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Abstract. The multifractal spectrum of a measure is the dimension of the sets

E(µ, α) :=


x ∈ supp(µ) : lim

r→0+

log µ(Br(x))

log rα
= 1

ff
.

In this work we focus on Cantor measures µ and the Cantor sets which support
them. We consider the more general sets, E(µ, h), defined by replacing rα by
h(r), and the sets, D(µ, x), formed by functions h for which a given element x
belongs to E(µ, h). We propose a classification for the Cantor sets in terms of the
sets D(µ, x) that is finer than the classification by dimension, but not as fine as
the classification given by the equivalence of associated dimension functions. We
characterize this latter classification in terms of particular subsets of D(µ, x).

We also give estimates of dimensions of the sets E(µ, h), extending the earlier
multifractal analysis carried out for central Cantor sets and measures.
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1. Introduction

In the study of sets of Lebesgue measure zero the Hausdorff (or packing) s-measure,
where s is the Hausdorff (resp., packing) dimension of the set, plays a crucial role.
However, not all sets of dimension s have finite and positive s-measure, consequently,
nearly a hundred years ago, Hausdorff in [11] introduced the more refined notion
of Hausdorff h-measures, where the function ts is replaced in the definition of the
Hausdorff measure by h(t). More recently, h-packing measures (defined similarly) were
introduced by Tricot in [20] and both classes of measures have been extensively studied.

An important tool in understanding the nature of singular measures (and their
support sets) is the concept of the local dimension of the measure, that is, the limiting
behaviour of logµ(Br(x))/ log r as r → 0, and its multifractal spectrum, meaning the
dimension of the sets

E(µ, α) :=
{
x ∈ supp(µ) : lim

r→0+

logµ(Br(x))
log rα

= 1
}
. (1)

Multifractal spectra have been used in many applications in hydrodynamic turbulence,
finance, genomics, computer network traffic. For many classes of measures, including
(quasi) self-similar measures, measures on cookie cutters and p-Cantor measures on
central Cantor sets, the dimensions of the sets E(µ, α) have been calculated and the
multifractal formalism investigated (see [7, 10, 14] and the references therein). In
this paper we investigate h-local dimensions, where we replace rα by h(r), and the
analogous sets E(µ, h). Unlike the set

⋃
α>0 E(µ, α), whose complement can be of full

dimension (cf. [1, 15]), the set
⋃
h E(µ, h) is a decomposition of the support of µ since

the function h(r) = µ(Br(x)) has the property that x ∈ E(µ, h).
We are interested in analyzing Cantor-like sets with gaps given by a sequence of

real numbers. Specifically, for a given positive and summable sequence a = {an}∞n=1 we
associate a Cantor set Ca constructed in a similar fashion to the classical middle-third
Cantor set. We begin by considering a closed interval I with length

∑
an. We remove

from I an open interval with length a1, obtaining two closed intervals I1
1 and I1

2 , the
intervals of step one. If Ik1 , . . . , I

k
2k , the intervals of step k, have been constructed,

we remove from Ikj an open interval of length a2k+j−1, obtaining two closed intervals
Ik+1
2j−1 and Ik+1

2j . The Cantor set Ca is the compact, perfect set defined by

Ca :=
∞⋂
k=1

2k⋃
j=1

Ikj .

Note that the condition |I| =
∑
an implies that the Lebesgue measure of the set Ca

is zero. Moreover, the construction uniquely determines the location of the gaps at
each step. For instance, the location of the first gap is determined by the rule that the
interval to the left of the gap has length a2 + a4 + a5 + a8 + . . .. The classical middle-
third Cantor set, for example, is the set Ca with an = 1/3k for n = 2k−1, ..., 2k − 1.
Such Cantor sets can be thought of as generalized Moran sets (see [6]) and need
not be central or (quasi) self-similar. Indeed, note that all compact, perfect, totally
disconnected, measure zero subsets of R can be obtained in this fashion.

In contrast to the situation for arbitrary compact sets (see [3]), it was shown in
[4, 9] that for Cantor sets with gaps given by a decreasing sequence of positive real
numbers, it is always possible to find a function h such that both the Hausdorff and
packing h-measures of the Cantor set are positive and finite. In [9] such an associated
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dimension function h was shown to be unique up to comparability of functions (4),
thus we may speak about ‘the’ associated dimension function to a Cantor set. Cabrelli
et al in [5] introduced a classification of Cantor sets Ca by the associated dimension
functions. They proved that this classification is finer than the one given by Hausdorff
and packing dimensions and characterized it in terms of the sequences of gaps.

In this paper our interest is in the study of the sets D(µ, x) consisting of the
dimension functions h for which a given x belongs to E(µ, h). We prove that the
classification of Cantor sets introduced in [5] can be characterized in terms of suitable
subsets of these sets (see Theorem 4.2). Motivated by this, we define a second
classification in terms of the asymptotic equivalence of the logarithms of the associated
dimension functions. This new classification is again finer than that given by Hausdorff
and packing dimensions, but it is not as restrictive as the [5] classification. We
characterize this new classification in terms of the sequences of gaps, as was done
for the classification of [5], and also in terms of equality of the sets D(µp,w) where µp
is the p-Cantor measure and w is the unique element of the Cantor set whose ‘address’
is given by the infinite binary word w. Furthermore, we prove in Theorem 4.6 that
if D(µap,wa) = D(µbp,wb) for one choice of p ∈ (0, 1) and one infinite binary word w,
then these sets are equal for all p and all words w. A similar statement is deduced for
the classification of [5] (Theorem 4.2).

Generalizing the (usual) multifractal analysis, we also study the Hausdorff and
packing measures of the sets E(µ, h) when µ is a p-Cantor measure on a Cantor set Ca
associated with a decreasing sequence of gaps (see Theorem 5.1). An important point
in the proof is the fact that the symbolic multifractal spectrum (see, for example, [15])
agrees with the classical one (Corollary 3.8).

2. Notation and definitions

2.1. h-Hausdorff and packing measures

A function h : [0,∞) → [0,∞) is said to be a dimension function if h(0) = 0 and
h is continuous, non-decreasing and doubling, i.e., there is a constant τ such that
h(2t) ≤ τh(t) for all t. The set of all dimension functions will be denoted by D.

We recall here the definition of h-Hausdorff and packing measures and dimensions
(for a detailed explanation see [7, 19]). Given A, a subset of R, and δ > 0, a collection
(Ai)∞i=1 is called a δ-covering of A if A ⊂

⋃
Ai and |Ai| ≤ δ, where |Ai| denotes its

diameter. Given h ∈ D, the h-Hausdorff measure is defined as

Hh(A) = lim
δ→0+

(
inf
{∑

h(|Ai|) : (Ai) is a δ-covering of A
})

.

When the dimension function is of the form hs(t) = ts, Hhs is the usual s-Hausdorff
measure, Hs. It is very well known that given a set A there is a real number t such
that Hs(A) = 0 if s > t and Hs(A) = ∞ if s < t. We call t the Hausdorff dimension
of A and write t = dimH(A).

A δ-packing of the set A is a disjoint family of open balls centered at points of
A, with diameters smaller than δ. The h-packing pre-measure is defined as

Ph0 (A) = lim
δ→0+

(
sup

{∑
h(|Bi|) : (Bi) is a δ-packing of A

})
.
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Ph0 is not a measure since is not σ-additive and hence the h-packing measure is given
by

Ph(A) = inf
{∑

Ph0 (Ai) : A =
⋃
Ai

}
.

Analogously to the case of Hausdorff dimension, the packing dimension, dimP (A), is
the unique number satisfying Ps(A) = 0 when s > dimP (A) and Ps(A) = ∞ when
s < dimP (A).

The doubling assumption, although not essential to the definitions, ensures that
Hh(A) ≤ Ph(A) for any A. Notice that the function h(r) = µ(B(x, r)) (for fixed x) is
doubling if µ is a doubling measure and continuous if µ is a continuous measure.

2.2. Cantor Sets

As remarked in the introduction, each positive and summable sequence, a = {an}∞n=1 ,
is uniquely associated with a Cantor set, Ca. The sets W and W∞ of finite (resp.
infinite) binary words on the letters 0, 1 are useful for describing the intervals in
the construction (and the points in the set). The interval we begin with will be
labelled by the empty word (i.e. Iae := I. Then for w ∈ W Iw := Ikj if k = |w| and
j = 1 +

∑k
i=1 wi2

k−i (using |w| to denote its lenght).
The elements in the Cantor set can also be labelled by the (infinite) binary words.

We denote by w|k the finite word formed by the first k letters of w. Observe that
x ∈ Ca if and only if there is a unique w ∈ W∞ such that x ∈ Iaw|k for all k. We will
follow this convention:
Notation. Given w ∈ W∞ we will denote by wa the unique point in Ca such that
wa ∈ Iaw|k for all k.

Finally, we will denote by Iak (x) the unique interval of step k containing the
Cantor set element x. Notice that Iak (wa) = Iaw|k.

For the remainder of the paper a = {ak} will be a decreasing, positive
and summable sequence.

We will consider the following three sequences associated to the sequence a:

ran =
∑
k≥n

ak, Ran =
ran
n

and san = Ra2n . (2)

The superscript ′a′ in our notation may be suppressed if the sequence a is understood.
The number r2n is the sum of the lengths of the intervals remaining at step n and

sn is the average length of an interval of step n. The decreasing assumption ensures
that any Cantor interval of step n has length at least sn+1 and at most sn−1.

The study of the dimension of Cantor sets Ca in terms of their gaps was initiated
by Besicovitch and Taylor in [2]. From their work and [21] one can deduce the following
formulas:

dimH Ca =
log 2

lim sup
n→∞

1
n | log san|

and dimP Ca =
log 2

lim inf
n→∞

1
n | log san|

. (3)

Extending this work, Garcia et al in [9] obtained the following estimates on the
h-Hausdorff and packing pre-measures of the Cantor sets Ca.

Theorem 2.1. [9] For every h ∈ D and Cantor set Ca

(i) 1
4 lim inf
n→∞

nh(Ran) ≤ Hh(Ca) ≤ 4 lim inf
n→∞

nh(Ran).
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(ii) 1
8 lim sup

n→∞
nh(Ran) ≤ Ph0 (Ca) ≤ 8 lim sup

n→∞
nh(Ran).

This motivates the following definition adopted first in [5].

Definition 2.2. We say that a dimension function h is associated to the sequence a
(or the Cantor set Ca) if and only if there are positive constants c1, c2 such that:

c1
n
≤ h(Ran) ≤ c2

n
for all n.

Of course, a consequence of Theorem 2.1 is that Ca is an h-set, meaning
0 < Hh(Ca) ≤ Ph0 (Ca) <∞, if and only if h is associated to the sequence a.

Observe that two dimension functions, g, h, are associated to the sequence a if
and only if g is comparable to h, that is, there are positive constants A,B such that

Ag(x) ≤ h(x) ≤ Bg(x) ∀x > 0. (4)

2.3. p-Cantor measures

By a measure we will mean a finite, regular, Borel measure. We will focus on a
(natural) class of measures supported on the Cantor set Ca. Given 0 < p < 1,
the unique probability measure, µap, satisfying µap(Iw0) = pµap(Iw) and µap(Iw1) =
(1− p)µap(Iw) will be called the p-Cantor measure. Equivalently, if for a given w ∈W
we define

n0(w) = ] {i : wi = 0} and n1(w) = ] {i : wi = 1} ,
then the p-Cantor measure is the probability measure satisfying µap(Iw) = pn0(w)(1−
p)n1(w) for all w ∈W .

The multifractal analysis of p-Cantor measures was studied for the special cases
of Cantor sets that are self-similar (see [6, 7, 13]), quasi self-similar [17] and central
[10]. One can easily verify that our Cantor sets need not have any of these properties.‡

3. Preliminary Results

The sets, E(µ, α), can be viewed as a partial decomposition of the support of the
measure µ into a family of subfractals. The complement of the set

⋃
α>0 E(µ, α) has

aroused interest in recent years (cf. [1, 15]), and when µ is a self similar measure
satisfying the strong separation condition and the weights are not the canonical ones
(such as a p-Cantor measure, with p 6= 1/2, on the classical middle-third Cantor set)
the complement has been proven to be a set of full dimension.

Thus it is natural to consider a more general class of sets.

Definition 3.1. Let µ be a measure and h : [0,∞) → [0,∞) a dimension function.
We define

E(µ, h) :=
{
x ∈ support(µ) : lim

r→0+

logµ(Br(x))
log h(r)

= 1
}
.

‡ Arguments similar to [10] show that the Cantor set Ca is quasi self-similar if and only if there
exists a constant c such that 1/c ≤ sjsk/sj+k ≤ c for all j, k.
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The sets Eh(µ) and Eh(µ) will be defined similarly, but with lim inf and lim sup
replacing the limit respectively.

Note that the functions h(t) = tα belong to D and in this case E(µ, h) is the set
E(µ, α).

In the multifractal analysis of self-similar sets the strong separation condition
(SSC) is commonly assumed. This was replaced in the multifractal analysis of Cantor
measures on central Cantor sets by the assumption that the ratios of the lengths of
the gaps to the lengths of the intervals at the same step was bounded away from zero
[10]. Below we give equivalent conditions that could be considered a generalization of
the SSC for Cantor sets Ca.

Proposition 3.2. The following conditions are equivalent for a Cantor set Ca:

(i) sup{sk+1/sk : k ≥ 1} < 1/2;
(ii) There is an ε > 0 such that aj ≥ ε|Iω| for all w ∈W and j ≤ 2|ω|;

(iii) There is an ε > 0 such that aj ≥ εsk for all j ≤ 2k.

Proof. (i) ⇒ (ii) The hypothesis ensures that there exists δ > 0 such that 2δsk ≤
sk − 2sk+1 for all k ≥ 1. Since {aj} decreases,

2δsk ≤ sk − 2sk+1 = 2−k(a2k + . . .+ a2k+1−1) ≤ a2k .

Now fix ω. For a suitable j with 0 ≤ j ≤ 2|ω| − 1 we have

|Iω| = |Iω0|+ |Iω1|+ a2|ω|+j ≤ 2s|ω| + a2|ω| ≤ (1 + 1/(2δ))a2|ω| .

(ii) ⇒ (iii) is clear since the length of some interval of step k must be at least
the average length, sk.

(iii) ⇒ (i) Assumption (iii) implies εsk+1 ≤ a2k+1 ≤ sk − 2sk+1, hence
sk ≥ (2 + ε)sk+1.

The next proposition provides one situation in which the conditions of Proposition
3.2 holds. Others can be found in [12].

Proposition 3.3. Let h be an associated dimension function for Ca and suppose
there is an increasing function φ satisfying φ(n)/n → 0 as n → ∞ such that
h(nx) ≤ φ(n)h(x). Then the (equivalent) conditions of Proposition 3.2 hold.

Remark 3.4. When Ca is an s-set, the function h(t) = ts is an associated dimension
function satisfying the hypothesis in this Proposition.

Proof. We have c12−n ≤ h(sn) ≤ c22−n since h is an associated dimension function.
As n/φ−1(n)→ 0 when n→∞, we can pick m such that 2m/φ−1(c1c−1

2 2m) ≤ 1/2.
As above, the decreasingness of (aj) implies that a2j ≥ 2−msj − sm+j , and so

a2j ≥ 2−mh−1(c12−j)− h−1(c22−(m+j)).

Applying the relationship h−1(nx) ≥ φ−1(n)h−1(x) with x = c22−(m+j) and n =
c1c
−1
2 2m, we deduce that

a2j ≥ 2−mh−1(c12−j)(1− 2m/φ−1(c1c−1
2 2m))

≥ 2−(m+1)h−1(c12−j).

Condition (iii) above follows taking ε = φ(c1c−1
2 )2−(m+1).
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The (equivalent) conditions in Prop. 3.2 will allow us to show that for many
calculations we can replace balls by Cantor intervals. In the remainder of
the paper, it should be understood that these equivalent conditions are
assumed to hold, although this will not be explicitly stated.

We first prove a useful geometric property.

Lemma 3.5. There exists a positive integer N such that given any positive integer n
and x ∈ Ca,

In(x) ∩ Ca ⊆ B|In(x)|(x) ∩ Ca ⊆ In−N (x) ∩ Ca.

Proof. As x ∈ In(x), the fact that In(x) ⊆ B|In(x)|(x) is obvious. To prove the other
inclusion, with ε > 0 chosen as in Prop. 3.2(iii), choose N such that 2−N < ε/2.
Then

r := |In(x)| ≤ sn−1 ≤ 21−Nsn−N ≤ 21−Naj/ε for any j ≤ 2n−N .

The two gaps in the Cantor set adjacent to the Cantor interval In−N (x) have lengths
belonging to the set {aj : j ≤ 2n−N} and hence exceed r. As x ∈ In−N (x), it follows
that Br(x) is contained in the union of In−N (x) and its two adjacent gaps. Thus
Br(x) ∩ Ca ⊆ In−N (x) ∩ Ca.

Corollary 3.6. For any 0 < p < 1, p-Cantor measures are doubling.

Proof. Given r > 0, choose k such that sk ≤ r < sk−1. For any x ∈ Ca, the support
of the measure µap, we have r ≥ |Ik+1(x)| and 2r < 2sk−1 ≤ sk−2 ≤ |Ik−3(x)|. Thus
the previous Lemma implies that B(x, 2r) ∩ Ca ⊂ Ik−3−N (x) ∩ Ca and hence

µap(B(x, 2r)) ≤ µap(Ik−3−N (x)) ≤ τµap(Ik+1(x)) ≤ τµap(B(x, r)),

where τ = (min(p, 1− p))−(N+4).

The previous Lemma will enable us to prove that in the definition of E(µ, h) we
can replace balls by Cantor intervals.

Theorem 3.7. If µ is a doubling measure supported on a Cantor set Ca, then for all
x = wa ∈ Ca, the limiting behaviours of

logµ(In(x))
log h(sn)

=
logµ(Iw|n)
log h(sn)

and
logµ(Br(x))

log h(r)

as n→∞ or r → 0+ are the same.

As an immediate consequence we obtain the following important observation.

Corollary 3.8. If µ is a doubling measure supported on a Cantor set Ca, then

E(µ, h) =
{
x = wa : lim

k→∞

logµ(Iw|k)
log h(sk)

= 1
}
. (5)

A similar statement holds for Eh(µ) and Eh(µ).

Remark 3.9. In [15], the authors propose a symbolic multifractal analysis for self
similar measures. The sets on the right side of the equation (5) could be considered a
symbolic multifractal analysis for Cantor sets. In this sense, the Corollary shows that
the classic and the symbolic multifractal analysis coincide.
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Proof. Since the lengths of the gaps decrease, for any w ∈W we have Iw1 ⊇ Br(z)∩Ca
where z is the left endpoint of Iw1 and r is the length of the gap with endpoint z. If
|w| = n, then r = a2n+k for some k ∈ {0, 1, ..., 2n − 1}. By assumption Prop. 3.2(ii),
r ≥ ε |Iw0| and hence Iw0 ⊆ Br(1+ε−1)(z). The doubling property of µ implies that

µ(Iw1) ≥ µ (Br(z)) ≥ cµ
(
Br(1+ε−1)(z)

)
≥ cµ(Iw0).

We can similarly find a constant c′ such that µ(Iω1) ≤ c′µ(Iω0) for all w ∈W .
Thus, for any n and x ∈ Ca, the µ-measure of In(x) is comparable to the measure

of In+1(x) and hence also to the measure of In±2N (x) for any fixed N . It follows by
repeated application of Lemma 3.5 that µ(Br(x)) and µ(In(x)) are also comparable
for any r with |In+N (x)| ≤ r ≤ |In−N (x)| .

Because |In+1(x)| ≥ sn+2 and |In(x)| ≤ sn−1, this fact implies that there are
positive constants c1, c2, independent of n and x, such that if |In+1(x)| ≤ r ≤ |In(x)|,
then

log(c1µ(In+2(x)))
log h(sn+2)

≤ logµ(Br(x))
log h(r)

≤ log(c2µ(In−1(x)))
log h(sn−1)

,

Similarly, as |In+1(x)| ≤ sn ≤ |In−1(x)| , there are constants c3, c4 such that

log
(
c3µ(B|In+1(x)|(x))

)
log h(|In+1(x)|)

≤ logµ(In(x))
log h(sn)

≤
log
(
c4µ(B|In−1(x)|(x))

)
log h(|In−1(x)|)

.

Corollary 3.10.
⋃
E(µap, h) = Ca where the union is taken over all h ∈ D.

Proof. If x = wa ∈ Ca, then the piecewise linear function h defined by the rule
h(sk) = pn0(w|k)(1 − p)n1(w|k) and h(0) = 0 is a dimension function. The Corollary
3.8 implies x ∈ E(µap, h).

4. The Classification of Cantor sets.

In this section we will classify Cantor sets by considering certain subsets of the space
of dimension functions D, namely

D(µ, x) := {h ∈ D : x ∈ E(µ, h)}
and

Λ(µ, x) :=
{
h ∈ D : 0 < lim inf

r→0+

µ(Br(x))
h(r)

≤ lim sup
r→0+

µ(Br(x))
h(r)

<∞
}
,

where µ is any (or all) of the p-Cantor measures.
We recall the following equivalence relation on the class of Cantor sets Ca

introduced in [5].

Definition 4.1. Two Cantor sets, Ca, Cb, are said to be equivalent, denoted Ca ∼ Cb,
if their associated dimension functions are equivalent.
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In [5] it was shown that this equivalence relation can be described in terms of
properties of the tail sequences (the equivalence of (i) and (ii) in the Theorem 4.2
below). We will use this fact to prove that the ∼ equivalence relation on Cantor sets
can also be characterized in terms of the sets Λ(µap,wa) where wa ∈ Ca. To simplify
notation we write Λp(wa) := Λ(µap,wa). In view of Theorem 3.7, we have

Λp(wa) =
{
h ∈ D : 0 < lim inf

k→∞

µap(Iw|k)
h(sk)

≤ lim sup
k→∞

µap(Iw|k)
h(sk)

<∞
}
.

Theorem 4.2. Let a and b be positive, decreasing, summable sequences. The following
are equivalent:

(i) Ca ∼ Cb.
(ii) There exists an integer N such that for all k > N, sak+N ≤ sbk ≤ sak−N .

(iii) Λp(wa) = Λp(wb) for all 0 < p < 1 and all w ∈W∞.
(iv) Λp(wa) = Λp(wb) for some 0 < p < 1 and some w ∈W∞.

Remark 4.3. Following the ideas in [16], for p = (p1, . . . , pm) we could have considered
the more general sets

Λmp (wa) :=
{

(h1, . . . , hm) ∈ Dm : 0 < lim inf
k→∞

µapi(Iw|k)
hi(sk)

≤ lim sup
k→∞

µapi(Iw|k)
hi(sk)

<∞
}
.

However, a consequence of (iii) ⇐⇒ (iv) is that Λmp (wa) = Λmp (wb) if and only if
Λp1(wa) = Λp1(wb). So, these sets give exactly the same classification as the one we
considered.
Remark 4.4. In [18] the authors proved that two Cantor sets are Lipschitz equivalent
(i.e. there is a bi-Lipschitz map between them) if and only if the sequences of gaps
are equivalent. It is easy to see that there are sequences satisfying condition (ii) that
are not equivalent (see [5] Example 4.3), hence, this notion is weaker than Lipschitz
equivalence.

Proof. (i) ⇐⇒ (ii) is given in [5, Thm. 4]. Of course (iii)⇒ (iv) is trivial.
(iv) ⇒ (ii) For w ∈ W∞ satisfying the hypothesis, put n0(w|k) = nk and define

h ∈ D by h(sak) = µap(Iaw|k) = pnk(1 − p)k−nk . Obviously, h ∈ Λp(wa) and therefore
h ∈ Λp(wb). Thus for θ = a, b there are positive constants, A,B, such that

A ≤
µθp(I

θ
w|k)

h(sθk)
≤ B for all k.

Since µap(Iaw|k) = µbp(I
b
w|k), we can conclude that there are positive constants C1 and

C2 such that

C1h(sak) ≤ h(sbk) ≤ C2h(sak).

Choose a sequence j(k) such that saj(k)+1 ≤ s
b
k ≤ saj(k). By monotonicity,

h(saj(k)+1) ≤ h(sbk) ≤ h(saj(k)).

Put c = min{p, 1− p}. Combining these inequalities we obtain

C2p
nk(1− p)k−nk = C2h(sak) ≥ h(sbk) ≥ h(saj(k)+1)

≥ cpnj(k)(1− p)j(k)−nj(k)
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and, similarly,

C1p
nk(1− p)k−nk ≤ pnj(k)(1− p)j(k)−nj(k) .

Together these inequalities yield,

c/C2 ≤ pnk−nj(k)(1− p)k−nk−(j(k)−nj(k))) ≤ 1/C1. (6)

Without loss of generality assume p ≥ 1− p. Define the integers m(k) = k− j(k)
and d(k) = nk − nj(k).With this notation we can reformulate (6) as

c/C2 ≤ pm(k)

(
1− p
p

)m(k)−d(k)

≤ 1/C1.

Since the signs of m(k)− d(k) and m(k) coincide, these two inequalities ensure m(k)
is bounded, say |m(k)| ≤ N. Then sak+N+1 ≤ sbk ≤ sak−N .

(ii)⇒ (iii) Fix p ∈ (0, 1) and w ∈W∞. By assumption san+N ≤ sbn ≤ san−N , thus
we have

µap(Iaw|n)

h(san−N )
≤
µap(Iaw|n)

h(sbn)
=
µbp(I

b
w|n)

h(sbn)
≤
µap(Iaw|n)

h(san+N )
.

For any fixed N, the sequences (µap(Iw|n)) and (µap(Iw|n±N )) are equivalent, hence as
h ∈ Λp(wa) we can deduce that

lim inf
n→∞

µap(Iaw|n)

h(san−N )
> 0 and lim sup

n→∞

µap(Iaw|n)

h(san+N )
<∞.

Together, these bounds clearly imply h ∈ Λp(wb).

Motivated by this, we propose to introduce a weaker equivalence relation for
functions and Cantor sets.

Definition 4.5. We will say two non-negative functions, f, g, are logarithmically
equivalent, and write f � g, if and only if

lim
x→0

log f(x)
log g(x)

= 1.

We will say that two Cantor sets are logarithmically equivalent, and write Ca � Cb, if
their associated dimension functions are logarithmically equivalent.

Since equivalent functions are clearly logarithmically equivalent, this is a well
defined equivalence relation on the Cantor sets, Ca.

As with the ∼ relation, logarithmic equivalence can be characterized in terms
of the (tails of the) sequence itself. It can also be characterized by the sets
Dp(wa) := D(µap,wa).

The notation b·c and d·e will denote the floor and ceiling functions, respectively.

Theorem 4.6. The following are equivalent:

(i) Ca � Cb.
(ii) For each α > 1, there exists an integer N = N(α) such that for all n ≥ N,

sadnαe ≤ s
b
n ≤ sabn/αc.

(iii) Dp( wa) = Dp( wb) for all 0 < p < 1 and w ∈W∞.
(iv) Dp( wa) = Dp( wb) for some 0 < p < 1 and some w ∈W∞.
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Proof. (i) ⇒ (ii) We will denote by ha and hb the associated dimension functions to
the sequences a and b respectively. By assumption ha � hb, thus given ε > 0 there
exists N such that if n ≥ N ,

(1− ε) log hb(san) ≥ log ha(san) ≥ (1 + ε) log hb(san).

Put α = 1/(1− ε). Since all associated dimension functions corresponding to a given
sequence are logarithmically equivalent there is no loss of generality in assuming that
for θ = a or b we have hθ(sθn) = 2−n and that hθ is strictly increasing. Thus for
n ≥ N,

hb(san) ≥ 2−nα ≥ 2−dnαe = hb

(
sbdnαe

)
and therefore san ≥ sbdnαe. Since a and b play symmetric roles, this gives (ii).

(ii) ⇒ (i) Again, there is no loss of generality in assuming that hθ(sθn) = 2−n

for θ = a, b. Fix α > 1. By (ii) and monotonicity, for n sufficiently large
hb(san) ≥ hb(sbdnαe) = 2−dnαe, hence

lim sup
n→∞

log hb(san)
log ha(san)

≤ lim sup
n→∞

dnαe
n

= α.

Analogously, we obtain

lim inf
n→∞

log hb(san)
log ha(san)

≥ 1
α
.

As α > 1 was arbitrary and log hθ(sθn)/ log hθ(sθn+1)→ 1, this suffices to prove ha �hb,
i.e., Ca � Cb.

(iv) ⇒ (ii) For w satisfying the hypothesis, put nk = n0(w|k). Define
h(sak) = pnk(1 − p)k−nk , so that h ∈ Dp(wa). The assumption of (iv) ensures that
also h ∈ Dp(wb) and therefore

lim
k→∞

logµap(Iaw|k)

log h(sak)
= lim
k→∞

logµbp(I
b
w|k)

log h(sbk)
= 1.

Since µap(Iaw|k) = µbp(I
b
w|k), we can conclude that limk→∞

log h(sak)

log h(sbk)
= 1. Fix ε > 0 and

choose K such that if k ≥ K,

(1− ε) log h(sak) ≥ log h(sbk) ≥ (1 + ε) log h(sak). (7)

Choose the sequence j(k) such that saj(k)+1 ≤ s
b
k < saj(k) and put j(k) = k + kαk. For

c = min{p, 1− p} we have

cpnj(k)(1− p)j(k)−nj(k) ≤ h(saj(k)+1) ≤ h(sbk) (8)

and h(sbk) ≤ h(saj(k)) = pnj(k)(1− p)j(k)−nj(k) . (9)

Combining (8) with (7) we obtain

cpnj(k)(1− p)j(k)−nj(k) ≤
(
pnk(1− p)k−nk

)1−ε
. (10)

Assume p ≤ 1 − p, say 1 − p = pt for suitable 0 < t ≤ 1. (The other case is
symmetric.) With this notation (10) becomes

0 < c ≤ p(nk−nj(k))(1−t)−nkε(1−t)−tk(αk+ε).
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If αk ≤ 0, then also nj(k) − nk ≤ 0 and thus c ≤ p−nkε(1−t)−tk(αk+ε). This can
only be true if there is a constant c0 such that −nkε(1 − t) − tk(αk + ε) ≤ c0. Since
ε > 0 was arbitrary, this ensures αk → 0 as k →∞ . If, instead, αk ≥ 0, we can argue
similarly from (9).

Fix α > 1 and pick k0 ≥ K such that if k ≥ k0, then 1 + αk + 1/k ≤ α. The
choice of j(k) and monotonicity implies

sbk ≥ saj(k)+1 = sak(1+αk+1/k) ≥ s
a
dkαe.

Analogous reasoning gives the other relation.
(ii) ⇒ (iii) Fix p ∈ (0, 1) and w ∈ W∞, and assume h ∈ Dp(wa). We need to

prove that h ∈ Dp(wb). It is a routine exercise to verify that for any p ∈ (0, 1) and
any α > 0,

lim sup
k

∣∣∣∣∣ logµap(Iaw|{kα})

logµap(Iaw|k)
− 1

∣∣∣∣∣ ≤ |α− 1| (11)

(where {kα} denotes either the floor or the ceiling).
Temporarily fix α > 1. The assumption of (ii) and the fact that µbp(I

b
w|k) =

µap(Iaw|k) implies that for large enough k,

logµap(Iaw|k)

log h(sadkαe)
≤

logµap(Iaw|k)

log h(sbk)
=

logµbp(I
b
w|k)

log h(sbk)
≤

logµap(Iaw|k)

log h(sabk/αc)
.

As h belongs to Dp(wa), these bounds, together with (11), imply that

lim sup
k

∣∣∣∣∣ logµbp(I
b
w|k)

log h(sbk)
− 1

∣∣∣∣∣ ≤ |α− 1| .

Because this holds for all α > 1, we conclude that h ∈ Dp(wb).

One consequence of this characterization is that logarithmically equivalent Cantor
sets have the same packing and Hausdorff dimension.

Corollary 4.7. If Ca �Cb, then the packing and Hausdorff dimensions of Ca and Cb
coincide.

Proof. This follows directly from the characterization (ii) above and the formulas
given in (3).

Remark 4.8. One cannot obtain a similar characterization of logarithmic equivalence
if, instead of considering all dimension functions, only functions of the form h(t) = ts

are considered. To see this, suppose an = αk−1(1− 2α) and bn = βk−1(1− 2β) when
2k−1 ≤ n ≤ 2k − 1. If w ∈ W∞ is chosen such that lim n0(w|k)

k does not exist and
D′p(wa) = {s ∈ R : wa ∈ E(µap, s)}, then for p 6= 1/2, D′p(wa) = D′p(wb) (both are
empty). But clearly Ca and Cb are not logarithmically equivalent when α 6= β (they
have different dimension, in fact).
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5. The Size of the Sets E(µ, h).

In this section our purpose is to extend the multifractal analysis of Cantor measures
on central Cantor sets developed in [10] (see Cor. 5.5 below). Our method of proof
was inspired by [10, Section 5] and [7, 11.2].

We will use the following notation: For p ∈ (0, 1) and a real number q, let

bq =
pq log p+ (1− p)q log(1− p)

pq + (1− p)q
, θq = q − log(pq + (1− p)q)

bq
,

bmin = min(log p, log(1− p)) and bmax = max(log p, log(1− p)).

When p = 1/2, bq = − log 2 and θq = 1 for all q. Otherwise, as bq is a convex
combination of log p and log(1− p) the set {bq : q ∈ R} is the interval (bmin, bmax).

We will write Eh and Eh for Eh(µ) and Eh(µ) respectively.

Theorem 5.1. Let µap be the p-Cantor measure on the Cantor set Ca and let h ∈ D.

(i) Suppose there is a real number q such that lim inf
k→∞

1
k log h(sk) = bq. Then

Hhλθq (Eh) ≥ 1 for all λ < 1.
(ii) Suppose there is a real number q such that lim sup

k→∞

1
k log h(sk) = bq. Then

Phλθq (Eh) ≤ 1 for all λ > 1.

In order to prove this Theorem, we will introduce an auxiliary measure. For a
given q ∈ R we define ν = νq on Cantor intervals as

ν(Iw) = pqn0(w)(1− p)qn1(w) (pq + (1− p)q)−k (12)

where k = |w|. It is easy to verify that ν(Iw0) + ν(Iw1) = ν(Iw), hence the measure is
well defined and concentrated on the Cantor set. The same reasoning as for p-Cantor
measures proves that ν is a doubling measure.

The following Lemma establishes conditions on h and q which implies that νq is
concentrated in Eh or Eh.

Lemma 5.2. Assume ν = νq is as defined above.

(i) If lim inf
k→∞

k−1 log h(sk) = bq, then νq(Eh) = 1.

(ii) If lim sup
k→∞

k−1 log h(sk) = bq, then νq(Eh) = 1.

Proof. (i) For fixed ε > 0 and integer k, consider the set

Ek := {x ∈ supp(µ) : logµ(Ik(x)) ≥ (1− ε) log h(sk)} .

For any δ > 0, we have the following estimation:

ν(Ek) = ν
{
x ∈ supp(µ) : µ(Ik(x)) ≥ h(sk)1−ε

}
≤
∫
µ(Ik(x))δh(sk)δ(ε−1)dν(x) =

∑
|w|=k

h(sk)δ(ε−1)µ(Iw)δν(Iw)

= h(sk)δ(ε−1) (pq + (1− p)q)−k
(
pq+δ + (1− p)q+δ

)k
:= Φ+(k).
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Calculating the Taylor expansion of first order to the function log(pt + (1 − p)t), we
obtain that

log Φ+(k) = kδ

(
(ε− 1)

log h(sk)
k

+ bq +O(δ)
)
.

Since lim infk→∞ k−1 log h(sk) = bq, for any ε0 > 0 there exists an integer k0 such
that for all k ≥ k0 we have k−1 log h(sk) ≥ bq − ε0. Thus for all k ≥ k0,

log Φ+(k) ≤ kδ (εbq − ε0(ε− 1) +O(δ)) .

Since bq < 0, by taking ε0 and δ suitably small we obtain Φ+(k) ≤ exp
(
kδbqε

2

)
for all k ≥ k0 and this proves that ν(Ek) is summable. By the Borel Cantelli
Lemma we have that for ν-almost every x ∈ supp(µ) there is an integer k1 such
that log µ(Ik(x)) < (1− ε) log h(sk) for all k ≥ k1. Thus

lim inf
k→∞

logµ(Ik(x))
log h(sk)

≥ 1− ε for ν-almost every x.

Analogously, if we define

Ek := {x ∈ supp(µ) : log µ(Ik(x)) < (1 + ε) log h(sk)}

with an estimation similar to (13) we obtain

ν(Ek) ≤ h(sk)δ(1+ε) (pq + (1− p)q)−k
(
pq−δ + (1− p)q−δ

)k
:= Φ−(k).

Also,

log Φ−(k) ≤ kδ
(

(ε+ 1)
log h(sk)

k
− bq +O(δ)

)
.

But the assumption that lim infk→∞ k−1 log h(sk) = bq implies that along a
suitable subsequence

log Φ−(k) ≤ kδ (εbq + ε0(ε+ 1) +O(δ)) ≤ kδ(εbq/2),

for small enough ε0 and δ. Thus ν(Ek) is summable in a subsequence and this proves

lim inf
k→∞

logµ(Ik(x))
log h(sk)

≤ 1 + ε for ν-almost every x.

Consequently, ν(Eh) = 1.
(ii) is similar.

The following Proposition can be viewed as a mass distribution principle for h-
Hausdorff and packing measures.

Proposition 5.3. Let ν be any measure and let h be a dimension function.

(i) If lim sup
r→0+

log ν(Br(x))
log h(r)

≤ θ < ∞ for all x ∈ E, then Phλθ (E) ≤ ν(E) for all

λ > 1.

(ii) If lim inf
r→0+

log ν(Br(x))
log h(r)

≥ θ > 0 for all x ∈ E, then Hhθλ(E) ≥ ν(E) for all λ < 1.
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Proof. (i) Consider an open set V ⊃ E such that ν(V ) ≤ ν(E) + ε and define

Vk =
{
x ∈ V : h(r)λθ ≤ ν(Br(x)) and Br(x) ⊂ V ∀r < 1/k

}
.

Note that Vk ⊂ Vk+1 and, by hypothesis, E ⊂
⋃
Vk.

For a fixed k, let
{
Bj = Brj (xj)

}
an arbitrary δ packing of Vk with δ < 1/k. We

have that

ν(V ) ≥ ν (V ∩ (∪Bj)) =
∑
j≥1

ν(V ∩Bj) =
∑
j≥1

ν(Bj) ≥
∑
j≥1

h(rj)λθ.

Since the packing was arbitrary, we conclude that ν(V ) ≥ Phλθ (Vk), and the desired
inequality follows by continuity.

(ii) Argue in a similar fashion to [8, Prop. 4.9(a)].

Proof of the Theorem 5.1. (i) Let ν = νq be the auxiliary measure for the specified q.
Clearly,

log ν(Ik(x))
log h(sk)

= q
logµ(Ik(x))

log h(sk)
− log(pq + (1− p)q)

1
k log h(sk)

, (13)

thus if x ∈ Eh, then

lim inf
k→∞

log ν(Ik(x))
log h(sk)

≥ q − log(pq + (1− p)q)
bq

= θq.

It is elementary to verify that log(pq + (1− p)q) ≥ qmax{log p, log(1− p)) > −q |bq|,
thus θq > 0.

Since ν is a doubling measure, Theorem 3.7 shows that the ν-measure of balls
and (suitable) Cantor intervals are compararable. Invoking Lemma 5.2 and Prop. 5.3
completes the proof.

(ii) is similar.

Corollary 5.4. If lim
k→∞

k−1 log h(sk) = bq, then Hhλθq (E(h)) ≥ 1 for all λ < 1 and

Phλ
′θq (E(h)) ≤ 1 for all λ′ > 1.

Proof. By Lemma 5.2 we have ν(Eh ∩ Eh) = 1. Looking at (13), for x ∈ Eh ∩ Eh we
have

lim
k→∞

log ν(Ik(x))
log h(sk)

= q − log(pq + (1− p)q)
bq

= θq.

Since θq is always positive and finite, using Proposition 5.3 we obtain the result.

Corollary 5.5. Suppose τ = lim inf
k→∞

k−1 |log sak| and τ = lim sup
k→∞

k−1 |log sak| .

(i) If τ <∞ and α = |bq| / τ , then dimH Eα ≥ qα+ (log(pq + (1− p)q))/τ .
(ii) If τ <∞ and α = |bq| /τ , then dimP Eα ≤ qα+ (log(pq + (1− p)q))/τ .

(iii) Suppose τ = τ = τ < ∞ and α ∈ (−bmax/τ,−bmin/τ). If q is chosen such that
ατ = |bq|, then

dimH E(α) = dimP E(α) = qα+
log(pq + (1− p)q)

τ
.

This result was previously obtained for central Cantor sets in [10, Section 5]. We
remind the reader that τ = log 2/ dimH Ca and τ = log 2/dimP Ca (see (3)).
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