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Abstract. In this paper we consider a class of symmetric Cantor sets in R.

Under certain separation condition we determine the exact packing measure of
such a Cantor set through the computation of the lower density of the uniform

probability measure supported on the set. With an additional restriction on

the dimension we give also the exact centered Hausdorff measure by computing
the upper density.

1. Introduction

In the study of the size of sets with Lebesgue measure zero, Hausdorff and
packing dimensions and measures have been the most used tools. During the past
30 years there has been an enormous body of literature investigating Hausdorff and
packing dimensions of sets (cfr [Fal90, Mat95]). However, the computation of the
exact value of the measures is troublesome and only few results are known, most
of them for Hausdorff measure.

For self similar Cantor sets which satisfies the open set condition, the exact
Hausdorff measure was computed by Marion in [Mar85] and Ayer and Strichartz
in[AS99], while the packing measure was obtained by Feng et al in [FHW00] for the
classical one third Cantor set and later, Feng [Fen03] gave the exact value for the
general case. In the case of central Cantor sets (defined below), Qu et al in [QRS03]
calculated the exact value of the Hausdorff measure. In this paper we compute the
exact packing measure.

Hausdorff and packing measures are closely related to densities (see next section
for definitions). In [Ols08], the author investigated this relation. In fact, the proof
in [FHW00] relies on the lower density of the uniform measure supported on the set.
In [QZJ04] Qu et al considered central Cantor sets and, applying similar techniques,
they computed the upper density under some additional hypothesis, which implies
that the Hausdorff and packing dimension must coincide. In this article, we compute
both -upper and lower- densities under quite general hypothesis. We do not require
packing and Hausdorff dimension to coincide and -for lower density- we do not
impose bounds on the packing dimension.
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2. Definitions and statements of results

In order to define the central Cantor sets we need to introduce some notations.
If k ≥ 1, Dk will denote the set of binary words with length k, that is,

Dk = {σ = (σ1, . . . , σk) : σj = 0 or 1} = {0, 1}k.

Let D0 = ∅ and D = ∪kDk. If σ = (σ1, · · · , σk) ∈ Dk and τ = (τ1, · · · , τm) ∈ Dm

we define the concatenation, length and restriction by

στ := (σ1, · · · , σk, τ1, · · · , τm) ∈ Dk+m

|σ| := k
σ|j := (σ1, · · · , σj) ∈ Dj for j < k.

respectively. We also consider D := {ω = (ω1, . . . , ωk, . . . ) : ωi = 0 or 1} = {0, 1}N,
with the same restriction and the concatenation defined on D ×D.

Given (rk)k≥1 a sequence of real numbers with 0 < rk < 1/2, we define the
collection of closed intervals F = {Iσ : σ ∈ D}, called basic intervals, as follows:

(i) I∅ = [0, 1]
(ii) For k ≥ 1 and σ ∈ Dk−1, the intervals Iσ0 and Iσ have the same left

endpoint. Iσ1 and Iσ have the same right endpoint.
(iii) |Iσ0|

|Iσ| = |Iσ1|
|Iσ| = rk, where |E| denotes the diameter of the set E.

Then, Ek = ∪σ∈DkIσ and E = ∩k≥1Ek. The set E is called the central Cantor
set associated to the ratios (rk)k≥1 (it is called symmetric in [QZJ04]). Central
Cantor sets are nowhere dense and perfect, and they may have positive Lebesgue
measure. The classical one third Cantor set is an example of central Cantor set
with rk = 1/3 for all k ≥ 1. There is a 1-1 correspondence between points in E and
words in D: for every x ∈ E there is a unique ω(x) := ω ∈ D such that x ∈ Iω|k
for any k.

We need to introduce more notation. For σ ∈ Dk we denote by sk the length of
Iσ and the length of the gap between the intervals Iσ0 and Iσ1 will be denoted by
yk+1. With this notation,

sk = r1 · · · rk, sk−1 = 2sk + yk and yk = (1− 2rk)r1 · · · rk−1.

Let Hs and Ps denote the s-dimensional Hausdorff and packing measures, re-
spectively (see [Fal90, Mat95] for definitions and properties of these measures and
corresponding dimensions). The asymptotic behavior of the sequence (2nssn)n is
related to Hs(E) and Ps(E). In fact, there are finite and positive constants c1, c2,
c3 and c4 such that

(1) c1 lim inf
n→∞

2nssn ≤ Hs(E) ≤ c2 lim inf
n→∞

2nssn

and

(2) c3 lim sup
n→∞

2nstn ≤ Pt(E) ≤ c4 lim sup
n→∞

2nstn.

Equivalence (1) was shown by Besicovitch and Taylor [BT54]while (2) was estab-
lished in [GMS07], Theorem 4.2, replacing packing measure by packing premeasure;
then, an application of the mass distribution principle implies (2); see [CHM10],
Theorem 3.5. Both papers assume that the lengths of the removed gaps are de-
creasing, but if the Cantor set is central, an inspection of the proof of that theorems
shows that this hypothesis is not necessary.
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In particular, the Hausdorff and packing dimensions of E are given by

(3) dimH E = lim inf
n→∞

log 2n

| log sn|
and dimP E = lim sup

n→∞

log 2n

| log sn|
,

respectively, and this values may not coincide.
In [QRS03], Qu et al established the following result.

Theorem ([QRS03]). If the sequence (yk)k≥1 of gaps lengths is decreasing, then

(4) Hs(E) = lim inf
n→∞

2nssn.

In fact, their result is for homogeneous Cantor sets, which are a wider class of
symmetric Cantor sets.

Our goal is to give the exact value of the packing measure of a central Cantor
set E. We will require the following separation condition:

(5) there exists β <
1
2
such that rk ≤ β for all k large enough.

Our main result is the following.

Theorem 1. Let E be a central Cantor set for which (5) holds. Then

(6) Pt(E) = 2t lim sup
n→∞

2n(sn + yn)t.

Remark 2. If Pt(E) = 0 or ∞, then (6) holds in view of (2) and because

(7) 2nstn < 2n(sn + yn)t < 2 · 2n−1stn−1,

the last inequality is because sn−1 = 2sn + yn.

Remark 3. We note further that Meinershagen [Mei02] compute the packing mea-
sure of a class of Cantor sets that includes central Cantor sets. When restricted
to this subclass, the hypothesis assumed on that paper implies that Hausdorff and
packing dimensions must agree and it must be smaller than log 2/ log(5/2).

We emphasize that condition (5) is quite general, since it does not require that
the dimensions match nor impose bounds on the packing dimension. In fact, given
β < 1/2, by (3) we have dimP E ≤ log 2/| log β|.

The proof of Theorem 1, which is given in Section 3, relies on the computation
of the lower density of a natural measure. Given t > 0 and ν a measure on R, the
lower t-density of ν at x ∈ R is defined by

Θt
∗(ν, x) := lim inf

r→0

ν(B(x, r))
(2r)t

,

where B(x, r) is the closed ball centered at x with radio r. The upper density
Θ∗t(ν, x) is defined analogously by taking lim sup instead of lim inf. There is one
natural measure supported on E that we will denote by µE and is the only probabil-
ity measure satisfying that µE(Iσ) = 2−|σ|. For central Cantor sets, lower density
and packing measure are related as follows.

Proposition 4. Let E be a central Cantor set such that 0 < Pt(E) < ∞. Then,
its lower density Θt

∗(µE , ·) is µE almost everywhere the reciprocal of Pt(E); in
particular, it is µE almost everywhere constant.
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Proof. For each σ ∈ Dk and k ≥ 1, the set Iσ∩E is a translation of I0k ∩E. Hence,
the translation invariance of packing measures implies that Pt(E) = 2kPt(E ∩ Iσ).
If we define ν = (Pt(E))−1Pt|E , then ν and µE coincide on each Iσ, and by
regularity, these measures are identical.

It is known (see [SRT88] or [Mat95], Theorem 6.10) that Θt
∗(Pt|E , x) = 1 for Pt

a.e. x ∈ E. Then, Θt
∗(µE , x) = (Pt(E))−1 for µE a.e. x ∈ E. �

As a consequence of the previous Proposition, the proof of Theorem 1 is the
computation of the lower density of µE which is our next result. Define:

Bt := lim sup
n→∞

2n(sn + yn)t.

The following Theorem is valid.

Theorem 5. Let E be a central Cantor set such that Pt(E) <∞. Then,
1. Θt

∗(µE , x) ≥ (2tBt)−1 for all x ∈ E;
2. if condition (5) holds, then Θt

∗(µE , x) ≤ (2tBt)−1 for µE a.e. x ∈ E.
In particular, Θt

∗(µE , x) = (2tBt)−1 for µE a.e. x ∈ E.

In [QZJ04] it is computed Θ∗s(µE , x), where the conditions (a) rk ≤ 1/3 ∀k and
(b) 0 < limn→∞ 2nssn < ∞ are assumed. By (3), condition (a) implies dimP E ≤
log 2/ log 3. Furthermore, (b) implies that the Hausdorff and packing dimension of
E must agree. In the same article, an example is given showing that some bound
on the dimension is needed.

In section 4, we compute the upper density without imposing condition (b).
Precisely, if

Bs := lim inf
n→∞

2n(sn + yn)s,

we have:

Theorem 6. Let E a central Cantor set with rn ≤ 1/3 and 0 < Hs(E) < ∞.
Then,

1. Θ∗s(µE , x) ≤ 21−sB−1
s for all x ∈ E

2. Θ∗s(µE , x) ≥ 21−sB−1
s for µE a.e. x ∈ E.

In particular, Θ∗s(µE , x) = 21−sB−1
s for µE a.e. x ∈ E.

If the limit B = limn→∞ 2nssn exists and is finite and positive (which implies
that Hausdorff and packing dimensions agree), then Bs = Bs = (21/s − 1)sB (see
[QZJ04], Lemma 2.4). This implies, by (4) and Theorem 6, that the Hausdorff
measure is (up to a constant) the inverse of the upper density, which gives an idea
of duality between Hausdorff and packing mesures. This is not true in the general
case. In [SRT88] was proved that the upper density is not related with Hausdorff
measure but with centered Hausdorff measure, which is defined as

Cs(E) = sup{Cs(F ) : F ⊂ E}
where

Cs(E) := sup
δ>0

{
inf

{∑
i

|Bi|s : E ⊂
⋃
i

Bi, Bi is a ball centered in E , |Bi| ≤ δ

}}
.

As a consequence of Theorem 6 we have:

Theorem 7. If E is a central Cantor set with rk ≤ 1/3 for all k large enough,
then Cs(E) = 2s−1 lim infn→∞ 2n(sn + yn)s.
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Finally, in Section 5 we discuss condition (5). We give an example where this
hypothesis is not satisfied but still the proof of Theorem 1 can be modified to
conclude that formula (6) holds. However, this formula is not true for central
Cantor sets in general, since we have the following result.

Theorem 8. Given 0 < t < 1, there exists a central Cantor set E such that

Pt(E) < 2tBt.

Therefore, it is necessary to ask some separation condition for the conclusion in
Theorem 1 remains valid.

In the next section we prove Theorem 1.

3. Lower density and packing measure

We will note by a(σ) and b(σ) to the endpoints of the interval Iσ. For the first
part of the Theorem 5 we need the following Lemma.

Lemma 9. If aj, bj are positive numbers and 0 < t < 1 then:

min

{
aj
btj

: 1 ≤ j ≤ k

}
≤ a1 + a2 + · · ·+ ak

(b1 + b2 + · · ·+ bk)t
.

Proof. Let m be the term on the left. It follows that mbtj ≤ aj for 1 ≤ j ≤ k and,
in consequence (remember t < 1),

m(b1 + b2 + · · ·+ bk)t ≤ m(bt1 + bt2 + . . . btk) ≤ a1 + a2 + · · ·+ ak

and the Lemma follows. �

Proof of Theorem 5.1. Given ε > 0, let k0 be such that 2k(sk + yk)t < Bt + ε for
all k ≥ k0. Fix x ∈ E and r > 0. There exists σ ∈ D such that

(8) Iσ ⊆ B(x, r) but Iσ̃ * B(x, r) whenever |σ̃| < |σ|.

Put n = |σ|. So, µE(B(x, r)) ≥ 2−n. We assume r is small enough so that n ≥ k0.
If r ≤ sn + yn, then

µE(B(x, r))
(2r)t

≥ 2−n

2t(sn + yn)t
≥ 1

2t(Bt + ε)
.

Then, it remains to consider the case in which r > sn + yn. Notice that there are
at most two words which verify (8). We will only analyze the case in which the last
letter in σ is zero and x ≥ a(σ), since the other cases are analogous. We have

r + x > a(σ) + sn + yn = a(σ|(n−1)1).

Then B(x, r) contains a portion of the interval Iσ|(n−1)1 . We divide the proof in
two cases, according the right endpoint of the ball B(x, r) belongs or not to the set
E.

Assume first that x+ r /∈ E. In this case, there exists τ ∈ D such that x+ r ∈
[b(σ|n−11τ0), a(σ|n−11τ1)]. Define:

n1 = min{i ≥ 1 : τi = 1},
nj+1 = min{i > nj : τi = 1} if the set is not empty .
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If L is the maximum of the indices for which nj is defined, we have that

µE(B(x, r)) ≥ 2−n +
L∑
j=1

2−(nj+n) + 2−(n+|τ |+1).

On the other hand, we have

x+ r ≤ a(σ|n−11τ1)

= a(σ) + sn + yn +
L∑
j=1

(snj+n + ynj+n) + sn+|τ |+1 + yn+|τ |+1.

Since x ≥ a(σ), using the last two inequalities, Lemma 9 and n ≥ k0, we have:

µE(B(x, r))
(2r)t

≥
∑L
j=0 2−(nj+n) + 2−(n+|τ |+1)

2t
(∑L

j=0(snj+n + ynj+n) + sn+|τ |+1 + yn+|τ |+1

)t
≥ 2−t min

({
2−(nj+n)

snj+n + ynj+n
: 0 ≤ j ≤ L

}
∪
{

2−(n+|τ |+1)

sn+|τ |+1 + yn+|τ |+1

})
(9)

≥ 2−t(Bt + ε)−1,

where n0 = 0.
Now consider the case x + r ∈ E. If x + r is the endpoint of a basic interval,

then the existence of the τ and the prove below is still valid. If not, then there is
an infinite word ω ∈ D such that x+ r ∈ Iω′|k for any k ≥ 1, where ω′ = σ|n−11ω.
Similarly to (9) we define:

n1 = min{i ≥ 1 : ωi = 1},
nj+1 = min{i > nj : ωi = 1}.

In this case, (nj) is not bounded and for any L, then

µE(B(x, r)) ≥ 2−n +
L∑
j=1

2−(n+nj).

We also have that

x+ r ≤ b(ω′|nL) = a(σ) +
L∑
j=0

(sn+nj + yn+nj ) + snL .

Since snL → 0 when L→∞, taking L large enough, we have:

µE(B(x, r))
(2r)t

≥
∑L
j=0 2−(nj+n)

2t
(∑L

j=0(snj+n + ynj+n)
)t − ε

Similarly to (9), this is bounded by 2−t(Bt + ε)−1 − ε. �

For the second part of Theorem 5 we need the following Lemma.

Lemma 10. There exists L > 0 such that

(10) sn + yn ≤ yn−` for L ≤ ` < n and all n large enough.
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Proof. Firstly note that the inequality

(11) sn + yn ≤ yn−`
is equivalent to

rn−` · · · rn−1 ≤
1− 2rn−`

1− rn
since sn+yn = (1−rn)(r1 · · · rn−1) and yn−` = (1−2rn−`)(r1 · · · rn−`−1). We have

rn−` · · · rn−1 ≤
1
2`

and 1− 2β ≤ 1− 2rn−`
1− rn

,

hence (11) holds if 2−` ≤ 1 − 2β, or equivalently ` ≥ log1/2(1 − 2β). If we choose
L = dlog1/2(1− 2β)e, then the Lemma follows. �

Proof of Theorem 5.2. We begin constructing a set A ⊂ E of full measure, that is,
µE(A) = 1. Then we show that each point in this set verifies the stated inequality.

Let (nk) be an increasing sequence such that

(12) lim
k→∞

2nk(snk + ynk)t = lim sup
n→∞

2n(sn + yn)t

We assume that nk+1 − nk > k for all k.
For each k ≥ 1, let j be such that 2j ≤ k < 2j+1. Then, with L as in Lemma

10, we define the set

Ak =
{
x ∈ E : σnk−L(x) = 1, σnk−L+1(x) = . . . = σnk−L+j(x) = 0

}
.

Note that µ(Ak) = 2−j−1 and therefore
∑
i µE(Ai) =∞. Moreover, our assumption

on the sequence implies that the events Ak are independent. Hence, Borel-Cantelli
Lemma implies that the upper limit

A =
⋂
n≥1

⋃
k≥n

Ak

has full measure.
Now fix x ∈ A. Then x ∈ Ak for infinite values of k, and for each of these values

we define rk = snk + ynk − snk−L+j , where 2j ≤ k < 2j+1.
Set σ = σ(x) and m = nk−L. Then x−a(σ|m) ≤ sm+j since a(σ|m) = a(σ|m+j).

Moreover, if j ≥ L, we have a(σ|m) = a(σ|nk). Then

x+ rk = x− sm+j + snk + ynk ≤ a(σ|nk) + snk + ynk = a(σ|m0L−11),

where 0L−1 ∈ DL−1 is the word with L − 1 zeroes. Furthermore, the gap to the
left of Iσ|nk has length yi for some 1 ≤ i ≤ m, and by Lemma 10 we have

x− rk = x+ sm+j − snk − ynk > a(σ|m)− yi.

Then B(x, rk) ∩ E ⊂ Iσ|nk ∩ E (and possibly the point a(σ|m0L−11)). For the
opposite inclusion, if j is sufficiently large (j ≥ 2L works), then by Lemma 10 we
have

sm+j < sm+j + ym+j ≤ ynk ,
hence

x+ rk > x+ snk ≥ b(σ|nk);

on the other hand,

x− rk ≤ a(σ|nk) + 2sm+j − snk − ynk < a(σ|nk).
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We conclude that µE(B(x, rk)) = 2−nk . Hence

µE(B(x, rk))
(2rk)t

=
2−nk

2t(snk + ynk − sm+j)t
(13)

=
1

2t2nk(snk + ynk)t
1

(1− sm+j
snk+ynk

)t
.

Note that
sm+j

snk + ynk
≤ 1

2j−L
snk

snk + ynk
.

Then, taking limit in k in (13), we conclude the proof. �

We are now ready to prove Theorem 1.

Proof of Theorem 1. If Pt(E) = 0 or Pt(E) = ∞, then the Theorem follows from
(2) and inequalities (7). If 0 < Pt(E) <∞, then it follows from Proposition 4 and
Theorem 5. �

4. Upper density and centered Hausdorff measure

In this section we prove Theorem 6 and Theorem 7.

Proof of Theorem 6.1. Fix ε > 0 and x ∈ E. There is k0 such that

(14) Bs − ε < 2k(sk + yk)s

whenever k ≥ k0.
Fix r > 0. There is a σ ∈ D with the following property:

B(x, r) ⊇ Iσ but B(x, r) + Iσ̃ whenever|σ̃| < |σ|.

Put n = |σ|. By choosing r small enough we can assume n ≥ k0. Our hypothesis
implies (yk) is decreasing and x ∈ Iσ. In consequence r > max{a(σ)− x+ sn, x−
a(σ)}. We can assume the last letter in σ is a zero, since the other case is analogous.
With this assumption, µE(B(x, r)) = µE [a(σ), x+r]. We will divide into two cases.
Case 1: r ≤ a(σ)− x+ sn + yn. In this case µE(B(x, r)) = 2−n. Then,

µE(B(x, r))
(2r)s

≤ 2−n2−s(max{a(σ)− x+ sn, x− a(σ)})−s.

It is enough to prove that max{a(σ)−x+ sn, x−a(σ)} ≥ sn+1 +yn+1. By reductio
ad absurdum, suppose that a(σ)−x+sn < sn+1 +yn+1 and x−a(σ) < sn+1 +yn+1.
This implies that a(σ) + sn+1 < x < a(σ) + sn+1 + yn+1 what is a contradiction
since x ∈ E ∩ Iσ.
Case 2: r > a(σ)− x+ sn + yn. In this case, x+ r ∈ Iσ|n−11 and

µE(B(x, r)) = 2−n + µE([a(σ) + sn + yn, x+ r]).

Assume first that x + r /∈ E. So, there is a finite word τ such that x + r ∈
[b(σ|n−11τ0), a(σ|n−11τ1)]. Associated to τ we define:

n1 = min{i ≥ 1 : τi = 1},
nj+1 = min{i > nj : τi = 1} if the set is not empty.
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Let L be the maximum of the indices for which nj is defined. We have:

µE(B(x, r))
(2r)s

≤

2−n +
L∑
j=1

2−(nj+n) + 2−(n+|τ |+1)

2s

a(σ)− x+ sn + yn +
L∑
j=1

(snj+n + ynj+n) + sn+|τ |+1

s .

Put n0 = 0. Since a(σ)− x+ sn ≥ 0, we want to prove that for any τ ∈ D,

(15)

L∑
j=0

2−(nj+n) + 2−(n+|τ |+1)

yn +
L∑
j=1

(snj+n + ynj+n) + sn+|τ |+1

s ≤ 2(Bs − ε)−1.

In order to prove (15), we consider two subcases. Put N = n+ |τ |+ 1.
Case 2.1. τ is not constantly 0 nor constantly 1 (when |τ | > 1). We follow the
ideas in [QRS03] and use induction in |τ |. If |τ | = 0, then the left side of (15)

becomes
2−n + 2−N

(yn + sN )s
. Define

λ :=
yn − yN

sn − sN + yn − yN
.

Since rk ≤ 1/3 for all k, we have λ ≥ 1/2. Using concavity of the function ts,
estimate (14) and λ ≥ 1/2 we obtain:

(yn + sN )s ≥ λ(sn + yn)s + (1− λ)(sN + yN )s

≥ (Bs − ε)(λ2−n + (1− λ)2−N )

≥ (Bs − ε)1/2(2−n + 2−N ).

So, the case |τ | = 0 is proved.

Now, assume |τ | > 0. Put Λ :=
(
yn +

∑L
j=1(snj+n + ynj+n) + sN

)s
. We have

Λ ≥ λ

yn +
L−1∑
j=1

(snj+n + ynj+n) + snL+n

s

+ (1− λ)

yn +
L∑
j=1

(snj+n + ynj+n) + 2sN + yN

s

with
λ =

sN + yN
ynL+n + 2sN + yN

.

Note that λ ≤ 1/2 since (yk) is decreasing.
As τ is not constantly 0, applying the inductive hypothesis to τ |nL−1 (or τ = ∅

if nL = 1), we obtain(
yn +

L−1∑
j=1

(snj+n + ynj+n) + snL+n

)s
≥ (Bs − ε)

2

(L−1∑
j=0

2−(nj+n) + 2−(nL+n)
)
.
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Moreover, as τ is not constantly 1, put J = max{j : τj = 0}. Applying the inductive
hypothesis to τ |J−1, we obtain(

yn +
L∑
j=1

(snj+n + ynj+n) + 2sN + yN

)s
≥ (Bs − ε)

2

( L̃∑
j=0

2−(nj+n) + 2−(J+n)
)
.

where L̃ = max{j : nj < J}.
Using the last three inequalities we have:

Λ ≥ (Bs − ε)
2

{
L∑
j=0

2−(nj+n) +

(1− λ)

 L̃∑
j=0

2−(nj+n) + 2−(J+n) −
L∑
j=0

2−(nj+n)

}

≥ (Bs − ε)
2

 L∑
j=0

2−(nj+n) + (1− λ)2−(n+|τ |)

 .

Since λ ≤ 1/2 the proof is complete.
Case 2.2. If τi = 0 for all i then the proof is exactly the same as in the case |τ | = 0.
If τi = 1 for all i, then (considering the same convex combination as above) the
proof is direct.

Finally, we consider x + r ∈ E. If x is an endpoint of a basic interval, we still
have existence of a word τ as before, and the proof is still valid. If not, then there
is a word ω ∈ D such that x+ r ∈ Iω′|N for any N , where ω′ := σ|n−11ω. Define:

n1 = min{i ≥ 1 : ωi = 1}
nj+1 = min{i > nj : ωi = 1}.

Put n0 = 0. If N is large enough, using (15), we obtain

µE(B(x, r)
(2r)s

≤
∑∞
j=0 2−(nj+n)

2s(yn +
∑∞
j=1(snj+n + ynj+n))s

≤
∑L
j=0 2−(nj+n) + 2−N

2s(yn +
∑L
j=1(snj+n + ynj+n) + sN )s.

+ ε

≤ 2
2s(Bs − ε)

+ ε,

where L = max{i : ni < N − n}. �

Proof of Theorem 6.2. We proceed in a similar fashion to the proof of Theorem 5.2.
Consider an increasing sequence with nk+1 − nk > k such that

lim 2nk(snk + ynk)s = Bs.

For each k ≥ 1, let j be such that 2j ≤ k < 2j+1. We define the set

Ak =
{
x ∈ E : σnk(x) = 1, σnk+1(x) = . . . = σnk+j(x) = 0

}
.

Note that µE(Ak) = 2−(j+1), so the series
∑
µE(Ak) diverges.Since the events Ak

were chosen independent Borel Cantelli Lemma applies and we can conclude that
the set A = ∩n≥1 ∪k≥n Ak has full measure.
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We will prove that our thesis is valid for x ∈ A. So, pick x ∈ A and for those
k for which x ∈ Ak, define rk = snk + ynk + snk+j . Then B(x, rk) contains the
interval [a(σ|nk)− snk − ynk , a(σ|nk) + snk + ynk ] whose measure is 2−nk+1. So,

µE(B(x, rk))
(2rk)s

=
2 · 2−nk

2s (snk + ynk)s
(

1 + snk+j

snk+ynk

)s .
Taking limit in k, we obtain the desired result. �

Proof of Theorem 7. If lim infn→∞ 2n(sn+yn)s is zero or infinity, so lim infn→∞ 2nssn
and Hs(E) are, in view of (7) and Theorem[QRS03]. Since Hs(E) ≤ Cs(E) ≤
2sHs(E) (see [SRT88], Lemma 3.3), Cs(E) is zero or infinity.

If lim infn→∞ 2n(sn + yn)s is neither zero nor infinity, then 0 < Hs(E) < ∞
(moreover, we are in the hypothesis of Theorem 6).

As in Proposition 4, since Cs is also invariant by translations, the measure ν :=
(Cs(E))−1Cs|E coincides with µE . Using that Θ∗s(Cs|E , x) = 1, for Cs-a.e. x ∈
E (see [SRT88], Corollary 7.1) we conclude Θ∗s(µE , x) = (Cs(E))−1 for µE- a.e.
x ∈ E. The thesis follows comparing this and the value of the density obtained in
Theorem 6. �

In the next section we discuss the hypothesis of Theorem 1.

5. On the separation condition

In view of Lemma 10 and the proof of Theorem 1, the hypothesis of this Theorem
can be replaced by: there exist L > 0 such that

sn + yn ≤ yn−`, for L ≤ ` < n and all n large enough.

It may happen that there is no such L. For example, when rk ≥ c > 0 for all k and
there is a subsequence (ki) such that rki → 1/2. However, if there is some control
on the subsequence, the proof of Theorem 1 can still be adapted.

Example 1. Example of a Cantor set such that 0 < Pt(E) = Bt < ∞ and there
is a subsequence of the ratios that tends to 1/2.
Let 0 < a < 1/2 and β2k = (1− εk)/2, where εk → 0; below we impose conditions
on a and εk. For k ≥ 1 we define

rk =
{

a, k odd
βk, k even

and let E be the corresponding Cantor set. Notice that

s2n = (a/2)n
n∏
j=1

(1− εj) and s2n+1 = a(a/2)n
n∏
j=1

(1− εj).

If t = log 4/ log(2/a) we have 2at = 21−t. Then, if (εj) is a summable sequence, it
is easily verified from (2) that 0 < Pt(E) <∞.

Also, by the identity sk + yk = sk−1 − sk, we have that

22n(s2n + y2n)t = (2at)n(21−t)n−1
n−1∏
j=1

(1− εj)t2(1− β2n)t
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and

22n+1(s2n+1 + y2n+1)t = 2(1− a)t(2at)n(21−t)n
n∏
j=1

(1− εj)t.

Therefore, Bt is obtained by taking limit to any subsequence with odd subindices.
Let us define εj = j−2. We will mimic the proof of Theorem 5.2). In this

case we can not find L as in Lemma 10, but recalling that sn + yn ≤ yn−` iff
rn−` · · · rn−1 ≤ (1− 2rn−`)/(1− rn), and noting that

rn−` · · · rn−1 ≤ (a/2)b`/2c and (1− 2rn−`)/(1− rn) > 1− 2βn−` = (n− `)−2,

then, we need (a/2)b`/2c ≤ (n− `)−2. Hence, if Ln = d4 log n/ log(2/a)e, we have

sn + yn ≤ yn−`, for all Ln ≤ ` < n.

Set nk = k(k + 1) + 1 and Lk := Lnk ; as before, for k ≥ 1, let

Ak =
{
x ∈ E : σnk−Lk(x) = 1, σnk−Lk+1(x) = . . . = σnk−Lk+j(x) = 0

}
,

where j is such that 2j ≤ k < 2j+1. For k large enough, the independence of
these events holds since nk − Lk + j < nk+1 − Lk+1 for all k large enough. Then,
Borel-Cantelli Lemma applies and A = ∩n≥1 ∪k≥n Ak has full measure. The rest
of the proof is the same as before, but we must note that j − Lk →∞ as k →∞.
In fact, since log k2 + 1 > log(k(k + 1) + 1) for k large enough, we have

j − Lk >
log k
log 2

− 4
log(k(k + 1) + 1)

log( 2
a )

− 2

> log k
(

1
log 2

− 12
log( 2

a )

)
− 2,

which tends to ∞ if a < 2−11.

We conclude the paper with the proof of Theorem 8, which shows that the
formula from Theorem 1 is not true for central Cantor sets in general.

Proof of Theorem 8. Let E be the Cantor set given by the sequence (rk) defined as
follows. Let 0 < t < 1 and

rk =
{
βn, 2n < k < 2n+1

αn, k = 2n

where βn = 1/2 − εn with εn ↘ 0 (εn will be specified later), and let αn be such
that

αnβ
2n−1
n =

(
1

22n

)1/t

;

it is easily verified that αn → 0.
Firstly we claim that for all n large enough, if 2n < l < 2n+1, then

(16) 2l(sl + yl)t < 2l+1(sl+1 + yl+1)t.

In fact, sl+1 + yl+1 = (sl + yl)rl(1− rl+1)/(1− rl). We have two cases.
Case 1. If rl+1 = βn, then

(17) 2l+1(sl+1 + yl+1)t = 2l(sl + yl)t2βtn

and (16) holds since βtn > 1/2 if n is large enough.
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Case 2. If rl+1 = αn+1 (i.e. l + 1 = 2n+1), then

(18) 2l+1(sl+1 + yl+1)t = 2l(sl + yl)t2βtn

(
1− αn+1

1− βn

)t
,

and the claim holds since the last quotient tends to 2.
Furthermore, if nk = 2k, then

2nk(snk + ynk)t =2nk(snk−1 − snk)t

=2nk

(k−1∏
j=1

β
(2j−1)
j

) k−1∏
j=0

αj −
(k−1∏
j=1

β
(2j−1)
j

) k∏
j=0

αj

t

=4αt0(1− αk)t.

Then, from (16), the sequence (nk) reaches the upper limit, that is

B = lim sup
n→∞

2n(sn + yn)t = lim
k→∞

2nk(snk + ynk)t,

and also, 0 < Pt(E) <∞.
Now we show that Θt

∗(µE , x) ≥ C
(
2tB

)−1 for µE-a.e. x ∈ E, with C > 1, which
implies Pt(E) < 2tB. Here we do not care about the optimality of C.

Let x ∈ E and let r be small enough. Then Iσ ⊂ B(x, r) for some σ ∈ D but
Iσ̃ * B(x, r) if |σ̃| < |σ|. Set n = |σ|. Note that r < sn−1. We need to separate
the proof in two cases.
Case 1. Suppose n 6= nj ∀j. Set nk = min{nj : nj > n}. Then, using (17) and
(18), we obtain

µE(B(x, r))
(2r)t

≥ 1
2t2nstn−1

=
2nk−n

2t2nk(snk + ynk)t

(
sn + yn
sn−1

)t nk−n∏
j=1

(sn+j + yn+j)t

(sn+j−1 + yn+j−1)t

=
2nk−n

2t2nk(snk + ynk)t
(1− βk−1)t(βtk−1)nk−n

(
1− αk

1− βk−1

)t
=

1
2t2nk(snk + ynk)t

(2βtk−1)nk−n(1− αk)t.

Note that nk − n ≥ 1. Moreover, given 1 < C < 21−t, then 2βtk−1(1−αk)t ≥ C for
all k large enough, hence

µE(B(x, r))
(2r)t

≥ C

2t2nk(snk + ynk)t

if r is small enough.
Case 2. We construct a set A of full measure such that on each level nk (that is,
whenever n = nk) we have

(19)
µE(B(x, r))

(2r)t
≥ 2t

(
1

2t2nk(snk + ynk)

)
, for x ∈ A.

Then, this inequality together the previous case implies the theorem.
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We assume that r ≥ (snk + ynk)/2, otherwise (19) is immediate. First note that
for k large enough,

(20) 2snk + ynk−1+l ≤
snk + ynk

2
, for 1 ≤ l < nk−1.

In fact,

2snk + ynk−1+l = 2α0αk

(
1

22k−2

)1/t

+ α0αk−1β
l−1
k−1

(
1

22k−1−2

)1/t

(2εk−1)

≤ 2α0

(
1

22k−2

)1/t (
αk + αk−1(22k−1

)1/tεk−1

)
=
snk + ynk

2
4
(
αk + αk−1(22k−1

)1/tεk−1

)
,

and (20) holds if we choose εk−1 ≤ (22k−1
)−1/t.

Now, let

D̃nk =
{
σ ∈ Dnk : σ = τ01l or σ = τ10l, 1 ≤ l < nk−1, τ ∈ Dnk−(l+1)

}
and define

Ak =
⋃

σ∈D̃nk

Iσ ∩ E and A =
⋃
n≥1

⋂
k≥n

Ak.

Note that if x ∈ A, then, for all k large enough, x belongs to a basic interval of
level nk which is next to a gap of length ynk−1+l. Hence, inequality (20) implies
that B(x, r) contains two basic intervals of level nk. Then, (19) holds because

µE(B(x, r))
(2r)t

≥ 2
2t2nkstnk−1

=
2(1− αk)t

2t2nk(snk + ynk)t
.

Finally, the events Ak are independent and

µE(Ak) =
#D̃nk

2nk
=

2
∑nk−1−1
j=1 #Dnk−(l+1)

2nk
= 1− 2

2nk−1
.

Hence,

µE(A) = lim
n→∞

∏
k≥n

(1− 2
2nk−1

) = 1,

which concludes the proof. �
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negatives. Ann. Inst. Fourier (Grenoble), 35(4):99–125, 1985.

[Mat95] P. Mattila. Geometry of Sets and Measures in Euclidean Spaces. Cambridge University
Press, Cambridge, 1995.

[Mei02] S. Meinershagen. The Hausdorff measure and the packing measure on a perturbed

Cantor set. Real Anal. Exchange, 27(1):177–190, 2001/02.
[Ols08] L. Olsen. Density theorems for Hausdorff and packing measures of self-similar sets.

Aequationes Math., 75(3):208–225, 2008.

[QRS03] Ch. Qu, H. Rao, and W. Su. Hausdorff measures of homogeneous Cantor sets. In Ad-
vances in mathematics research, Vol. 2, volume 2 of Adv. Math. Res., pages 75–79.

Nova Sci. Publ., Hauppauge, NY, 2003.

[QZJ04] Cheng-Qin Qu, Zuo-Ling Zhou, and Bao-Guo Jia. The upper densities of symmetric
perfect sets. J. Math. Anal. Appl., 292(1):23–32, 2004.

[SRT88] X. Saint Raymond and C. Tricot. Packing regularity of sets in n-space. Math. Proc.
Cambridge Philos. Soc., 103(1):133–145, 1988.

Departamento de Matemática, Universidad Nacional de Mar del Plata

E-mail address: nacholma@gmail.com
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