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Abstract 

In this paper we show that there exists an analytic expression for the Kantorovich distance between probability 
measures on the circle. Previously such an expression was only known for measures supported on the real line. In the case 
that the measures are discrete, this formula enables us to show that the Kantorovich distance can be computed in linear 
time. This is important for applications, in particular in pattern recognition where this distance is used for texture 
analysis. As another application we see that the analytic expression found allows us to solve a Minimal Matching 
Problem in linear time, for which so far only n log n algorithms were known. 
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1. Introduction 

Probabil i ty metrics have been studied extensively because of its impor tance  in theory as well as 
in applications. Several metrics have been considered (see, for example, 1-26, 15, 14] and references 
therein). 

One particular impor tan t  metric is the Kantorovich  metric: 

dy(/~,v) = sup{frfd(t,-v): f : Y ~  N, If(x)-f(y)l<~d(x,y)Vx, y~ Y}, 

where/~ and v are probabil i ty measures defined on the Borel sets of a suitable metric space (Y, d). 
When Y is compact ,  dr metrizes the weak . - topology  of M(Y). In the discrete case, when the 
measures are suppor ted  on a finite number  of points, say Yl, . . . ,  Y, ~ Y, and kt = ~7=1/~irr,, 
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v = ~ =  1 vi6r, ,  we have 

dg( l~ ,v)  -- sup f (Yi ) (#1-  v,) with If(Y,) - f (Yj ) l  ~< d(yi,yj), 1 ~< i , j  <~ n . 
i= 

In this paper, we are going to consider the Kantorovich metric in the case when the underlying 
metric space Y is the unit circle T. The main result is Theorem 3.7 in which we show that an 
analytical expression for this distance can be obtained: 

dr(#,v) = frl (t) - a~ld t ,  

where ~t(t) = #([0, t]) - v([0, t]), t e T and a~ is a translation constant that depends on # and v, 
where/~ and v are measures supported on T. 

We show that in the discrete case (i.e., # and v are supported on a finite set of points in T) this 
expression allows us to reduce the problem of calculating the Kantorovich distance between 
probability vectors (the Kantorovich Metric Problem, or KMP) to the weighted median problem 
for which several linear time algorithms exist [5, 10, 17, 19, 8]. As a consequence the K M P  on the 
circle can be solved in linear time. We also show that the K M P  on the circle generalizes the 
bipartite graph matching problem considered in [24], where an n log n algorithm to perform the 
minimal matching is derived. Using the KMP approach, we are able to obtain a linear-time algorithm. 

The Kantorovich metric arises in very different contexts and under different names. In statistical 
applications it was known as the Wasserstein distance [23, 22, 18] and more recently it appeared 
with the development of fractal geometry and its applications to computer  graphics under the name 
of Hutchinson distance [21, 6, 2-4]  after being introduced in [9]. It also has proven to be very useful 
in Digital Image Processing. In particular, in some applications of texture analysis in pattern 
recognition Shen and Wong used this metric to enhance feature dissimilarity [20] (see also [12, 25]). 

Furthermore, this metric admits a linear programming problem representation. Its dual problem 
is the well-known Kantorovich-Monge mass transfer problem [11, 13, 1,16]. This duality has been 
established in 1958 by Kantorovich and Rubinstein (see, for example, [7]). A lot of attention has 
been given to this problem as well as to many of its generalizations since then. A complete account 
of these results can be found in the work of Rachev [14]. 

The outline of the paper is as follows: In Section 2 we study some properties of the Kantorovich 
metric on the line which we will need later. In Section 3 we analyze the case of the circle: First to 
each measure on the circle we associate a family of measures on the line. Using this association we 
relate the distance between measures on the circle to the distance between associated measures on 
the line. This relation then allows us to derive an explicit formula for the Kantorovich metric for 
measures on the circle (Theorem 3.7). Finally, in Section 4 we consider the discrete case and show 
an application to a Minimal Matching Problem. 

2. Kantorovich metric on the line 

In this section we study some properties of the Kantorovich metric for measures supported on 
the [0, 1] interval. For this we first introduce some notation, then we define the Kantorovich metric 
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on a metric space and finally we consider the particular case of the [0, 1] interval. We will need 
these properties to derive the results for measures on the circle in Section 3. 

2.1. Notation 

Let (Y,d)  be a complete  separable metric space. We use the nota t ion L ( Y ) =  {f :  Y ~ R: 
[f(Yl) - f (Y2) [  ~< d(yl,Y2) for all Yl,Y2 e Y}, for the Lipschitz functions on Y with constant  1, and 
M(Y)  for the space of Borel probabili ty measures on Y having bounded  support .  

We will denote  by ). the Lebesgue measure on R. 
We identify the circle K = {z ~ C: [z[ = 1 } with T = [0, 1) as a fundamental  domain  for R/Z, via 

the t ransformat ion t ~ e i2nt.  A natural  metric on T is p(s , t )= m i n ( [ s -  t[, 1 - I s -  t[), which 
corresponds to the m i n i m u m  arclength on the circle. The functions on T can be identified with the 
periodic functions on R of period 1; using this identification we will use f ( t ) ,  with t ~ R, for 
functions on T. 

(X, .) will represent the unit  interval on the line with the Euclidean distance. 
For  # e M(X),  the distr ibution function of p is the function Fu: X --. R, F~,(x) = #([0 ,  x]). 

2.2. The Kantorovich metric on M( Y) 

If( Y, d) is a complete  separable metric space, then the Kantorovich  metric dr on M ( Y )  is defined 
by 

d r ( # , v ) = s u p { f r f ( Y ) d l ~ ( Y ) - f r f ( y ) d v ( y ) : f e L ( Y )  ). 

If we call 

< P , f > r  = f r f (Y)dp(Y)  and r / = # - v ,  

then 

<r/ ,f>r = < # , f > r  -- < v , f ) r  

and 

dr(#,  v) = s u p { ( r / , f > r , f  e L( Y)}. (2.1) 

To  see that  dr is in fact a metric on M ( Y )  see, for example, [-9]. (The subscript Y will be omitted,  
where unnecessary.) 

2. 3. Properties of the Kantorovich metric on X 

Let I~,v~M(X),  see r / =  # - v  and let h:X  ~ R be the function defined by h(x )= 
F~(x) -- Fv(x) (h represents the mass distr ibution of r/). We have the following theorem. 
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Theorem 2.1 (Vallender [23] and Barahona et al. [2]). With the above notation we have 

dx(#, v) = sup{ ( q , f ) x , f  e L(X),f(O) = 0}, (2.2) 

( q , f )  = _ f x f ' ( x )h (x  )dx Vf  e L(X), (2.3) 

dx(#, v) = f~ Ih(x)l dx. (2.4) 

Proof. Since q(X) = 0 we have ( q , f +  a )  = ( r / , f )  Va E ~, and then (2.2) follows. 
For  (2.3) let us consider the set ~ = {(x, y) E X x X: x < y} with the product measure O = 2 ® t/. 
Now, if f E L(X) then f is continuous on X and differentiable a.e. On the other hand, if we 

consider the function 

{f0'(x) if it exists, 
#(x) = elsewhere, 

then g is 2-integrable on X, and k(x, y) = y(x) is Q-integrable on ~ .  Now integrating k over ~ and 
applying Fubini's theorem, we obtain 

fxf dtl = f ( 1 ) q ( X )  - fx f ' (x)h(x  ) dx. 

Since q(X) = 0 

f x f  drl = -- fx f ' (x)h(x  ) dx. 

In order to prove (2.4) we observe that 

dx(#,v)= sup ~ fdq<<, sup Sxfdn <. sup ( lf '(x)llh(x)idx. 
f ~ L(X) d X f 6 L(X) f ~ L(X) d X 

But since If ' (x)l  ~< 1 a.e., dx(#,v) is therefore bounded as 

dx(l~,v) <~ fxlh(x)ldx. 
To complete the proof of (2.4), we now exhibit a function f*  ~ L(X) such that dx(l~, v) = Sxf* dq. 
To construct f *  consider first 

1 1 if h(x) > 0, 
#(x) = if h(x) < O, 

if h(x) = O. 



C.A. Cabrelli, U.M. Molter~Journal of Computational and Applied Mathematics 57 (1995) 345-361 

Then [g[ is integrable on X. Now we define f *  as 

f * ( x )  = f ]g ( t )d t .  

Now if 0 ~< x ~< y ~< 1 (the other case is symmetric) then 

and therefore f *  is in L(X).  Now, by (2.3) 

fxf drl = - fxf'(x)h(x)dX= fxlh(x)ldx. [] 

349 

Let us call 

Lo(X) = { f  e L ( X ) :  f(O) = 0}. (2.5) 

In the p roof  of Eq.(2.4) of the theorem, we exhibited a function f * e L o  such that  
dx(#, v) = ( q , f * ) .  We are interested now to find all the functions in Lo that  satisfy that  equation. 

Therefore let us introduce some notation: If 7 : X ~ ~ is an arbitrary measurable function, we 
will call 

A+(y) = { x e X :  y(x) > 0 } ,  

A°(y) = { x e X :  y(x) = 0 } ,  

A-(y) = {xeX:  <0}, 

D(y) = {c: A°(y) ~ ~, measurable: Ic(t)l ~< 1 a.e.}. 

Corollary 2.2. 
before, then f 

f ' ( y )  = { 

Using the preceding notation, let # and v be two measures in M(X) ,  and h: X -~ N as 
Lo(X)  is optimal (i.e., dx(#,v) = ( #  - v,f)x),  if and only if there exists c ~ D(h) 

--1 2-a.e. in A+(h), 
1 2-a.e. in A-(h), 
c(y) otherwise. 

(2.6) 

Proof. Sufficiency: F r o m  (2.3) we have that  ( r / , f )  ~< Sx Ih(x)l dx, Vf  e Lo (X). Using that  f sa t i s -  
ties (2.6), then the equality holds, and therefore f is optimal.  

Necessity: Let us now assume that  g e Lo(X)  is optimal,  but g does not  satisfy the condi t ion 
given in (2.6). Hence, there exists a set B of positive Lebesgue measure, such that  either B c A ÷ (h) 
and g'(x) ¢: - 1 Vx ~ B, or B c A - ( h )  and g'(x) 4:1 Vx ~ B. Since both  cases are completely 
symmetric,  we assume B ~ A + ( h ). 

Let us now define r ~ Lo(X)  such that  

r ( x ) =  p(t)dt,  where p(t) = t e B .  
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Now using (2.3) 

(q,g) = _ fxg'(x)h(x)dx 

=-fx, O'(x)h(x)dx- f ¢(x)htx)dx 

< - ~ x \ B g ' ( x ) h ( x ) d x - f s ( - 1 ) h ( x ) d x  

= (~l,r>x <<. dx(#,v) 

and hence g cannot  be optimal. []  

Note that in the case when the Lebesgue measure of A°(h) is equal to O, there exists only one 
optimal solution. 

2.4. Balanced mass distributions 

The concept of balanced mass distributions will be essential to establish the link between the 
Kantorovich metric on the circle and on the line. 

Using the previous notation, a function 7: X ~ ~ is said to be balanced if 

12(A+(7)) - 2(A-(7)) l  ~< 2(A°(?)). (2.7) 

The next lemma will show that, for a mass distribution a, being balanced is equivalent to the 
existence of optimal Lipschitz functions which take the same value on the endpoints (i.e., Lipschitz 
functions on T). 

Lemma 2.3. With the above notation, if h = F u - Fv,for #, v ~ M ( X), then h is balanced if and only if 
there exists f *  ~ Lo(X), optimal for the problem supI~Lo(q, f ) such  that f*(0) = f * ( 1 )  = 0. 

Proof. We first observe that if f *  is optimal, then by Corollary 2.2 

fj fA c(t)dt (2.8) f*(1) = ( f*) ' ( t )dt  = 2 ( A - ( h ) ) -  2(A+(h))  + oth) 

for some c ~ D(h). Now, if h is balanced, from (2.8) it is clear that in order to obtain an optimal 
solution f *  satisfying f*(1)  = 0 it is enough to choose c to be a constant function. This constant is 
chosen to be (2(A+(h))  - 2(A-(h)))/2(A°(h))  if 2(A°(h)) ~ 0, and 0 if 2(A°(h)) = 0. 

For  the converse we note that since f*(1)  = 0, from (2.8) we have 

fa c(t)dt  2(A+(h))  -- 2 (A- (h ) )  = °(h) 
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and then, since Ic(t)l ~< 1 

fA Ic(t)ldt <<. 2(a°(h)) .  []  1 2 ( Z + ( h ) ) -  2 ( h -  (h))l ~< o~h) 
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3. The Kantorovich metric on the circle 

In this section we are going to relate the distance between measures on the circle with the 
distance between measures on X obtained from the former by "cutting" the circle. 

Given two measures on T, each "cut" of the circle determines two measures on X associated to 
that "cut". In Lemma 3.1 we show that the value of the distance between two measures on T is the 
infimum over all possible cuts of the values of the distances between the associated measures on X. 
Proposition 3.2 establishes that this infimum is attained if and only if there exists a "cut" such that 
the mass distribtion of the associated measures is balanced. 

Proposition 3.6 shows that indeed such a "cut" always exists, and finally Theorem 3.7 provides 
an expression for dr(/~, v). 

3.1. Identifications of  measures on T with measures on X 

If p e M(T) ,  we define a function Gu: R ~ N as 

Gu(x)= /~([O,x]), 0 ~ < x < l  

and we extend the definition to ~ by the equation 

Gu(x + 1) = Gu(x ) + 1. (3.1) 

Let us now call 

M .  = {#  ~ m ( x ) :  u ( { 0 } )  = 0} (3.2) 

and 

Mt = {/~ ~ M(X) :  # ( { 1 } ) = 0 } .  (3.3) 

For  each s ~ T, we define natural  identifications between M(T)  and these two sets in the following 
way: Let s e T be fixed. To every measure # e M ( T )  we associate the measures /~  e Mo and 
#~ ~ Mt determined by the distribution functions given by 

D ~ : X  ~ ~, 

I~u : X --. ~, 

O~(x) = G ( x  + s) - G.(s) ,  

I*u(x ) = G u ( x  + s)  - G u ( s  - ). 
(3.4) 

Note that if p({s}) = 0, then G~, is continuous at s, and then #o = #~ and D~, = I~. 



352 C.A. Cabrelli, U.M. Molter~Journal of Computational and Applied Mathematics 57 (1995) 345-361 

Now we define a 1-1 correspondence between L ( T )  and the subset L r  c L ( X )  defined by 

LT = { f  e L(X):  f(O) = f (1 )}  

in the following way: To e v e r y f  ~ L ( T )  we associate the function fs 6 L r  such that 

L(x) = f ix  + s) Vx x.  

Note that the correspondences: 

M ( T )  --, M o  ~ M ( X )  

M ( T )  ~ M ,  c M ( X )  
(3.5) 

L ( T )  -* LT ~ L ( X )  

f 

are 1-1, and different for each s ~ T. 
Informally speaking, #n and #~ represent the measures on the line obtained by "cutting" the 

circle at s, and taking as fundamental  domains the intervals (s,s + 1] and [s,s + 1) in R/Z,  
respectively. 

We will refer to each s ~ T as a cut of the circle and to #~, #~ and D~,, I~ as the right and left 
probability measures and distribution functions obtained by cutting the circle at s. 

Note that with the preceding identifications, Lemma 2.3 states that if h is the difference of the 
distribution functions of two measures on [0, 1-], then h is balanced if and only if the function f *  
that realizes the Hutchinson distance between # and v satisfies f * ~  LTC~Lo(X).  

3.2. Balanced distributions and measures on T 

It is easy to see that the Kantorovich metric on T is invariant under rotations, i.e., 

dr(#,  v) = dr(#t,  vt) for every t E T, #, v e M(T) ,  

where 

#t(A)  = # ( A  - t) for any measurable set A c T. 

Therefore, in what follows we will consider without any loss of generality, the Kantorovich metric 
between measures # , v e  M ( T )  such that # ( { 0 } ) =  v ( { 0 } ) =  0, since we can always find a con- 
venient rotation such that #t and vt satisfy the desired property. 

Let then #, v ~ M (  T), r l = # - v, Gu, Gv as defined in (3.1) and G(x)  = Gu(x) - Gv(x). Note that 
G is a periodic function of period 1 with G(0)=  G(1)=  0. If s ~ T, let D~,, D~, I~, I~ be the 

t its associated measures on X. distribution functions defined in (3.4) and #o, v o, #~, vs 
We will first prove the following lemma. 
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L e m m a  3.1. L e t  It, v E M (  T) ,  tl = It - v, then 

dr(it, v) ~< inf dx(it°~, v°), (3 .6)  
s e T  

dr(it,  v) ~< inf dx(it~, vI). (3 .7)  
s e T  

Proof. Using the identification given in (3.5) it is clear that  for any fixed s ~ T, 

<It - v , f > r  = <it~ - v ° , f s>x  V f e  L ( T ) .  

Then 

dr(i t ,  v) <~ sup <it - v , f > T  
f EL(T) 

= s u p  < Ito _ vf ,  f~ >x 
f EL(T)  

sup <it o _ vo, f ) x  
f eL (X)  

= d x ( # ~ , v ~ )  V s ~  T 

and then 

dr(it, v) ~< inf dx(it ° ,  v°). 
s e T  

Analogously 

d r ( # ,  v) ~< inf dx(#~, v~). [] 
s e T  

Proposition 3.2. I f  for  s ~ T,  D s = D~, -- D~ is balanced, then 

dr(g,  v) o D = dx (#~ ,  v, ) = inf dx( i t  ° ,  v°).  
r ¢ T  

(3.8) 

Analogously ,  i f  f or  s e T,  P = I~ - I~ is balanced we have 

dT(g, V) I t = dx(#s ,  vs) = inf dx(it, I, v~). 
r ¢ T  

(3.9) 

Proof. Let s ~ T be such that  D s is balanced, then from Lemma  2.3 we know that  there exists f ~ L r  
such that  it is optimal,  i.e., 

<~/,f> = dx(#°~ , v°) ,  (3.10) 

and since f(0)  = f (1 ) ,  

<r/ ,f> ~< dr(#,v).  (3.11) 
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That  means  that  

dx(#~,  v°~ ) <~ dr(p,  v) 

and using (3.6) we have that  

infdx(#O,  v o) o o = dx(ps ,  v~ ) = dr(p,  v). 
reT 

The p roo f  for I s is analogous .  [ ]  

3.3. Existence o f  an optimal cut 

In this sect ion we will p rove  the existence of  s ~ T, such that  either D s or  P is balanced.  Fo r  the 
p r o o f  we need some addi t ional  proper t ies  of  r igh t -cont inuous  functions.  

Let 7 : X ~ R be a r ight -cont inuous  function. We  then define m r: • ~ [0, 1 ], by  

mr(t ) = 2 ({x  ~ X :  y(x)  >I t}), (3.12) 

and  let 

a r = sup{ t :  mr(t ) > ½}, 
(3.13) 

b r = inf{t:  mr(t ) < ½}. 

The fol lowing proper t ies  are immediate:  
(1) m r is a lef t -cont inuous,  nonincreas ing function. 
(2) mr(t ) -  mr(t + )  = 2({x:  y(x)  = t}). 
(3) a r ~< b r. 
(4) If a r < b r, then V t ~  (a, b],  mr(t ) = ½ and  if mr(t ) = ½ =~ t ~ [at,  br]. 
(5) mr(at) >~ ½. 
We also have the fol lowing lemma. 

L e m m a  3.3. For any neighborhood Vat o f  at, 2 ( V a ~ n y ( X ) )  > 0, in particular, a r is in the closure o f  
7(X); i.e., there exists a sequence {x,} c X such that y (x , )  ~ a r. The same holds true for  b r. 

Proof.  Cons ider  D, = {x ~ X :  ly(x)  - a~l < 1/2n}. We will show that  2 (D, )  > 0 Vn ~ NI. Fo r  this 
assume that  qn ~ t~, such that  2 (D, )  = 0. Then mr(ar + 1/2n) = mr(ar - 1/2n) > ½ and  this cont ra-  
dicts the fact that  a r is a supremum.  (The p r o o f  for b r is analogous.)  [ ]  

The next l emma shows that  a r igh t -cont inuous  funct ion can a lways  be t rans formed into 
a ba lanced  funct ion by simply adding a constant .  

L e m m a  3.4. Let  y: X ~ R be a right-continuous bounded function and let a r and b r defined as in 
(3.13). Then 7 - r is balanced i f  and only if  r ~ [ar,br].  
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Proof. Let r e [at ,  b~]. We first notice that  if x, y, z ~ [0, 1 ], and x + y + z = 1, then 

{00~<x~<½, Ix - Yl ~< z ¢,- (3.14) 

Therefore, if we call 6 = ~ -  av, in order to prove that  5 is balanced, it is enough to see that  
2(A+(6))  ~< ½ and 2 (A- (6 ) )  ~ 1 

For  this we consider 

A+(3) = {x: 7(x) > a,} 

Therefore, 

But 

{ 1} 
= U x:~(x)>av+- 

: 

2(A+(f))=2irn2(A+(3-1)). 

Then 

2(A+(6)) <<. ½. 
In the same way 

A-(6) = {x: ,,,(x) < a~} 

Therefore, 

But 

= U  A -  6 +  . 
n~lN 

1 2(A-(5+~))=l--mr(ar n ~ l )  <½" 

Then 

2 (A- (6 ) )  ~< ½. 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

This shows that  ~ - a v is balanced. 
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Let us now take an arbitrary r, a s ~< r ~< b s. Because of the properties of m s stated in Section 3.3 
we have that Vt ~ (as, bs], ms(t ) = ½. Then mv(a s + ) - ms(b j = 0, which implies 

~({x: as < ~(x) < bs}) = 0. (3.21) 

No w for a s < r ~< b s we have 

2({x: y(x) > r}) 2({x: y(x) > as} ) = 2(A+(6))  ~<1 = 2 "  

Using Eq. (3.21), 

,~({x: ~(x) = r}) = o, 

and then 

~.({x: y(x) > r}) )~({x: 7(x) >1 r}) = ms(r ) 1 - - 2 ,  

and therefore, 

1 2({x: 7(x) < r}) - 2- 

For  the converse, assume rq~[a,b]. If r < a then 

1}) 
2({x e X: y(x) > r}) = 2 x e X: y(x) > r + -  

n 

({ 1}) 
= lim 2 x • X : ~ , ( x ) > r + -  . 

n--* + m n 

But c. = 2 ( { x e X :  y ( x ) >  r + I/n}) is an increasing sequence. Therefore, if n is such that 
r + 1/n < a, then c, > ½ (since ms(x ) > ½ for x < as). Hence 

, t({x e x :  ~(x) > r}) > 1, 

and using (3.14) y - r cannot be balanced. 
For  the case b < r the proof  is analogous. []  

We have an immediate corollary. 

Corollary 3.5. If y(0) = y(1), and fl is the extension o f  y to N as a periodic function o f  period 1, and we 
define 7s: X -~ ~ by ys(t) - fl(s + t), then Vr E [av,bs]  , y~ - r is balanced. 

The proof  is straightforward. 

Remark.  Considering y as a uniformly distributed random variable on the [0, 1] interval, the 
preceding lemma showed that the interval [as, bs] contains exactly the "medians" of the distribu- 
tion of y. 

The next proposit ion shows the existence of an optimal cut. 
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Proposition 3.6. I f  It and v are two measures on T,  Gu, Gv are as defined in (3.1) and 
G(x )  = Gu(x ) - Gv(x), consider ~: X -~ ~ to be the restriction o f  G to X ,  i.e., ct(x) = Gu(x) - G~(x), 
x 6 [0, 1], then there exists s ~ T such that either D s or I s is balanced, where D s = D~ - D~ and 
I s = I~ - 19 as defined in (3.4). 

Proof. Since ~ is right-continuous, we can apply Lemma 3.3 to ~. Therefore, there exists a sequence 
{s,} c X such that ~(s,) --. a,, where a, is as in the lemma. Let now s be a limit point of {s,}, then 
there exists either 

(i) a decreasing subsequence s,~ ~ s, or 
(ii) an increasing subsequence s,~ -4 s. 
In the first case a ( s , ~ ) ~ ( s + ) = o ~ ( s ) = a ~ ,  and hence D S ( x ) = G ( x + s ) - G ( s ) =  

G(x  + s) - a, .  By Lemma 3.4 ~ is balanced, and by the corollary, D s is balanced. 
In the second case ~ ( s , ~ ) ~ ( s - ) = a , ,  and hence I S ( x ) = G ( x + s ) - G ( s - ) =  

G(x  + s) - a, ,  and therefore P is balanced. []  

We can now prove the following theorem. 

Theorem 3.7. Le t  It, v ~ M ( T ) ,  then 

dr(It, v) = f 2  la(x) - a~ldx, 

where a: X ~ R is defined by 

= I t ( [ O , x ] )  - v ( [ 0 , x ] ) ,  

~(1) = 0 

and 

0 ~ x < l ,  

a= = sup{t  ~ T:  2 ({x+  X:  a (x)>t  t}) >½}. 

Proof. Since from the definition of ~, ~ is the restriction of G to X with G as defined above, by the 
preceding Proposi t ion 3.6 we know that there exists s 6 T such that either D s or I s is balanced. 

Assume first that s is such that D s is balanced. Then by Proposi t ion 3.2 

dr(it, v) = dx(it , if). 
Now, using Eq. (2.4) 

dx(it° ,ff)= f2 lDS(x)ldx = f2 ldx. 

If, on the other hand, s is such that I s is balanced, then by the same proposit ion 

dr(g,  v) I I = dx(#~, v~). 
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Now, using Eq. (2.4) 
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dx(/2~,v~)= f~ llS(x)ldx= f~ I ~ ( x )  - a=l dx. 

This completes the proof. []  

Corollary 3.8. Under the same hypothesis of the preceding theorem, 

dr(/2'v)=min( inf~ll~(x)-~(s,ldx'inf~ll~(x,-~(s-serJo serJo  ) l d x ) .  

Proof. Recalling that  G defined above is a periodic function, we have 

dx(/2°, v °) 

= f~ t G ( x ) -  G(s)I dx = f~ l a ( x ) -  a(s)l dx. 

Similarly, 

= f ~  I ~ ( x )  - ~ ( s  - )1 dx(itI, v I) dx. 

Now using Proposi t ions  3.2 and 3.6 the result follows. []  

Corollary 3.9. If~2 and v e M ( T )  are continuous (i.e.,/2({s}) = v({s}) = 0 Vs e T) then 

dr(/2,v) = inf 111~(x) -- ~(s)ldx. 
s e T  do 

Proof. If # and v are continuous,  then ~ is cont inuous  and therefore D s = I s for every s e T. []  

4. Discrete case 

We want  to show in this section that  the computa t ion  of the distance for the discrete case has 
linear complexity. 

We therefore consider measures suppor ted on a finite number  of points. The points  of the 
suppor t  do not need to be equidistributed; and when analyzing the distance between two measures 
/2 and v, we only consider those points such that  either/2 or v are 4: 0. 

Let us first consider the linear case of measures suppor ted  on X. In this case, the problem of the 
calculation of the Kantorovich  metric can be described in the following way: 
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Let 0 ~< X 1 < X 2 < " ' "  < X n ~ 1 and # = (Pl , . . . , /~ , ) ,  v = ( v l , . . . ,  v.) be such that 0 ~< #i, vi <~ 1 
and y~/~i = Y~ vi = 1. 

The Kantorovich metric is then 

d x ( # , v ) =  sup { ~  ( # ~ -  vi)f~: lf~+l -f~l  <~ x,+l - xi, i =  l . . . . .  n - l } .  

Using (2.4) we obtain 

n - 1  

dx(!~, v) = ~ ditF, I, (4.1) 
/=1  

where di = X,+l - xl and Fi = Y)k=l #k -- Vk. 
Let us consider now the case of measures on the circle T. 
Let 0 ~< sl < s2 < ... < s, < 1 be n points in T, and/~ = (#1 . . . . .  #,), v = (vl . . . . .  v,) be such 

that 0 <<. lal, vl ~< 1 and Z #i = Y~ vi = 1. 
The Kantorovich metric on T is then 

dr(p,  v) = sup ( # i -  vi)fi , 
i 

where the supremum is taken over f =  ( f l , . . .  , f ,)  such that 

[f/+l--f/ l<<-P(Si+a,si) ,  i =  l , . . . , n - - 1 ,  

If1 - L I  <<. p(sl ,s .)  

and p is the minimum arclength metric defined in Section 2. 
Then, using Corollary 3.8 it is easy to see that 

dr(# ,v)  = min ~ dklCtk-- ~sl, (4.2) 
l <~s<~nk=l 

where ~ = YJ=I #i - vi, 1 <~ j <~ n and dj = p(s~+ l ,si) ,  1 <~ j <~ n - 1, d. = p ( s l , s . ) .  
The problem of  finding the minimum of the formula above is known as the weighted median 

problem. It is known that this problem has linear time complexity (see [8] and references therein). 
Therefore, the problem of calculating the Kantorovich distance on the line and on the circle for 

finite, not necessarily equally distributed weights turns out to be solvable in linear time. 

4.1. An application to a Minimal  Matching Problem 

In this section we are going to show an application of the discrete Kantorovich metric to solve 
a Minimal Matching Problem. Let us first describe the problem. 

Let (T, p) be as before the circle with the minimal arclength distance. Let 

A = { a l , . . . , a . } ,  B = { b l  . . . .  , b . }  
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be two sorted sets of points  on the circle, 0 ~< ai, bi < 1. Let n be a permuta t ion  of { 1, . . . ,  n}. The 
matching associated to rc (or simply the matching n) is the pairing (a~, b,,)), i = 1 , . . . ,  n. The cost of 
the matching is the sum of the distances between the points  in each pair, i.e., 

C(rc) = ~ p(ai,b~,)). 
i=1  

The Minimal  Matching Problem is to find the min imum of C(r0 over all the permutat ions.  In the 
case that  the points are on the line it is known (see [20, 24]) that  the min imum is obtained when n is 
the identity (i.e., the matching is (a l ,b l ) ,  (a2,b2),. . .  , (a , ,b , )) .  In the circular case an n l o g n  
algori thm was obtained in [24]. 

Let us now interpret the Minimal  Matching  Problem in the context of the Kantorovich  Metric 
Problem: Assume tha t / z  and v are the uniform measures suppor ted  on A, B, respectively (i.e., 
#(al) = 1 = v(bi), i = 1 , . . . ,  n). (Note: For  simplicity of the nota t ion  we do not  normalize the 
measures, since it is irrelevant to the analysis.) 

F r o m  Corollary 3.8 and using that  0¢(s) in this case only takes a finite number  of values we have 

dr(#, v) = inf [ Is(x) - c¢(s)l dx. (4.3) 
s JT  

In 1-24-1 it is shown that  

infC(n) = inf(sjT I~(x) - ~(s)l dx. 

Therefore, using (4.2) we see that  the Minimal  Matching  Problem in the circle can be reduced to the 
Weighted Median Problem and then be solved in linear time. 

5. Conclusions 

In this paper  we study the Kantorovich  metric for probabil i ty measures on the circle and we 
obtain an explicit analytica ! expression for it. This expression is related to the one already known 
for measures on the line. In applications of Digital Image Processing the Kantorovich  metric on the 
circle has been found to be very useful. In particular, in pat tern recognit ion for texture analysis and 
discrimination, this metric has been applied for compar ing  circular features as orientability and 
gradient directions. This fact makes it very relevant to have a linear-time algorithm for its calculation. 

We also show that a combinatorial Minimal Matching Problem for which only an n log n algorithm 
was known can be interpreted in the Kantorovich metric context and therefore be solved in linear time. 
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