < e}. (2.4)
Thus
h(B,C)<e <= BCC.andC CB..
Since all norms on R"™ are equivalent, the definition of the Hausdorff metric is

independent of the choice of norm used to measure distance in (2.4).
For each k € ', let wg: R™ — R"™ be the affine map

wy(r) = A Yz + k). (2.5)
Since A~! is contractive, each wy, is a contractive mapping on R™. For each finite
subset H C T, define wg: H(R"™) — H(R"™) by

wg(B) = kUHwk(B) = A" (B+H). (2.6)

Using the fact that each wy, is contractive on R™ under the Euclidean norm, it can
be shown that wgy is contractive on H(R"™) under the Hausdorff metric [Hut81].
The Contraction Mapping Theorem therefore implies that there exists a unique
nonempty compact set Ky C R" such that

wH(KH) = KH.
That is, Ky is defined by the property
Kg = A" (Kyg + H). (2.7)
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The set K is called the attractor of the iterated function system (IFS) gener-
ated by {wg}reny [Hut81]. In particular, the attractors Ky and @) = Kp of the
IFS’s generated by {wy}rea and {wg}ren, respectively, will play important roles
throughout this manuscript. Because wy is a contraction on H(R™), the iteration
KUY = 4y (K™) converges in the Hausdorff metric to the attractor Ky for any
nonempty compact starting set K(°). Therefore, any attractor Ky can always be
approximated as closely as desired.

We can use (2.7) to obtain another expression for K. Iterating (2.7) k times,
we see that

k
Ky =Y A7 (H)+ A ¥ (Kny).
j=1
Then, using the fact that A~! is a contraction, it follows that

Ky = iAj(H) = {

The following properties of an attractor Ky will be useful. Parts (a), (b), and
(c) of the following lemma are also valid for more general iterated function systems
[Ban91], while parts (d), (e), and (f) make use of the fact that the functions wy,
defined in (2.5) are affine mappings.

iA*jhj thj € H} (2.8)

i=1

LEMMA 2.1. Let B € H(R"™), and let H, Hy, Hy be finite subsets of T'.
(a) If BC wu(B), then B C Kg.

(b) If wy(B) C B, then Ky C B.
(¢) If Hy C Hy, then Kg, C K, .

(d) wa(K$5) C K5,.

(¢) 0K x| = 0.

(f) Ify€eUl, then Kgyy = Ky + (A—1)"1n.

Next, we prove that a scaling function must be supported in Kjy.

PROPOSITION 2.2.
(a) If g: R™ — C" is compactly supported, then supp(Sg) C wa (supp(g))-

(b) If f: R™ — C" is a compactly supported solution of the refinement equa-
tion, then supp(f) C K.

ProOF. (a) It follows from (2.1) that

supp(Sg) C A~ '(supp(g) + A) = wa(supp(g)).

(b) If Sf = f then part (a) implies supp(f) C wa(supp(f)), so supp(f) C Kx
by Lemma 2.1(a). O
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2.2.2. The Tile Q. Since D = {dy,...,d,,} is a full set of digits with respect
to A and I, if we take any v € I' then D+ will also be a full set of digits with respect
to A and I'. Further, by Lemma 2.1(f), we have Kpy, = Kp + (A —I)~'~. Hence
we can always translate the digit set D as we like, at the cost of correspondingly
translating the set Q = Kp, which is the attractor of the IFS generated by {wg} e n-
Without loss of generality, we therefore will always assume that 0 € D. Equation
(2.8) then implies that 0 € Q.

The following properties of ) will be useful [Ban91], cf. also [GM92].

LEMMA 2.3. Let Q = Kp, and let P be the fundamental domain defined in
(2.3). Then the following statements hold.

(a) @Q+T =R".
(b) @ has nonempty interior, Q is the closure of Q°, and |0Q| = 0.

(c) 1QN(Q+k)| =0 for all k € T\ {0} if and only if |Q| = |P|. In this case,
QN(Q+k) COQ for each k € T\ {0}.

(d) #Q°nT) < 1.

In other words, part (c) above says that if |Q)] = |P|, then @ is a tile in
the sense that the I-translates {Q + k}rer cover R™ with overlaps of measure
zero. A longstanding open problem was the question of whether for each dilation
matrix A there exists a full set of digits D such that the corresponding attractor
Q@ is a tile. Lagarias and Wang proved that this is the case if n = 1,2,3 or if
m = |det(A)| > n [LagW95a], [LagW96], [LagW97]. Potiopa [Pot97] recently
showed that if n = 4 and

0
1
-1
-1

OO O =
—= N OO

then there is no set of digits D such that Q = K is a tile, cf. [LagW99]. Note
that this matrix A has determinant 2.

We will only deal in this manuscript with the case where a tile @) exists. Pre-
cisely, the following standing assumption will always be in force.

STANDING ASSUMPTION 2.4. We will assume throughout this manuscript that
whenever a dilation matrix A and choice of digits D are given, the corresponding
attractor Q = Kp is a tile. That is, we always implicitly assume that the T'-
translates of ) cover R™ with overlaps of measure zero. &

Equation (2.8) applied to the attractor () = K has the form

iA*jsj tej € D}. (2.9)

j=1

Q= Kp = iAf(D) - {

Thus, each point = € @ can be written = = °° | A~ /¢; for some ¢; € D. We
write & = .19 -+ in this case, and refer to this representation of z as an A-nary
expansion of x. Note that A-nary expansions need not be unique.
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ExampLE 2.5. Let n =1, T =Z, A =2, and A = {0,..., N} (allowing the
possibility that ¢, = 0 for some k € A). In this case, the refinement equation has
the form f(z) = chvzo ek fQ2x — k).

We have m = | det(A)| = 2, and the sublattice A(T") is the set of even integers
27Z. There are two cosets, 2Z and 2Z + 1. We choose D = {0,1} as our full set of
digits. The affine maps wy defined by (2.5) are wy(z) = 3(z + k) for k € Z. The
attractor Q = K, is defined by the requirement that (2.7) hold, which translates
to the statement that Q) = %Q U %(Q + 1). This is satisfied for the compact set
@ = [0,1]. Since {[0,1] + k}rez covers R with overlaps of measure zero, this
attractor ) is indeed a tile. Moreover, equation (2.9) states that each = € [0, 1] can
be written = Z;; 27Jg; with €; € D = {0,1}, which is the binary expansion
of x. &

-0.75

F1GURE 2.1. Twin Dragon and Parallelogram Attractors.

ExXaMPLE 2.6. The tile ) may have a fractal boundary. For example, if
Ay = [} 1] and D = {(0,0), (1,0)}, then the tile Q is the celebrated “twin
dragon” fractal shown on the left in Figure 2.1. On the other hand, if we choose
Ay =[] _1] and D = {(0,0), (1,0)}, then the tile @ is the parallelogram with ver-
tices {(0,0), (1,0), (2,1), (1,1)} pictured on the right in Figure 2.1. For these two
matrices A; and A,, the sublattices A;(Z?) and A,(Z?) coincide. This sublattice
is called the quincunz sublattice of Z2. As a consequence, these two matrices A,

A, are often referred to as quincunz dilation matrices. O

2.2.3. Covering by Translates of (). We saw in Proposition 2.2 that if f is a
compactly supported solution of the refinement equation (1.1), then supp(f) C Kj.
Since Kp is compact and () is a tile, there exists a finite set (2 C ' such that

Ky C Q+Q,

where

Q+02 = UQ+w) = {¢g+w:qeQ,we N}
we

If the tile @ is fractal-like, it may be difficult to construct such a set 2. The next
proposition gives one explicit example of a finite () with this property.
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ProprosITION 2.7. Define
N =A-D=1{k—-d:keA, de D},

and let Ky be the attractor of the IFS generated by {wy }rea . Then Qpr = KpaNT
satisfies Kn C Q + Qar. Further, (Q + k) N Ka # 0 for each k € Qp.

Proor. Fix any z € K. Since @) is a tile, we can write z = g + k for some
g € Qand k € T'. By (2.8) applied to z € K and ¢ € Q = Kp, we can write
=32 A jand ¢ = Y77 AVe; with A; € A and £; € D. Therefore,

k=x-q=Y A7\ —¢) € Kxnl = Qy.
j=1
Hence x = q+k € Q + Q.
Finally, suppose that k € Qu, say k = 377, A7/()\; —¢;). Then z =

ZOO Aij/\j € Ky andqzzoo AijEj €EQ,s0k+q=1x€ (Q+k)NK,,

Jj=1 Jj=1

and therefore (Q + k) N Kx # 0. O

Thus, translates of the tile () by elements of Q4+ cover K, and hence the
support of f. Moreover, 25, is minimal in the sense that each of the translates
Q + k for k € Qu will intersect Kp, although it is possible that many of these
intersections may have measure zero. It is often the case that smaller sets () can be
found which also have the property that Ky C @ + 2. In particular, this is the case
in the one-dimensional setting and also for the examples we present in Chapter 5.

ExaMPLE 2.8. Note that in the 1-D case, if A = {0,..., N} then the attractor
K, of the IFS generated by {wyg}rea is the interval Ky = [0, N], and therefore
the scaling function f must be supported in this interval. The set A’ defined in
Proposition 2.7is A’ = A — D = {-1,...,N}. Then Kp» = [-1,N] and Qy =
{-1,...,N}=A,so Ky =[0,N]C[-1,N+1]=[0,1]+{-1,....,.N} = Q + Qu,

in accordance with Proposition 2.7. However, the smaller set Q = {0,...,N — 1}
also has the property that Ky C @ + Q. Indeed, @ + Q2 =1[0,1]+{0,...,N -1} =
[0, N] = K, in this case. O

If Q) is a finite subset of I such that Ky C Q@+, andify € Kj, theny = x+k
for some z € @) and k € Q. However, it might also be the case that y = 2’ + k' with
z' € Q and k' ¢ Q. The following lemma shows that this is impossible if y lies in
the interior K of Kjy.

LEMMA 2.9. Let Q be a finite subset of U'. If x +k € (Q+ N)° with x € Q and
k€T, then k € Q. In particular, if Kn CQ+Q and z + k € K} withz € Q and
keT, then k € Q.

PrOOF. Let x € @ and k € T', and suppose that z+k € (Q+Q)°. Then we can
find an open ball B(z+k, €) entirely contained in (Q +)°. Define F' = B(z,) N Q.
By Lemma 2.3(b), the tile @) is the closure of its interior, so F' must have positive
Lebesgue measure, i.e., |[F| > 0. It y = z+k € F+k, then [(z+k)—y| = |z —2| < ¢,
S0

F+k C Blz+k,e) C (Q+Q)° C @+
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However, F' C @, so
F+k C (Q+k)NQ+Q) = U(@Q+k)N(Q+7).
JEQ
If £ ¢ Q, then |(Q + k) N (@ + j)| = 0 by Lemma 2.3(c), which contradicts the fact
that |F| > 0. Therefore we must have k € Q. O

By our Standing Assumption, the [-translates of Q cover R™ with overlaps of
measure zero (in fact, by Lemma 2.3, the overlaps will occur only on the boundaries
of the translates of (J). We next prove that @) can be modified so that it tiles without
overlaps. This is analogous to removing one endpoint from the interval [0, 1] so that
integer translates of the resulting interval [0, 1) cover R without overlaps.

ProposITION 2.10. Assume that Q) is a tile. Then there ewists Q C Q, such
that the T-translates of Q) cover R™ without overlaps, i.e.,

Q+I = R" and QN(Q+k) =0 forkel\{0}.
Further, QN T contains a single element.

PRrooF. Divide the lattice I into disjoint subsets ', I'", and {0} in such a way

that ™ = —I'* and both I'" and '™ are closed under vector addition. Specifically,
let
r+ = U{kel:k=(ki,...,%k,0,...,0), k; >0} (2.10)
i=1
and let '™ = —I'". Define
=Q\ U (@+k).
kel'+

First we prove that the [-translates of Q are disjoint. Suppose that we had
€ QN (Q+k) for some k € ['t. Then since z € Q, we have z € () but ¢ Q+j
for any j € I't, which contradicts the fact that € Q + k. On the other hand, if
z€QN(Q+k) for some k € I~ thenz — k € QN (Q + (—k)) with (—k) €F+
which reduces to the previous case. Since It UT~ = '\ {0}, we conclude that
I-translates of Q are indeed disjoint.

Now we show that Q + ' = R™. Since Q +I = R", it suffices to show that
Q C Q +T. So, suppose that z € Q but z ¢ Q +T. Then we cannot have z € Q,
so we must have z € @\ Q). Therefore, by definition of @, there exists a j; € I't
such that z — j; € Q. If z — j; € Q then we would have z € Q + j; C Q + T, which
is a contradiction. Hence = — j; € @\ Q. Since we also clearly have z — j; ¢ Q+T,
we can repeat this argument to obtain a sequence of points j; € I't such that
T — Zle ji € Q\ Q for each £. However, it is easy to see from the definition of Tt
that ||Zf:1 7l|| — 00, so this contradicts the fact that () is compact.

Finally, since the [-translates of  do not overlap and cover all of R™, there
must be a unique element of T that lies in Q. O

REMARK 2.11. (a) Proposition 2.10 remains valid if the specific sets It and '™
defined by (2.10) are replaced by arbitrary subsets of I' which have the properties
that I' = ' U~ U{0} disjointly, ['" and '~ are closed under vector addition, and
I~ =-r+.
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(b) Since we assume that 0 is one of the digits, the tile @ will contain 0.
However, while  will contain a unique element of I', that element need not be 0.
For example, if n = 2, A = 2I, and D = {(0,0), (1,0), (0,-1), (1,—1)}, then
Q =1[0,1] x [-1,0] and Q = [0,1) x [~1,0). o

2.3. Matrix Form of the Refinement Operator

Suppose that f: R — Cis a compactly supported solution of the one-dimensional,
single-function refinement equation
N
fla) =Y enf2o—k), w€eR. (2.11)
k=0
Then f must be supported in the interval [0, N]. Further, the refinement equation
can be recast into a matrix-vector form as follows. Define a vector-valued function

&f:[0,1] » CN by

1)
wf) = e = | TV L sepn ew
| S+ N 1)

Since supp(f) C [0, N], the information in ®f is “equivalent” to the information
in f. Define two matrices

¢ 0 0 -~ 0 0
Cy C1 Co s 0 0
To = [eojdliedo = | . . . . .. (2.13)
L 0 0 O CN CN-1
and
C1 Co 0 0 O
cg ¢ ¢ --- 0 O
Ty = [eojkplipmo = T (2.14)
0 0 0 -+ 0 en
Then the refinement equation (2.11) is equivalent to the equation
To & f(22), 0<z<1/2,
df(z) = " J(22) / (2.15)
T ®f(2c — 1), 1/2<z<1.
Note that by using the 2z mod 1 map given by
2z, 0<z<1/2,
2rmod 1 = ,
2 -1, 1/2<z<1.
we can rewrite (2.15) as
Of(x) = Ty, ®f(2x mod 1), (2.16)

where = .dids . .. is the binary expansion of z (for z = 1/2, use 1/2 = .1000...).

We next define a function on R” that is analogous to the 2z mod 1 map and
use it to obtain a matrix form of the general refinement equation that is analogous
to (2.16).
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DEFINITION 2.12. By definition, @ = ", wq,(Q). If z € @ is such that
x € wq, (Q) for a unique digit d;, then we set

T = w;il(m) = Az —d;. (2.17)
Thus, if £ = .169--- is an A-nary expansion of such an z, then ; = d; and
TX = .€9€3 - -. For other z, the meaning of (2.1) is ambiguous. We eliminate this

ambiguity by “disjointizing” the sets wy, (Q)). Specifically, we define
Or = wg,(Q) and Q; = wa,(Q)\ (U Qj) fori=2,...,m.  (2.18)
j<i

Then @; C wq,(Q), and @ is the union of the disjoint sets @1, ..., Q. Hence each

3 3

x € @ lies in a unique @);, and we define 7z by (2.17) using that unique value of i.

Now let 2 C T be any fixed finite set such that
Ky C Q+9Q.

For example, the set () constructed in Proposition 2.7 is one possibility for 2.
Given a function g: R™ — C” with supp(g) C Ka, we define the folding of g
to be the function ®g: @ — (C"*!)*! given by

bg(z) = [9(x + F)kea, T€Q

If we write (®g)(z) = g(x + k) for the kth component of ®g(z), then this folding
has the property that (®g)x, (z1) = (Pg)k, (x2) whenever z1, z9 € Q and ki, ko €
are such that x; + k1 = x2 + ko (by Lemma 2.3(c), such points z;, x2 would have
to lie on 0Q)).

For each d in our digit set D, define an 0 x ) matrix Ty by

Tq = [caj—ktdljken- (2.19)

Let Q1,...,Qm be defined as in (2.18). Define an operator T acting on vector
functions

u(z) = [up(x)]req: Q — (CT*H)¥x!

by
Tu(z) = Y Xq.(2) - Ta,u(Az — d;). (2.20)
i=1
Or, equivalently, T' can be defined by
Tu(z) = Tyu(rz) if z € Q;. (2.21)
This operator T is related to the refinement operator S as follows.
PROPOSITION 2.13. Let Q C T be such that Kx C Q+€. Assume that g: R™" —
C" satisfies
supp(g) C Ka and g(z) =0 for x € OK,.
(a) If x € Q and d € D is such that Ax — d € Q, then
Sg(r) = TyPg(Ax — d). (2.22)
(b) ®Sg = Tdyg.
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Proor. (a) Let x € @), and let y = Ax — d € Q. Suppose g(y + k) # 0 for
some k € I'. Then y + k € K}, and therefore k£ € Q2 by Lemma 2.9. Hence,

®Sg(x) = [Sg(x + j)ljeq

= chg(Amfd+Ajfk+d)
Lkel jeQ
= Z caj—k+d 9(y + k)
Lkel’ jEQ
= Z caj—k+a 9(y + k)
LkeQ JEQ
= Ta®g(y)
= TyPg(Ax — d). (2.23)

(b) Let € @), and let d = d;, where i is the unique integer such that z € Q;.
Then 72 = Az—d; € @, so by (2.22) and (2.21) we have that ®Sg(z) = Ty, Pg(rz) =
T®g(x), and this is valid for every z € Q. O

REMARK 2.14. Note that equation (2.22) is more general than the statement
®Sg(x) = T®g(x). In particular, (2.22) reduces to the statement that ®Sg(z) =
Ty®g(rz) = TPg(x) if it is the case that d = d;, where i is the unique integer such
that z € Q;. However, (2.22) is valid given only that Az —d € @, and we will need
to use this more general statement later. O

The equality in Proposition 2.13(b) is a pointwise everywhere equality. We show
next that if we instead require only equality almost everywhere then the hypothesis
in Proposition 2.13 that g(z) vanish on the boundary of K can be removed.

COROLLARY 2.15. Let  C T be such that Kn C Q + . If g: R" —» C"
satisfies supp(g) C Ka, then

®Sg = T®g a.e.

PROOF. Define g(z) = g(z) for z € K3 and g(z) = 0 otherwise. Since 0K}
has measure zero by Lemma 2.1(e), we have g = § a.e. Proposition 2.13 therefore
implies that ®Sg = T®g pointwise everywhere. Since Sg = Sg a.e. and T®g =
T®g a.e., the result follows. O

ExaAMPLE 2.16. Consider the one-dimensional refinement equation (2.11), but
allow the multiplicity r to be arbitrary. We have supp(f) C Kx = [0, N]. Hence
Q ={0,...,N — 1} is the smallest subset of ' = Z which has the property that
K C Q+9Q. With this choice of Q, the folding of f is ® f(z) = [f(z+k)],_, , which
coincides with (2.12) except that the entries f(x + k) are now column vectors of
length r. The digit set is D = {0, 1}, so there are two matrices Tp = [CQj,k]fk;lo and

T = [02j,k+1]§\f,;:10. These coincide with the definitions in (2.13) and (2.14) except
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that the entries ¢, are now r x r blocks. Finally, the recasting of the refinement
equation performed in Corollary 2.15 reduces exactly to (2.16), except that the

multiplicity r is now arbitrary. &

2.4. The Joint Spectral Radius
The spectral radius of a square matrix M is

p(M) = | M) = max{|A| : X is an eigenvalue of M}.

For each 1 < p < oo, the p-joint spectral radius (p-JSR) of a finite collection of
s x s matrices M = {M,...,Mp} is

1/pt
li P , ,
i () T <,
pp(M) = neP, (2.24)
lim max ||II||'/%, p = 00,
L—oo TIEP,

lim
{—00

where

Po = {I} and P[ = {M]1M]21§]2Sm}
It is easy to see that the limit in (2.24) exists and is independent of the choice of
norm || - || on C**%. Note that if p > ¢, then p,(M) < p,(M).

We will refer to the co-JSR as the uniform joint spectral radius; it is also known
as the generalized spectral radius, or simply as the joint spectral radius. Berger and
Wang [BW92] proved that po(M) < 1 if and only if every product Mj, --- Mj,
converges to the zero matrix as £ — oo, and that

R _ 1/¢
poo(M) = Jim max p(TT) 7" (2.25)

The proof of (2.25) is nontrivial when M contains more than one matrix. It follows
from (2.25) that

Poc(M) = sup{|A]"/*: £ >0 and X is an eigenvalue of some TT € P;}.  (2.26)

Note that if there is a norm such that (Z;”:l ||Mj||p)1/p < 4, then, by the
definition of p, it is clear that p,(M) < 6. We next prove the following partial
converse to this fact.

PROPOSITION 2.17. Assume that M = {M,,..., M,,} is a finite collection of
s x s matrices. If p,(M) < 3, then there exists a vector norm ||-|| on C® such that:

m 1/p
(a) <Z ||Mj.r||”> < §||z|| for each z € C*, if 1 <p < o0, or
j=1

(b) max | M, < 4, if p = oo,
J

PROOF. Assume first that 1 < p < co. Let || be any vector norm on C#, and

define ppr = (Xpep, \H|p)1/pe. Choose any number 6 such that p,(M) < 6 < .
Then since pp ¢ — pp(M), there must be some m such that p, , < 6. Given any ¢,
write £ = mk + r with 0 <7 < m — 1. Define

C = max{(ppm) " (Ppi) : i=0,...,m—1}.
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Then
()™ = > WP

1eP,

Z Z Z 0 - - T, 10 |P

1, €Prm Iy €Prm o EP,.

(X me)e (X mr)( 3 mp)
11 €Pm I €Pm o eP>

= (ﬁp,m)pkm (ﬁpw)pr

= (ﬁp,m)pl (ﬁpﬂn)ipr (ﬁp,r)pr

< CPort

Therefore, for each x € C*® and each ¢ > 0 we have

! |z[”

o e < TSt g < o (2.27)
1HeP, 1eP,

Let @ > 1 be that number such that a'/?@ = §. Then the fact that o > 1,

combined with (2.27), implies that the series in the following definition converges

for each x € C?*:

=11 1r
||| = <Z . > |Hm|p> . (2.28)
£=0 neP,
It is easy to verify that || - || defined by (2.28) is a vector norm on C?, and that

lz] < |z < (ﬁ)l/p |z|. Finally, for each z € C® we have

Sl = S0 o S el
i=1 j

=« or
= Z —a£+1 —91)([+1) Z ‘H.’I]‘p

£=0 IEP, 41
< ab? |z
= 6" ||=||".

This completes the proof for the case 1 < p < oo. The proof for the case p = o is

similar, using the norm
Lz

|| = Sup max —— 5 —
lell = sup nax =5

in place of (2.28). O
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REMARK 2.18. We briefly illustrate why the joint spectral radius arises natu-
rally in connection with refinement equations. Suppose that f: R — C is a continu-
ous, compactly supported solution of the refinement equation f(x) = ch\rzo ek f(2x—
k). Then by (2.16), we have for each z € [0,1] that ®f(z) = T., ®f(7z), where
x = .dydy ... is the binary representation of z.

Suppose now that 2, = .c162 -+ -£gggr16042 - and yg = €162 - g€y, 1€,y
are points whose binary expansions agree for the first ¢ digits. Then we can iterate
(2.16) to obtain

Df(zg) — ©f(ye) = T., (®f(Tae) — f(Ty0))

= T.,1T., (‘I)f(72$l) - ‘bf(Tle))

= o = T, T, (9 (rhm0) — ®f ().
As £ increases, the points x; and y; grow closer together. Since f and hence @ f
is continuous, the difference ® f(z;) — ® f(y¢) must converge to the zero vector as
¢ — oo. Since 7fx; and 7'y, can be arbitrary points in [0, 1], it follows that the
product Ty, ---T., must converge to zero as ¢ increases, at least when applied to
vectors in the subspace

Wy = span{®f(w) — ®f(z) : w,z € [0,1]},

which can be shown to be a common invariant subspace for both Ty and 7. There-
fore, a necessary condition for the existence of a continuous solution to the refine-
ment equation is that all products (T;, ---T:,)|w, of Ty and T restricted to this
invariant subspace Wy must converge to zero as £ — oco. By [BW92], this occurs if
and only if poo ({To|w,, T1lw, }) < 1. The space Wy as given above is defined only
implicitly, and is usually difficult or impossible in practice to determine explicitly,
whereas in Theorem 3.4 and 3.21 we determine explicit subspaces to use in place of
Wy to characterize the LP and continuous solutions of the refinement equation. ¢



CHAPTER 3

Generalized Self-Similarity and the Refinement
Equation

3.1. Generalized Self-Similarity

A subset B of a set X is said to be self-similar if there exist injective maps
Wy, ..., Wy X — X such that

B = | wi(B).
i=1
Let X and H be sets. A function f: X — H is self-similar if its graph is self-similar,
ie.,
fx) = flw;'(2)), z€ewi(X),i=1,...,m.
We say that f: X — H is a generalized self-similar function if there exist functions
wi: X x H — H and a function O: X x H™ — H such that

fl@) = O, pi(a, flwr (@), - pm(z, flwy,' (), =z €X.
The theory of generalized self-similar functions was developed in [CM99].

The following theorem is a variation on the results of [CM99]

THEOREM 3.1. Let 1 < p < oo be given. Let X be a compact subset of R"™,
and let H be a closed subset of C". Let || - || be any norm on C". Let m > 1, and
assume that functions w;, w;, and O are chosen with the following properties.

1. For each i = 1,...,m, let w;: X — X be continuously differentiable,
injective maps.

2. Let p;: X x H — H fori=1,...,m satisfy a Lipschitz condition in the
second variable, i.e.,

m 1/p
(St =il ) < Cllu-ol. @)

with the usual modification if p = oco.

3. Let O: X x H™ — H be non-expansive for each x € X, i.e.,

m 1/p
OG- vtm)  Oaonsccsom)ll < (Yl wll) (32
=1

with the usual modification if p = oco.
Let to be an arbitrary point in H. For v € LP(X, H), define
Tu(e) = O, g1 (e, u(w @), gl uwy (@), (33)

19
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where we interpret

u(w; ' (z) = to if v ¢ wi(X). (3.4)
Define
s = max :g)( | det((Diff w;)(x))], (3.5)

where Diff is the differential operator. If O and the @; map bounded sets into
bounded sets, then T maps L?(X, H) into itself, and satisfies

ITu—To||r < s'/7C |ju—vlLe. (3.6)

In particular, if s/ C' < 1, then T is contractive, and there exists a unique function
v* € LP(X, H) such that Tv* = v*. Moreover, in this case, if v'%) is any function
in LP(X, H), then the iteration v"tY) = Tv") converges to v* in LP(X,H).

Proor. The fact that T" maps LP(X, H) into itself can be proved using the
same techniques as in [CM99]. Therefore we will only prove that T satisfies the
Lipschitz condition in (3.6). Given u, v € LP(X, H), we have that

| Tw = Toll,

= /XIIO(%wl(%U(wfl(ﬂf))L---,wm(%U(wal(ﬂf))))—

O(z, g1 (z, v(w; " (2)), .- ., om (2, v(wy, (2))))||P dz

IN

/X Z lpi(z, u(w; ' () = wilz, v(w; ' (2)))|P dz by (3.2)

Z /X lpi(w, u(w; " (2))) — @iz, v(w; (2)))||” da

- 1:21 »/wi(X) s (a, w(w; ™ ())) = i, v(w;* (2)))||P da by (3.4)

<Y [ letwite).ut@) - gl (o), (el do by (3.5)
< scv /X lu(e) — o(@)|)” do by (3.1)

= sC?flu—v|},. O

3.2. Sufficient Conditions for the Existence of Vector Scaling Functions

The accuracy of a refinable vector function or distribution f is the largest
integer k > 0 such that every multivariate polynomial ¢(z) = ¢q(z1,...,z,) with
deg(q) < k can be written

g@) = D> arflr+k) = Y Y arifi(z+k)ae, zeR",

kel kel i=1
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for some row vectors ax = (ar1,...,ax,) € C**". If no polynomials are repro-
ducible from translates of f then we set k = 0. We say that translates of f along
[ are linearly independent if ), p ar f(x + k) = 0 implies a; = 0 for each k.

For the main result of this section (Theorem 3.4), we will need to impose
only the minimal accuracy condition k = 1. The following lemma from [CHM98|
characterizes minimal accuracy.

LEMMA 3.2. Let f be a compactly supported distributional solution of the re-
finement equation (1.1). Let Ty = A(T') — d denote the cosets defined in (2.2).

(a) If there exists a row vector ug € C'*" such that ug f(0) # 0 and

uy = Z ugcg  for each d € D, (3.7)
kely

then f has accuracy k > 1, and

Z uof(z+k) = 1ae. (3.8)

kel

(b) If f has accuracy k > 1 and if f has independent translates, then there
exists a row vector ug € C*" such that ug f(0) # 0 and (3.7) holds.

The hypothesis of linear independence of translates in Lemma 3.2(b) can be
weakened.

In the single-function setting (r = 1), equation (3.7) reduces to the requirement
that >, cx = 1 for each d € D.

Note that if (3.7) holds then, since the m cosets Iy for d € D partition T, ug
is a left 1-eigenvector for the matrix A = % > ¢p. If this eigenvalue is nondegen-
erate and if the remaining eigenvalues are less than 1 in absolute value, then the
following proposition from [CHMOO] implies that a distributional solution f to the
refinement equation does exist.

PROPOSITION 3.3. If the matriz A = # Y ken Ck has eigenvalues Ay = --- =
As =1 and | Agq1], ..., || < 1 with the eigenvalue 1 nondegenerate, then there exist
compactly supported distributions fi,..., f, such that f = (f1,..., f-)7 satisfies

the refinement equation (1.1) in the sense of distributions. Furthermore, f(w) is a
continuous vector function, and f(0) # 0.

To motivate the following result, suppose that f is a continuous, compactly
supported vector scaling function with accuracy k > 1. By Lemma 2.2, we have
supp(f) C Ka. Let Q be any finite subset of ' such that Ky C @ + Q. Let ug be
the row vector such that (3.8) holds, i.e., 3, . uof(z +k) =1 a.e. If 2 € Q, then
Lemma 2.9 implies that the only nonzero terms in this series occur when k € Q.
Hence, if we set eg = (uo)req, i-e., g is the row vector in (C'*")'*% obtained by
repeating the block ug once for each k € €2, then

eo®f(x) = Zuof(x—l—k) = Zuof(a:—}-k) = 1a.e, x € Q.
keQ kel

Thus the values of ®f(z) are constrained to lie in a particular hyperplane H
in (C™1)2*1 namely, the collection of vectors v = [vi]req such that epv =
ZkEQ uovr = 1. Further, the set of differences Ey = H — H is the subspace
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consisting of vectors v = [vg]req such that eqv = )7, o ugvy = 0. Define the dot
product of two column vectors u = [u]req and v = [vi]req € (C™*1)*! by

T
u-v = u'v = Z URUE = Z Zﬂkw’“k,i:
keQ keQ i=1
where u* is the Hermitian, or conjugate transpose, of u. Then egv = ef - v, so Ey
is simply the orthogonal complement of the column vector eg.
The following theorem gives conditions for the existence of a continuous or L?
vector scaling function under the assumption of minimal accuracy.

THEOREM 3.4. Let 1 < p < oo be fizred. Let Q C T be a finite set such that
Ka C Q4+ Q. Assume that there exists a nonzero vector ug € CY*7 such that ug =
> ker, Uock for every d € D, cf. equation (3.7). Let eq = (ug)ren € (C'*7)1*9,
and define

Ey = (ea)l = {v = [vk]keq : €0V = ZUO'Uk = 0}. (3.9)
keQ
Set
I = {g € LP(R",C") : supp(g) C Kp and Zuog(m +k)=1 a.e.}. (3.10)
kel
If

A0 and  pp({Tulibaen) < m'/?,

then there exists a unique function f € I which is a solution to the refinement
equation (1.1), and the cascade algorithm FUtD = Sf0) converges geometrically
in LP-norm to f for each f(0) ¢ IV. Furthermore, if p = oo and I$° contains a
continuous function, then f is continuous.

PROOF. Define

H = {v=[vp]req € (C™*")! . eqv = ZUO'Uk =1} (3.11)
keQ

It follows from (3.7) that eg is a common left 1-eigenvector for each matrix Ty, so
if egv = 1, then eg(Tyv) = (eoTy)v = epv = 1. Thus H is right-invariant under
each T,. Further, the set Ey given by (3.9) satisfies £y = H — H, is a subspace of
(Cm>*1)2x1 "and is right-invariant under each matrix T.

Assume that 1 < p < co. We will apply Theorem 3.1 with X = @ and H as
given by (3.11). Our first step is to define functions wq, w4, and O that satisfy the
hypotheses of Theorem 3.1.

For d € D, define wy(z) = A~'(z + d). Then clearly each wy is injective and
continuously differentiable. Further, det((Diff wq)(z)) = 1/m for every z.

Let § be any number such that

pp({Talgo Yaep) < 6 < mt/P.
Then by Proposition 2.17 applied to the matrices Ty|r,, there exists a vector norm

| - [|g, on Eq such that

S Tawly, < 07 llwlh,,  allw € Eo.
deD

Let || - || denote any extension of this norm to all of (C7*1)2x1,
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Since Ty(H) C H, we can define ¢4: QQ x H — H by ¢4(z,u) = Tyu. Then,
since H — H C Ey, we have for each z € () and u, v € H that

Y lpalw,u) = palwo)lIP = > 1Talu — )P < 67 [lu— o]

deD deD

Therefore the functions 4 satisfy the condition (3.1) with constant C' = §. It is
easy to check that each ¢4 maps bounded sets into bounded sets.
Let Q1,. .., Q. be the disjoint subsets of ) defined by (2.18), and define O: @) x

3

0(337’11,17...7’U,m) = ZXQl(iU)’U,Z
i=1

That is, O(x,u1,...,um) = u; if z € ;. Then O maps bounded sets to bounded

3

sets and satisfies the nonexpansivity condition (3.2).
Now let T' be defined by (3.3), i.e., for u € LP(Q, H) define

Tu(z) = Z Xq; (x) - Ta,u(Az — d;).

That is, Tu(x) = Ty,u(rz) if z € Q;. Note that this operator T' coincides with the
operator T' defined in (2.20). Since the number s defined by (3.5) has the value
s = 1/m, Theorem 3.1 implies that T" maps L?(Q, H) into itself, and satisfies

|Tw—Tollge < m™YP 5| —v|ze.

Since § < m'/P, it follows that 1" is contractive on LP(Q, H) and there exists a
unique function v* € L?(Q, H) such that Tw* = v*. Further, the iteration v'*+!) =
Tv converges geometrically in LP(Q, H) to v* for each function v(®) € LP(Q, H).

Clearly I} is a closed subset of LP(R",C"), and we claim that it is invariant
under the refinement operator S. To see this, suppose that g € Iy. First, we
clearly have Sg € LP(R",C") since g € LP(R"™,C") and A is finite. Second, since
supp(g) C Ky, we have supp(Sg) C Ka by Proposition 2.2. Finally, to complete
the claim we must show that ), . upSg(z + k) = 1 a.e. Suppose that z € Q° and
k € T is such that x + k € supp(g). Then we have ¢ + k € supp(g) C Kx C Q + Q.
However, the fact that x lies in the interior of () combined with the fact that lattice
translates of () intersect only on the boundaries of these translates implies that
x4+ k€ (Q+Q)°. Lemma 2.9 therefore implies that k£ € Q. Since this is valid for
every z € (Q° and since 0@) has measure zero, we conclude that

eo®g(z) = Zuog(m+k) = Zuog(m+k) =1, a.e. z € Q.
keQ ker

Thus ®g(z) € H for a.e. z € Q. By Corollary 2.15, ®Sg = T®g. Since H is
invariant under each matrix Ty, we therefore have ®Sg(z) € H for a.e. z € Q.
Since supp(Sg) is also included in K, we can again apply Lemma 2.9 to conclude
that

1 = e®Sy(z) = ZUOS’g(m-l-k) = ZUOSg(.r+k), ae € Q.
keQ kel

Since @ tiles R" by translates along ', we conclude that this equality actually holds
for a.e. z € R™. Thus Sg € I{, so I} is invariant under S as claimed.
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In summary, the statements above combined with Corollary 2.15 imply that
the following diagram commutes, with 7" in particular being a contraction:

I —"— L7(Q,H)

! I
1§ —— [7(Q.H).
Suppose that £ is any function in I}, and define f0+1) = S Then f@) € 17
for each i. If we set v() = ®f() then
o) = fH) = 5fD) = 7o = Ty,

so v must converge in LP-norm to v*.
We now choose some particular norms for these LP spaces. Let |- | be any fixed
norm on C”. Then

lols, = / g@)Pde, g€ PR, C),
R’n
defines an equivalent norm for LP(R™, C"). Similarly,
Gy, = / IG@)|Pde, G e IP(Q,(CT™*H)™),
Q

defines an equivalent norm for LP(Q, (C"*!')%x1).
Now define a norm | - || on (CT’><1)§2><1 by

1/p
ot = (S) ", w= o € @)

keQ

Since all norms on a finite-dimensional space are equivalent, we can find a constant
B > 0 such that || - || < B - ||. Therefore, if g € LP(R",C") is supported in Kjy,
then since Kx C @ + 2 we have

lol, = / l9(2) P de,
Q+Q

- Z/qumwdx

keQ

[ 12917 s
Q

IN

B / |@g(2)||? do
Q

B || ®gl|7,-
In particular,
1FD = fD s < BIBSD = @f D1 = Bl =0l

so f9 must converge in LP-norm to some function f € L?(R"™, C"). We must have
f € 1Y since I} is a closed subset of LP(R", C"). Further,

Of = 0" = Tv" = Te®f = ®Sf ae,



3.2. SUFFICIENT CONDITIONS 25

the last equality following from Corollary 2.15. Therefore f satisfies the refinement
equation (1.1) almost everywhere. Since v* is unique, the cascade algorithm must
converge to this particular f for any starting function £ Il

This completes the proof for the case 1 < p < oo. The argument to this point
for the case p = oo is entirely similar. It therefore only remains observe that if any
f© € I5° is continuous, then the iterates f() obtained from f(®) are continuous
and converge uniformly to f, so f must itself be continuous. O

ExaMPLE 3.5. Consider the one-dimensional setting with A =2, T' =7, D =
{0,1},A={0,...,N}, K =[0,N],and @ = {0,..., N —1}. There are two cosets,
I'p =2Z and 'y = 2Z + 1, so the minimal accuracy condition (3.7) reduces to the
requirement that there exists a row vector ug € C**" such that

up = E UpCor = E UpC2k41-
keZ keZ

The row vector eq is formed by repeating the row vector ug once for each k € 2 =
{0,...,N — 1}, ie.,

ey = (UO);CV:Bl = (UO, . ,UO) € (CIXT)1XN.
Hence Fy consists of all the column vectors v = (vg, ...,on_1)" € (C™*1)N>1 such
that
N-1
egv = Z ugvr = 0.
k=0

Further, I{ consists of those L? vector functions g: R — C” which are supported
in [0, N] and which have the property that )" ugg(z + k) = 1 a.e. In particular, if
N > 2 and we let h be the hat function on [0,2], i.e.,

h(z) = max{l—|1—z|,0},

and let a € C™*! be a column vector satisfying ugpa = 1, then I} will contain
the continuous function g(z) = ah(z). Therefore, if j,(To|g,, Ti|E,) < 2'/7, then
there exists an LP solution f to the refinement equation, and the cascade algorithm
converges in LP-norm to f for any starting function f(°) chosen from I¥. Further,
if p = oo, then f is continuous.

There are further simplifications in the single-function case (r = 1). In partic-
ular, if = 1 then ugq is a scalar, and by normalizing we can simply let ug = 1.

The same techniques used to prove Theorem 3.4 can also be used to prove the
following more general result.

THEOREM 3.6. Let 1 < p < oo be fizred. Let Q C T be a finite set such that
Kz C Q+9Q. Let H be a nonempty closed subset of (C"*1)**! such that Ty(H) C H
for each d € D. Let E be a subspace of (C™*1)**1 which contains H — H and which
is right-invariant under each T,. Define

= {g € LP(R",C") : supp(g) C Kpn and ®g(Q) C H}

If 1Y # 0 and p,({Talp}Yaen) < m'/P, then there exists a function f € I¥ which
is a solution to the refinement equation (1.1), and the cascade algorithm fU+1) =
SO converges in LP-norm to f for each function f(© € IV.  Furthermore, if
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poo({TalEYaep) < 1 and there exists any continuous function f(©) € Is°, then f is
continuous.

3.3. Continuous Solutions and the Support of the Refinement Equation
Coefficients

The set I§° defined by (3.10) is determined by two quantities: the set A and
the row vector ug. The set A is the support of the set of coefficients ¢ in the
refinement equation; it is determined only by the location of the ¢; and not their
values. The vector ug, on the other hand, is determined by the values of the cg
as well as their locations. In this section we will consider what requirements must
be placed on A and ug so that I§® will contain a continuous function. We will see
that, in fact, this is determined solely by A and not by uy, i.e., only the location of
the coefficients ¢, is important for this question, and not their actual values.

Since any continuous function supported in K4 must be zero on the boundary
of K, it is sufficient to study the question of when the set

I(A,ug) = {g € L*°(R",C") : g(z) =0forx ¢ Ky and Zuog(m + k)= 1}
kel

contains a continuous function. Here the notation I(A, up) is meant to emphasize
the dependence on A and wug. The following result shows that I(A,ug) contains a
continuous function exactly when it contains any functions at all. Further, whether
I(A,ug) is nonempty or not is independent of the value of ug.

LEMMA 3.7. Let A C T be finite, and let ug € C'*" be nonzero. Then the
following statements are equivalent.

() I(A o) # 0.
(b) I(A,uq) contains a continuous function.
(¢) K§ +T' =R", i.e., lattice translates of K3 cover R™.

PRrROOF. (a) = (c). Assume there exists a function g € I(A,up). Then since
> ker tog(z + k) never vanishes but g(z + k) # 0 only for z + k € K3, we must
have J,o- (K} + k) = R".

(c) = (b). Suppose that [ J, .- (K§ +k) = R". Then K has nonempty interior,
so there exist continuous scalar-valued functions h: R"™ — C supported in K such
that h(z) > 0 for each 2 € K§. For example, h(z) = dist(z, (K})®) has this
property. Let a € C™' be such that uga = 1, and define s(z) = Y, h(z + k).
Then s is a continuous, scalar-valued function which never vanishes, and therefore
g(x) = ah(z)/s(x) is a continuous vector function which lies in I'(A,uy). O

Since the size of the set A will determine the size of the matrices Ty, and
therefore the complexity of the computation of the JSR, it should be chosen to be
as small as possible, while satisfying the requirements of Lemma 3.7. However, even
“large” A may fail the necessary condition K§ +I' = R", as the following example
shows.
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ExampPLE 3.8. Let n = 2, and consider the uniform dilation A = 2. With
[' = Z?, a natural digit choice is D = {(0,0), (1,0), (0,1), (1,1)}. Let s be any
positive integer, and define

A = {01} x {0,...,s}.

Then Ka = [0,1] x [0, 5], so K§ = (0,1) x (0,s). Hence Z?-translates of K3 do not
cover R", so Lemma 3.7 implies that I(A,uq) is empty. O

A related question is whether, for a given choice of dilation matrix A and digit
set D, there must exist some finite set A C I' such that K§ +I' = R”. This
will always be the case. For example, if A = D + D then it follows from (2.7)
that Ky = Kp + Kp = @ + Q. Since Q° + @ = [J,¢o(Q° + ¢) is open, we have
that Q° + Q C (Q + Q)° = Kj5. Since @ is a tile, we know by Lemma 2.3(b)
that Q° # (. Therefore K3 contains some translate go + @ of @, and therefore
K +TD(g+Q)+T =R"

3.4. Higher-Order Accuracy

We saw in Theorem 3.4 that if the coefficients ¢ of the refinement equation
satisfy (3.7), the condition for minimal accuracy, then the space E, defined by (3.9)
is right-invariant under each matrix Ty. We will show below that if the coefficients
cy satisfy the conditions for higher-order accuracy then Ejy is only the largest of a
decreasing chain of common invariant subspaces

Ey D FEy DD FEy,,
and that, as a consequence, the value of poo({T|E, }dcp) is determined by the value
of poo({T4|E,._, }aen)- Moreover, these invariant spaces E, are directly determined
from the coefficients ¢, via the accuracy conditions, which are a system of linear
equations. Hence it is a simple matter to compute the matrices Ty|g, -

We will use the standard multi-index notation, i.e., z® = z{'---2%" where
a = (a,...,qa,) is an n-tuple of nonnegative integers and x € R™. The degree of
« is

la| = aq + -+ ay.

The number of multi-indices « of a given degree s is

4 - <S+n1)'
n—1

In particular, dy = 1 and d; = n. If n = 1 then d; = 1 for each s, and if n = 2 then
ds = s+ 1 for each s. We write f < «aif §; <a; fori=1,...,n. We set

B 0, otherwise.

We shall often deal with matrix-valued functions

u = [ujrljesrex : R" = c/ K,

each of whose entries u;;: R"™ — C is a polynomial. In this case, we refer to u as
a matriz of polynomials, and we say that the degree of u is

deg(u) = max{deg(u;r)}jerrek-
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The following lemma shows that the accuracy of any function supported in Ky
is necessarily finite.

LEMMA 3.9. Assume g: R™ — C” satisfies supp(g) C Kx. Let Q C T be such
that Ky C Q + Q. Then the accuracy & of g is bounded by the requirement that

Kk—1
st S r- #Q7
s=0

PROOF. Assume that ¢g has accuracy k. Then for each multi-index « with
la| < &, there exist row vectors yqo (k) = (Ya,1(k), ..., Ya,r(k)) such that

= S B @+ k) = 53 yailk) gile + B).
kel ker i=1
Let z € Q°. If z + k € supp(g), then we have z + k € Kx C @ + . But since
x € @°, this can only happen if z + k € (Q + 2)°. Lemma 2.9 therefore implies
that £ € Q. Hence, if we restrict our attention to the set ()°, we have

(67
x Qe ke, i=1,...,r-

@ € span{gi(z + k)

Since ()° is a nonempty open set, the polynomials z® restricted to ° are linearly
independent. Hence the total number of such polynomials, which is Z:;Ol ds, can
be at most the dimension of span{g;(z + k)|g° }req,i=1,....r, which is bounded by
r- Q. g

We require some notation in order to discuss higher-order accuracy. Proofs of
the facts given below can be found in [CHM98], [CHMO00]. For a given degree
s > 0, we collect the ds monomials z® of degree s together to form a column vector
of monomials X, : R" — C . Specifically, Xl is defined by

X[s] (CU) = [Cﬂa]‘a‘:s, z e R".

The ordering of the multi-indices a of degree s is not important, as long as the
same ordering is used throughout.
For each integer 0 <t < s, define a matrix of polynomials Qs ;: R" — Cdsxd:e

by
Qunly) = (1) Kg) y“BL_Syﬁ_t,

where we use the convention that 0° = 1. In particular, Q15,5 (y) = I, the ds x d
identity matrix. Translation of X, (z) obeys the rule

Xz —y) = Y Quy(y) X (a). (3.12)

Given any n x n matrix B = [b; j]i j=1,..» with scalar entries and given s > 0,
let Bjy) = [b, lja|=s,18/=s be the ds x ds matrix whose scalar entries b7, ; are defined
by the equation

Z bo.s ® = (Bx)® =
|B|=s g
Dilation of X, (z) by B obeys the rule

(bi’lilh + -+ bi7n$n)ai.

—.

1
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The matrix B, has a number of surprising properties. For example, if A =
(A1,..., AT is the vector of all eigenvalues of B, then [A%]ja|=s is the vector of all
eigenvalues of Bjy).

Given a collection

{va = (Vais - sVar) € CY7 10 < |a] < K}
of row vectors of length r, we shall associate a number of special matrices and
functions. First, we group the v, by degree to form ds x 1 column vectors vy, €
(C'*m)dsx1 with block entries that are the 1 x r row vectors v,, i.e.,
[ 'Uahl 'Uahr -|
Us] = [va]\a\:s = \‘ : J .
Uozds,l e Uozds,r

Note that vjo) = [vg] = vo. Later we will choose vg to coincide with the vector ug
appearing in (3.7).

Second, for each a, we define a row vector of polynomials y,: R™ — C'*" by

m(a) = 3 0 (5) vaar?, (3.14)
0<p<a p

Note that if vy # 0, then deg(y,) = |a|. We will see in Theorem 3.12 that, under
appropriate conditions on the vectors v,, the row vectors y, (k) are precisely those
vectors such that ), . ya (k) f(z + k) = 2.

As with the vectors v,, we collect the vectors of polynomials y, by degree and
arrange them as block entries in a column vector to form a matrix of polynomials
Yls) : R" — (Clxr)d5><1, ie.,

Ys(z) = [ya(m)]\a\:s

5 ()

t=0 |5|=t

lor|=s

> Qe () vy
t=0

Finally, for each x we collect the blocks y,(x + k) into an infinite row vector
to form a function Y, : R" — ((Clx”)dle)lXF, i

ie.,
Vig(x) = (y(@ +5) per-

Note that Yi,(0) = (y[s](k))ker is the row vector of evaluations of the matrix of
polynomials y[, at lattice points k € T

ExaAMPLE 3.10. In the one-dimensional setting n = 1, there is a single polyno-
mial z® of degree s. Therefore d; = 1 for every s, and the multi-index « that has
degree s is simply the scalar a = s. Thus Ap, is a scalar and X, and Q54 are
scalar-valued functions on R. In particular, with A =2 and I' = Z we have

s s s— S s—
Ay = 2%, Xy =2°,  Quyly) = (17 <t>y L
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Hence (3.12) is nothing more than the binomial theorem, and (3.13) is the statement
that (2z)® = 2°z°. The vectors v, = v are “ordinary” row vectors of length r.
Further, there is only one v, to “stack” to form vy, so vy = vs. The functions
Ya(z) = ys(x) are row vector-valued, and yiq(x) is a “stack” of y,(x) alone, so
equals ys(x). Thus,

Vo = v, € CX7,

Us) = [’Ua]\oz\:s =ws € Clxr7
ys(z) = Z (—1)*! (S) 2% "v; maps R — C*",

Yis) (#) = [Ya(2)]jaj=s = ys(x) ~ maps R — C'*7,

1/[s](ﬂf) = (ys(CU + k))kEZ maps R — (Clxr)le_

In particular, Y[, () is an infinite row vector whose entries are the 1 x r row vectors
Ys(x + k) with k € Z. Thus Y, (z) is simply an “ordinary” infinite row vector of
the form

Yv[s](r) = ( T ys(m - 1)7 ys(m)7 ys(m + 1)7 )7
with blocks ys(z + k) that are ordinary 1 x r row vectors. &

The following fact on the behavior of the matrix of polynomials y[, under
translation will be useful.

LEMMA 3.11. Given a collection {v, € C**" : 0 < |a|] < K} of row vectors, let
yis) () and Yi,(x) be as defined above. Then

(@ +y) = > Qua) ym(2),
t=0

Vigle+y) = Y Quuu(y) Vg (x).
t=0

The following result provides sufficient conditions for a refinable distribution
to have accuracy x [CHM98], [CHMO00]. These conditions are also necessary if f

has independent translates.

THEOREM 3.12. Assume that f is a compactly supported distributional solution
of the refinement equation (1.1). Define L = [cai—jli jer, and consider the following
statements.

(I) f has accuracy k.

(I) There exists a collection of row vectors {v, € C1*" : 0 < |a| < K} such
that

(i) vof(0) #0, and
(ii) 1/[3] (0) = A[s] }/[s](O) L for 0 <s < k.

Then the following statements hold.
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(a) If translates of f along T' are independent, then statement (I) implies
statement (II).

(b) Statement (IT) implies statement (I). Moreover, in this case, after scaling
the vectors v, by an appropriate constant, we have

Xpg(z) = Y (k) fle+k) = Yig(0) Fz),  0<s<r, (3.15)
ker
where F(x) = [f(x + k)]ker-

Note that (3.15) says exactly that

¢ = Zya(k)f(m+k), 0 < laf < &.
kel

By (3.14), the coefficients y, (k) have the form of vectors of polynomials y,(x)
evaluated at lattice points k € T'.

REMARK 3.13. The vector vy is a left 1-eigenvector for the matrix A = # > ¢k,
and f(O) is a right 1-eigenvector for this same matrix. In most applications, the
matrix A is chosen so that 1 is a simple eigenvalue (in particular, this is a necessary
condition for f to have linearly independent translates). In this case vy and f(0)
are unique up to scale and automatically satisfy the condition vgf(()) # 0. In
particular, in the single-function setting vy and f(O) are both nonzero scalars, so
their product is automatically nonzero. &

REMARK 3.14. It is proved in [CHM98, Theorem 4.8] that the condition that

Y[S] (0) = A[s] Y[s] (0) L, for 0 < s < &, (3.16)
can be restated as:
ys () = Apg Zy[s](k) CAk—1, for0<s<kand £ €T, (3.17)
ker

and that the set of infinitely many conditions on the vectors v, given by (3.17) is
in fact equivalent to the following finite system of finite linear equations:

vs] = Z ZQ[st](k) A[t] V[t] Ch, for0<s<kandde D, (318)
kely t=0

where I; = A(T') — d. Note that this system is in block triangular form in the
variables v. The coefficients Q[ 4(k), A}y, and ¢, are all known explicitly. Tt can
be shown that in the single-function setting (r = 1), the system (3.18) is solvable
if and only if

ch:m and Zkack:---: Zkack for 0 < |o| < &,

ker k€Ta, kela,,

where D = {d,...,d,,} is a listing of the digits in some order. Note that this
system of equations is determined by the coefficients ¢, and the sublattice A(T),
and does not depend directly on the dilation matrix A, in contrast to (3.16), (3.17),

or (3.18). ¢
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3.5. Invariant Subspaces

We will now show that the assumption of higher-order accuracy conditions on
the coefficients ¢ imposes considerable structure on the matrices T,;. Specifically,
we will show that these matrices share common eigenvalues and invariant subspaces.

Assume that the sufficient conditions for accuracy s given in Statement II of
Theorem 3.12 are satisfied. In particular, vg # 0, and therefore the vector of
polynomials y, defined by (3.14) has degree |a|. The finite row vectors

€a = (yoz(k))keﬂ € (ClXT‘)lXQ, 0 S ‘O[‘ < K, (319)

formed by restricting the infinite row vectors (yo(k))rer to components whose
indices lie in € will play an important role, as will their spans

Us = span{e, : 0 < |a] < s}.

EXAMPLE 3.15. In the one-dimensional setting n = 1 there is only one multi-
index « for each degree s, namely a = s, so Us = span{ey, .. .,es}. The vector of
polynomials y,: R™ — C'*" defined by (3.14) has the form

t=0

and since 2 = {0,..., N — 1}, we have
€s = (ys(k))kEQ = (ys(o)a'--ays(Nfl))'

In particular, eg = (vg, ..., vp).

Now further restrict to the single-function setting r = 1. In this case, ys
is a scalar-valued polynomial of degree s, and es is the row vector of length NV
whose components are the evaluations of the polynomial y, at the integers k =
0,...,N — 1. In particular, after rescaling f by an appropriate constant, we can
take eg = (1,...,1). Since e; = (ys(0),...,ys(IN — 1)) and y, is a polynomial of
degree s, it follows that the space Uy = span{ey, . ..,es} consists of the vectors of
evaluations of all polynomials of degree at most s at the points 0,..., N —1. That
is, if we let

P, = {u:R - C : u=0or uis apolynomial with deg(u) < s},

then

Us = {(u(0),...,u(N —1)) :u € P,}.
Thus, while {eq,...,es} is a natural basis for Uy in the context of the accuracy
conditions presented in Section 3.4, another natural basis for Uy is {wy,. .., ws},
where

we = (04,1%,..., (N — 1)).

Indeed, this basis often implicitly appears in papers dealing with accuracy of scal-
ing functions in the one-dimensional, single-function setting. To compare these two
bases, note that e; = (ys(0),...,ys(N — 1)) where y, that polynomial such that
Yokez Ys(B) f(x + k) = 2°, while ws = (¢5(0),...,¢qs(N — 1)) where g, is the mono-
mial gs(z) = 2°. In this case ), , qs(k)f(z + k) is a polynomial in z of degree s,

but in general it is not the polynomial z*.
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However, while both {eq,...,es} and {wy, ..., ws} are natural bases for U; in

the single-function setting, only the basis {eq, ..., es} has a direct generalization to
the multi-function setting. This is because if r > 1 and we let

Pyp = {u: R — C™" : 4 =0oruis a vector polynomial with deg(u) < s},

then

Us € {(u(0),...,u(N —1)):u€ P,,}, (3.20)
because Uy has dimension s + 1 while the set on the right-hand side of (3.20) has
dimension r(s + 1). In other words, when r > 1 the space Uy contains only some of
the possible vectors of evaluations of polynomials of degree at most s. Hence, in the
multi-function setting, the vectors e, must be computed in order to compute the
space Us. Analogues of these remarks carry over to the higher-dimensional setting
as well. Fortunately, once the accuracy conditions in (3.18) are solved, the vectors
e, are easily and immediately computable from (3.19) and (3.14). &

We observe next that the vectors e, are linearly independent if a solution to the
refinement equation does exist. We stipulate that whenever we consider a collection
such as {e, : 0 < |a| < k}, we assume that the vectors in this set are ordered from
lowest, degree to highest, with the ordering within degree fixed but unimportant.

LEMMA 3.16. Assume that there exists a compactly supported distributional so-
lution f to the refinement equation (1.1), and that Statement (II) of Theorem 3.12
holds. Then the vectors ey defined in (3.19) are linearly independent.

PROOF. Theorem 3.12 implies that 2* = 3, . ya (k) f(z+ k). If € Q°, then
Lemma 2.9 implies that z + k € supp(f) can hold only when k € Q. Hence, if there
exist scalars h, such that Zo<\ ha eq = 0, then for x € ()° we have

a|<k
0= D haca®f(@) = Y had yalk)flz+k) = Y hoa"
0<|al<k 0<|a|<k ke 0<|a|<k
Since Q° is nonempty, this implies h, = 0 for every a. O

The next theorem states that the assumption of the higher-order accuracy con-
ditions given by the equivalent equations (3.16)—(3.18) implies that the matrices
Ty share common invariant subspaces. This result is essentially a statement about
the coefficients ¢, in the refinement equation and does not require the assumption
that a solution to the refinement equation exist. By Lemma 3.16, if a compactly
supported solution does exist, even merely in the distributional sense, then the hy-
pothesis in the following theorem that the vectors e, are independent is redundant.
Recall that B* denotes the Hermitian, or conjugate transpose, of a matrix B.

THEOREM 3.17. Let Q C T be a finite set such that Kn C Q + Q. Assume that
there exist row vectors {v, € C**" : 0 < |a| < K} such that (3.18) holds. Let e,
be defined as in (3.19), and assume that the vectors {es : 0 < |a| < K} are linearly
independent. Define

U, = span{e, : 0 < |a| < s} C (CH*m)1x@
and
B, = {el:0< |a|<s}t = {ve (CN)P ieu=0 for0< |a| < s}
Then the following statements hold.
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(a) Us is left-invariant under Ty for each d € D.
(b) Ej is right-invariant under Ty for each d € D.

(c) Let {é4:0 < |a| < &} be the result of applying the Gram Schmidt orthog-
onalization procedure to the system {eq : 0 < |a| < k}. Let Bg be any
orthonormal basis for E._,. Then

B ={é;:0<|a| <k} UBg (3.21)
is an orthonormal basis for (C7>1)?x1

has the block iorm
|V ’ ! -|
Bl

[Tals = ; (3.22)
B
* Cd
where each By is a fixed ds X ds matriz whose Jordan form coincides with
the Jordan form for A[;]l, and where Cq = [Ty|k,. |8, - In particular, By
s the scalar 1.

(d) poo({Talry taen) = max{p(A™"), poc({TalE, . }aen)}-
Proor. (a) Let Py be the projection matrix defined by

, and the matriz for Ty in this basis

Po = [0k ]jer ke,

where I, is the r x r identity matrix and d;, = 1 if j = k and 0 otherwise.
Then e, = (ya(k))rer Pa. Therefore, if we form the column vector [e4]|q|—s Whose
components are the row vectors e, then we can write

[ea]\a\:s = (y[s] (k))kEF Po = Yv[s] (0) Pq. (323)
Combining this with the fact that

Po Ty = [cak—etalker e, (3.24)
we compute that

leaTa)ja|=s = Yi5(0) Po Ty by (3.23)

= (y1s)(k))ker [cak—rralrer e by (3.24)

(Z Yis) (k) CAkfm-d)[eQ

kel
= (A[;1 y[s] (ﬁ - d))[eg by (317)
= A Yis(—d) Pa by definition of Y},

= Ay > Quey(—d) Yy (0) Py by Lemma 3.11
t=0

- ‘4[;]1 ZQ[sJ](*d) les]|g)=t by (3.23).
t=0
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Therefore e,Ty € span{eg : || < s} = U, for each |a] = s, so Us is left-invariant
under T}.

(b) Follows immediately from (a).
(c) Note that
B' = {e::0<]al| <k} UBg

is a basis for (C"*1)®*1 and that the basis B is obtained from B’ via Gram
Schmidt. Using the computations from part (a) and the fact that Q, ,(y) = I, we
have for each 0 < s < k that

[eaTd]‘a‘:s = A[;]l ZQ[s,t](_d) [63]\5\:1&
t=0

s—1
= Ayl lealloj=s + AL Y Qraa(=d) [es] 1= (3.25)
t=0
As a consequence, the matrix for T in the basis B’ has the form
(A *
[Tils = .
(A[Nfl]) B
0 c;
for some matrix Cy. Recall that the Gram-Schmidt orthogonalization of vectors
wi, ..., wy preserves span{wy, ..., wg} for each k =1, ... ¢. Therefore,
B; *
[Tils =
’ B;,
0 C;

-1

where Bj is a dg X dy, matrix obtained from A[S} via a similarity transformation, and

likewise Cy is obtained from Cy via a similarity transformation. In particular, By is
the scalar 1 because Ay is the scalar 1. Finally, since B is an orthonormal basis, we
have that [Ty = ([T7]B)*, so [T4]s has the form given in (3.22). It therefore only
remains to note that Cy = [T4|g,_,|B,; simply because B={€}:0 < |a| < K} UBg
and because E,_ is right-invariant under 7.

(d) Because the spaces Es are nested,
Bs = {e):s<]a| <k} UBg

is an orthonormal basis for E,. It therefore follows from (3.22) that [T4|g,]s.
is that bottom right submatrix of the right-side of (3.22) which has the blocks
Bsi1,...,Bx_1,C4 on the diagonal. In particular, the operators T,|g, are simulta-

3

neously block lower-triangularized in the basis By, with the blocks By, ..., Bs_1,Cy

appearing along the diagonal of [Ty4|g,]B,. It therefore follows easily from (2.26)
that

poo({Tu| By Yaep) = max{p(Bi1), ..., p(Bx 1), poc({Ca}taep)}
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However, the eigenvalues of By and A[;]l coincide, and by [CHM98, Lemma 4.2],
the spectrum of A[;]l is {\": |a| = s}, where A = (A\y,...,\,)7T is the vector of
all eigenvalues of A. Since |A;| > 1 for each i, we therefore have

max{p(By), .., p(Be_1)} = max{A | :1<|a] <k —1}
= max{[A;'[,..., A}
= p(A7h).
The result then follows since Cyq = [T4lg, ,]Bs- O

Note from (3.25) that for the digit d = 0, we have
[eaTd]\a\:s = A[;]l [ea]\a\:s:

since Q[54(0) = 0 when ¢t < s. If A is diagonalizable, then it is possible to make
a change of basis so that A[;}l = diag(A™* : |a] = s). Hence, in this basis the
vectors e, are left A~ “-eigenvectors of Ty. However, even in this basis they are not
eigenvectors of those T, with d # 0.

3.6. Necessary Conditions for the Existence of Continuous Vector
Scaling Functions

We saw in Theorem 3.4 that if the coefficients ¢y of the refinement equation sat-
isfy the conditions for minimal accuracy, then a sufficient condition for the existence
of a continuous vector scaling function is that p({T4|g, }aep) < 1.

The matrices Ty = [cai—jt+alijea and the subspace Ey = (ef)* depend im-
plicitly on the choice of  C I'. In this section we will show that if the minimal
accuracy conditions are satisfied and if in addition the lattice translates of f are
“stable” and the set  is “admissible,” then the condition p({Ty|g, }aep) < 1 is
also necessary for the existence of a continuous vector scaling function.

The definition of “stable translates” that we shall use is as follows.

DEFINITION 3.18. A vector function g € L>®(R"™, C") is said to have L -stable
translates if there exist constants C, Cy > 0 such that

Zakg(az + k)

kel

< < Cy sup max |ag,i|

Ch sup max |ag ;
r Lo kel ?

ke

for all finitely supported sequences of row vectors {ay}rer, where we write a;, =
(a1, .- ar,) € CYX7 for k € T. O

Using the fact that all norms on a finite-dimensional vector space are equivalent,
it is easy to see that the definition of L*°-stability can be recast into the following
form.

LEMMA 3.19. Let || - || be any norm on C"*". Then a vector function g €
L (R™,C") has L*>-stable translates if and only if there exist constants Cy, Cy > 0
such that

> Brg(z+k)

Cy sup || Bi]| <
ker kel

< Cy sup || Byl
[0 kel
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for all finitely supported sequences of matrices {By}rer, where B € C™" for
kel.

The notion of “admissible set” that we shall use is as follows.

DEFINITION 3.20. Let H be a finite subset of I'. Then we say that a nonempty,
finite set Q C ' is H-admissible if

w() NT C Q
where wy (Q) = A71(Q + H) is as defined in (2.6). o

The notion of admissibility arises naturally in the study of refinement equations.
For example, if 2 is A-admissible then the space

() = {a=[ar]rer € (C”*H™*! : supp(a) C O}

is right-invariant under the infinite matrix L = [CAifj]z}jeF which appears in
the statement of Theorem 3.12, and the right-eigenvectors of L corresponding to
nonzero eigenvalues are necessarily elements of £(€2). The eigenvalues and eigenvec-
tors of L are intimately tied to the accuracy of the vector scaling function, a topic
which is explored in more detail in [CHMO00].

In this section, we will need to consider sets 2 C I' which are admissible with
respect to the set

N =A-D={k—d:keA deD}.

Since we have assumed that 0 € D, it follows that A C A’. The set A’ has already
made an appearance, in particular, we showed in Proposition 2.7 that the set Q) =
Kp NT satisfies Ky C Q + Q. It is easy to prove that this set Q4 is both A-
admissible and A’-admissible. For clarity, we shall from now on write out the
symbols A — D instead of using the abbreviation A’.

For later use, we remark that if Q C I', then

Q CTis (A — D)-admissible <= A ' (A+Q-D)nNT C Q. (3.26)

Further, by [CHMOO0, Lemma 3], every finite subset of T' is contained in a finite
(A — D)-admissible set.

Using the above notation, we can now formulate the major result of this section
as follows.

THEOREM 3.21. Let f be a continuous, compactly supported solution to the
refinement equation (1.1) such that f has L*°-stable translates. Assume that the
hypotheses of Lemma 3.2(a) are satisfied, i.e., there exists a row vector ug € C1*7
such that

ugf(O) #0 and ug = Z ugcy, for d € D.
kETy
IfQ C T is any (A— D)-admissible set such that Ky C Q4+, then p({T4|E, }aen) <
1.

We will break the proof of Theorem 3.21 into two steps. First, we will prove
that the existence of a continuous solution to the refinement equation with stable
translates implies that a matrix-valued version of the cascade algorithm converges
pointwise everywhere when a specific starting function is used. Second, we will
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prove that the convergence of this version of the cascade algorithm necessarily
implies that the JSR in question is less than 1. Each of these stages is of interest
in itself. Moreover, the first stage requires the assumption of stable translates but
does not require any admissibility assumptions on the set €2, while the second stage
requires that the set 2 be (A — D)-admissible but does not require that f have
stable translates.

The matrix version of the cascade algorithm referred to above is defined as
follows. Let Q be the subset of Q constructed in Proposition 2.10. This set Q has
the property that the I-translates of Q cover R" without overlaps. Further, Q
contains a unique element vy of [, i.e.,

QNT = {7}
Define
(@) = Xg_ (@) - I, (3.27)

where I, is the r x 7 identity matrix, and let ¢(¥) € L>®(R", C"*") be obtained by
iterating the refinement operator S, i.e.,

(@) = S (@) = Y er W (Az — k). (3.28)
ke

Note that we have abused notation somewhat in (3.28), since the refinement op-
erator S is formally defined to act on vector-valued functions, while we are here
applying it to matrix-valued functions. However, the abuse is slight and the in-
tended meaning is clear. We will perform similar abuses throughout this section
without further comment.

Suppose now that the coefficients ¢, of the refinement equation satisfy the
conditions for minimal accuracy. Specifically, these conditions are the hypotheses
of Lemma 3.2(a). In this case, there exists a row vector ug € C'*" such that
Y ker Uof(z+k) = 1. We will show in the following theorem that if the translates of
f are L>-stable, then the functions ¢(?) obtained via the matrix cascade algorithm
converge both uniformly (i.e., in L*-norm) and pointwise everywhere to the matrix-
valued function f(x)ug (note that this matrix has rank one for each z). It will be
important for the second stage of the proof of Theorem 3.21 that this convergence
is pointwise everywhere, and not merely almost everywhere. In this first stage of
the proof of Theorem 3.21 we do not require any admissibility assumptions on the
set €.

THEOREM 3.22. Let f be a continuous, compactly supported solution to the
refinement equation (1.1) such that f has L*°-stable translates. Assume that the
hypotheses of Lemma 3.2(a) are satisfied, i.e., there exists ug € C**" such that
uof(O) # 0 and ug = ) cp, uocy for d € D. Let 00 be the characteristic function

of the unique translate of Q that contains the origin, and let o) be the ith iteration
of the cascade algorithm, cf. equations (3.27) and (3.28). Then ¢V converges
uniformly and pointwise everywhere to f(x)ug as i — oc.

PROOF. In order to distinguish between the norm of a vector and the norm of
a function, we shall in this proof use the symbol | - |, to denote the ¢’-norm on a
finite-dimensional space such as R™ or C”, and use | - ||1» to denote the norm on
a function space such as LP(R"™, C").
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By Lemma 3.2(a), f has accuracy « > 1, and, in particular,

> uof(z+k)=1. (3.29)

kel

Equality holds everywhere in this equation since f is continuous. For each i > 0,
define g\ € L>*°(R", cr) by

= > fATR) uef(A'w — k). (3.30)
ker
We claim that g(¥ converges both uniformly and pointwise everywhere to f.

To see this, choose any € > 0. Then since f is continuous and is supported in
the compact set Ky, it is uniformly continuous. Hence, there exists a § > 0 such
that

|z -yl < 0 = |f(z) = fY)leo < e
Let ig be such that diam(A % (K,)) < §, where we measure diameter with respect
to the £*°-norm on R". Choose any ¢ > ig, and define

K(z) = {k€l: Az — ke K,}.
Note that since Ky C Q + Q, the cardinality of K (x) is bounded by the cardinality

of Q. Further, if k € K(z), then 2 — A~k € A7I(Kj\), s0 |z — A7k|o < 0.
Therefore, by using (3.29) and (3.30), we have for each # € R"™ that

@) 0@l = f@) S wof (Al k) — 3 A Ry uof(Alz K
kGF kel oo
= D (f(2) = f(AR) uo f(A'z — k)
kel’ 00
< Y @) = fATR)| luof(A'z — k)|
keK(x)
< Y eluoh [f(A'7 —E)lw
keK (z)
< elugh || flln~ #Q. (3.31)

It follows immediately that g(¥ converges both uniformly and pointwise everywhere
to f, completing the proof of our claim.
Next, an easy induction shows that

Z(p ATE) f(Alz — k)

kel

= D¢ (ATR) O A%z — k)

kel

and

for every i > 0. In particular, ¢! is a “step function” that is constant on each
“small tile” A~#(Q+k). Since these small tiles cover R" without overlaps as k varies
through I', and since f(x)ug is uniformly continuous, to show that () (z) = f(x)ug
uniformly and pointwise everywhere it suffices to prove that

sup |<p(i) (A7E) — f(Afik)u(]‘Oo — 0.
kel
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However, we have by hypothesis that f has L°-stable translates, so it follows from
Lemma 3.19 with By = oY) (A~'k) — f(A~"k)ug that, for some constant C' > 0,

sup [ (A7) — f(A "k)uo|
kel

<cC

S (0D (A k) — F(A R)uo) f(Al — k)

kel

= Cllf = 9"z

Loo

— 0. O

Before presenting the second stage of the proof of Theorem 3.21, we require
some auxiliary notation and results. We shall in the remainder of this section often
encounter nested sets of the form

OcOcQcr.

When dealing with such sets, we will use a tilde or double-tilde to denote the
analogues for Q or Q of objects implicitly associated with Q. For example, in
the list following we show several objects implicitly associated with  and the
corresponding counterparts implicitly associated with :

Ty = [cai—j+dlijen, T, = [cai—jrdl; jeq

eo = (uo)keq € (C1><r)1><§27 &y = (UO)keQ c (C1><r)1><(2=
By = ()" c (€)™, By = (e)" C (€)™,
bg(x) = [g(z + K)]req, ®g(z) = [9(z + k)] ieq:

and so forth. The need for these larger sets  and Q arises because we will be
applying the cascade algorithms to functions that are compactly supported but
which need not be supported within the attractor Kx. The next lemma allows us
to control the supports of the iterates of the cascade algorithm by observing that
these supports must converge in Hausdorff metric to K. For this purpose, recall
the notation introduced in Section 2.2 in association with the Hausdorff metric,
specifically the definition from (2.4) that

B. = {z € R":dist(z, B) < ¢}.

LEMMA 3.23. Let Q € Q C T be such that
(i) KA CQ+Q,
(ii) Q is (A — D)-admissible.
If g is any function such that supp(g) C Q + Q, then supp(Sg) C Q + Q as well.

Further, given € > 0 there exists ip > 0 such that supp(Sig) C (Q + Q). for all
i > i
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PROOF. Suppose that Sg(z) # 0. Since Sg(z) = Y, cx 9(Az — k), there
must exist some k € A such that Az —k € Q + Q. Hence Az = y + k + ¢ for
some y € Q and ¢ € Q. The point k + ¢ must lie in some coset [y = A(T) — d,
so k4= Aj +d for some j € T and d € D. Since Q is (A — D)-admissible, we
therefore have

j=AYk+t-d) € AYA+Q-D)NT C Q.

Note that A~ (y+d) € @ since y € Q and d € D and @ is the attractor Q = Kp =
A7YKp + D). Therefore,

= A y+k+6) = AN y+d) + AN (k+L-d) € Q+ Q.

Since Q + Q is compact, we conclude that supp(Sg) C Q + Q.

Now let € > 0 be given. Since K, is the attractor of the IFS generated by
{wi }rea, for any nonempty compact set B C R"™ the sequence of sets wi (B) must
converge to K in the Hausdorff metric as ¢« — oc. In particular, for all i large
enough we must have

supp(S’g) C wj (supp(g)) C (Ka): C (@ +Q).. O

Next, we observe that by choosing a convenient ordering of ), we can place the
large matrix Ty into a block diagonal form in which the smaller matrix T; appears
on the diagonal.

LEMMA 3.24. Let Q C Q C T be such that Q is (A — D)-admissible. Let € be
ordered so that the elementf of Q precede the elements of Q\ Q. Then there exist
matrices By, Cq such that Tq = [cai—j+d] has the block form

i,jEQ
- T, B
T,=1 "4 7.
0 Cy4
PROOF. Since Ty = [cai—j+dlijeo and we have chosen an ordering of Q in
which the elements of ) are listed first, we can certainly write Ty in the block form
- T, B
T, = | 4 T,
Ag Cy

Thus, our goal is show that A; = [CAZ'*J'-Fd]ieQ\Q jeq 18 the zero matrix. Therefore,
let j € Q be fixed, and suppose that ca;_ji+q # 0 for some ¢ € I'. Then we must
have Ai — j +d € A. Since Q is (A — D)-admissible, it therefore follows that

i€ AV A+j-d Nl Cc A 'A+Q-D)nT C Q,
which proves that Ay = 0. d

The following result is similar in nature to Proposition 2.13. The restriction
in Proposition 2.13 that the support of g be contained in the attractor Ky is here
relaxed to requiring only that supp(g) be contained in some possibly larger set Q+1.
The cost is that additional restrictions must be placed on Q, and furthermore, the
conclusion holds only for large enough iterations instead of for all iterations.

PROPOSITION 3.25. Let Q C Q C T be such that
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(i) KxCQ+1,
(i) Q and Q are both (A — D)-admissible, and
(iif) (Q+Q)-CQ+Q.

Let g: R™ — C" be any function such that supp(g) C @ + Q. Then there eists
19 > 0 such that if x € Q and © = €185+ is any A-nary expansion of x, then

Vi>ig, ®Sig(x) = T., ---T.,9g(y:) (3.32)

where
Yi = Eit1€it2 - € Q.
Consequently,
Vi>ig, ®Sg = T'dyg.

PROOF. Let € be finite but large enough that we have both
QcQcTl and Q+Q c (Q+9°.

Suppose that g: R"® — C” satisfies supp(g) C Q + Q. Then by Lemma 3.23 there
is an iy > 0 such that supp(Sig) C (Q + Q). for all i > i.

Now choose = € @), and let z = .15 --- be any particular A-nary expansion
of z. Then y; = .eqe3--- = Az —e; € Q. If g(y1 + k) # 0 for some k € ', then we
must have y; + k € supp(g) € Q + Q C (Q + Q)°. Lemma 2.9, applied to the set
) instead of €2, therefore implies that k € Q). A calculation identical to the one in

(2.23), except with  replaced by (2, shows that
%Sg(m) = 1:}1 ‘ig(yl). (3.33)
By Lemma 3.23, we have that supp(Sg) C Q + €2, so we can iterate the calculation
in (3.33) to obtain
®Sig(z) = Tr, - Tr, ®g(ys). (3.34)
Choose now any ordering of (:) such that the elements of Q precede the elements

of ) \~Q. Then Lemma 3.24, applied to the sets Q C Q instead of Q C Q, implies
that Td has the block form

= T, B
T, = | * ¢ (3.35)
0 Cu
for some matrices By and Cy. We claim that the folding éSig(y) = [Sig(y+ k:)]kg:2
similarly has the block form
z oS
8Sig(y) = [ Og(y) ] . foryeQandi>ip. (3.36)

To show this we simply have to show that if y € Q and i > i, then Sig(y+k) = 0 for
ke Q\Q. However, if i > ig, then supp(Sig) C (Q + Q). C (Q +Q)°. Lemma 2.9,
applied to the set () instead of €, therefore implies that if Sig(y + k) # 0 then
k € Q. Hence (3.36) is valid.
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Finally, combining (3.34)
l @57y (x) ]

(3.35), and (3.36), we see that for i > i,

3

— b5
0 g(z)

from which the result follows. O

Now we can complete the second stage of the proof of Theorem 3.21. Specifi-
cally, we show next that the pointwise convergence of the matrix cascade algorithm
implies a restriction on the uniform JSR. Note that this result does not require that
f have L*°-stable translates.

THEOREM 3.26. Let f be a continuous, compactly supported solution to the re-
finement equation (1.1). Assume that the hypotheses of Lemma 3.2(a) are satisfied,
i.e., there exists ug € C'™7 such that uof(O) #0 and ug = Zkel“d ugcg for d € D.
Let Q be any (A — D)-admissible subset of T such that Ky C Q + Q. If the func-
tions ¢ defined by (3.27) and (3.28) converge pointwise everywhere to f(z)ug,
then p({Tal g, taep) < 1.

Proor. By [CHMO00, Lemma 4.7], every finite subset of I is contained in an

admissible set. Hence, if we fix an £ > 0, then we can find a (A — D)-admissible set

2 such that
QcQcTl and (Q+9). C (Q+9)°.
We will prove that if {€;}$2, is any sequence of digits e; € D, then the matrix

product T, ---T;, converges as ¢ — oo to the rank-one matrix each of whose
columns is ®(f(x)up), where z is the point

oo
T = €1y = ZA*J'E]' € Q.
i=1

This will occupy us for the majority of the proof of the theorem. From this fact we
will then deduce that p({Ta|n, taen) < 1.

To begin, let a sequence of digits {e;}52; be fixed, and set z = .g1e2--- € Q.
By hypothesis, o) (z) = f(x)ug when ¢(©)(x) = X5__ (x) - I,. Let o, denote the
translation operator, i.e., opg(z) = g(x — h). For each h € €, set

o (@) = (on409®) (@) = Xgyp(2) - I, (3.37)
and define
(@) = S (@) = S5 (0ni000 V) (@) = Ta-i(nine) (SN (@).  (3.39)
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Note that supp(tp;;])) CQ+hcCQ+Qforeach h € Q. Lemma 3.23 therefore
implies that supp(tpij)) C Q + € for all i, and moreover that supp(gogf)) C (Q+0).
for all 4 large enough. Since this is true for each A in the finite set €1, there is some
ig such that
VheQ, Vi>io, supp(gogi)) C (@ + Q).

Now fix any particular h € Q (not merely h € € but specifically h € Q).

Consider the points
Yi = €it1€i42- - € Q.

Recall that ) was defined to have the property that the I-translates of Q cover R”
without overlaps. Therefore, the point y; + h must lie in some unique translate of
. Hence, there exist unique points ¢; € () and k; € I such that

yi+h = q+k;. (3.39)
Note that
gGi+ki=yi+h e Q+Q C (Q+9)°.
Lemma 2.9, applied to the set Q instead of Q, therefore implies that k; € Q. Hence,

if we let 05 ; denote the Kronecker delta, then then folding of ‘ng) satisfies

‘i)‘PES-) (vi) = {‘Pk?.) (yi + j)]je() by definition of ®
= [XQ(ZM +j—ki)- ITLGQ by (3.37)
= [XQ(%' —h+7) -L«LGQ by (3.39)
= [On,;j - Ir]jEQ by Proposition 2.10.

Fix any ordering on Q) such that the elements of Q precede the elements of () \ Q.
Define
- Ap
Ah = [5}“]’ . I”]jeﬂ and Ah = [5}“]’ -Ir]jeﬁ = 0 .
That is, A, and A, are column vectors with the identity block I, appearing in “row
block hA” and zeros elsewhere. Multiplication of a matrix by A, or A, on the right

therefore selects out “column block A” from that matrix. Thus, by Proposition 3.25,
and equation (3.32) in particular, we have for i > iy that

bl (@) = 356 (2) = T, T0¢) () = T, - T Bn  (3.40)
is “column block h” of Tgl X -Tgi. On the other hand, we have by hypothesis that
SipO(z) = (z) = flx)ug. (3.41)
Therefore,
T., T8, = ®pl) () by (3.40)

KA

(Oa-i(kiro)S' e V) (@) by (3.38)

= @(f(z)uo),
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the conclusion on the preceding line following from (3.41), the contractivity of A1,
and the fact that each k; lies in the finite set Q. Thus, “column block h” of T, - - - T¢,
converges to ®(f(z)ug). This is true for each h € Q. However, the column blocks
of Tgl .- -Tgi are indexed by the larger set Q, so let us examine the column blocks
corresponding to indices in  in more detail. Since we have ordered Q so that the
elements of Q come first, Lemma 3.24 implies that T, has the block form

- T, B
Ty = d Dd
0 Cq
for some matrices By, Cy. Consequently,
. - T., T, =* Ay T, - T.,Ap
T., - T..Ap = -
0 * 0 0
Further,
< ®(f(x)uo)
®(f(z)uwo) = [ i ;
so we conclude that
T, T, Ap = O(f(x)ug). (3.42)

Since the columns blocks of T, --- T, are indexed by , equation (3.42) implies
that each column block of T%, - - - T+, converges to ®(f(x)ug). Therefore, the product
T., --- T., converges to to the matrix B(z) consisting of {2 column blocks each equal
to ®(f(x)ug). That is,

TEl"'TEi - B(CU) = ((I)(f(w)u()))keg

This matrix B(z) is rank-one because each column block ®(f(z)uq) consists of rows
that are multiples of the 1 X r row vector ug.

Thus, we have demonstrated that 7., --- T, converges to a rank-one matrix
for each sequence of digits {£;};2,. We will now show that this implies that
(T., - T:,)|E, converges to the zero matrix for each such sequence of digits. The
key ingredient is the hypothesis that the coefficients c¢;, satisfy the conditions for
minimal accuracy. Because of this, Theorem 3.17 implies that there exists an or-
thonormal basis B for (C"*1)*! such that each matrix has in this basis the block

form
1 0
* Cd ’

where 1 is the scalar 1, and Cyq = [Tq| g, |5, is the matrix for Ty restricted to Ey with
respect to an orthonormal basis By for Ey. Consequently, working in this basis, we
have for each ¢ that

Tals =

1 0
x C. - O
Since T¢, - - - T., converges to a rank-one matrix, the product Cg, - - - C¢, must there-

fore converge to the zero matrix as i — co. This implies by [BW92, Thm. I] that
p({Ca}aep) < 1, and completes the proof. O

[T51 o 'TEi]B =

Finally, the proof of Theorem 3.21 follows by combining Theorems 3.22 and
3.26.
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3.7. Holder Continuity

Once a vector scaling function is known to be continuous, the joint spectral
radius can be used to compute the global Holder exponent of continuity of f.

Let | - | be any norm on R™ and let || - || be any norm on C". A continuous
function g: R" — C" is Hélder continuous with exponent a > 0 if there exists a
constant K such that ||g(z) — ¢g(y)|| < K |z — y|* for every = and y. The value of
« is independent of the choice of norms. This definition is global in the sense that
the “worst” point x and the “least smooth” component g; of g will determine the
global Holder exponent of g.

Suppose that f is a continuous, compactly supported solution to the refinement
equation (1.1). Then, by Proposition 2.13,

Vde D, Vz€wiQ), ®f(x) = Ty®f(Az — d). (3.43)
As a consequence, the subspace

Wo = span{®f(z) — ®f(y) : 7,y € Q}

is right-invariant under T for each d € D. Note that if f satisfies the hypothe-
ses of Lemma 3.2(a), so f has accuracy £ > 1 and Wy C E, with Ey defined
by (3.9). In Theorem 3.4 we saw that the condition po({Ta|r,}aep) < 1, with
appropriate additional hypotheses, is a sufficient condition for the existence of a
continuous vector scaling function f. The following result shows that the condition
Poo({Talw, taep) < 1is a necessary condition for the existence of a continuous vec-
tor scaling function, and also shows that the value of poo ({Ta|lw, }daep) bounds the
value of

asup = sup{a : f is Holder continuous with exponent a}.

This gives a necessary condition for the existence of a continuous vector scaling
function that is complementary to the necessary conditions obtained in the preced-
ing section. In particular, this result does not require any information on whether
the cascade algorithm converges, or whether f has stable translates. On the other
hand, this condition is largely of theoretical value, because the space Wy is usually
difficult to determine explicitly except in case of small numbers of coefficients in the
refinement equation. On the other hand, in the one-dimensional, single-function
setting with minimal accuracy, it is known that Wy = Ej if and only if f has in-
dependent translates [Sun91], compare also [Hei94]. It would be interesting to
know if such a characterization can also be proved in the multidimensional setting.

The spectral radius of A~! will play a role in the following result. Note that
A~1is contractive since A is expansive, and therefore p(A~!) < 1.

PROPOSITION 3.27. Let Q) C T be a finite set such that Kx C Q + Q. If there
exists a continuous, compactly supported solution f: R™ — C” to the refinement
equation (1.1), then poo ({Talw, taep) < 1 and

asup < 108, poo({Talw, taeb),

where o = p(A™1).

PROOF. Choose 6 so that o < # < 1. Then there exists a norm |- | on R" such
that the induced operator norm of A" satisfies 0 < |[A™'| < § < 1. Let || -|| be any
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norm on (C™*1)®*1  Choose any product II = T., ---T.,, where €,...,6; € D,
and let A\ be any eigenvalue of II|w,. The space

Uy = {w € Wy : (- N*w =0 for some k}
is right-invariant under II. By standard Jordan techniques, there exists a subspace
Z that is also right-invariant under II and satisfies Uy & Z = W,. Since the span of
a set, of vectors is the smallest subspace containing those vectors, there must exist
some z, y € () such that ®f(z) —®f(y) =ur+z=w with 0 £ uy € Uy and z € Z.
Using Jordan arguments again, as in [CH94, Lemma 3|, there exists a constant
C > 0 such that
| w| > CIAF  all k> 0.

Let £ = .x1x2--- and y = .y1y2 - - - be A-nary expansions of 2 and y. Define points
Xy = €1 -Ep €1 E4T1To " - and Vi = 1 Epc  E1 ELY1Y2 -
in @, where the sequence ¢; - - -/ is repeated k times. Then, using (3.43), we have

18f(Xp) = @f (V)| = [[T*®f(x) — O f(y)| = [[TFw]| > CIA"  (3.44)
for each k > 0. Since f is continuous and | Xy —Yy| — 0 as k — oo, it follows that we
must have |A\| < 1. We therefore conclude from (2.26) that poo ({Talw, taen) < 1.
However, (3.44) also implies that every product (T, ---T;,)|w, must converge to
zero as £ — 0o, and therefore we must in fact have poo ({Ta|lw, }aen) < 1.

Next we will find an upper bound for ag,,. By definition, if f has Holder
exponent « then there exists a K such that

1®f(Xk) — @f (V)| < K|Xp —Yi|™
However,
X~ Vil = A %@ —y) < 8%z —y,
S0
CIA < 18F(Xh) = BFYVi)l| < K |Xg— Yel® < K |z — y|o o0,
Therefore, for each k& > 0 we have
AV < (Lx_ya)wkea.

C

Letting k — oo, we conclude that |A|'/¢ < #. Since this is true for every eigenvalue
A of every product IT of length ¢, it follows from (2.26) that poo ({T4|w, }aen) < 6°.
As this is true for every 6 > o, we must have poo ({T4|w, }dep) < 0%, and therefore

a < 10g, oo ({Talw, taeD)- -






CHAPTER 4

Multiresolution Analysis

4.1. Multiresolution Analysis

In this section we will give the definition and basic properties of multiresolution
analyses of arbitrary multiplicity with respect to an arbitrary dilation matrix.

DEFINITION 4.1. A rmultiresolution analysis (MRA) of multiplicity r associated
with a dilation matrix 4 is a sequence of closed subspaces {V;},cz of L?(R") which
satisfy:

(P1) V; C Vj4q for each j € Z,
(P2) g(z) € V; <= g(Ax) € V;4, for each j € Z,

(P3) N V; =10},
JjEZ

(P4) U V; is dense in L*(R"), and
JjEZ

(P5) there exist functions ¢1,..., ¢, € L?(R") such that the collection of lat-
tice translates

{oi(x — k) brer,iz1,...r (4.1)

forms an orthonormal basis for V.
If these conditions are satisfied, then the vector function ¢ = (p1,...,¢,)7T is
referred to as a vector scaling function for the MRA. O

The definition of multiresolution analysis can be generalized to allow the col-
lection of lattice translates of the functions ¢; to form merely a Riesz basis instead
of an orthonormal basis for Vy. This leads then to biorthogonal wavelet bases
for L?(R™). Since we are interested mostly in orthonormal wavelet bases in this
manuscript, we will not consider this generalization.

The usual technique for constructing a multiresolution analysis is to start from
a vector function ¢ = (py,...,¢,)T such that {@i(x — k)}rer,i=1,_» is an or-
thonormal system in L?(R"), and then to construct the subspaces V; C L*(R")
appropriately. This is made precise in the following definition. For simplicity, we
shall from now on write that ¢ has orthonormal lattice translates when we mean
to say that {y;(z — k) }rer, i=1,...» is an orthonormal system in L?(R").

DEFINITION 4.2. Assume that ¢ € L2(R"™, C") has orthonormal lattice trans-
lates. Let Vy be the closed linear span of the translates of the component functions
Pi; i'e'7

Vo = span{y;(z — k)}rer, i=1,...r- (4.2)

49
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Then, for each j € Z, define V; to be the set of all dilations of functions in Vy by
Al e,

V;, = {9(A%z) : g € W} (4.3)
If {V;},cz defined in this way forms a multiresolution analysis for L?(R") then we
say that it is the MRA generated by . &

ExAMPLE 4.3. In one dimension, the box function ¢ = X|g1) generates a mul-
tiresolution analysis for L?(R). This MRA is usually referred to as the Haar mul-
tiresolution analysis, because the wavelet basis it determines is the classical Haar
system {2n/2,¢}(2nw — k)}n7k€Z7 where ’l/} = X[071/2) — X[1/271).

Grochenig and Madych [GM92] proved that there is a Haar-like multiresolution
analysis associated to each choice of dilation matrix A and digit set D for which the
attractor () = Kp is a tile (which is the standing assumption of this manuscript).
In particular, they proved that if () is a tile then the scalar-valued function X
generates a multiresolution analysis of L2(R") of multiplicity 1. By extension of
the one-dimensional terminology, this MRA is called the Haar MRA associated with
A and D. Note that the fact that {Xg(z — k) }xer forms an orthonormal basis for
Vo is a restatement of the assumption that the lattice translates of the tile () have
overlaps of measure zero. Further, X is refinable because @ is self-similar and
because the lattice translates of () have overlaps of measure zero. &

We will characterize those ¢ which generate multiresolution analyses in Theo-
rem 4.4, below. To motivate this result, note that property (P2) is achieved trivially
when V; is defined by (4.3). Moreover, property (P5) is simply a statement that
lattice translates of ¢ are orthonormal. We will see in the proof of Theorem 4.4
that the fact that ¢ has orthonormal lattice translates implies that property (P3)
is also automatically satisfied. Thus, the main problem in determining whether ¢
generates a multiresolution analysis is the question of when properties (P1) and
(P4) are satisfied. One necessary requirement for (P1) is clear. If ¢ does generate
a multiresolution analysis, then (P1) implies that p; € Vo C Vy fori = 1,...,r.
Since (P2) and (P5) together imply that {m'/?;(Az — k)}rer, j=1.. , forms an
orthonormal basis for V;, each function ¢; must therefore equal some (possibly
infinite) linear combination of the functions ¢;(Az — k). Consequently, the vector
function ¢ must satisfy a refinement equation of the form

o) = > crp(Az — k) (4.4)
ker
for some choice of r x r matrices ¢;. We will only consider the case where the
functions ¢; have compact support; since ¢ has orthonormal lattice translates, this
implies that only finitely many of the matrices ¢; in (4.4) can be nonzero. Hence,
in this case the refinement equation in (4.4) has the same form as the refinement
equation (1.1) that was studied in the preceding chapters.

THEOREM 4.4. Assume that ¢ = (¢1,...,0,)T € L>(R",C") is compactly
supported and has orthonormal lattice translates, i.e.,

(oile =B, g —0) = [le - D e Dds = 81500

Let V; C L*(R™) for j € Z be defined by (4.2) and (4.3). Then the following

statements hold.
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(a) Properties (P2), (P3), and (P5) are satisfied.
(b) Property (P1) is satisfied if and only if ¢ satisfies a refinement equation
of the form
o) = > cvp(Az — k) (4.5)

keA
for some r X r matrices ¢ and some finite set A C T.

(c) If
/ pi(w) dx

then Property (P4) is satisfied. If ¢ is refinable, i.e., if (4.5) holds, then
Property (P4) is satisfied if and only if (4.6) holds.

r

I90)]* = Z @i (0)° =

i=1

2

= 1Ql, (4.6)

Note that the assumption that ¢; is square-integrable and compactly supported
implies that ; € L'(R"™), so ¢;(0) = [ pi(z)dz is well-defined. Also recall that
|Q| = | P|, where P is the fundamental domain for the lattice I' defined in (2.3) (in
particular, P is a rectangular parallelepiped). For example, if I' = Z"™ then we can
take P = [0,1)", and therefore |Q| = |P| = 1.

Theorem 4.4 generalizes a result of Cohen [Coh90], which applied specifically
to the case of multiplicity 1 and dilation A = 2I. Cohen’s estimates used a decom-
position of R” into dyadic cubes, making essential use of the fact that the uniform
dilation A = 21 maps dyadic cubes into dyadic cubes. However, this need not be
true for an arbitrary dilation matrix A, so this particular decomposition is no longer
feasible. Instead, we will use a decomposition based on the tile (), and make use of
the associated Haar multiresolution analysis discussed in Example 4.3. Before we
can implement this decomposition for the proof of Theorem 4.4, we require some
auxiliary notation and results.

In order to deal more concisely with the dilations translations of a given function
we introduce the following notation. Given a function g: R — C” and given j € Z
and k € I', we write

g (@) = mIl? g(Aw— k) = mi/? g(AT(x — ATE))
to denote a translation of g by A=7k followed by an L?-normalized dilation of g
by AJ.
Our first observation is an immediate consequence of Grochenig and Madych’s
generalization of the Haar multiresolution analysis.

LEmMA 4.5. The collection
(X5 ezper = {m?* Xo(Az — k) }jezker
is complete in L2(R™), i.e., its finite linear span is dense in L*(R™).

PROOF. Let {V;}jecz be the Haar multiresolution analysis generated by Xg,
as discussed in Example 4.3. Then for each fixed j, the collection of translates
{ng}ker forms an orthonormal basis for the subspace V;. Since the union of
the V; is dense in L?(R™), the union of these orthonormal systems must form a
complete set in L*(R"). O
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Next, we will estimate the number of lattice translates of () which lie in the
interior of a dilated tile A7Q), j > 1. Note that the fact that Q is self-similar
combined with the fact that translates of @) tile R™ with overlaps with measure
zero implies that A7(Q is a union of exactly m’ translates of @), with each such
translate lying entirely inside A7Q (but not necessarily in the interior of A7Q).
Lemma 4.7 below will show that the ratio of the number of those translates @) + k
that intersect the boundary of 47() to the total number lying inside A7() converges
to zero. To state this more precisely, let us define for each j > 1 the following finite
subsets of I':

N; = {keT:Q+kcC AQ},

Ny ={kel:Q+kcC(AQ)°} (4.7)
N? = {keT:Q+kC AQ and (Q + k)N O(4Q) # 0}.
By the remarks above, we have the following relationships:
AQ = Q+ Nj,
#N;, = m/,

o (4.8)
NeUN? = N,

o o __
N;NNy = 0.

EXAMPLE 4.6. Consider the example of a uniform dilation of R?. That is, let
n=2,A=2I and I' = Z2. Then m = |det(A)| = 4. If we choose the digit set as
D = {(0,0), (1,0), (0,1), (1,1)}, then the tile is the unit square @ = [0,1]>. The
dilated square A7Q = [0,27]? is tiled by 47 translates of Q. It is easy to compute
directly the number of translates of Q that touch the boundary of A7Q. We find
that

#N; = (2 -2)° = 47 -2 44,
#NP = 4/ — (21 -2) = 27%7 4

Hence, the ratio #N? /4/ approaches 1 as j increases, and the ratio #N7 /47 ap-
proaches 0. %

The following result generalizes Example 4.6 to the case of an arbitrary dilation
matrix, showing that #—NJ‘-’ is asymptotically on the order of m?. This result can
also be interpreted as an evaluation of the Beurling density of the lattice I'.

LEMMA 4.7.

#N° #N?
lim J =1 and lim J
jooo mid j—oo md

= 0. (4.9)

PROOF. For each j > 1, define
G; = A*j(Q—f-N;) = U 49Q+k).
kEN?
By definition, G; is the union of all translates A~7(Q + k) that are contained
within °. Each such “small tile” A7 (Q + k) is itself tiled by “smaller tiles” of
the form A=7=1(Q + £). Those “smaller tiles” must be contained in Q° since they
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are contained in A77(Q + k). Hence G is covered by translates A=771(Q + ) that
are all contained in °, and therefore G; C G4 for all j > 1.

Since G; C @° by definition, we have UG; C ()°. We claim that, in fact,
UG, = Q°. To see this, note that since A~! is contractive and @ is bounded, the
diameter of A~7() converges to zero as j increases. Further, translates of A=/ by
elements of A7/T cover all of R, i.e.,

AQ+ATT = JAIQ+Fk) = R"
ker
Let © € Q° be fixed. Then dist(xz,dQ) > 0. Hence, if j is large enough then there
will exist some translate A=7(Q + k) that lies entirely within Q° and contains z.
Hence = € G; for that j. Thus Q° C UG}, as claimed.

Now, since the sets G; are nested and their union is °, their measures must
converge to the measure of Q°, i.e., |G;| = |Q°| = |Q|. However, since | det(A™1)| =
m~! and since [-translates of () have overlaps of measure zero, the Lebesgue mea-
sure of G; is

Gl = [A7(@Q+N;)| = m™|Q+N;| = m™ |Q| #N5.

The first limit in (4.9) therefore follows. The second limit in (4.9) follows from the
first limit and the relationships in (4.8). O

For later use, we now prove a technical lemma on the relationships among a
set of tiles that cover an open ball B in R". Let ) be the minimal set of lattice
points k € I such that @) + k covers the ball B. The following lemma characterizes
those translates () + v of @ for which it is possible to translate () + v by elements
of Q so that one translate Q + v + k with k& € Q lies entirely within A7Q and
another translate Q + v+ k' with &' € Q lies entirely outside of A7Q (neglecting its
boundary).

LEMMA 4.8. Let B be an open ball in R™, and define

Q={kel:(Q+k)NB#0}. (4.10)
Let v € T'. If there exist k, k' € Q such that
Q+k+y C AQ and Q4K +v C R\ (47Q)°, (4.11)

thenye NP —Q={l-w:leN? weQ}.

PRrOOF. Note that Q is finite and that B C @ + Q. Additionally, by definition
of Q,

Q@+Ek+7)°N(B+7) #0 and  (Q+K +7)°N(B+7) # 0.
Combined with (4.11), this implies that
(AQEN(B+7) £0 and R\ Q)N (B+) £ I

Since B+ is convex, there must therefore exist a line segment L entirely contained
within B + 7 having one endpoint in (47Q)° and the other in R" \ 47Q. Let
y € LNO(A’Q). Then there is some £ > 0 such that the open ball B(y,¢) centered
at y with radius € lies entirely within B + ~.

Since y € 0(A7Q), there exists some £ € NJ‘? such that y € @ + ¢. Then
B(y,e) N (Q + £)° # 0. Let z € B(y,e) N (Q + £)°. Since z lies in the interior of
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() + ¢ and since translates of () intersect only on their boundaries, we know that
@ + ¢ is the unique lattice translate of () that contains z. However,

z € B(y,e) C B+7 C Q+Q+1,

so we must have £ = w + 7 for some w € ). Consequently, vy ={¢—w € Nj8 —Q, as
desired. O

Our final lemma refines the estimates made in Lemma 4.7.

LEMMA 4.9. If Q is any finite subset of ', then
lim #(N]‘? \ ((N]f9 - Q)n Nj))

j—oo mJ

= 1.

PROOF. Note that
#(N? —)NN;) < #(N? -Q) < #N? - #Q.

Hence,

#N; —#N] - #Q < # NG\ (V] - NN) < #N].

The result then follows from Lemma 4.7. O
Now we can give the proof of Theorem 4.4.

PROOF OF THEOREM 4.4. Suppose that the hypotheses of Theorem 4.4 are
satisfied. Note that properties (P2) and (P5) are trivially satisfied by the definitions
(4.2) and (4.3).

(b) Suppose that (P1) is satisfied. It then follows from (P2) and (P5) that

{m'? p;(Az — k) Yper, jo1,..r (4.12)

is an orthonormal basis for V;. By (P1) we have p; € Vo C V; fori =1,...,r. The
expansion of y; with respect to the orthonormal basis given in (4.12) is

T
pilr) = mY Y (pi(@), pj(Ax — k) @;(Az — k).
j=1keT
However, since ¢; has compact support, only finitely many terms in this series can
be nonzero. Combining these equations for i = 1,...,r, we find that ¢ satisfies a
refinement equation of the form (4.5).

Conversely, if ¢ satisfies a refinement equation of the form (4.5), then each
translate ¢;(x — k) is a finite linear combination of the functions ¢;(Azx — ¢), each
of which lies in V;. Since Vj is the closed linear span of the functions p;(z — k), it
follows that Vo C V. Property (P1) then follows from this and the definition (4.3).

(a) As remarked above, the fact that (P2) and (P5) are satisfied is trivial. To
show that (P3) holds, note first that {@i'7k}ker’i:1’___’r is an orthonormal basis for
the subspace V;. Therefore, if we let P; denote the orthogonal projection of L?(R™)
onto V;, then for each g € L?(R™) we have

I1Piglize = > Ko o). (4.13)

i=1 kel
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To prove (P3), it suffices to show that
Vge L*(R"), lim ||Pjgllz = 0.
j——o0

Moreover, it suffices to establish this limit for g contained in a complete subset of
L?(R™), i.e., a subset whose finite linear span is dense in L*(R"). We will do this
for the particular complete set given in Lemma 4.5, i.e., we will show that

VseZ, V(eT, lim [[P(X5)|lz2 = 0.
Jj—>—00

Fix any particular s € Z and ¢ € I'. Note that since m = | det(A)|, we have for
every j € Z that

AQ+ 0] = m! |+ = m!* Q).

Further, since A~! is contractive, the sets 477%(Q + ¢) for j < s are all contained
inside a single compact set F. Also, the functions ¢; are compactly supported, so

K = supp(e) = U supp(p:)
=1
is compact. Therefore, there can be at most finitely many translates of K that
intersect F, i.e., the set

— {keD: (K+k)NF#£0}

is finite. Applying (4.13) to g = XZ;Z and using the facts above, we therefore

compute that

Y
1P (X172

>y

i=1 kel

=mHZZ

/ pi(lx — k) dx
i—1 kel /AT (Q+0)

< WZZ [ et bPd

Q) ZZ/ e e (4.14)

i=1 keg 1A

/ms/2XQ Sw—0)mi/2 p;(Alz — k) dx

2

the inequality in this calculation following from Cauchy Schwarz. Since each ¢; lies
in L2(R™), since the sums in (4.14) are finite, and since the measure of A7~%(Q + /)
converges to zero as j — —oo, it follows from (4.14) that ||P; (XZ;)H%2 — 0 as
Jj — —o0.

(c) Note that if

Vge L*(R"), 'le \Pijg — gl = 0, (4.15)
j [oe)

then Property (P4) is satisfied. Further, if ¢ is refinable, then by part (a) we
have V; C Vj41 for all j € Z, and therefore (4.15) is equivalent to Property (P4)
when this additional assumption of refinability is satisfied. Therefore, to prove
Theorem 4.4(c), it suffices to show that equations (4.15) and (4.6) are equivalent.
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Let us first reformulate (4.15). By orthogonality we have ||g—P;g||3. = [|g|[32—
|Pjgl|3=, so we can rewrite equation (4.15) as

Vge (R, lim [Piglee = lglle- (4.16)

As in the discussion for the proof of part (a), equation (4.16) is valid for all g if
and only if it is valid for the specific functions g = XBZ with s € Z and £ € T'. For
the function X itself, we have from (4.13) that

2

1IP0I = 325 | [ Xola) mi (A = F) da
i=1 ker
: ZZ/ (z—k)d 2 (4.17)
= wilr — T .
m i e 14
For the function XZ;(T) =m?*/?Xg(A®z — ), we have for j > s that
r 2
IO = S5 | [ m*2 Xo(os — OmI pilAa B do
i=1 kel |*
1 < 2
= — (z— (k—A77°0))d
mi z;% /AwQ%(m ( ))de
=993 | e 2
= - wilr — T
md—s$ e Ai=sQ
= [|1Pj-sXqll7-- (4.18)

For the third equality in this calculation, we re-indexed the summation over k,
using the fact that A7=%¢ € T since j — s > 0. Comparing (4.17) and (4.18), we
conclude that (4.16) is valid for all g if and only if it is valid for the single function
g = X¢. Further, since (4.15) and (4.16) are equivalent, we conclude that (4.15) is
equivalent to the statement

lim [|P;(X)llZ> = IXellZ> = 1QI.
j—oo
Hence, to prove that (4.15) is equivalent to (4.6), it suffices to show that
T 120 = 3 i) (419)
i=1

To estimate [|P;(Xg)||32, we will break the summation over I’ appearing in
(4.17) into three regions related to the support of the functions ¢;, and then estimate
the integrals corresponding to each of these regions in turn. The idea behind this
division is that if K = supp(y), then the first region should essentially contain only
elements k of the lattice T’ such that K + k is sure to lie in the interior of A7Q, the
second region should contain those k for which this translation will intersect the
boundary of A7(), and the last region should be the complement of the first two.

More precisely, let B be any open ball in R™ which contains both ¢ and
K = supp(y), and define € by (4.10), i.e.,

Q={kel:(Q+k)NB#0}.
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Note that € is finite, that B C @ + (2, and that 0 € Q) since () C B. Then for each
j > 1, define:

]‘_‘11]' = N;\((N]aiﬂ)mN]‘%
Iy; = NJ—Q,

35 = T\ (I, Ul;),

where the sets N;, N and Nj8 are as defined in (4.7). Note that for each j, the
sets I'1 j, ['s 4, I's ; partition I'. Further, by Lemmas 4.7 and 4.9 we have

T . T, -
m LM and lim L2 _ g (4.20)
j=oo mJ jooo mi
Now define
1 r 2
Ryj = m; > /Astoi(a:v)dz v=1,2,3

Then, by (4.17),
IPj(XQ)lI7> = Ruj+ Roj+ Rs,j.
Therefore, to prove (4.19), it suffices to prove the following three statements:

lim Ry = Y [@OF,  lim Ry =0, and  Ray = 0forall .

i=1

(Rs3.j) Suppose that R3 ; # 0 for some j. Then fAjQ iz — ) dx # 0 for some

v € I's ;. This implies that A7Q N (K + ) must have positive Lebesgue measure.
Since K C B C Q + , and since the only translates of ) which intersect A7Q in
sets of positive measure are translates lying entirely within A7(Q), this implies that

Q+k+vy C AIQ for some k € Q. (4.21)

Now, we have that Nj8 C (Nj8 — Q) N N; since 0 € 2 and Nja C N;. Hence

Nj = .ZV;U.ZV]{3 C FLJ‘UFQJ‘.

Since v € I's;, we must therefore have v ¢ N;. By definition of N, this implies
that )+ is not contained in A47Q. Therefore Q@+~ C R™\ (47Q)°. Consequently,

Q+0+~ C R"\ (47Q)°, (4.22)

and since 0 € , it follows from Lemma 4.8 applied to (4.21) and (4.22) that
v € Nj8 —Q =Ty ;. This is a contradiction, so we must have R3 ; = 0.
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(Ra2,j) Since ¢; is compactly supported and square-integrable, it is integrable.
Therefore,

Ry; = WZ Z

INA
Mﬁ
=0
—
;E\
5
D
=
N
(V]

C#Fz,j
SO RQJ‘ —0 by (420)

(R1,j) Suppose that v € 'y ;. Then v € N7 and v ¢ (N]a — Q). By definition
of N, we therefore have @ +~ C (47Q)°. Since 0 € Q and @ + 0+ C (47Q)°,

Lemma 4.8 implies that Q + k + 7 is not contained in R™ \ (A7Q)° for any k € Q.
Since A7(Q) is closed, this implies Q + k 4+ v C A7Q for all k € Q. Hence

K4~y CB+y C Q+Q+y C AQ,
SO
| eita-nde = [ gia-nde = 400,
AiQ

Therefore, by (4.20)

1
R, m—gz /A]Q%(rwdr
#FLj - S 2
= T o)

4.2. Wavelets Associated with a Multiresolution Analysis

In this section we will assume that a multiresolution analysis of multiplicity r
is given, and we will discuss the problem of the existence and construction of an
orthonormal wavelet basis for L?(R") associated to this MRA.

Assume that ¢ generates an MRA. Since Vy C Vi, there exists a subspace
Wy C Vi that is the orthogonal complement of Vy in V;. That is, all vectors in
Vo are orthogonal to all vectors in Wy, and V; is the direct sum of Vy and W,
ie, Vi = Wy @ Vy. For each j € Z, let W; be the subspace obtained from W,
analogously to how the subspace V; is obtained from V. That is, we let W; consist
of the dilation by A7 of all the functions in W, i.e.,

W; = {g(Alw) : g € Wo}.
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Then we see immediately that W; is the orthogonal complement of V; in V4. In
particular, V11 = W; @ V; for every j € Z. Iterating this fact, we have that if
j > 0, then

Vj+1 = Wj O] Vj

W; e W; 10V

(4.23)

= Wj@ijl @"'@ij@vfj.
Since UV; is dense in L*(R™) and NV; = {0}, if we let j — oc in (4.23) we see that
L*(R") = @ W;. (4.24)
JEZ

Furthermore, W; L W, when j # k, so (4.24) is a decomposition of L?(R") as a
direct sum of orthogonal subspaces. Hence, if we can find an orthonormal basis B;
for each space W;, then UB; will be an orthonormal basis for L?(R"). Moreover,
since each space W; is a dilation of Wy, once we have an orthonormal basis By for
W, we can obtain an an orthonormal basis B; for W, simply by dilating all the
elements of By by A’/ and normalizing the results.

Hence our task reduces to finding an orthonormal basis for W,. We will seek a
basis consisting of the lattice translates of a set of m — 1 vector functions

e = (Pea,... )" € LR, CT), =1,...,m—1.
That is, we seek an orthonormal basis By for W, of the form
Bo = {tei(x — k) }rer,i=1,...r,e=1,....m—1-

This should be compared to the orthonormal basis for V, given by (4.1). If such a
basis can be found, then

B = {m*¢ri(Ax — k)}rer.ic1..ri=1...m1

{¢ij}ker,i:1,...,r,z:1 ..... m—1

will be an orthonormal basis for W;, and therefore

U B; = {ﬁ:f}ker,i:l,...,r,Zﬂ ..... m—1,jeZ (4.25)
JjE€Z
will form the desired orthonormal multiwavelet basis for L?(R™). In this case, the
r(m — 1) functions {¢¢; :i=1,...,r, £ =1,...,m — 1} are the multiwavelets (or
simply the wavelets) that generate this basis.

ExamMpLE 4.10. For motivation, let us review the one-dimensional, single-
function case. Specifically, consider the case n = 1, r =1, A =2, I’ = Z, and
D = {0,1}. Assume that ¢ € L*(R) generates an MRA for L?(R). Since m = 2,
we seek a single wavelet 1) € L?(R) such that {1(z — k) }xecz forms an orthonormal
basis for Wy. Once this function is found, the orthonormal wavelet basis for L?(R))
given by (4.25) will have the form {¢9%}; rez.

The classical technique for finding this wavelet ¢ is as follows. The vector
scaling function ¢ satisfies a refinement equation of the form ¢(x) = >, .7 cx ¢(22—
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k). The symbol of this refinement equation is the 1-periodic function mqy € L?[0,1)
defined by
mo(w) = % Z cpe 2Tk w € R.
keZ
Note that if only finitely many coefficients ¢j are nonzero, then my is actually a
trigonometric polynomial. This symbol my is the unique function such that

P(2w) = mg(w) p(w), w € R.

It can be shown that the function ¢ € L?(R) whose Fourier transform is defined
by

V(2w) = mi(w)Pw), weR (4.26)
is a valid wavelet associated with this MRA if and only if m,(w) € L?[0,1) is a
1-periodic function such that the matrix

mo(w)  mo(w+ 3)

M(w) = [mi(w + %)] (4.27)

B=0L g (w) mg (w4 3)

is unitary for almost every w. The success of one-dimensional wavelet theory is, in
part, based on the fact that it is possible to constructively find such functions m;.
For example, we can take

ml(w) _ - Z (_1)k e1k 6727rz'ku.)7

in which case (4.26) implies that
bl@) = Y (=D e wee—k)
keZ
generates a wavelet basis for L?(R) [Dau92]. &

The results stated in Example 4.10 can be extended to the case of multivariate
wavelets with arbitrary multiplicities and dilation matrices. We will state the rel-
evant results here without proof, and for simplicity of notation we will restrict to
the case where the lattice is I' = Z".

Let {V;} ez be an MRA of multiplicity r with associated vector scaling function
0= (p1,...,0.)T € L2(R"™,C"). Then ¢ satisfies a refinement equation of the form

p(r) = D oAz — k)
kel

for some matrices ¢; in C"*". The symbol of this refinement equation is the 1-
periodic matrix-valued function My € L?([0,1), C™*") defined by

1 .
M, I —27mik-w n
o(w) m Z Ci € , w€R
kel
This is the unique function satisfying
pA'W) = My(w)pw), weR™

Now suppose that M;y,..., M,,_1 are l-periodic matrix-valued functions in
L2([0,1), C™*7). Let us write these functions together with the function My as

1 .
My(w) = EZche*?’”k"”, £=0,...,m—1.
kel
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In particular, this means that ¢, = ¢o . Let 91, ..., ¢¥,—1 be the vector functions
in L2(R", C") whose Fourier transforms are defined by the formula

be(A'w) = Myw)plw), L=1,...,m—1.

We seek necessary and sufficient conditions on Mj, ..., M,,_1 such that the lattice
translates of {¢py; : £=1,...,m—1,i=1,...,r} will form an orthonormal basis
for Wy. These will be formulated in terms of a matrix M (w) analogous to the one
defined in (4.27) for the one-dimensional case. Specifically, we choose a complete
set of representatives 7o, ..., ym—1 of Z"/A*(Z"), and then define a matrix-valued
function M(w) in block form by

M(w) = [M;(w+ B*ryj)]i,j:O,...,mfl )
where B = A1, Note that M(w) € (C™*")™*™ for each individual w. We will say

that M is unitary a.e. if for each 7, j = 0,...,m — 1 we have
m—1
Z Mi(w + B*y,) Mj(w+ B*y) = 0ijl,x, forae weR"
k=0

Then we have the following theorem, whose proof is straightforward.

THEOREM 4.11. Let {V;}jez be an MRA for L*(R™) of multiplicity r. Then,
using the notation above, the following statements are equivalent.

(@) {¥e,i(x — k) }ker,i=1,..r e=1,.. m—1 forms an orthonormal basis for Wy.
(b) M is unitary a.e.

(€) =D jer Cik CGray = 00w 0ijlrsr forvel andi, j=0,...,m—1

Thus, once an MRA has been found, we can construct a wavelet basis for
L?(R™) if we can construct a particular unitary matrix function M(w). For each
w, the matrix M(w) is of size rm X rm, and the first r rows of this matrix are
known. If the remaining rows can be completed so that M (w) is unitary a.e., then
we can find the wavelets that generate the wavelet bases. Equivalently, we can try
to solve the non-linear system of equations in (c).

The question of whether this completion can always be accomplished is a very
difficult open question. It has been shown that if (2m — 2)r > n then M(w) can
always be completed so as to be unitary a.e. However, even in this case it is usually
difficult to complete the matrix in such a way that the associated wavelets have
some specific properties. For example, it is not known whether, given a compactly
supported vector scaling function, the matrix can be completed so that the wavelet
is compactly supported. The existence of a wavelet set associated to an MRA for
the case of a uniform dilation of R™ was proved by Grochenig [Gro87], and is
reproduced in [Mey92]. Results for a general dilation matrix A with multiplic-
ity 1 are described in [Woj97]. The multivariable, multiwavelet case for a uniform
dilation is studied in [AK97], cf. also [Che97].






CHAPTER 5

Examples

In this chapter we will show how the results of the previous chapters can be
used to construct wavelet bases. We first apply them to a known example of
a nonseparable orthonormal wavelet basis, and then use them to construct new
examples of nonseparable orthonormal multiwavelet bases.

In Section 5.2 we will discuss the Kovacevié—Vetterli scaling function. This is a
known example of a nonseparable, continuous, compactly supported function that
is refinable with respect to the quincunx dilation matrix

A:“H, (5.1)

and which has orthonormal lattice translates. We use our techniques to obtain a
numerical verification of the continuity of this scaling function.

In Section 5.3 we will construct new examples of nonseparable, continuous
vector scaling functions with multiplicity » = 2 that are refinable with respect to
the quincunx dilation A, have orthonormal lattice translates, and have accuracy
equal or greater than the Kovacevic—Vetterli scaling function. Additionally, we
construct the multiwavelets corresponding to the MRA generated by these scaling
functions, thus obtaining new multiwavelet bases for L?(R?).

Note that for the quincunx dilation A given in (5.1), we have m = | det(4)| = 2.
The corresponding lattice is I' = Z2, and we fix the digit set as

D = {(0,0), (1,0)}.
With this choice, the tile () is the parallelogram with vertices

{(0,0), (1,0), (2,1), (1, 1)}

This tile is pictured in Figure 2.1 in Chapter 2.

We will use the notation developed in previous chapters, applied now to the
specific setting of the quincunx matrix. In particular, the techniques for char-
acterizing the accuracy of a scaling function were presented in the general set-
ting in Section 3.4. In the two-dimensional setting, the number of multi-indices

of a given degree s is ds = s + 1. We choose to order those multi-indices as
{(s,0), (s —1,1), ..., (0,s)}. With this ordering, the vector of all monomials of
degree s is
i
w§71w2 ‘
Xy () = Xpg(z1,20) = . . x=(11,2) €R

63
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For s = 0,1,2,3, the matrices A, introduced in Section 3.4 are given explicitly as

1 2 1
w334
1 3 3 1
"HINES
1 -3 3 -1

5.1. Numerical Estimates of the Joint Spectral Radius

The 2-JSR can often be computed exactly in terms of the spectral radius of a
single matrix [LM97], [Zho98]. For other values of p, it can be difficult to compute
the joint spectral radius exactly. In special cases, the uniform JSR can be computed
easily from the eigenvalues of the matrices A;. For example, if the M; commute,
or if they can be simultaneously triangularized or Hermitianized, then po.(M) is
the maximum of the absolute values of the eigenvalues of the M;. However, this
need not be true in general. It is true that if || - || is any matrix norm (i.e., a norm

on C**¢ which satisfies ||[AB|| < ||A]| || B]|), and we define
. _ 1/¢ 5 — 1/¢
0ot lr]ne% p(10) and Poo,b l'rlne% [|TT]]7,

then

Ooot < Poo(M) < Poo for every /. (5.2)
This provides one means for numerically estimating a uniform JSR, although the
number of matrix product computations involved grows exponentially with £. How-
ever, the fact that the norm is submultiplicative implies that the following branch-
and-bound algorithm, based on [DL92, Lemma 4.6], can be used for testing upper
bound conjectures, cf. [CH92].

PROPOSITION 5.1. Let M = {My,...,M,,} be a collection of s X s matrices,
and let || - || be any matriz norm on C***. Let § > 0 be given, and create a set Q
of matrixz products by implementing the following recursion m times, starting with
Il = M; in turn fori=1,...,m:

o IfTl = M., --- M., and ||TI||'/¢ < §, then let TT € Q. Otherwise, repeat
this step m times, replacing 11 by each of IIM; in turn fori=1,...,m.

If this recursion terminates, then

(M) < o) /4an < g,
pM) < max ||| <

where ((I1) is the length of the product I1. Moreover, this recursion must terminate
if 0 > p(M), and cannot terminate if 6 < p(M).
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FIGURE 5.1. Attractor K.

This algorithm yields much better estimates with far less computation than
the upper bound estimate given by (5.2), and often makes it possible to estimate
the uniform JSR of quite large matrices with reasonable accuracy. Some analysis
of the numerical accuracy of uniform JSR estimates is presented in [Gri96], and
some methods for evaluating the exact uniform JSR of some types of collections
M that cannot be simultaneously triangularized or Hermitianized can be found in
[Mae95], [BZ00].

5.2. The Kovacevi¢c—Vetterli Scaling Function

The Kovacevi¢ Vetterli (KV) scaling function was first constructed in [KoV92].
Until [BW99], it was the only known example of a nonseparable, continuous, com-
pactly supported function f: R? — C that is refinable with respect to the quincunx
matrix A and which has orthonormal lattice translates. The continuity of this func-
tion was conjectured in [KoV92] and was proved numerically in [Vil94b]. We will
apply our techniques to obtain another numerical verification of the continuity of
this scaling function.

The KV scaling function is the solution of the refinement equation

p(z) = Z cro(Az — k), r € R?, (5.3)
keA

for the following specific choices of A and ¢j. The support of the coefficients is the
following set of eight points in Z?:

A = {(1,1), (2,1), (0,0), (1,0), (2,0), (3,0), (1,-1), (2,-1)}.

The coefficients themselves are defined as follows. For k ¢ A let ¢, = 0. Then
define ¢, for k € A by

—a; —apax
[cklken = v | —az  —apas —ag 1 |,
apar1a2 —a10a2

where the origin corresponds to the coefficient —as and the scalar v is chosen so
that )" ¢, = 2. This gives a family of scaling functions, and the KV scaling function
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[ —0.2626160679713805  0.4298190662052453 |

€D T 1 0.0005574439165755  0.2030577672486814 |
[ 0.0012426482475807 —0.4949250389580165 |

€20 T | 0.0408719784870414 —0.1920926795673339 |
_ [ 0.4558392979832848 —0.1083434020875271 |

€00 = | 0.0706745015703368 —0.0873302642653203 |
[ 1.0347430408665290 —0.3333696001690321 |

€O T 1 0.0986292192873546  —0.1130957347361869 |
_ [ 0.0217227622514353  —0.1035804504304439 ]

€200 T | _0.7252848187529202  0.3286159537916353 |
_ [ 0.0135277690777398  0.1053548733239501 ]

€GO T 1 0.1754378582933197  —0.5539904957294699 |
_ [ 0.0618708039296100 —0.1876314721922069 ]
“U-1 T | —0.2843099059597212  0.5949251108985801 |
[ -0.0110715449521254 —0.1958066410598297 |
€2-10 7 | -0.1833149852352274  0.6670640666446144 |
v = [ 0.7920665605596084 —0.6104347333198465 |
_ [ 1.3824676038808285 —0.9905748274627678
YT 0.7387595389423293  —0.8523956367846645

TABLE 1. First set of scaling function coefficients.

corresponds to the specific choice
a(]:al:\/g, a2:2—\/§.

It follows from Proposition 3.3 that a compactly supported distributional solution
¢ to the refinement equation (5.3) exists. We will use the results of Chapter 3
to verify that this solution is in fact a continuous function, and to determine its
accuracy. It is shown in [Vil94b] that lattice translates of ¢ are orthonormal.

First, we need to construct appropriate matrices Ty for d € D = {(0,0), (1,0)}.
With A as given above, the attractor K, is the polygon with vertices

{(07 0) (07 2): (274): (574): (6: 3)7 (6: 1)7 (47 _1)7 (1= _1)}
This polygon is pictured in Figure 5.1. By Proposition 2.2, the KV scaling function
o will be supported within Kjy.

Let 2 C Z? be the set of 29 points with integer coordinates located within the
polygon with vertices

{(717 71)7 (717 1)/ (17 3)/ (57 3)/ (57 1)/ (31 71)}
This set 2 satisfies Ky C @ + 2, and, moreover, () is a minimal set with respect to
this property. Then T{g,g) and T\ o) are the two 29 x 29 matrices defined by (2.19),
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[ —0.0591314043961276  0.4450003769119938 |

‘LD T 0.3321995579351313  0.0104446670717889 |
_ [ 0.1114102151429672  0.2254590843848077 |

€D T 1 0.1195224265431005  —0.0593073985413613 |
_ [ —0.2940058981215972  —0.4268371360660582 |

€00 T | -0.2507164723775025 —0.0683481992678018 |
_ [ 0.6975221902082682  0.7758172235896774 |

€O T 1 0.1628550064232036  0.2857776144242880 |
_ [ —0.2453928326496505 —0.0256314044863859 |

€20 = | 0.5286726350756744  0.8784799148003067 |
_ [ 0.3472507659119894 —0.4193030011952396 |

‘GO T | 0.0296262444198484  0.6570307353565332 |
_ [ 0.0439292340612756 —0.0386497896067917 ]|
‘oD T | 0.0862583713567824  0.2000830628613316 |
_ [ —0.0603512059818823  0.1176289221695265 |
€217 | -0.3549334936719044 —0.1969015485750640 |
vy = | —0.4088232319356361 —0.9126135902060207 |
_ [ —1.6584856779704104 —3.8822641730301039
YT | —0.5869518169744740  1.9243182275157703
—6.5634917083549151 —16.5888850689201835

v = | —2.1313723063732684  —8.2979351401696652

—0.7721381710076713  —4.0891841779249179

TABLE 2. Second set of scaling function coefficients.

ie.,
T, = lcaj-rljrea  and T4 = [caj_pt(1,0)]jken- (5.4)
Now that the notation has been set, Theorem 3.12 and the remarks following
imply that the accuracy of the KV scaling function is determined by the system of
linear equations given in (3.18). All equations are given explicitly and exactly, and
it is easy to check that the system can be solved when k = 2, with solution

R e R

Furthermore, the system cannot be solved when k£ = 3, so Theorem 3.12 implies
that the KV scaling function has accuracy k = 2, i.e., lattice translates of ¢ can
reproduce exactly the constant and linear polynomials.

The vectors v, given above directly determine the the polynomials y, defined
by (3.14), and these in turn determine directly the vectors e, defined in (3.19).

3

U[O] = ['U(O,O)] =1 and 1)[1] = [
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[ —0.3241476668526600 —0.6891609781760360 |

oy = | 0.1112621003242060  0.3700696672377430 |
4. _ | 02450217157802530  0.5440585582667560 |
(217 | -0.1111644337484570 —0.3131767059736590 |
g _ [ 0.1342427066922970  0.3808586828404400 |
(000 = | 0.0008186524655252 —0.1911338850170830 |
4. _ [ 06742751905644570  0.2690352672180090 ]
(10) = | ~0.1654413591601810 —0.1668405479326910 |
g, _ [ 0.3023698075956100  0.1770706757135630 ]
(20 7 1 0.9358219858624430  0.2697411853489460 |
2. _ [ —0.1360696696971580 —0.0664413982427058 ]
(3.0 7 | —0.3653701762481760  0.0578802392135144 |

p [ —0.0602396080362104  0.3209360059587710 |
(=D = | —0.0280398654007565  0.4891511174577440 |

d _ 0.1319145112771960  0.3110132133387610 |
(-1 = | 0.3591016452044310  0.4405847665862590 |

TABLE 3. Wavelet coefficients corresponding to Table 2.

We now apply Theorems 3.4 and 3.17 to prove that ¢ is continuous. We apply the
Gram Schmidt procedure to {e(,0), €(1,0), €0,1)} to obtain an orthonormal basis
{€(0,0); €(1,0), €(0,1)} for their span, which is the space called Uy in the statement
of Theorem 3.17. At the same time, the Gram—Schmidt procedure can be used to
find an orthonormal basis Bg for the space F; = {6?070), 62*110), 6?0,1)}L' This yields
an orthonormal basis for C*? of the form given by (3.21). In this basis, T,y and
T(1 0y have the form given in (3.22). Theorem 3.17 then implies that

poc({T(0,0)lvo: T1,0)lva }) = max{ 5, po(Co.C1)}, (5.5)

where Cy and C are appropriate matrices of size 26 x 26. If this value is strictly
less than 1, then Theorem 3.4 implies that ¢ is continuous.

To estimate the joint spectral radius in (5.5), we fix a norm and then implement
the branch-and-bound algorithm of Proposition 5.1. We choose the norm to be the
matrix norm induced by the ¢! vector norm on C2®. Then, following the recursion
given in Proposition 5.1, a numerical computation of 1724 products of Cy and C4
yields the bound

Poo(Co, C1) < 0.999713 < 1.
This therefore confirms the numerical proof of [Vil94b] that the KV scaling func-
tion exists and is continuous. A deeper computation of 42748 products of Cy,

(4, combined with the fact that p(C;) < poo(Co, C1), yields the numerical bounds
0.93407 < joo(Co, C1) < 0.94.
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5.3. Nonseparable Quincunx Multiwavelets

In this section we will present new examples of nonseparable, two-dimensional,
compactly supported, continuous vector scaling functions of multiplicity 2 which
are refinable with respect to the quincunx matrix A, have accuracy k = 2 or 3,
and have orthonormal lattice translates. The coefficients for these examples were
provided to us by Anita Ruedin, see [Rue02] for related results. Ruedin used the
characterization of higher-order accuracy developed in [CHM98], [CHMO00] to
construct candidate sets of coefficients. We will now give a numerical demonstration
that these candidate vector scaling functions are in fact continuous, and we will
construct the corresponding multiwavelets as well.

We use the same sets A, K, and € as were used in the definition and evaluation
of the KV scaling function in Section 5.2. Let ¢ for k € A be 2 x 2 matrices with
unknown entries (a total of 32 unknowns). Suppose that there existed a solution ¢
to the refinement equation

plx) = Z e p(Az — k), r € R~ (5.6)
keA

If this solution has orthonormal lattice translates, then necessarily

Vi€Z®, Y ckciia; = 200l (5.7)
keZ?
Taking into account the support of the coefficients, there are only 5 values of j
for which (5.7) is nontrivial. This yields a set of 20 quadratic equations in the 32
unknown components of the cg.
Now let
_ — | Yo
vy = [l and  oopp = { Yo } ;
where v(g 0y, v(1,0), and v(g,1) are each unknown row vectors of length 2 (a total of 6
unknowuns). If ¢ has accuracy & = 2, then necessarily the equations in (3.18) must
be satisfied, since ¢ has independent translates. This is a set of 8 linear equations
in the variables that are the components of the c; and the vy).

Thus, if there exists a solution to the refinement equation (5.6) which has both
orthonormal lattice translates and accuracy k = 2, then a particular system of 28
linear and quadratics equations in 38 unknowns must be satisfied. Ruedin used a
numerical optimization routine to produce sets of coefficients which satisfy each of
these equations to within an accuracy of 3 x 10713, This set of coefficients is given
in Table 1. A second set of coefficients, given in Table 2, satisfies to within an
accuracy of 2 x 10712 all of the equations specifying the necessary conditions for
orthonormal lattice translates and accuracy k = 3.

This information is not yet sufficient to imply that vector scaling functions
with these properties do, in fact, exist. Proposition 3.3 does imply that compactly
supported solutions to the refinement equations whose coefficients are given by
Tables 1 and 2 do exist in at least the distributional sense. We will now demonstrate
numerically that these solutions are continuous vector scaling functions. To do this,
we apply Theorems 3.4 and 3.17, similarly to the verification that the KV scaling
function is continuous.

Consider the values given in Table 1 first. The given vectors vjg and v[;} directly
determine the polynomials y, defined in (3.14) and hence the vectors e, defined
in (3.19). The matrices Ty, T{(1,0) are defined by the equations given in (5.4),
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except, that the entries ¢; are now 2 x 2 blocks. Hence each of these matrices has
size 58 x 58. We make the change of basis to place T(g o) and T{; o) into the form
given in (3.22). Theorem 3.17 then implies that

poc({T(0,0)lvo: T1,0)lva }) = max{ 5, po(Co.C1)},

where Cy and C; are appropriate matrices of size 55 x 55. We use the matrix
norm induced by the ¢! vector norm on C°. Then, following the recursion given
in Proposition 5.1, a numerical computation of 1856 products of Cy and C; yields
the bound

Theorem 3.4 therefore implies that a continuous, compactly supported solution to
this refinement equation does exist. A deeper computation of 226130 products of
Cy, C1, combined with the fact that p(C;) < po(Co,C1), yields the numerical
bounds 0.714262 < f(Co, C1) < 0.85.

Theorem 3.4 also guarantees that the cascade algorithm converges. The vector
scaling function ¢ = (¢1,@s)T is pictured in Figure 5.2 using a grid size of 1/16.
The values at these grid points allow us to compute a Riemann sum approximation
to the inner products (g;(x — k), p;(z — £)). These values equal d;;0r, to within a
precision of 8 x 1073, which we take as a numerical verification that lattice translates
are orthonormal. Theorem 3.12 therefore implies that ¢ has accuracy k = 2, i.e.,
translates of ¢ can reproduce constant and linear polynomials exactly. For example,
we must have ),y 0)(k) p(z + k) = z;. In Figure 5.3 we show a partial sum of
this series. Numerically, the full series }, y(1,0)(k) f(z + k) equals x; to within an
accuracy of 4 x 10713,

Since ¢ has orthonormal lattice translates and [|¢(0)]|*> = 1, it follows from
Theorem 4.4 that ¢ generates a multiresolution analysis {V;} for L?(R?). We can
therefore use Theorem 4.11 to construct the corresponding multiwavelet basis for
L?(R?). Specifically, since m = 2, we seek matrices dy = c¢1 for k € A so that
the conditions in Theorem 4.11(c) are satisfied. The coefficients in Table 3 satisfy
these conditions numerically to within an accuracy of 5 x 10~!!. The corresponding
wavelets are shown in Figure 5.4.

Finally, consider the coefficients given in Table 2. These satisfy the necessary
conditions for accuracy x = 3. Because of the increased accuracy, we now have

poo({T(0,0) e T(1,0) v }) = max{ s, pos(Co, C1)}

with Cy and C being appropriate matrices of size 52 x 52. A numerical computation
of 403850 products of Cy and Cy, combined with the fact that p(C;) < po(Co, C1),
yields the numerical bounds

0.91127 < jo(Co,C1) < 0.999999 < 1.

Hence a continuous vector scaling function exists, and is pictured in Figure 5.5.
Translates of this vector scaling function can reproduce constant, linear, and qua-
dratic polynomials exactly. In particular, we must have

Z(y(z,o)(k) + Y(0,2) (k)) fle+k) = a7 +a3.
k

In Figure 5.6 we show a partial sum of this series. The corresponding wavelets
can again be constructed by numerically solving the conditions presented in Theo-
rem 4.11(c).
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FIGURE 5.3. Partial sum of ), y(1,0)(k) @(z+k) for ¢ correspond-
ing to Table 1.
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20

10 2

2

FIGURE 5.6. Partial sum of ), (y(2,0)(k) + y(0.2)(k)) o(z + k) for
@ corresponding to Table 2.
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Symbol

APPENDIX A

Index of Symbols

Meaning

transpose of a matrix B
Hermitian of a matrix B
={x € R" : dist(B,z) < €}
cardinality of a set F'
interior of E C R"

boundary of E C R"

closure of E C R"

Lebesgue measure of E C R"
iterate in the Cascade algorithm
Fourier transform of f
=mi/2g(Aiz — k)

A-nary expansion

dilation matrix

matrix related to dilation of X[, by A
open ball centered at z with radius e
space of J x K complex matrices
coefficient in the refinement equation
={di,...,dy}, digit set associated with A
number of multi-indices of degree s

= (ya())ken

= span{e? : 0 < |a| < s}

Hausdorff space

Hausdorff metric

attractor of IFS {wy }ren

= [CAifj]i,jEF

space of p-integrable functions g: X — C
space of p-integrable functions g: X - Y
— | det(A)]

symbol of the refinement equation
dimension of domain of scaling function
fundamental domain for I'/A(T)
orthogonal projection of L?(R™) onto V;
= Kp, tile associated with A and D
subset, of (), tiles without overlaps
“disjointization” of wg, (Q)

a matrix of polynomials related to accuracy

81

Discussion
2.1
2.1
4.2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
4.1
2.2.1

1.1,2.1
3.4

2.1

2.1
1.1,2.1
2.2

3.4

3.5

3.5
2.2.1
2.2.1
2.2.1
3.4

2.1

2.1

2.2

4.2
1.1,2.1

4.1
2.2.2
223
2.3
3.4
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p(M)
pp(M)

XEg

A. INDEX OF SYMBOLS

multiplicity of scaling function
refinement operator

support of f

matrix version of refinement operator S
= [caj—ktaljken

= span{e, : 0 < || < s}

subspaces in a multiresolution analysis
row vectors related to accuracy

= ['Ua]\oz\:s

orthogonal complement of V; in V4
affine map, wy(z) = A Y(z + k)

’LUH(B) = UregW} (B)

vector of all monomials of degree s

a vector of polynomials related to accuracy

= [yoz]\oz\:s
= (Y10z + k) er

= % S ek

Kronecker delta

lattice in R™ invariant under A
cosets of A(T)

unique element of Q N T
generators of the lattice I’
accuracy

support of coefficients in refinement equation
=A-D

folding of g

spectral radius of matrix M

p-norm joint spectral radius of set of matrices M

analogue of 2z mod 1 map
subset of T such that Ky C Q +
characteristic function of a set

1.1,2.1
2.1
2.1
2.3
2.3
3.5
4.1
3.4
3.4
4.1
2.2.1
2.2.1
3.4
3.4
3.4
3.4

3.2

2.1
1.1,2.1
2.2

3.6

2.2
1.1,3.2
1.1,2.1
2.2.3, 3.5
2.3

2.4

2.4

2.3
2.2.3
2.1



