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Abstract. In this article, we present a method for constructing wavelet frames
of L2(Rd) of the type {| detAj |1/2ψ(Ajx − xj,k) : j ∈ J, k ∈ K} on irregular

lattices of the form X = {xj,k ∈ Rd : j ∈ J, k ∈ K}, and with an arbitrary

countable family of invertible d × d matrices {Aj ∈ GLd(R) : j ∈ J}. Pos-

sible applications include image and video compression, speech coding, image
and digital data transmission, image analysis, estimations and detection, and

seismology.

1. Introduction

In this article we present a general method for constructing well-localized wavelet
frames {|detAj |1/2ψ(Ajx − xj,k) : j ∈ J, k ∈ K} of L2(Rd) on arbitrary grids
X = {xj,k ∈ Rd : j ∈ J, k ∈ K}, and with arbitrary dilation matrices {Aj}j∈J .
The construction presented here is a special case of a more general method for con-
structing time-frequency frame atoms in several variables discussed in [ACM03].
Although there has been considerable interest in trying to obtain wavelet frame
decompositions of the space L2(Rd), on irregular grids and with unstructured dila-
tion matrices (see [Bal97], [BCHL03], [Chr96], [Chr97], [CH97], [CDH99], [FZ95],
[Fei87], [FG89], [FW01], [Grö91], [Grö93],[HK03], [OS92], [RS95], [SZ00], [SZ01],
[SZ02], [SZ03], [SZ03]), most of the methods that have been developed are small
perturbations of wavelet frames on a regular grid and with a fixed dilation ma-
trix. In contrast, our approach presented in [ACM03] is not a perturbation method
and is very general, allowing quite general constructions. The setting includes as
particular cases, wavelet frames on irregular lattices and with a set of dilations or
transformations that do not have a group structure. For this paper, we will be
mainly concerned with an even more particular case consisting of wavelet frames
on irregular lattices and with an arbitrary but fixed expansive matrix A (A is
said to be expansive if |λ| > 1 for every eigenvalue λ of A). The case of regular
lattices can also be obtained by our system, producing a substantial part of the
systems recently characterized by the fundamental work of Guido Weiss and his
group [HDW02, HDW03, Lab02] on the decomposition of L2(Rd). The wavelet
frames obtained by Chui, He, Stöeckler and Sun [CHS], [CHSS03], [CS00] are also
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included in our setting. Wavelet sets and wavelet frame sets studied in [BMM99],
[BL99], [BL01], [BS03], [DLS97], [DLS98], [HL00], [Ola03], [OS03] can also be pro-
duced by our methods. Furthermore we can obtain wavelet sets with translations
on irregular grids.

The method we present relies on combining ideas from four related, but different
subjects: 1) Sampling theory; 2) Frame theory; 3) Wavelet theory; and 4) Geometry
of Rd. The approach can be considered in the spirit of the classic construction in
1 dimension of smooth regular tight frames done by Daubechies, Grossmann and
Meyer in [DGM86]. (See also [HW89] for an expository treatment.) We will say
that a set X = {xk ∈ Rd : k ∈ K} is separated if

inf
k,s∈K,k 6=s

|xk − xs| > 0.

Throughout the paper J and K will denote countable index sets. One of the
main ingredients in sampling theory is the notion of lower Beurling density D−(X)
[Beu66] of a separated set X = {xk ∈ Rd : k ∈ K}, which is defined as:

D−(X) = lim
r→∞

ν−(r)
(2r)d

where ν−(r) := min
y∈Rd

#
(
X ∩ (y + [−r, r]d)

)
. #(Z) denotes the cardinal of the set

Z.

The upper Beurling Density D+(X) is defined in a similar way:

D+(X) = lim
r→∞

ν+(r)
(2r)d

where ν+(r) := max
y∈R

#
(
X ∩ (y + [−r, r]d)

)
. If D−(X) = D+(X) = D(X), then X

is said to have uniform Beurling density D(X).

Remark. Since X is separated, the limits in the definitions of D+(X) and D−(X)
exist (see [BW99]).

Beurling [Beu66] introduced also the following notion of density : The gap ρ of the
set X = {xk : k ∈ K} is defined as

ρ = ρ(X) = inf

{
r > 0 :

⋃
k∈K

Br(xk) = Rd

}
.

Equivalently, the gap ρ can be defined as

ρ = ρ(X) = sup
x∈Rd

inf
xk∈X

|x− xk|.

A family {Qj : j ∈ J} is a covering of Rd if Rd\
⋃

j Qj has measure zero. A covering
{Qj : j ∈ J} has finite index if every x ∈ Rd is at most in i sets of the covering
for some fixed positive integer i. The minimum i with this property is called the
covering index. We will denote by ex(w) the exponential of frequency x at w, that
is ex(w) = e−2πixw.

Let us now state a general theorem on wavelet frames:
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Theorem 1.1 (Wavelets). Let A be an expansive matrix and V ⊂ Rd be any
measurable bounded set containing 0 in its interior and such that its boundary ∂V
has measure zero. Set Q = ATV \ V , and choose any function h ∈ Cr(Rd), r >
0, h 6= 0 on Q such that Supph ∈ Qε where Qε := {x ∈ Rd : dist(x,Q) ≤ ε}.
If the set X = {xk ∈ Rd : k ∈ K} is separated and such that ρ(X) < 1

4δ where
δ = Diameter(Q), then the following collection is a wavelet frame for L2(Rd)

(1.1) {|detA|j/2ψ(Ajx− xk) : k ∈ K, j ∈ Z)},

where ψ is the inverse Fourier transform of h.

Remarks.

(1) The result of the theorem remains valid even if the matrix A is not expan-
sive. For example let Q be any closed subset of Rd, and A any invertible
matrix. If Rd = ∪jA

jQε with finite covering index, then (1.1) is a frame
for L2(Rd).

(2) Instead of taking the powers Aj of a single matrix A we can choose a set
of invertible matrices {Aj ∈ GLd(R) : j ∈ J} without a particular group
structure. In particular the index j can be a multi-index. For example,
the set J = Z × {1, · · · , N}, and the matrices A(i,j) = DiRj where R is
a rotation and D a dilation matrix, will be used to construct directional
wavelets.

(3) The wavelet can be constructed to have polynomial decay of any order by
choosing r sufficiently large.

(4) The sets of translations Xj = {A−jxk : k ∈ K} for each resolution level
are not nested. However, the theorem can be easily modified to produce
nested sets of translations Xj+1 ⊂ Xj for all j ∈ Z (c.f. [ACM03]).

(5) For the one dimensional case, ρ can be replaced by the Beurling density
D−(X) which is a weaker condition and allows for arbitrary gaps between
sampling points.

(6) If we choose h to be the characteristic function of the set Qε, then we
obtain a wavelet frame set, and our construction (1.1) gives wavelet sets
with translations on irregular grids.

Although the set {|detA|j/2ψ(Ajx−xk) : j ∈ J, k ∈ K} in Theorem 1.1 is a wavelet
frame for L2(Rd), it is not in general true that for a fixed j the set {ψj,xk

(x) =
|detA|j/2ψ(Ajx − xk) : k ∈ K} is a frame. Thus, it appears at first, that the
reconstruction of a function f ∈ L2(Rd) from the wavelet coefficients {< f, ψj,xk

>:
j ∈ J, k ∈ K} cannot be obtained in a stable way by first reconstructing at each
level j and then obtaining f by summing over all levels j. But in fact it is always
possible to reconstruct each fj in a stable way and then obtain f by summing up
over all levels j, as is described in [ACM03].

2. Examples of wavelet frames on irregular lattices and with
arbitrary set of dilation matrices and other transformations

2.1. Examples of Wavelet frames in Rd.
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Figure 1. Radial wavelet frames that are well localized in space:
Region between continuous lines correspond to region Q and region
between dashed lines corresponds to Qε.

(1) Isotropic, well-localized wavelets: Let V be the ball of radius 1/2 centered
at the origin. Let A = 2I, then Q = AV \ V = {x ∈ R2 : 1/2 ≤ ‖x‖ ≤ 1}.
Let ε = 1/4, h(ξ1, ξ2) = nβn−1

(
(ξ21 + ξ22 − 1/4)n

)
, where βn is the B-spline

of degree n, i.e., the βn = χ[0,1] ∗ · · · ∗ χ[0,1] is the n-fold convolution of
the characteristic function on [0, 1]. Let X = {xk ∈ R2 : k ∈ K} be such
that its maximal gap satisfies ρ(X) < 1

5 . Then by Theorem 1.1 the set
(1.1) is a wavelet frame for L2(R2) (see Figure 1). By construction, the
wavelet ψ is isotropic and has polynomial decay of degree n in space, i.e,
|ψ(x)| ≤ C(1 + |x|)−n. A theorem in [ACM03] more general than Theorem
1.1 shows that the same wavelet ψ generates a frame for L2(R2) if we
replace the dilation matrix A = 2I by any dilation matrix A = bI where
1 < b ≤ 5/4. Non-separable radial MRA frame wavelets can be found in
[PGKKH1], [PGKKH2]. However, these radial MRA frame wavelets have
slow spatial decay, i.e., |ψ(x)| ≤ C(1 + |x|)−1.

(2) Directional wavelet frames: To construct directional wavelet frames we use
a modified version of Theorem 1.1 as suggested by remark (2). Let Q1 be
a region defined by Q1 = {(x, y) ∈ R2 : x = r cos(θ), y = r sin(θ), 1/2 ≤
r ≤ 1, |θ| ≤ π

2N } as in Figure 2, and define Q = (−Q1) ∪ Q1. Let B =
2I, and R be the matrix of a rotation by an angle π/N , where N is any
positive integer, ε = 0.1, and J = {(j1, j2) : j1 ∈ Z, j2 = 0, · · · , N − 1}.
Then R2 = ∪(j1,j2)∈JB

j1Rj2Q. Let Xj = {xj,k ∈ R2 : k ∈ K} be a
set of points such that ρ(Xj) < 5

22 for each j = (j1, j2) ∈ J . Then the
function ψ, such that ψ̂ = χQε

, generates a wavelet frame for L2(R2) of
the form {ψj,k = 2j1ψj(2j1Rj2 · −xj,k) : j ∈ J, k ∈ Z}. The index j1 codes
for the resolution of the wavelet, while the index j2 codes for N possible
directions. Thus the wavelet frame coefficients encode time scale as well as
directional information. The wavelet constructed in this example does not
have good space localization, because it is the inverse Fourier transform of a
characteristic function. However, we can replace the characteristic function
χQε

by a smoother function h ∈ Cr where r > 0 is any positive real number
we choose, h > 0 on Q and Supph ∈ Qε. With this modification we
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Figure 2. Well-localized directional wavelet: Q is the interior
of the two regions delineated by continuous lines, and Qε is the
interior of the two regions delimited by the dashed lines.

obtain a directional wavelet ψ with spatial localization satisfying |ψ(x)| ≤
C(1 + |x|)−r. Moreover the wavelet can be constructed to be real and
symmetric with respect to the origin, by choosing a function h who is
real and symmetric with respect to the origin. Very nice constructions of
smooth directional wavelet frames on regular grids were obtained before in
[AHNV01, ADH+03].

(3) Spiral wavelet: [ACM03] In this example we will define a dilation A such
that its powers AjQ applied to an annulus sector Q covers R2 by spiral
annulus sectors.

Let a, b > 1, and Γ the spiral curve defined by

Γ(t) = (at cos(bt), at sin(bt)) t ∈ R.
For α ∈ R define Rα to be the rotation of angle α : Rα =

[
cos α − sin α
sin α cos α

]
.

The curve Γ satisfies:

Γ(t+ α) = aαRbαΓ(t).

Note that for positive α the matrix A = aαRbα is expansive.
Now we are ready to define the covering elements. Set b = 2π and α = 1

m ,
for some integer m ≥ 2 so that Am = aId. Define the spiral annulus sector
Q = {x ∈ R2 : x = λΓ(β), 1 ≤ λ ≤ a, 0 ≤ β ≤ α} (see Figure 3). So Q is
compact and {AjQ : j ∈ Z} is a disjoint covering of Rd \ {0}.

Choose ε > 0 sufficiently small and h a smooth function that does not
vanish in Q and with support in Qε. Define ψ̂ = h. Select a set X =
{xk}k∈Z ⊂ R2 such that ρ(X) < 1

2diam(Q) .
The set {aj/mψ(aj/mR−2πj/mx− xk) : k ∈ Z, j ∈ Z} is a wavelet frame

of L2(R2) generated by a single wavelet ψ that is band-limited, with good
decay and directional in frequency.

Remarks.

(1) Obviously, all the constructions above can be generalized to Rd for any
dimension d > 2.

(2) Some of the wavelet frames may be associated with MRAs. For example,
the so called Shannon wavelet frame constructed above, is associated with
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Q

AQ

A−1Q

αb= π
4

Γ(0) Γ(0)

Figure 3. Spiral wavelet frames.

the Shannon MRA Vj = {f ∈ L2(R) : Supp f̂ ⊂ [−2−j−1, 2−j−1]}, j ∈ Z.
In general however, the precise relation needs further investigation.

3. General Irregular Systems

From the last section we can see that there are three common ingredients in all the
examples that we considered.

(1) A covering of the space Rd, whose covering elements are obtained by the
action of a countable family of matrices Aj on a basic covering element Q
of Rd.

(2) A local frame of non-harmonic exponentials controlled by the Beurling den-
sity (in dimension d = 1), or the Beurling gap (in dimensions d ≥ 2) in each
covering element.

(3) A smoothing gluing element: the function h with support in Qε.

The combination of these three elements produces a wavelet frame of L2(Rd) with
good decay.

A simple observation with far reaching consequences is the fact that these ideas can
be further developed to obtain quite more general constructions of frames of L2(Rd).
These general constructions include as particular examples irregular wavelet frames
and irregular Gabor frames. One nice property of these more general systems of
functions is that the frame-elements can still be chosen having good decay in time,
or space.

In what follows we will briefly explain the general idea of how this construction
works. We will state some of the more relevant results for this exposition and refer
the reader to [ACM03] for proofs and the more abstract theory.

In order to understand the heart of the problem, we first pose the following question:
Assume that G = {gj}j∈J is a countable family of functions in L2(Rd) and let
X = {xj,k ∈ Rd : j ∈ J, k ∈ K} be a double indexed countable set in Rd. Consider
the system G(G,X) = {gj(x − xj,k) : j ∈ J, k ∈ K} associated to the pair (G,X).
The fundamental question is for which pairs (G,X) the system G(G,X) is a frame
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of L2(Rd). Guido Weiss and his group obtained a characterization of these systems
for the case of tight frames on regular grids. The Wavelet set systems mentioned
in the introduction, are also particular cases of the general systems G(G,X).

The general case seems to be much more difficult and probably requires other proof
techniques. Our results will produce a substantial part of these systems and provide
methods to specifically construct them.

Our method can be described as follows: We start by choosing a completely arbi-
trary covering of Rd by bounded sets. This covering is the first ingredient in the
description above. Now we choose for the jth covering element a non-harmonic
Fourier frame by choosing first a separated family Xj = {xj,k ∈ Rd : k ∈ K}. The
gap of this family should be small enough, in order that {exj,k

}k∈K form a frame for
the functions supported in a ball centered at the origin, whose diameter is at least
equal to the diameter of the considered covering element (or twice the diameter
if we are interested in real valued frames or wavelets). This guarantees that this
set of exponentials form a local frame for the functions supported in the covering
element.

Finally our third ingredient are functions hj , j ∈ J that we choose to be Cr, with
support included in the ε expanded jth element of the covering, and bounded away
from zero on the element itself. We will also need this family to be uniformly
bounded. So, if the covering has finite index, we can conclude that the system
{hjexjk

}j∈J,k∈K is a frame of L2(Rd) provided that the frame bounds for the ex-
ponentials are uniformly bounded below and above.

With the construction above, if ĝj = hj , then the system G(G,X) = {gj(x− xj,k) :
j ∈ J, k ∈ K} is a frame of L2(Rd) where X =

⋃
j Xj . So we have the following

theorem:

Theorem 3.1 (General-Systems). Let {Qj : j ∈ J} be a covering of Rd by bounded
sets with finite covering index. Let hj ∈ L2(Rd) such that Supp(hj) ⊂ Qεj

, for some
εj > 0 and hj ∈ Cr with hj 6= 0 in Qj and |hj | < c for all j. Let Xj = {xj,k : k ∈
K} be a separated set with gap ρ(Xj) < 1

4δj
where δj =diameter(Qj) and such that

the frame bounds of the frame sequence {exj,k
χQj

}k∈K are uniformly bounded in J .
If X =

⋃
j Xj and G = {gj =∨ hj : j ∈ J}, then the system G(G,X) is a frame of

L2(Rd).

4. Concluding remarks

The results of Theorem 3.1 can be extended in order to obtain atomic decomposi-
tions of the space L2(Rd) with smooth well-localized frame atoms. The fact that we
concentrated on local Fourier frames is to obtain frames of L2(Rd) that are local-
ized on irregular grids, e.g., wavelet frames on irregular grids. The general theory
allows the construction of general atomic decompositions by pasting together ar-
bitrary local decompositions associated to a covering of the space as is detailed in
[ACM03].
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[Grö93] , Irregular sampling of wavelet and short-time Fourier transforms, Constr.
Approx. 9 (1993), no. 2-3, 283–297.

[HL00] D. Han and D. Larson, Frames, bases and group representations, Memoirs of the

American Mathematical Society, 147 (2000).
[HK03] C. Heil and G. Kutyniok, Density of weighted wavelet frames, J. Geometric Analysis,

13 (2003), pp. 479–493.

[HW89] C. Heil and D. Walnut, Continuous and discrete wavelet transforms, SIAM Reviews
31 (1989), 628–666.

[HDW02] E. Hernández, D. Labate, and G. Weiss, A unified characterization of reproducing

systems generated by a finite family ii, J. Geom. Anal. 12 (2002), no. 4, 615–662.
[HDW03] E. Hernández, D. Labate, G. Weiss, and E. Wilson, Oversampling quasi affine frames

and wave packets, to appear, 2003.
[Lab02] D. Labate, A unified characterization of reproducing systems generated by a finite

family, J. Geom. Anal. 12 (2002), no. 3, 469 – 491.
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