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ABSTRACT. We provide a new representation of a refinable shift invariant space with a compactly
supported generator, in terms of functions with a special property of homogeneity. In particular these
functions include all the homogeneous polynomials that are reproducible by the generator, what links
this representation to the accuracy of the space. We completely characterize the class of homogeneous
functions in the space and show that they can reproduce the generator. As a result we conclude that
the homogeneous functions can be constructed from the vectors associated to the spectrum of the
scale matrix (a finite square matrix with entries from the mask of the generator). Furthermore, we
prove that the kernel of the transition operator has the same dimension than the kernel of this finite
matrix. This relation provides an easy test for the linear independence of the integer translates of the
generator. This could be potentially useful in applications to approximation theory, wavelet theory
and sampling.

1. INTRODUCTION

A function ¢ : R — C is called refinable if it satisfies the equation:

N
(L1) @) =3 enp(2e — ),
k=0

for some complex scalars ¢y, ..., cy. The scalars ¢, are the mask of the refinable function. We consider
the case in which ¢ is compactly supported. Define the Shift Invariant Space (SIS) generated by ¢ as:

S(p) ={f:R—C: f(z) = > yrp(z +k),y € C}.
kel

A refinable SIS is a SIS with a refinable generator. Refinable SIS and refinable generators have been
studied extensively, since they are very important in Approximation Theory and Wavelet Theory.

Many properties of ¢ can be obtained imposing conditions on the mask. One fundamental question
is when the space S(y) contains polynomials and of which degree. The accuracy of ¢ is the maximum
integer n such that all the polynomials of degree less or equal than n — 1 are contained in S(yp).

The accuracy is related to the approximation order of S(y), ([Jia95], [dB90] and references therein),
and with the zero moments and the smoothness of the associated wavelet when ¢ generates a Multires-
olution Analysis [Mey92]. There are many well known equivalent conditions for accuracy. The one that
interests us here is the following, [Dau92], [CHM98]:

Proposition 1. Let ¢ be a compactly supported function satisfying (1.1). Then the following statements
are equivalent
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(1) The function ¢ has accuracy n.

(2) The numbers {1,271, ...,2= (")} are eigenvalues of the (N + 1) x (N + 1) matriz T de-
fined by T = {c2;—j}i j=o,..,N, (the scale matrix) and there exist polynomials po, ..., pn—1 with
degree(p;) = i such that the vector v; = {p;(k)}r=o,...,n s a left eigenvector of T corresponding
to the eigenvalue 274, i =0,....,n — 1.

Here, and always throughout the paper, we assume ¢; = 0, if £ # 0,..., N. One interesting property
is that if ¢ has accuracy n, then for s = 0,1,...,n — 1 it is true that z° = 3, _7 ps(k)p(z — k),where
ps is the polynomial that provides the eigenvector for the eigenvalue 27°. So, if the polynomial z° is
in S(y), then the left eigenvector of T, corresponding to the eigenvalue 2%, provides the coefficients
needed to write z° as a linear combination of the translates of ¢.

A local basis for S(y) is a set of functions in S(p) whose restriction to the [0, 1]-interval form a basis
for the space of all the functions in S(y), restricted to the [0, 1]-interval.

In the case that ¢ is the B-spline of order m (so N = m), then all polynomials of degree less or
equal than m — 1 are in S(p). Moreover, the set {1,z,2?,...,2™ 1} is a local basis for S(¢), and the
spectrum of T' consists exactly of the numbers {1,21,...,2-(m=1},

Now, if ¢ is not a B-spline then T could have some eigenvalue A different from a power of 1/2. If
powers of 1/2 are associated to homogeneous polynomials, which functions in S(y) are associated to an
arbitrary eigenvalue A? Will the functions, associated to all the eigenvalues, provide also local bases of
S(¢), or equivalently, will these functions reproduce the generator ¢? If ¢ has accuracy p < N, then
no polynomials of degree bigger or equal than p will be in S(p). Will the extra eigenvalues of T tell us
something about the order of approximation of S(p)?

In the case that A is a simple eigenvalue, Blu and Unser [BU02] and later Zhou [Zho02] showed that
A is associated to what they call a 2-scale A-homogeneous function, that is a function in the SIS that
satisfies the homogeneity relation h(z) = Ah(2z).

However, to obtain a complete representation of the space it is necessary to consider the whole
spectrum of T'. This motivates the study of the spectral properties of T for a general refinable .

This is achieved in this paper: we are able to completely characterize the SIS in terms of functions
associated to the spectrum of T. We prove that these functions provide a local basis of S(p). The
advantage of this local basis is that it contains all possible homogeneous polynomials in the space,
and those functions in the basis which are not polynomials, still preserve some kind of homogeneity.
Furthermore this basis can be easily obtained from the spectrum of the finite matrix T. We are also
able to proof that this matrix is necessarily invertible if the translates of ¢ are linearly independent.

Definition 1. Let A € C,A # 0 and r > 1 an integer. A function h is (A, r)-homogeneous if it satisfies
the following equation:
" (r
1.2 -N""*h(27kz) =0 ae..
(12) > () et

For 7 = 1 these functions are called two-scale homogeneous and they satisfy h(z) = +h(%).

If H C S(p) is the span of all the (A, r)-homogeneous functions in S(y), for any A € C and any
positive integer r, we show that under the hypothesis of linear independence of the translates of ¢,
dim(H) = N + 1, and that there is a basis of H, corresponding to the spectrum of 7. More precisely,
given a basis B = {vo,...,vn} of CN*1 that yields the Jordan form of T' we associate to each vector
v € B a unique (A, r)-homogeneous function in S(p), where A and r, satisfy v(T'— A\I)" = 0.

The first N of these functions are a local basis of functions in S(y) restricted to [0, 1]. This allows
to reconstruct the generator ¢ from the homogeneous functions, and gives a new representation for the
functions in S(yp).

As a corollary of these results we obtain that if the integer translates of ¢ are linearly independent,
then the subdivision operator S, (see (2.2)) is one to one.
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Furthermore, we show that to each non-zero vector in the kernel of T', there corresponds a non-trivial
linear combination of the integer translates of ¢ yielding the zero function.

This paper is organized as follows: We first introduce in Section 2 some notation and some necessary
tools. In Section 3 we show that each non-zero left eigenvector of T' can be extended to an infinite
left-eigensequence of S., and every vector in a basis for the Jordan form of T can be extended to a
sequence that satisfies the same relation but for S.. Using the theory of difference equations, we then
show that the dimension of the Kernel of T is the same than the one of S, and finally, we introduce the
(A, 7)-homogeneous functions that completely characterize the shift invariant space.

2. NOTATION

Let ¢ : R — C be a function supported in [0, N] satisfying (1.1).
We will often use an infinite column vector associated to ¢, namely

(2.1) (@@) = [, pl@=1), p@), pl@+1), ...].

Let £(Z) be the space of all the sequences defined in Z. We say that the integer translates of ¢ are
globally linearly independent, or linearly independent if ZkeZ app(-—k)=0 = a =0 VEk, for
any sequence a € {(Z).

The subdivision operator associated to the mask ¢y is the operator

(2.2) Sc: U(Z) — L(Z) defined by Sc(a); = Z Qi j.
icZ

Note. The subdivision operator is sometimes defined in a different but equivalent way as S'C(a)j =
> ic7 Qicj—2i- I h 2 L(Z) — £(Z) is the operator h(a)r, = a_k, then hS:h = S. and therefore S, and

S, share most of the properties. For a nice account of properties of the subdivision operator see [BJ02]

If L = L, is the double infinite matrix L = [c2i—;]; ;7 then the refinement equation can be written
as ¢(z) = Lo(2x).

Using the matrix L, the subdivision operator (2.2) can be recast as: S.a = aL, « € £(Z), where
a on the right hand side of the equation is thought as an infinite row vector. Note that the scaling
matrix T defined in Proposition 1 is a finite submatrix of L. We will consider in our analysis the

matrices M, Ty, Ty, that are submatrices of T and are defined as: M = [c2—j]i,j=1,...,N—1, To =
[e2i—jlij=0,...N—1, T1 = [cai—jls,j=1,...,~- That is,

Co 0 ... 0

c ¢ ¢ 0 ... 0 ol 0 0
(23) T= c3 Cy C1 ... = M

0 1 il ey 010 [en

0 ... ...... 0 CN

Note that ¢g and ¢y must be non-zero, since Supp(y) = [0, N].

Now, if Y € £(Z), define Y° and Y™ as the restriction of Y to the indexes {0,..., N}, and {1,..., N—
1}, respectively, i.e., YO = (Y, ..., Yn),
yM = (}/17 .- '7YN71)'

Note. Throughout this paper, (L—\I) is considered as an operator on £(Z), defined by left-multiplication,
(i.e. Y — Y(L—AI), where Y is a double infinite row vector). I is the identity operator acting on £(Z).
By an abuse of notation, we will use the notation I for all identity operators, without distinguishing the
space they are acting on. Note also that properties of the matrix L translate directly into properties of
the subdivision operator S..
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3. THE POINT SPECTRUM OF L

The following proposition, will show, how the spectral properties of L are related to those of T'. The
case r = 1 has been studied earlier by [CHMO00], [JRZ98], [Zho01, Zho02].

Proposition 2. Let A € C.
(1) LetY € {(Z) andr € N, r > 1.
(3.1) If YeKer(L—X)" then Y° € Ker(T —A)".

Moreover, if X\ # 0, Y #0 and Y € Ker(L — XI)", then Y° # 0.
(2) If v € Ker(T — AI)" and X\ # 0, then there exists an extension Y, € £(Z) of v, (i.e. Y =v)
such that Y, € Ker(L — AI)".

Proof. The matrix L can be decomposed in blocks as

R|0]|O0
P|\T|Q |,

(3.2) L=

0(0(S

where we decompose Z as
(3.3) Z=A"uU AU AT,
with A= =ZnN (—o0,—1], A =ZN[0,N] and A* =ZN[N +1,+00), and
R=L|p-xa- P=Llgoxa- T=Llgoxao Q=Llgoxa+ S=Lla+xa+-

This block form of the matrix, is closed under multiplication. So if r > 1, € N

R'| 0] 0
L'=| P |T" | Qr ] :
0]0]S
where
r—1 r—1
(3.4) P,=) T'PR™™*' and Q,=) TFQS™™* .
k=0 k=0
Since
R—\I 0 0
(L= = P |[T—-XX| Q@ ,
0 0 S — I
(R—\I)" 0 0
(L—A)" = P} (T — A1) Qr ;
0 0 (S = AI)"

where P} and @) are as in (3.4) with the obvious changes.

Note that the matrix S is upper triangular, with diagonal (0,0,0,...), and hence (S — AI)" is upper
triangular, with diagonal ((—A)", (=A)", (=A"),...).

Analogously, we observe that R is lower triangular with zeroes in the main diagonal, so (R — A\I)" is
lower triangular with diagonal ((—A)", (=A)", (=A)",...).

Y = (Y~,Y%Y"), then

Y(L-AI)" =

(3.5) = (YT(R=A)"+Y'P)Y%T — AI)",YOQ} + Y (S — AI)").

Soif Y € Ker(L — AI)", then Y° € Ker(T — AI)".

We now want to show that if Y € Ker(L — AI)", A # 0, Y # 0, then Y? # 0.
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For this, let ko € Z be such that Y, # 0. If 0 < kg < N, we are done. Assume that ky > N. Then,
since Y(L — AI)" = 0, in particular, the k¢ element of this product is 0. But since A # 0, (S — AI)"
is upper triangular with (—\)" in the diagonal, therefore the only nonzero elements of column kg of
(L — AI)" are between 0 and ko. Hence there has to be a k1,0 < k1 < ko such that Yy, # 0. Again, if
0 < k1 < N we are done, otherwise we repeat the argument until %; is in the desired interval.

If kp < 0, the argument works in the same way, reversing the role of (S — AI)" and (R — AI)".

For the proof of part 2, assume that v € CV 11, v € Ker(T' — AI)". We want to find an infinite vector
Y € ¢(Z), such that Y? = v and Y € Ker(L — A\I)". From equation (3.5) we know that if Y € £(Z),

[V(L-XD)"T" = Y°Q)4+ YT (S—AI", and

[Y(L=AD"]" = Y°P 4+ Y~ (R-\)".
Therefore, if Y € Ker(L — AI)", and Y° = v, then Y+ and Y~ have to satisfy
(3.6) YH(S - A" = —vQ}) and Y (R— )" = —vP)

Using again that (S — AI)" and (R — AI)", are triangular, if A # 0, there are unique solutions for Y+
and Y~ and they can be obtained recursively.
This completes the proof. a

As a consequence of the preceding Proposition, looking at the structure of the eigenvectors of the
operator L, we have the following Corollary.

Corollary 1. The operator L does not have eigenvectors in £P, 1 < p < +00.

The last proposition tells us that the elements of the spectrum of T" are intimately related to those of
L. But by the special form of T (see equation (2.3)), we can actually use the (N — 1) x (N — 1) matrix
M to obtain the spectrum of T', as the following proposition shows:

Proposition 3. Let A Z#0 € C.
(1) Let v° = (vo,...,ovn) € CV andr € N, r > 1, then
if v®€Ker(T =)™ then v™ = (vy,...,un_1) € Ker(M — AI)".
Moreover, if X # co, A # cn, v° € Ker(T — M), and v° # 0, then v™ #0.

(2) if oM = (v1,...,un_1) € Ker(M — XI)" and X\ # co and \ # cn, then there exists an extension
00 € CVF of v, such that v° € Ker(T — \I)".

Proof. The proof is immediate by noting the special block-form of T' given in equation (2.3). O

4. THE KERNEL OF L

The case A = 0 could not be handled with the methods of Proposition 2, since the matrices R and
S in (3.2) have zeros in the main diagonal. Instead, we need some results from the theory of difference
equations which we present below [Hen62].

4.1. Difference Equations. Consider the linear difference equation with constant coefficients of order
r

(4'1) UoYn + UIYnt1 + -+ UpYntr =0 y = {yn}nEZa

where uy, € C,ug # 0,u, # 0 with characteristic polynomial P(z) = Y, _, uxz*.
A solution to the equation (4.1) is a sequence Y in ¢(Z), that satisfies (4.1) for all k € Z. A vector
y = (Yo,---,ym) with m > r+1is a finite solution of (4.1), if it satisfies (4.1) forn =0ton =m—r—1.
The space of solutions S C £(Z), has dimension r, and a basis of this space (the fundamental basis)
can be written in the following way:
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Let h > 1 be an integer, di,...,d, arbitrary non-zero complex numbers with d; # d; if i # j.
Let r1,...,7, be positive integers. To each pair (d;,r;), ¢ = 1,...,h we will associate a sequence
a; = {aik}keZ defined as follows: Set » = r; +---+7r, and 79 = 0.Let 0 < ¢ < r—1 and
s = s(i),j = j(4) be the unique integers that satisfy

s(i)—1
Tot dre Si<ritetrg, ) =i— Y 7
k=0

Define
|k|'sg(k) gk 0
(4.2) ag = { (K=i@)! dg; for |k|'Z. J(@) i=0,...r—1, kel
0 |k| < j(i).
So, if P is the characteristic polynomial associated to equation (4.1), consider the pairs {(d;,r;) :
where d; is a root of P and r; its multiplicity}. The sequences {air}, 7, i =0,...,7 — 1 form a basis

of S, the subspace of £(Z) of the solutions to (4.1).

It is also known from the theory of difference equations, that every solutions is determined unequiv-
ocally by any r consecutive elements of it. Hence, if y is a solution such that r consecutive elements are
0, then y is the zero solution.

We will now associate to the pairs {(d;,r;) : i = 1,..., h} the r x r matrix A = [a;;]i j=o,...,r—1. Then
(cf. Henrici [Hen62], pg. 214)

h
(4.3) det(d) = [ (di—do)m* J](ri — DY,
1<i<s<h i=1
where 0!! =1 and k!! = El(k — 1)!...1L
Since d; # dj for i # j, det(A) # 0 and A is invertible.
Let us now consider a system of & linear difference equations with constant coefficients of order r.

(4.4) UioYn + -+ UirYntr =0, i=1,...k, n€Z,

and let P; be the characteristic polynomial of equation i, P;(z) = Z;:o u,-ja:j . Define

(4.5) D=U {d: Pi(d) =0} ={d,-..,ds},

and for each d € D define

(4.6) rq = maz{r; : r; is the multiplicity of d in P;}.

Note that r4 > 1 Vd € D. We then have the pairs (d;,74,) = (d;,r;). Define the index of the system to
bet=73,.pra <kr. Let £ be the degree of the maximum common divisor p, of {P,, ..., Py}. Hence,

Pi(z) = p(x) Py(x), with degree P; = r — £. (Note that £ could be 0). With the above notation, we have
the following proposition (probably known):

Proposition 4. The space Sy, of solutions to the system (4.4) has dimension £, where £ is the degree
of the mazximum common divisor of the characteristic polynomials.

Proof.
Let p be the maximum common divisor of P, ..., Py, and let £ = deg(p). It is clear, that dim(Sg) > .
For the other inequality, consider the ¢ x ¢t matrix A = [a;;]i,j=0,...,t—1, With a;; defined in (4.2) for
the pairs {(d;,r;)} defined above and ¢ being the index of the system (4.4). Since d; # d; for i # j,
det(A) # 0 by (4.3) and A is invertible.
Assume now that y € Sy, then y is a solution to all k difference equations, hence there exist o!,. .., a
vectors of length r, such that

(4.7) At =[yo,..,ye1] 1<i<k,

k
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where A? is an ¢ x 7 matrix whose columns are a fundamental system for equation i. Note that A’ is a
sub-matrix of A, whose columns correspond to some columns {iy,...,i,} of A.

Let now &' be vectors of length ¢, such that aj, = 0 whenever h ¢ {ii,...,i,} and &} = as,
s=1,...,r. Then we have fori,j=1,...,k

(48) Adz = A,-ai = [yg, ce ,yt_l]t = AjOtj = A@J,

and hence A(&' — &’) = 0, for all i # j and therefore, by the invertibility of A, & = &7, for all i # j.
Therefore the only non-zero elements of «; can be those corresponding to the columns associated to the
roots of p. Hence y is a linear combination of £ columns, and therefore dim(S) < 4. O

By noting that for the previous proof, we only used the first ¢ coordinates of the infinite sequences,
we have the following immediate Corollary.

Corollary 2. If z is a vector of length t that satisfies (4.4), then it can be extended to a sequence
Y, = {yj}jEZ solution of (4.4) and such that y; = z;, j=1,...,t.

4.2. The Ker(L). We can now return to our double infinite matrix L and look at the special case A = 0.
As it turns out, the kernel of L is characterized by the vectors in the kernel of M. Since ¢g and ¢y are
non-zero, the matrices 7" and M have kernels of the same dimension.

Moreover, we have the following Proposition:

Proposition 5. Consider the polynomials p. and p, of degree q = % (we assume N to be odd)

(4.9) Pe(T) =co+ 2 + -+ -+ c2q2?, po(z) =1 + 32+ -+ - + cogr12?.
Then
(4.10) dim(Ker(L)) = dim(Ker(M)) = degree(p),

where p is the mazimum common divisor of the polynomials p. and p,. In particular, if dim(Ker(M)) >
0, pe and p, have a common root.
Furthermore

(1) For everyY € Ker(L), Y # 0, we have Y™ #0 and Y™ € Ker(M).
(2) Conversely, for each v € Ker(M),v # 0, we have Y, # 0 and Y, € Ker(L).

Proof. Let us observe first, that Y € £(Z) is in the Kernel of L, if and only if ¥ satisfies the system of
difference equations:

CoUn + C2Unt1 + -+ - + C2¢VUntq =0
(4.11)
C1Un + C3Upt1 + -+ C2q4+1VUntq = 0.

Therefore, by Proposition 4, Ker(L) is the subspace generated by the fundamental solutions associated
to the roots of p, the maximum common divisor of p, and p,. This shows that dim(Ker(L)) = degree(p).

On the other side, if Y € Ker(L), since (YL)M = YMM we conclude that Y™ € Ker(M), and if
Y™ is the zero vector, then the solution Y of (4.11) has N — 1 consecutive zeros, so Y = 0. Hence, if
Y #0, then YM £ 0, which proves (1).

To see that if v = (v1,...,un_1) satisfies vM = 0, then v can be extended, just note that the
sequence vy,...,vn_1 must satisfy the difference equations system of order ¢ = & > L (we assumed N
to be odd) given by (4.11). Since the index ¢ of the system 4.11 satisfies t < 2¢ =N — 1, and v is a
non-trivial common solution of length NV — 1, by Corollary 4, this solution can be extended in such a
way that the extension satisfies both difference equations. This proves (2).

From (1) and (2) it is immediate that dim(Ker(L)) = dim(Ker(M)). O
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4.3. Invertibility of L. Propositions 2 and 3, relate the spectral properties of the matrix M to the
ones of the operator L. The next proposition shows a necessary condition for the independence of the
integer translates of the function ¢, in terms of the matrix M.

Proposition 6. With the above notation, consider the following properties

(1) {p(- = k)},cz7 are globally linearly independent,
(2) The operator L : {(Z) — U(Z),Y — Y L is one-to-one,
(3) The matriz M is invertible.

Then (2 < 3) and (1 = 2).
Proof. (1 = 2)
Assume YL = 0. Define F(z) = Y¢(x). Then we have
F(z) =Y¢(x) = YLop(2z) = 0.
Now, Y¢(z) = 0 = Y = 0, therefore Ker(L) = {0}.

2 <=3
Proposition 4.11. O

Note: We do not know if either (2) or (3) implies (1).

5. HOMOGENEOUS FUNCTIONS

Assume now that Y € Ker(L — AI)", and define the function h € S(p) as h(z) = Yé(z). So, h
satisfies:
.

> (;) <—A)’“LT—’“> #(z)

0=Y(L-AD)"¢(x) =Y (

k=0
v (2 (1) vt ) =3 (5) o)
k or—k k or—k’°
k=0 k=0
So, if D, is the operator defined by (D, f)(z) = f(ax), we have that h satisfies

We will say that a function h is (2, A,r) homogeneous, if h satisfies (5.1) (r is the order of homogeneity,
and ) is the degree), and we will denote by H(2, \,r), the space of all (2, A\, ) homogeneous functions.

Remark (1). Note that if
heH(2,\7) then heH(2,Ns) forevery s>r.
Therefore the “order of homogeneity” will be defined by min{s: h € H(2, A, s)}.

Remark (2). If h is homogeneous (of any order) and A # 1, then h(0) = 0. The values of any homoge-
neous function of order r in (0, +00), are completely determined by its values on any interval of the type
[52=> ), k € Z. (Analogously, the values on (—o0,0), are obtained from the values in any interval
of the type (—sk, —5m])- To see this, note that after some algebraic manipulation, equation (1.2) is

equivalent to

(5.2) h(z) = — Z ( ; ) (=\)h(27z) = — 2 ( ; ) (=N h(2 ).

j=1 7j=1

So, if © € [grpr, 357), then for j = 1,...,7, 29z € [gr=71, 3595=7) C [355> 37 ), and using (5.2),

we determine h(z). Iterating this procedure, we see that all values in the interval (0, 5z ) can be
determined.
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On the other hand, for z € [55,+00), we use (5.2), and observe that if £ € [, 5= ), for j =
L...,r, 2792 € [537, 5i5=1) C [58+ 5¢)-

Remark (3). In the case of order of homogeneity 1, (e.g. r = 1), h is a 2-scale homogeneous function as
described in [Zho02].

Proposition 7. Assume {¢(-—k)} are linearly independent. Let ¢ be as in (2.1). If g1,...,9n € S(¢p),
gi = Y'p, then {g1,...,gn} are linearly independent functions if and only if {Y*,..., Y™} are linearly
independent in £(Z).

Proof. We observe that

iz:;a,-g, Za,y¢ (Zmﬂ)

This equation, together with the linear 1ndependence of the translates of ¢, tells us that ). a;g; = 0 if
and only if (3°; ;Y?) = 0, which proves the desired result. O

Theorem 1. Assume that {p(-—k)} are linearly independent. If h =Y ¢, (h € S(p)), and h € H(2, A\, 1)
then vy, = Y° € Ker(T — AI)". Reciprocally, if v € Ker(T — XI)", then the function h = Y,¢ is in
H(2,\,7). (HereY, is the unique extension of v to a vector in Ker(L — AI)" by Prop. 2.)

Proof. For the first claim, note that
0=%" (Z) (N FhE ) =3 (,’;) (=N Y Lr¢(z) = Y (L — \I)" ().
k=0 k=0
Then, Y (L — AI)" = 0 and by Proposition 2, vy, € Ker(T — \I)".
For the converse first observe that if v = 0 the result is trivial. Assume v # 0 and v € Ker(T — A\I)",
then by Proposition 6 A # 0. Hence (by Prop. 2) there is a unique extension Y, € Ker(L — A\I)", so
h=Y,¢isin H(2,\,r). O

5.1. Jordan decomposition of T. Now, let A be the set of eigenvalues of T', and let us consider a
basis B = {vo,...,vn} of CV*! that gives the Jordan form of T.

Remark. Note that we can choose both vg = (1,0,...,0) and vy = (0,...,0,1) to be in the basis B,
corresponding to the eigenvalues ¢y and cy respectively.

If v; € B,(0 <i < N), then v; € Ker(T — AI)* and v; € Ker(T — AI)*~!, for some A € A, and k > 1.
So to each v; € B, we can associate a unique pair (A, k). Let us denote such v; = v(\, k). (Note that
by the previous observation, vg = v(cg, 1) and vy = v(cn, 1)).

After Theorem 1, we can associate to each v(A, k) a function Ay k) in H(2, A, k)NS(p). Furthermore,
the functions {hq(x k) }ves, are linearly independent.

For this, observe that since the vectors in B are linearly independent, its extensions {Y,} are linearly
independent in £(Z), and therefore the functions {h,(x,)}ves are linearly independent.

One can see that if a finite number of functions are homogeneous for the same A, then a linear
combination of them is also homogeneous for the same A. More precisely,

> aihi(\ ki) = h(\ k), where k= max(k;),

for
(D-MD*h=(D-AD"> ahi =Y a;(D-A)*h; =

If pr, the characteristic polynomial of T, is factorized as: pr(x) = [[5ca (2 — A)™ ,and we denote
Hi(p) ={h € S(p): h € H(2,\, k), forsome k >1}, XE€EA,
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then dim(#,) = rx and a basis of H, is the set of (A, k)-homogeneous functions associated to the
vectors v € B, such that v = v(A, k), for some k& > 1.
Now consider

H=EDHrCS(y).

AEA

We have, dim(H) = N + 1.
The previous observations are synthesized in the following theorem.

Theorem 2. With the notation above we have: The correspondence
v(\, k) € Br— hy(ak) € H,
extends linearly to a linear isomorphism between 7 : CN1t1 —s H. On the other side, the extension
v(A k) — Yook

defined earlier, can also be extended to an isomorphism CN1tl — W C €(Z). We therefore have the
following commutative diagram:

CNH 5 H

I /
w
Here W is the span of {Y, : v € B}.
5.2. Self-similarity of homogeneous functions. Let B = {uvo,...,vn} be as before, a Jordan basis

for T, and let B be the (N + 1) x (N + 1) matrix that has the vectors v; as rows. So BTB~! is in
Jordan form. Let

(]50(33) = [QO(.’L'),(P(IE + 1)5 tee ,(P(SU + N)]t and h(JE) = [hO(x)a ha (.’L'), LR hN(x)]t )

where h; is the homogeneous function associated to the vector v;. We have, by the refinability of ¢,
and the fact that the support is in [0, V],

11
53] 9() =To(20).

Since h(x) = B¢°(z) we have that B~1h(z) = ¢°(x). From the refinement equation (5.3) we get that
h(z) = BTB™'h(2z) =€ [-1/2,1/2],

(5.3) it ze[-

where the matrix BTB~! is in Jordan form. So h satisfies a scaling equation with the scaling matrix
being the Jordan form of 7T'.

6. EXAMPLES FOR N = 3

6.1. B-spline. The simplest case of refinable functions are the B-splines. They are the (normalized)
convolutions of the characteristic function of [0, 1] with itself. In particular the B-spline of order 3 is
the refinable function that satisfies the refinement equation of 4 coefficients:

(6.1) bz) = ib(%) + %b(% 1)+ Zb(Zm —9)+ ib(% _3).

The B-splines are those functions, for which the accuracy is maximum and so coincides with the dimen-
sion of the matrix Tp, so in this case, the eigenvalues of Ty are 1 (for the constant functions), % (for the
linear functions), and 1 (for the quadratic functions).
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6.2. Daubechies D,4. Daubechies wavelets, are those refinable functions of N coefficients, that are
orthogonal and provide the highest order of accuracy possible. (Note that the splines do not form an
orthonormal basis).

dy4 is the refinable function that satisfies the refinement equation of 4 coeflicients:

= 71 +4\/§d4(2$)+ 73 +4\/§d4(2$— 3_\/3 71_\/3

(6.2) dy(z) 1)+ = —d2z = 2) + —

d4 has accuracy 2 (it reproduces the constant and the linear functions). In this case the matrix Tp has

d4(23} - 3).

eigenvalues 1, 3 and ¢o = #5. So a basis for span{ds(z),ds(x — 1),ds(z — 2)},¢[0,1] is also given by
span{1,z, hey(2) }ze0,1] Where he, is the homogeneous function associated to co.

6.3. (A, 1)-Homogeneous functions are not enough. In the two previous examples, we could always
obtain a basis of span{f(z), f(z — 1), f(z — 2)}4e[o,1] just by using 1-homogeneous functions. The
following example is to illustrate, that even in the simple case of only 4 coefficients, it may be necessary
to use homogeneous functions of order bigger than 1. Consider the function:

(6.3) f(z) = %f(Zm) + ;f(% 1+ ;f(2a: P %f(Zm _3).

It can be shown that f has accuracy 1, and the eigenvalues of T" are {1, %} So in this case, span{ f (), f(z—
1), f(z —2)}zef0,1) = span{l, hs1/3,13(2), hyi/3,2 H () faefo,1], Where hyy/31} is a 1-homogeneous function
corresponding to the eigenvalue 1/3, and hyy/32} is a 2-homogeneous function corresponding to the
eigenvalue 1/3.
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