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1 Introduction

Cantor sets are sets that can be constructed in a similar fashion to the classical middle third Cantor set
but rather than using the ratio 1/3 at each step, we allow the removed intervals to be variable in length
and not necessarily centered.

Cantor sets appear in many different settings - and very often one is interested in knowing if the sum
(or difference) of two Cantor sets has positive Lebesgue measure. For example, in dynamical systems,
in connection with the study of homoclinic tangencies Palis asked if the difference of two Cantor sets is
either of Lebesgue measure zero, or contains an interval ([10], pg. 151). This is known to be false in full
generality (see for example [12], [1]), however it is of interest to know for which Cantor sets it is true.
Sums of Cantor sets arise in connection with the study of intersections of translates of Cantor sets [7],
and their topological structure has been studied in [8]. In harmonic analysis, sums of Cantor sets have
been studied by Brown and Moran ([4], [3]) in connection with understanding the algebraic structure of
the space of measures.

In this paper we concentrate on the question of whether there exists an integer n such that the Lebesgue
measure of (n)C' = C + - -+ C is positive, as is well known for the middle third Cantor set with n = 2
~———————

(c.f. [13], [2]). We prove that for certain Cantor sets which admit a construction with ratios of dissection
bounded away from 0, such an integer n can always be found. This is true, for example, if the removed
interval in the Cantor set is always centred. The case in which the removed interval is not centred is
more complicated and surprisingly very anti-intuitive because of the loss of symmetry, however, we are
still able to find sufficient conditions on the ratios of dissection for the result to be true for a wide class
of these sets. We show that Cantor sets with ratios not bounded away from zero may generate groups
of Lebesgue measure zero. We analyze the Hausdorff dimension of Cantor sets and prove that having
positive Hausdorff dimension is a necessary but not sufficient condition for the sum of Cantor sets to
have positive Lebesgue measure. One consequence of our results is to yield an affirmative answer to
Palis’ conjecture for the case of central Cantor sets with constant ratios of dissection.

It is worth noticing here, that the group generated by any measurable set F under addition has positive
Lebesgue measure, if and only if the group generated by F under addition mod 1 has positive Lebesgue
measure. Hence the results that are proved for one case should be understood as holding for the other.
Our criteria to choose one or the other has been to improve clarity in the exposition and simplicity in
the proofs.

2 Cantor sets of positive Lebesgue measure sum

Definition: A Cantor set is a compact, totally disconnected, perfect subset of the real line. Cantor
sets can be constructed in a similar fashion to the classical middle third Cantor set. We begin with a
compact interval on the real line and remove from it a finite number of open intervals, leaving a finite
union of closed intervals within the initial interval, called the intervals of step one. The ratios between
the lengths of each of these intervals and the initial one are referred to as the ratios of dissection at step
one. A similar operation is then executed in each interval of step one producing the intervals of step



two and the ratios of dissection of step two. In order to avoid isolated points, we require that any two
of the removed intervals have no common endpoints. This construction defines a decreasing sequence
of closed sets, the intersection of which is a Cantor set. Note that this is a very general definition of a
Cantor set, and includes all dynamically defined Cantor sets (see [10]).

Every Cantor set C constructed removing several open intervals from each interval at every step, contains
a Cantor set C’ in which only one interval is removed from each interval at each step. To see this, simply
observe that if Jy,...,.J, are the open intervals removed from I at some step, then C’ can be constructed
by removing the smallest open interval containing U.J;. In order to prove that the measure of (n)C' is
positive, it certainly suffices to show that the measure of (n)C"’ is positive. We will therefore restrict
our attention to Cantor sets of the latter type.

In addition, we will only consider Cantor sets constructed in the interval [0,1]. It is clear that these
assumptions do not represent any loss of generality and are only imposed to simplify the proofs.

Notation

Let T be the set of binary words of finite length, i.e:
T*={ay...05:; € {0,1}, se N }.

Let € be the empty word, and ' =T*U{e}. f a=a;...as, 3 =01...0, € T then o € T where
af = w1 ...a501...0, is the concatenation of a and f3.

For @ € T we denote by |a| the length of o and we define |e| = 0.

Let us call I = 1. = [0,1], Iy and I the left and right closed intervals remaining after the first open
interval is removed from I, and let F} = Iy U I;. We call Iy, I intervals of step 1.

In general 1,9 and 1,1, for @ € T and |a| = k, will be the left and right intervals of step k£ + 1 obtained
after an open interval is removed from I,, where I, is one of the 2% closed intervals of step k. If
by =U{ls,a € T,|a| = k}, then the collection {/,}aer univocally defines the set C' = N Az F.

1, 1,
Let us also denote by &,9 = ||]0|| and £,1 = ||] 1|| for every @« € T. The numbers {£,},er* are the

rates of dissection of the Cantor set and {£a}|a|:k the rates of dissection of step &.

Note that these rates satisfy that &, € (0,1) forevery a € T and &,0 4+ &o1 < 1 for every o €
T. Conversely, any family A = {£,}aer+ satisfying £, € (0,1) for every a € T and &, + a1 <
1 for every a € T’ defines univocally the Cantor set C' 4. It is interesting to note that constructions with
different ratios of dissection can produce the same Cantor set. A surprising example of this is the fact
that the classical middle third Cantor set can be constructed with ratios of dissection {£,} satisfying

inf&, = 0.

Central Cantor sets are Cantor sets where £,0 = €41 for every o € T* . A particular case of central
Cantor sets, which we will denote by C,, is when the ratios of dissection are constant, i.e. &, =
a for every a € 1.



We will denote by dimy (C) the Hausdorff dimension of €', and by 7(C') the thickness of C' (for the
definition see [10]). Newhouse has shown that if 7(C1)7(C2) > 1 then Cy +C3 = [0, 2] ([9], [10] pg. 63),
however it is not clear how this condition can be generalized to answer the question of when Cy+---4+C),
contains an interval (or even has positive Lebesgue measure).

In this section we will instead find explicit conditions on the ratios of dissection which will enable us to
conclude that (n)C' = {c; + -+ -+ ¢, : ¢; € C'} has positive Lebesgue measure for a wide class of Cantor
sets.

We will begin with a simple Lemma.

Lemma 2.1 Let C' = NF, be a Cantor set. Then

(n)C = [(n) F,

and, in particular, if (n)Fy 2 I for some interval I, for every k, then (n)C 2 I.

The proof is straightforward.

First we consider the case of a central Cantor set C, of constant ratio of dissection a. Since 7(C,) = 155,
Newhouse’s result implies that C, + C, = [0,2] if ¢ > % Using a different approach, we are able to
show that 7(C,) > 1 is necessary and sufficient for this result to hold true, and we generalize it to n-fold

sSums.

Proposition 2.2 lLet C, be the central Cantor set of ratio of dissection a > 0 . Then for

<a < — we have
n+1 n

Z) (Q)Ca = [OaQ] forq>n, and

—1 1
i) dimH((q)Ca):% <1 forg=1,...,n—1.

Proof:

i) Observe that

Fy =10,a]U[l —a,1] and hence, Fy+ F; =[0,2a] U[l —a,1+a U[Q(l —a),2].

In general
q q
(2.1) (F =1 =Ub0-a) (¢-a+i].
=0 =0
o1 1A 71 - ho
Now if ] <athen I; NI, #0,7=0,...,4— 1 and therefore U I; = [0, q].
J=0



1
Since e < a we have that if ¢ > n, (¢)F}y = [0, q].
Now assume that (¢q) F = [0, ¢]. Since Fj = U I, where I, are intervals of step k, then
lo|=k
(2.2) (¢)Fr = (q) U Ip=U{l+-+ 1, :|oi|=ki=1,...,q}.

lo|=k

We are now going to show, that each member of this union can be covered by sums of ¢ intervals
of step k£ + 1. For this we first note that

]al+...+]Uq:(](])“+Tal)+...+(](])“+raq):(q)]g—f—ZTai,

where I} is the leftmost interval at step &, i.e. I¥ = I, with a being the word of length & having
k zeros, and the 7,, are the corresponding translations. It is straightforward to see that if ¢ > n

()15 = () I§T U IFth),

[k+1

k+1
where [ I

and are the two intervals of step & + 1 corresponding to the interval IF. But

q

q
@UE U Y+, = U( O 4 (g - f)i’“+1)+zm

=1 =

= qu (Z (I 4, + Zq: ([f"'l-l-rai)

=1 1={+1

Now observing that I5*! 4 7, for s = 0,1 is a sub-interval of step k+ 1 of I,, (i=1,...,q), we
obtain (¢)F C (¢)Fr+1 and hence the equality holds and (¢)Fx+1 = [0, ¢].

ii) If ¢ < n we observe that (¢)C, is a Cantor set in [0, ¢] where ¢ intervals are removed at each step
(the union in (2.2) is disjoint), and the ratio of dissection is a. Hence (see for example Falconer
[6])

—In(g+1)

dimpg ((¢)C,) = BRI [ |

Corollary 2.3 Let C, be the central Cantor set of ratio of dissection a > 0 . Then either (n)C, has
Lebesgue measure zero or it contains an interval, in which case (n)C = [0,n], and the latter happens if
and only if L5 > 7(C,) > L.

n—1

Remark: This Corollary completely answers (affirmatively) Palis’ conjecture for C, +C,,. It also shows
that in order for the sum to be an interval (or even to have positive Lebesgue measure) it is necessary
(as well as sufficient) for the thickness to be greater than or equal to 1.

We now want to extend the previous result to central Cantor sets with variable ratios of dissection. We
will show that if the ratios of dissection are bounded away from zero, then the Cantor set will generate
a group of positive Lebesgue measure.

We will first need the following LLemma:



Lemma 2.4 For eachi = 1,...,n consider an arbitrary interval I; = [a;, b;] and two subintervals I}, 12,

Ik T
such that a; € 1} C I; and b; € 12 C I;. Leta = min |17 CAfa> maXZ|,2| , then
k=12 \ |1 (n+ 1) min; |
i=1,...,n
n n
d(fuid)y=>"1I.
i=1 =1

Proof: The proof is straightforward writing down the expressions for the left and right endpoints of
the intervals. |

Theorem 2.5 Let C' be the central Cantor set where the ratio of dissection at the K" step is &. If
1
inf &, > T then (n)C = [0,n]. In particular, the Lebesque measure of (n)C' is positive.
n

Proof: We will prove that (n)Fy = (n)[0, 1], for each k. We are going to use induction on the steps
used in the construction of C'.

In the first step we deduce from the previous lemma that

(n)[0,1]=>"(I{ U I}) ZFl
i=1
(In general, IF, for s =1,...,2% will denote the intervals of step k.)
Now assume that (n)F} = (n)[0, 1], that is
k k
([0, 1] = JUj; +---+ 15)-
J
To complete the proof of the theorem, it is enough to show that each member of this union can be
covered by sums of n intervals of step &£ + 1. But again, by the previous lemma,

n
k k k+1 k+1
[jl t+t [.771 - Z([]ul U [ji72 )
i=1

where ]ﬁ_"’ll and ]ﬁ_"’; are the two intervals of step k£ + 1 corresponding to the interval Ijkl [ |

1
It is easy to see that if sup&p < T then (n)C does not contain an interval. However, it can still
n
have positive measure ([1]).
Note that in the proof of Theorem 2.5 we could apply LLemma 2.4 since the intervals at a given step were

the same. It should be clear to the reader that we can, in fact, obtain a slightly more general version of
the last theorem:

Theorem 2.6 Let C 4 be the Cantor set of rates A = {&,}oer. Suppose there is an N > 1 such that

o] , N
4 = . o > —, = 9 .
|[ | < N, for every |a| = |8| =k, and for all k € N. Ifinf&, > e then (n)C 4 = [0, n]



Let us now consider the more general case in which not necessarily £,o = &,1. It is worth pointing
out that this translates into a loss of symmetry in the construction of the Cantor sets which makes the
problem significantly harder. Note for example that in this case the ratio between two intervals at step
k can be unbounded (above and below!).

Consider first the following case: for 0 < a,b and a + b < 1 denote by C,, the Cantor set with rates
&0 =a and &,y = b for all o € T*. Newhouse’s result ([9]) implies for this case that

1—(a+0b)
min(a, b)

(2.3) <1l =Cup+Cyp=1[0,2].

E. Dubuc [5] proved the following result, which is weaker (for n = 2) than (2.3) but works for n > 2.

Theorem 2.7 ([5]) Let a,b € R , a,b > 0 be such that a +b < 1 and let C,;, denote the Cantor set
that can be constructed using the rates a and b at each step.

1—(a+0b)

If b < n-1 then (n)Cypy = [0, n].
a

In particular the Lebesgue measure of (n)Clyy is positive.

In what follows, we consider the more general case of non-central Cantor sets in which the rates are
allowed to vary from step to step. Let @ = {az},b = {br} be sequences of positive real numbers,
satisfying aj + by, < 1 for every k. Consider the Cantor set C_; with rates {{,},er+ Where &y =
ar,and &1 = by, for |o| = k — 1. We will show that by imposing certain restrictions on these sequences
one can prove that the group generated by the set has positive measure.

We will use the following notation: Let I be an interval and 0 < a,b and a + b < 1. We denote

I(a) the subinterval of I of rate a respect to I, that has the same left endpoint than I,
T

)
(b) the subinterval of I of rate b respect to I, that has the same right endpoint than I,
I(ab) the subinterval of I(a) of rate b respect to I(a), that has the same right endpoint than I(a),
I (ba)

(ba) the subinterval of 1(b) of rate a respect to I(b), that has the same left endpoint than I(b).

1(a) 1(b)
I I I |
0 a 1-5 1



Lemma 2.8 Let Iy,..., 1, be n intervals of lengths rq,...,r, respectively, and a,b, real numbers sat-
isfying 0 < a,b and a+b < 1, . Let {iy,...,1,} be a permutation of {1,2,...,n} and assume that the
following n conditions hold

(riy + - +ri, ) +a(riz+1 +t i)

2.4 1—(a+b)<b
2.4) (a4 < BT
where {=1,...,n and r;y =r; ., =0.
Then Z]j = U Jh
7=1 h=0
where Jy = le(a)
7=1
£ n
and J, = Z[Z-J(b)-l— Z Li(a), £=1,...,n—1,
j=1 j=L+1
and J, = Z[J(b)'
7=1

Proof: It is sufficient to prove the lemma for the case that the permutation is the identity (i.e.
(41,...,13,) = (1,...,n), just by renumbering the intervals. We can also assume that the left endpoint
of the intervals {I;} is the origin, since otherwise the result follows by translating the intervals.

Let us call H =51, I;.

H has the same left endpoint as Jy and the same right endpoint as .J,,. We are now going to see that
condition ¢ in (2.4) is precisely the condition needed so that the left endpoint of Jy is smaller than, or
equal to the right endpoint of J,_; ({=1,...,n). We show this for { =2 to n — 1, the cases £ = 1 and
¢ = n are similar. The result then follows.

We have:
I, =1[0,r], ILi(a)=1[0,ar], L(b)=1[(1-0b)r:,r],

and therefore, if 2 < /£ < n

£ n
Joo= Y L)+ > Iifa)
71=1 j=f+1
£ £ n
= (1—b)er,er+aZ r;
7=1 7=1 Jj=L+1
Now, if we call .J; = [¢;, dg] we see, that condition £ in (2.4) implies ¢; < d;_y. [ |

We can now prove the following theorem:



Theorem 2.9 Let @ = {ay} and b = {by} be sequences of positive numbers with aj, + by < 1, and
assume that there exists a constant N > 1 such that the sequences @ and b verify

1 by
. — < =< .
(2.5) N_ak_N VkeN
If n is such that
i b
(2.6) 1 (a4 be) < TIRBY) e e

N

then
(n)C = [0, n].

Proof: Tet F} be the union of the Cantor intervals of step k, with Iy = [0,1], i.e. C7 = NF;. By
Lemma 2.1 (n)Cy = Ng((n) Fy).

To prove that (n)Fy = [0, n] for every k, we will first prove by induction that (n) [y can be written as
a finite union of intervals, each of which is the sum of n intervals of step k + 1 where the ratio between
any two of these intervals is bounded. More precisely we will prove inductively that:

“If the rates satisfy (2.5) and (2.6), then for every non-negative integer k, (n)Fy is a finite union of
intervals, (n)Fy = U5 Js, with each J; being the sum of n intervals, J; = I1 + Iy + -+ - + I, where the

1 i .
sets I; are all Cantor intervals of step k£ + 1 and satisfy N < |4l < N for all 7,3.”

|11
For k =0, we apply Lemma 2.8 to Iy = I, = --- = I, = Fy, a1, by and any permutation. Since
i b
1—(a1+b1)<%(n—1) and

min(ay, by)

N
the conditions of the Lemma are satisfied. In addition, the intervals ;(a1) and I;(b1) are Cantor intervals
L] _ [
|7 (a1)] |7(b1)]

(2.5) we obtain the boundedness condition for the intervals, and therefore the induction step for k& = 0.

(n—1) <min(ay,by)(n—1) < b ({—1)+ay(n—0), L=1,...,n,

of step 1 and satisfy for every (i, 7), and since |I;(a1)| = a1 and |I;(b1)| = b1, by

Assume now that the proposition is true for k —1,i.e. (n)Fr_1 = U:nzkfl Js with J; the sum of n intervals
of step k. Fix s, (1 < s < mg_1), and assume that J; = Iy +---+ I,,, with I; a Cantor interval of step k

1 I;
and N < ||]Z|| < N for every 7, j. We will show that we can apply Lemma 2.8 to Iy,..., I, ax41, br+1,
J
and any permutation (i1, ...,1%,).

To see this, we first observe that by hypothesis

min(ak_H s bk+]) (n _ 1)
N .

1 — (arg1 + bry1) <



Also, if |I;] = r;, the boundedness condition on the intervals I; implies

ize it

ri T Pigy + T,
bk+1( 1 - £—1)+ak+1( 241 )
24

min(ag41,bg i &
( k-{; k1) (n—1) < min(agsr,bryr) (Z _J) =

ri[

Therefore the n conditions of the Lemma are satisfied, and hence J; = Uy U ---U U, where
Uy = ZL‘(%H) y
4 n
Uy = Zlih(bk+1)+ Z Iih(ak-l-l)’ 6217"'1”_11
h=1

h=4+1
Un = Z [z (bk+]) .
Note that all the intervals in the sums are Cantor intervals of step k + 1.

Next we establish boundedness condition. For the intervals in Uy and U,,, we see that

(Li(arr)| _ 14| _ Hi(bega)]
i (ars)l 111 [ (begn)]
and therefore the conditions are fulfilled by the inductive hypothesis.

In order to check the condition for the sets Uy for 1 < £ < n, the appropriate choice of the permutation
is crucial. We choose the permutation with the following criteria: Let (iy,...,14,) be such that |I;,| =

rip <o <L [ =,
b
If 2L > 1 we select the permutation (T4, tn),
k41
b
if =L <1 we select the permutation (T ey 01),
k41

otherwise we choose either one of these two permutations.

b
We will consider the case 1 < ﬂ; the other case is similar. The intervals in the sum are:
(|

Liy (b )y oo iy (brgn ), iy (@g), oo i (@kg).

Observe that if h,t < £ or h,t > £ the intervals I;
the rate between them does not change.

., Ii, are scaled by the same numbers, and therefore

If 1 <t</f< h<nwehave

b
1 < M < N and
A1
1 |1;,] . .
— < < 1 ( by the choice of the permutation) ,
N |Iih|

10



and combining these two inequalities we get

1 )l

N~ |[ih(ak+1)| B

which shows that the condition is fulfilled.

We have therefore proved that each Js can be written as a finite union of sums of n intervals of step
k+1 with the necessary boundedness condition, and thus (n)Fr_; = UJ; , has the same property. Since
the inductive hypothesis implies (n)Fj,—y C (n)Fy and we always have the reverse inclusion, it follows
that (n)Fy = (n)Fy—1 completing the induction proof. Because (n)Fy = [0, n] , the proof is complete.
|

We have the following corollary:

Corollary 2.10 Let @ = {az}, b = {bx} be sequences of positive real numbers, with aj + by <
1 for every k € N and let a = inf{ay} and b= inf{b;}. If a,b > 0,a < b and n € N satisfies

(2.7) EORS s Zamin

then (n)C_ = [0,n]. In particular the Lebesgue measure of (n)C_y is positive.

b
Proof: This is a particular case of Theorem 2.9 where N = —. [ |
a

Remark: For the case n = 2 condition (2.7) is weaker than 7(C3)7(C) > 1 when a # b, however, it
does give results when 7(C_5) < 1.

In some cases we are able to improve Theorem 2.9 generalizing Theorem 2.7 to the case where the rates
are allowed to vary at each step.

Lemma 2.11 Let I,...,I, be n intervals of lengths rq,...,r, respectively, and a;,b;, © = 1,2 real
numbers satisfying 0 < a;, by, a; +b; < 1, 1 = 1,2. Let {iy,...,i,} be a permutation of {1,2,...,n}
and assume that the following n conditions hold

(riz+1 +tri,)

T

(ril + - 'j+riz—1) n

r;

(28) 1-— (LZ] + b]) S b1a2 an bQ

£ 4

where {=1,...,n and r;; =71, ., =0.

Then Zn: I; = CJ Jh
7=1 h=0

11



where Jy = le(al),

J[ = Zli](blag)—f— Z Iij(lllbg) s £:1777L—1 s
j:l ]:[—|—1
and J, = > Ij(b).
j=1
Proof: The proof is essentially the same as for Lemma 2.8. [ |

We can then prove the following theorem:

Theorem 2.12 Let @ = {ap} and b = {by} be sequences of positive numbers with ay + by < 1, and
assume that there exists a constant N > 1 such that the sequences @ and b verify

1 bkak+1
2.9 — < <N VkeWN.
( ) N — akbk-i-l -

If n is such that

(2.10) 1= (g + by) < mm(bk“’jvl’“’“”k“) (n=1) Vk €N
then
(n)Co = [0, n].

Proof: The proof works as in Theorem 2.9, except that we now have to prove the following statement
by induction:

“If the rates satisfy (2.9) and (2.10), then for every non-negative integer k, (n)Fy is a finite union of
intervals, (n)Fy, = U5 Js, with each J; being the sum of n intervals, J; = Iy + Iy + - -+ I,,, where the
|1
|75l

sets /; are all Cantor intervals of the same step k5 > £+ 1 and satisfy < N for all 4,35.”

1
— <
N =

This Theorem allows us to find examples of Cantor sets C' 4 with rates A = {{, },¢r satisfying inf(&,) =
0, and yet there still exists n such that (n)C 4 = [0, n].

1
Example: Let {b;} be the sequence b, = 13 and define the sequence {a;} by ar =1 - k?)? Then

the conditions of the Theorem are fulfilled with N =2 and n = 21. Note that in this case 7(C 4) = L.

It is still an unanswered question whether any Cantor set whose rates {&, },e7 are bounded away from
zero generates a group of positive Lebesgue measure. We conjecture that this statement is true.

12



3 Sums of Cantor sets with unbounded ratios of dissection
In the case of unbounded ratios of dissection, both positive Lebesgue measure and Lebesgue measure
zero (even with Hausdorff dimension one) are possible for the group generated by Cantor sets.

Let us begin with some remarks about the Hausdorff dimension of central Cantor sets.

Proposition 3.1 Let C' be a central Cantor set with ratios of dissection &. Then

. . . Nln2

(Here dimpg denotes the lower box dimension of C, see for example Falconer [6] p.41.)

Proof: First note that C' can be covered by 2%V intervals of length &; - - - &x.

Thus Nn2
n
dimg (C) < dimg(C) < lim———— = t.
H( )——B( )__|1n£1£N|
Fix € > 0 and choose N such that for all n > N
In 2
—l>t_€’
[In(&r -+ +&n)m |

or equivalently (&; - -§n)(t_a) > 27", Let U be any set with diameter § = §(U) satisfying

§iobnpr SOU) <&y

for n > N, and let ;1 denote the associated Cantor measure. The set U intersects at most one interval
in the Cantor set construction at level n and thus

pU) 27" < 2(& &) ™"
By Falconer [6], p.55
t < dimH(C). |

Using this proposition we are now able to see that the group generated by a central Cantor set has
positive Hausdorff dimension (a necessary condition to have positive Lebesgue measure) if and only if
the Cantor set itself has positive Hausdorff dimension.

Proposition 3.2 Let A be any measurable set. If dimg(A) = 0 then dimpg(Gp(A)) = 0.

Proof: Observe that if A is covered by N (§) cubes of side §, then A x -+ X A is covered by the N ()"
————

n

cubes formed by their products. Thus

dimg(A x -+ x A) <dimg(A X -+ x A) <n dimg(A) = 0.

13



The map f: R"™ — R given by f(z1,...,2,) =) 1 €iz; , where &; = %1, is Lipschitz, thus
dimpg(e1A+ - +e,A4) =0.

By countable stability, dimg(Gp(A)) = 0. |
Corollary 3.3 If C' is a central Cantor set, then the following are equivalent

i) dimg(C) =0,
it) dimp (Gp(C)) = 0,
iii) lim(&, ...&)"" = 0.

Proof: For i) & ii) observe that dimy (C) = dimg(C') and then use Proposition 3.2.
For i) < 1ii) use Proposition 3.1. [ |

Corollary 3.4 If C' is a central Cantor set satisfying any of the conditions of Corollary 3.3 then
m(Gp(C)) = 0, where m is the Lebesque measure.

Cantor sets can also be constructed by choosing the ratios of dissection randomly. Salem [11] has shown
that if g is the uniform Cantor measure supported on a random central Cantor set C' with ratios of
dissection &, satisfying

lim (&r...€,)7 >0,

then i € £P for some p < oo a.s. It follows that the k’th convolution power of u, u*, belongs to £2
for sufficiently large k, and as u* # 0 and p* is supported on (k)C, the Lebesgue measure of (k)C is
positive. Consequently the group generated by a random central Cantor set is [0, 1] a.s. if and only if

dlmH(C) > 0.
These almost sure results do not extend to the non-random case. To see this, we first show that the

group generated by a Cantor set has measure zero for some particular sequences {&;}.

Proposition 3.5 Suppose C' is a central Cantor set with ratios of dissection &, with fk_l eN. If
inf &, = 0 then the measure of the group generated by C, under addition modulo 1, is zero.

Proof: Choose an increasing sequence m,, with &} > n?2". If ¢ € C then ¢ = 332, rp&y ... & where
ry =0 or (&' — 1), so that

(n)C = C+---4+C
S—_————

n

- {E(r;(gl)qt---—l-r,(gn))fl...fk : r,(:)zo, f;l—lfori:l,...,n}.

k=1

14



Note that

o0

3ot - D& & =0k G,

j=k+1
thus if 2 € (n)C has expansion = .52, &y ... & with ¢ € {0,1,...,&71 — 1}, then
e € {(r(1)+---+r(”)+m) mod &' : () =0or& ! —1fori=1,...,n .
and m € {0,1,...,n}}
In particular there are at most (n + 1)2" choices from {0, 1,...,&;! — 1} for ¢,,,, and thus

m((n)C) < n2"En, < -

Because C' is symmetric, Gp(C') = ;= (n)C and as (n)C 2 (n — 1)C, it follows that

m(Gp(C)) = lim m((n)C) = 0. [ |

In fact, positive Hausdorff dimension of C' is not even enough to ensure that dimg(Gp(C)) = 1 as we
see below.

Proposition 3.6 Let C be a central Cantor set with ratios of dissection &, with fk_l € N andinf& = 0.
It is possible to choose & so that dimy(C') > 0 and dimpy (Gp(C')) < 1.

Proof: The proof of Proposition 3.5 shows that (n)C can be covered by (n+1)2"(&; - -£x—1) " intervals
of width & -+ &;. Thus

In(n+1)27(& -+ &p1) ™!
| In(& -+ -&)|

In(n+1)2" +|In(& -+ -&k1)]
[ &l + [ In (- Ex)]
Choose any subsequence k,, and suppose that the ratios & are given by & = % it k # k,, and &, =

km—1
H &. Then, for any fixed n
1

dimp((n)C) < lim,

. oI+ 12"+ [ - Epm)| ]
dimg((n)C) < bLim,, = = 5
B((n)C) < Lim 2| InE - Er1)] 2
By countable stability
1
dim(Gp(C)) = supdimp (n)C' < supdimp((n)C) < 3.

If the subsequence {k,,} tends to infinity sufficiently fast, we can still arrange for
Nln2

0 <dimyg(C)=lm—M .
#(C) = Im e e]

15



1/N

For this we merely need inf (& ---&n) < oo. Set ky = 1 and inductively define k,, so that

km—1 -1
H & < (3.5)%m7L. Then, as
1

-1
(&) < (3.5)(km=1)2 < 16km  and
—1/(km+0) —1/km
(r15+ &) < 3(II &) for  kum + £ < ki,
we have the desired result. [ ]

We finish this section by observing that even dimg (Gp(C)) = 1 is not sufficient for m(Gp(C)) > 0.

Example: Suppose C'is a central Cantor set with ratios of dissection & < % Then dimg(C'+ C) =1

if im (& .. fN)% = % The proof of this fact is similar to the proof of Proposition 3.1, and so we omit
it here. Choosing the £ as in the preceding proposition, we can arrange for m(Gp(C)) = 0.
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