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Abstract

We show, that the Hutchinson distance between discrete proba-
bility measures on spaces of finite dimension can be computed as a

network flow problem, and then be solved in polynomial time by ef-
ficient combinatorial methods. In the one dimensional case a linear

time method had been obtained earlier by Brandt et al. in [12]. This
new setting allows to compute this metric for higher dimensions. We

also show that the one dimensional formula has its counterpart in the
continuous case.
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1 Introduction

The problem of comparing two digital images has beerf widely studied, apq
generally requires a considerable amount of computation, cf. [17], and pef.
erences therein. If we are only interested in difterences of the geometry ,
structure of the images, the problem can be reduced to a comparison he.
tween two black and white images where scveral metrics that perform gycp
matching satisfactorily are known. In particular the Hausdorfl metric hae
proven to be very good in the analysis of shape. A very recent algorithp,
has been developed for the computation of this metric and 1t works in lineay

time on the number of pixels [21]. |
In the case of comparing gray level images, when comparing textures

for example, we have to consider more complex models. Measures have

been used extensively to describe colour and gray level pictures. The way
in which a picture can be associated with a measure 1s in the sense that
it represents the intensity of light reflected by each region of the picture;
e.g. regions including black portions and dark objects will be assigned less
measure, opposite to that for brilliant objects and white parts. Sometimes
it is convenient to normalize this measure in order to pertorm a better com-

parison.
Self-similar sets, e.g. sets that have some kind of scale invariant proper-

ties, or sets with non integer dimensions, have been studied for many years.
It was Mandelbrot [18] however, who called these sets ‘fractals’ and pointed
out the relevance of them to many fields. Fractal geometry, [16], [9], is now
very often used in computer science, specially in the analysis, synthesis and
representation ot digital images.

Measures represent a very useful model in representing images using
methods from fractal theory. Fractal measures, that started as the study of
measures supported on fractals, are showing to be a more complete model for
the description of certain objects and the modelling of certain phenomena.
In digital image processing, fractal geometry is used to model shape, and
fractal measures to render textures.

Further development and some very new research is showing that the
concept of measures on fractals as well as the concept of multifractality (re-
lated with the sets of points of certain mass density from a fractal measure)
represent a very promising aproach (cf [14, 23)).
generg: ;}:s?;l;:r ;i;lie, fractal methods provide a very pjwerful tool to

_ + ©71eS€ measures are obtained as a limit process, iterating
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Barnsley et al. [6], have show
; n that the ergodic )
- . properties of
process lead to a surprising algorithm tq generate images. Thlt)e frac:a;) mil:icel;

is formed by 3_' set of contractive maps and some asociated probabilit;

(iterat.ed fllll(fthIl systems). The successive aplication of these IIFI)a : ]:111 en
according to 1ts probabilities, gencrate 2 measure that represents fh(; imago.
For eac]fl_ set of maps {w;} and probabilities Pi,2=12..... N ZN H-nig?
there exists a unique compact set A, invariant und(;r :‘,he :‘pa,,ralli::il:(:tion”}
U£J=1 w;(A) = A; as well as a unique invariant measure it with support on
A. One of the most important advantages of this representation is the very
high data compression rate that can be obtained.

In [10]3[‘1 1]_ and [5] it is shown that the Markov chains obtained using
this probabilistic algorithm, can be mixed in order to enrich the class of
images that can be represented through this model.

An interesting problem asociated with fractal measures is the “inverse
problem of fractals”, where an IFS (iterated function system) has to be
determined in order that the measure it defines approximates a given target
image (see for example [8],[15], [24]).

One of the most remarkable results in that direction is given by the
collage theorem: If a set or measure can be tiled with copies of itself to
an arbitrary accuracy, then it is close in metric to the attractor or invari-
ant measure of the IFS which produces the tiling. (See [4] for the precise
mathematical formulation.)

Since most of the results obtained for IFS’s are consequence of the
contractivity of the maps, the election of suitable metrics plays a very im-
portant role in the setting of the model. In the case of digital images, the
selected metric has to take into account what is meant by ‘visually close’.
Different metrics will give different notions of closeness.

The Hutchinson distance provides us with a tool that not only takes
into account the ‘visual closeness’ of two pictures, but also allows formal-
ization of the theory of IFS for measures. Some of the advantages of this
metric have been pointed out in [22]. |

In the computational setting (for the direct, as well as jfor the inverse i
problem) a numerical calculation of the distance 1is needec} in order t:a es-
timate the error. Hence, a fast algorithm to calculate this dlsl-;a.nce IS an :
essential tool. For the one-dimensional case the Hutchins'(m dlsta.l}ce a.c'l- i
mits a very simple representation (12] from which a linea:r time algorithm 1s
derived. This representation is no longer true in dimension 2 or more.

Let us remark here, that although the 2 dimensional case is the mf)st
important for images, there are applications such as fractal interpolation

where higher dimensional IFS are considered ([3],[7],[19]).



in [12] to the continuous

m&:mwwl_

fizt+e)—f=N<1, 1<j<k zxeXadxrte€X (2)
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where€ _
Lipy ={f: X — R : Lip(f) <1}

?

and

Lip(f) = sup Jf(fff‘) — f(y)] |
TFY d(.’E, y)
et us point out, that due to the fact that

f € Lipy <= f + c € Lip,

and /deu-—-/der/=/X(f+c)du-/X(f+c)du, ceR, (4)

the supremum in equation (3), can be taken over a subset of Lip,.

3 One-Dimensional Hutchinson distance

In the one-dimensional case X = {1,..., N} and equation ( 1) becomes:

N
dH(ﬂaV)':S‘}P{Zfi(Nz’“Vi) . |fi — fir] £1 z’=1,...,N—-1,f1=0},
g=1

with o = (p1,..., UN) , V = (v1,...,vN) such that Eﬁ__.lm = )3{;1:/,- 3

The additional condition f; = 0 comes from (4).
A very simple formula for this equation has been derived [12]:

N-1

dH(/J'! V) — Z |S£|

£=1

4
where &y = Z(ﬂi — U;).

1=1

From this formula one can see that in order to determine the Hutchinson

distance between p and v we need only compute Sg for £ =1,... N — 1.
This formula can be generalized to the continuous case. If p and v

are two Borel regular measures on (0, 1], we can think of Sy of equation (3)
above as being the distribution function F,, of the signed measure 1) = p— V.

That is Fy(z) = n([0,z]) = u([0, z]) — v([0,z]). Formula (3) can then be

written as an integral.
Let us therefore state the following theorem which we will prove in the

appendix.
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iheorem 3.1 If X = [0,1] and M(X) is the set of all Borel regulay y,
’ res on X, then the Hutchinson distance dy between two measures . €a-
tn M(X) as defined in (3) becomes: and

) = [ 1Fy(o)lda
where n=pn—v and Fn(:n) = ([0, z]).

*Unfortunately this is no longer true, neither in the continuous noy ;
the discrete case for higher dimentions as is shown in the appendix. We ha,m
bee'n able, however to reformulate the problem as a network flow proble -
which can then be solved (in any dimension) in polynomial time. .

| For the convenience of the reader, we will concentrate on the tw
dimensional case. ’

4 Network Flows

Network flow problems are linear programs like

minimize cx
subject to
Ax=b., .20 (9)

where each column of the matrix A has exactly one coefficient equal to 1,
exactly one equal to -1 and all other coefficients equal to 0. It follows that
the components of the vector b should sum up to zero. A reference for
linear programming is the book of Chvatal [13] and a survey of network flow
algorithms has been published by Ahuja et al. in [1] and [2].

One can associate a graph to the matrix A as follows: To every row 1 we
associate a node. If a column has a —1 in row k£ and a 1 in row ¢ we associate
an arc from node k to node ¢, the value of the variable corresponding to this
column is called the flow from k to ¢. The value b; associated with row 2 18
the net flow into i. Problem (5) consists of finding a flow of minimum cost.

For example the graph in Figure 1 corresponds to the matrix A below.

-1 -1 0 0 O

1 o0 -1 -1 O

A= o 1 1 0 -1
o 0 0 1 1
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The dual problem is always of great significance: The dual problem
of (5) 1S
maximize by
subject to (6)
Aty < ¢t
So (6) is a linear program where every inequality has a 1 and a —1
coefficient, and the components of the objective function sum up to zero.
In the last few years, we have seen a growth in the variety of available

network flow algorithms, for instance the algorithm of Orlin [20] requires 1n

the worst case O((plogp)(m + plogp)) operations, if A is a p X m matrix.
From the empirical point of view, the network simplez method has shown a

very good performance.

5  Reduction to a network flow problem

The two-dimensional problem given by Equation 1 can be formulated as:

ooon Fipna] €1 =1 N=1ji=1,..., ¥}
{E fii(pij — vij) : | fis — firrgl = 1, }

maximize
f

This can also be written as
maximize £ f;;(pij — Vij)
subject to (7)
-1 ..<..ftj "f*i+1,j < 1,i=1,...,N-—1;j= 1,...,N;
—1 S fij "'.fi,j—f-l ﬁ ].,‘?, — 1,...,N;j == 1,...,N-— 1.
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This is a linear program whose inequalities have a 1 and a —1 coeffi-
cient, and the sum of the coefficients in the objective function is zero, i.e.,
this is the dual of a network flow problem. The associated graph is the grid
in Figure 2. This is a graph with N 2 nodes and 2N?—2N arcs and therefore,
as mentioned in the last section the problem can be solved in O((N?log N)?)

operations.
Note that this analysis is independent of the dimension, so the three-dimensional

case can be handled in an analogous way:.
For the one dimensional case the associated graph is in Figure 3. A

network flow problem for this type of graphs can be solved in linear time, so
this gives an alternative linear time algorithm for the one dimensional case.

If one uses the network simplex method for solving the two dimensional
case, one has to compute the so-called basic solutions of linear programming.
Choosing a basis can be seen as choosing a one dimensional approximation
to the two dimensional problem. When the simplex method finds an optimal
basis, 1t would have found a “right” one dimensional approximation.
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g Conclusions
we showed in this paper, that the proble ‘ |
distance between two probabili m of calculating the Hutchinson

ty measures can be se :
problem. Therefore all the tools of that field are ava;zbalz ?nns:(?;(;rtoﬂ;):

velop algorithms, wh%ch taking into account the structure of this particul
pI'Oblem? may result in even better computation time P
This result becomes particullarly relevant, when it is clear that the

formula found in [12] can not be used for dimension 9 Or more, i.c. the most
important case for image processing. , 1.C.

Here we presented an application of the computation of this

di
in order to compare digital Istance

_ o ‘ images, but there arc many other applications
in which it 1s desirable to compare measures using this distance, hence this

algorithm will provide the tool for a fast computation.
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A Appendix
We will now prove the theorem of section 3.

Theorem 1 If X = [0,1] and M(X) is the set of all Borel regular measures
on (0,1}, then the Hutchinson distance dy between two measures p and v in

M(X) becomes 1
du(p,v) = | |Fyfa)lda

where n=p—v and Fy(z)=n([0,z]).

Proof: If we denote by A the Lebesgue measure on 0, 1], let us consider

the set

B = {(z,y) € [0,1] x [0,1],: z < y} with the product measure ¢ = A ® 7).
Now, if f € Lipy then f is continuous on 0, 1] and differentiable a.e..

On the other hand, if we consider the function:

o(z) = { f'(x) if it exists |

0 elsewhere

then g is A-integrable on [0, 1], and h(z,y) = g(z) is g-integrable on B. Using
Fubini, we obtan:
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A} PRl e f()n([0,1]) - /{; o f'(x) Fy(z) do.
Since = p — v, ([0, 1]) = 0 and hence

dn = — :
0.1 fdn 0.1 f (x)Fn(-'E) dx. (g)

(8)

Then

dp(p,v) = sup qu < sup
J€Lip, fELip;

/ d d"’ < sup [ (F(@)I1Fy(3)| dg,

f€Lipy

But since [f'(z)| < 1 a.e., di(u,v) is therefore bounded as
d < =
i) < [ |F(@)lda = 1Byl (10

To complete the proof, we now exhibit a function fO € Li
. P1 such th
[x fOdn = [Fyll. )

1 if F(z) >0

Consider first g(z) = —sg(Fy(z)) = ¢ —1 if Fy(z) <0 .
0 if F(z) =

Then |g| is integrable on X and

r 1
f0=/0 g(t)dt—/o g(t)dt is in Lip;, ie, it 0 <z <y <1

@) - L@l = [ 9® dt[ < [loldr< [ dt=y-z=ly-=

Now, by equation (9)
/de"? — ""/Xf"(fb‘)Fn(il?)dm = /X]Fn(m)]da; = "Fn”b

Therefore we obtain the desired result:

d(p,v) = |Fylh = 1Fu — Evllz-

.

that this result is not gen-
(X, d) to be the [0, 1)
egment of the unit
Consider also

Remark: It is interesting to remark here,
eralizable to higher dimensions: Therefore consider
with the euclidean metric. Let S, be the horizontal s

square at height r, i.e. S, = {(z,7):0< T < 1}; 0<r <L
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measures /i and v, i # v in M(X) and such that the support of u and v are
included in Sy. If dy(p, v) denotes the Hutchinson distance in M(X), then

fn=p—V and Fy, = F,, — F,, is the distribution function of 1,

[P vl dedy = (@ )il w) < dm(uy.

(Here d}; (1, V) represents the 1-dimensional Hutchinson distance between
and v considered as 1-dimensional measures on Sr).



https://www.researchgate.net/publication/266194786

