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Abstract. The problem of determining an appropriate signal or image model

from experimental data is addressed. Specifically, given a finite set of signals or

images belonging to a fixed but unknown shift invariant space, the problem is
whether the known signals at hand are sufficient for determining the unknown

shift invariant space to which they belong. This problem gives rise to the
concept of determining sets for shift invariant spaces, and we obtain necessary
and sufficient conditions needed for determining an unknown shift invariant

space V (Φ) from a finite subset F = {f1, f2, . . . , fm} of V (Φ).

1. introduction

In many signal and image processing applications, images and signals are as-
sumed to belong to some shift invariant space of the form:

V (Φ) := {f =
n∑

i=1

∑
j∈Zd

αi(j)φi(·+ j) : αi ∈ l2, i = 1, . . . , n} (1.1)

where Φ = [φ1, φ2 . . . φn]t is a column vector consisting of functions in L2(Rd) called
a generator for the space V = V (Φ) (see e.g., [2]). For example, if n = 1, d = 1 and
φ(x) = sinc(x), then the underlying space is the space of band limited functions
(often used in communications). However, the assumed model (often the band
limitedness assumption) is seldom derived from experimental data.

Thus, given a class of signals belonging to a certain fixed - but unknown - shift
invariant space V , the problem is whether it is possible to determine the space V
from a set of m experimental data F = {f1, f2, . . . , fm}, where fi are observed
functions (signals) belonging to V (Φ). If a finite set F is sufficient to determine
V (Φ), we will call it a determining set for V (Φ). The goal is to see if we can
perform operations on the observations F = {f1, f2, . . . , fm} to deduce whether
they are sufficient to determine the unknown shift invariant space V (Φ), and if so,
use them to find some generator Ψ for V (Φ), i.e., find Ψ such that V (Ψ) = V (Φ).
If the observations are not sufficient to determine V (Φ), then we need to obtain
more observations until a determining set is found.

In this paper we give necessary and sufficient conditions for a finite subset F of
the space V (Φ) to be a determining set for V (Φ). In the case F is a determining
set, we shall exhibit an orthonormal generator for V (Φ) that is written in terms of
the elements of F and thereby reconstruct the whole space.
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The paper is organized as follows. In section 2, we will recall some known
properties of shift invariant spaces, Riesz basis and the Gramian matrix. In section
3, we will introduce the notion of determining set and will give a necessary and
sufficient condition on F to determine V (Φ). Finally, in section 4, we will prove
our results.

2. Notation and preliminaries

Throughout this paper, we assume that the unknown space V can be generated
by some generator Φ = (φ1, . . . , φn)t such that {φi(x − k) : i = 1, . . . , n, k ∈ Zd}
forms a Riesz basis for V . This Riesz basis assumption can be restated in the
Fourier domain using the Gramian matrix of Φ. Specifically, the Gramian GΘ of a
vector function Θ = [θ1, · · · , θn]t is defined by

GΘ(ω) =
∑

k∈Zd

Θ̂(ω + k)Θ̂∗(ω + k) (2.1)

where Θ̂(ω) :=
∫
Rd Θ(x)e−2πiωxdx, and Θ̂∗ is the adjoint of Θ̂. With this definition,

it is well-known that Φ induces a Riesz basis for V if and only if there exists two
positive constants A > 0 and B > 0 such that

AI ≤ GΦ(ω) ≤ BI, a.e. ω, (2.2)

where I is the n × n identity matrix (see e.g., [1, 3, 4]). The set B = {φi(x − k) :
i = 1, . . . , n, k ∈ Zd} forms an orthonormal basis if and only if A = B = 1 in (2.2).
Throughout the paper we assume that Φ = [φ1, · · · , φn]t satisfies (2.2).

For a set A ⊆ Rd, the complementary set in Rd will be denoted by Ac.
We use F to indicate a set of functions and we use F to denote the vector valued

function whose components are the elements of F in some fixed order.

3. Main results

Our main goal is to find necessary and sufficient conditions on subsets F =
{f1, · · · , fm} of V (Φ) such that any g ∈ V can be recovered from F . A set F with
such a property will be called a determining set for V (Φ). Specifically,

Definition 1. The set F = {f1, f2, . . . , fm} ⊂ V (Φ) is said to be a determining
set for V (Φ), if any g ∈ V (Φ) can be written as

ĝ = α̂1f̂1 + α̂2f̂2 + . . .+ α̂mf̂m (3.1)

where α̂1, . . . , α̂m are 1-periodic measurable functions. In addition, if F is a deter-
mining set of V (Φ) we will say that V (Φ) is determined by F .

Remarks
(i) The vector F = [f1, . . . , fm]t need not be a generator for V . In fact, series

of the form
∑m

i=1

∑
k cifi(x− k) need not even be convergent for all ci ∈ l2.

(ii) An equivalent definition of a determining set can be obtained (e.g., see
[3, Theorem 1.7]): a set F is a determining set for V (Φ) if and only if
V (Φ) ⊂ closureL2

(
span{fi(x− k) : fi ∈ F)

)
.

It is not surprising that if the generators of V are vector-functions of size n, then
the cardinality m of a determining set F must be larger or equal to n. This result
is stated in the following proposition:
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Proposition 1. Let V be a shift invariant space generated by some Riesz basis
{φi(x− k) : i = 1, . . . , n, k ∈ Zd}, where Φ = [φ1, . . . , φn]t is a vector of functions
in V . If F is a determining set for V then card (F) ≥ n.

Because of the proposition above, we will only consider sets F with cardinality
m larger than or equal to the size n of the generators for V . Given such a set F

there are L =
(
m
n

)
subsets F` ⊂ F of size n. For each such subset F` of size n,

we define the set

A` = {ω : detGF`
(ω) 6= 0}, 1 ≤ ` ≤ L, (3.2)

where GF`
is the n× n Gramian matrix for the vector F`. We now state our main

theorem on determining sets.

Theorem 1. A set F = {f1, · · · , fm} ⊂ V (Φ) is a determining set for V (Φ) if and
only if the set Z =

⋂L
`=1A

c
` has Lebesgue measure zero.

Moreover, if F is a determining set for V (Φ), then the vector function

Ψ̂(ω) := G
− 1

2
F1

(ω)F̂1(ω)χB1(ω) + · · ·+G
− 1

2
FL

(ω)F̂L(ω)χBL
(ω) (3.3)

where B1 := A1, B` := A` −
⋃`−1

j=1Aj , ` = 2, . . . , L, generates an orthonormal basis
{ψi(x− k) : i = 1, . . . , n, k ∈ Zd} of V (Φ).

Remarks
(i) Theorem 1 provides a method for checking whether and when a set of

functions generates a fixed (yet unknown) shift-invariant space generated
by some unknown Φ of known size n. Since other than the value n the only
requirement is that the set of functions belong to the same (unknown) shift-
invariant space, we can apply the theorem to a set of observed functions
(the data) if we know that they are all from some shift-invariant space V
and either determine the space or conclude that we do not have enough
data to do so and need to acquire more data.

(ii) The orthonormal basis constructed in the Theorem is only in L2 but not in
L1 in general. Further investigation is needed for the construction of better
localized bases.

4. Proofs

4.1. Proof of Proposition 1.

Proof. Let F = {f1, f2, . . . , fm}, and F = [f1, f2, . . . , fm]t. Since F is a determining
set, there exists β = β(ω) an n×mmatrix of 1-periodic functions such that Φ̂ = β̂F̂ .
Then

GΦ(ω) =
∑
k∈Z

Φ̂(ω + k)Φ̂∗(ω + k)

=
∑
k∈Z

β̂(ω + k)F̂ (ω + k)F̂ ∗(ω + k)β̂∗(ω + k)

=
∑
k∈Z

β̂(ω)F̂ (ω + k)F̂ ∗(ω + k)β̂∗(ω)

= β̂(ω)GF (ω)β̂∗(ω).
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Therefore rank (GΦ) ≤ rank (GF ) ≤ m, since the rank of the product of matrices is
not greater than the rank of any of its factors, see [5]. In addition, since {φ1(x −
k), φ2(x− k) . . . φn(x− k)} form a Riesz basis, the rank (Gφ) = n. �

4.2. Proof of Theorem 1. In order to prove Theorem 1, we need to prove the
following lemma:

Lemma 1. If a vector function T = [t1, . . . , tn]t satisfies that T̂ (ω) = ĈT (ω)Φ̂(ω),
a.e. ω for some n×n measurable matrix function ĈT (ω), with entries in L2([0, 1]d)
and if GT (ω) = IχΩ(ω) then there exist constants, B′ > 0 and B′′ > 0 such that
‖ĈT ‖L∞(Ω) ≤ B′, and ‖Ĉ−1

T ‖L∞(Ω) ≤ B′′.

Proof. The Gramian of T is given by GT = ĈTGΦĈT

∗
. Since by (2.2) GΦ is positive

self adjoint a.e. ω, the square root G1/2
Φ makes sense and we can write GT as

GT = ĈTGΦ
1
2GΦ

1
2 ĈT

∗
. (4.1)

Define the n× n matrix function U(ω) by U = ĈTGΦ
1
2 . Then, from (4.1) and our

assumption on GT , we have that IχΩ = UU∗ and hence U∗ = U−1 on Ω. Thus we
also have IχΩ = U∗U . Therefore GΦ

1
2 ĈT

∗
ĈTGΦ

1
2 = IχΩ and,

ĈT

∗
ĈTχΩ = GΦ

− 1
2GΦ

− 1
2χΩ = G−1

Φ χΩ.

Using (2.2), we conclude that AIχΩ ≤ ĈT

∗
ĈT ≤ BIχΩ where I is the identity

matrix, and A,B are positive constants independent of ω.
But trace (ĈT

∗
ĈTχΩ) =

∑n
r=1 λr(ω) where λr is an eigenvalue of

D(ω)χΩ := ĈT

∗
(ω)ĈT (ω)χΩ,

thus

nA ≤ trace (D(ω)χΩ) =
n∑

r=1

λr(ω) ≤ nB.

It follows that
‖ĈT ‖L∞(Ω) ≤

∑
i,j

|(ĈT )i,j(ω)|2 ≤ B′ = nB.

Similarly, since Ĉ−1
T

∗
Ĉ−1

T χΩ = GΦχΩ, there exists B′′ such that ‖ĈT ‖L∞(Ω) ≤
B′′. �

We can now prove Theorem 1.

Proof of Theorem 1. ⇐= Let A` be as in (3.2), and define B1 := A1, B` := A` −⋃`−1
j=1Aj , ` = 2, . . . , L. We will proceed in four steps:

Step 1): Since F l ⊂ V (Φ) and cardF l = n, we can write F̂` = ĈF`
Φ̂ for some n× n

square matrix ĈF`
with L2([0, 1]d) entries, and we have

GF`
(ω) =

∑
k

(ĈF`
(ω + k)Φ̂(ω + k))(ĈF`

(ω + k)Φ̂(ω + k))∗

=
∑

k

ĈF`
(ω + k)Φ̂(ω + k)Φ̂∗(ω + k)ĈF`

∗
(ω + k)

= ĈF`
(ω)GΦ(ω)ĈF`

∗
(ω),

since ĈF`
(ω) is 1-periodic.
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Moreover, since Φ induces a Riesz basis then GΦ is positive definite, and
there exists A > 0 such that vGΦ(ω)v∗ ≥ A‖v‖2 > 0 for almost all ω and
for all v 6= 0 in Rn. Hence for any non-zero vector z ∈ Rn

zGF`(ω)z
∗ = z(ĈF`

(ω)GΦ(ω)ĈF`
(ω)∗)z∗

= (zĈF`
(ω))GΦ(ω)(zĈF`

(ω))∗

must be positive in B` if we prove that zĈF`
(ω) 6= 0 in B`. But this is

true since detGF`
=
(
det ĈF`

)2

detGφ and detGF`
6= 0 on B`, so ĈF`

(ω)
is non-singular a.e. ω ∈ B`. Thus, GF`

is self adjoint and positive definite
on B`.

Step 2) The vector Ĥ` defined by Ĥ` := G
− 1

2
F`
F̂`χB`

is well defined and belongs to

(L2(Rd))n (we are abusing notation and writing G
− 1

2
F`

even though G
− 1

2
F`

only makes sense on Bc
` , however there should be no ambiguity about the

definition of Ĥ` because of the term χB`
).

Since by step 1) the Gramian GF`
(ω) is self adjoint and positive for a.e.

ω ∈ B`, the inverse square root G−
1
2

F`
makes sense in B`. Moreover

GH`
(ω) =

(∑
k

(G−
1
2

F`
(ω + k)F̂`(ω + k)(G−

1
2

F`
(ω + k)F̂`(ω + k))∗

)
χB`

(ω)

= G
− 1

2
F`

(ω)

(∑
k

F̂`(ω + k)F̂`(ω + k)∗
)

(G−
1
2

F`
)∗(ω)χB`

(ω)

= G
− 1

2
F`

(ω)GF`
(ω)G−

1
2

F`
(ω)χB`

(ω)

= IχB`
(ω).

But Ĥ`(ω) = G
− 1

2
F`

(ω)F̂`(ω)χB`
(ω) = G

− 1
2

F`
(ω)ĈF`

(ω)Φ̂(ω)χB`
(ω), since

F̂`(ω) = ĈF`
(ω)Φ̂(ω) for some n × n matrix ĈF`

with L2([0, 1]d entries.

Hence we can apply Lemma 1 to get that ĈH`
(ω) = G

− 1
2

F`
(ω)ĈF`

(ω)χB`
(ω)

belongs to L∞([0, 1]d) ⊂ L2([0, 1]d). Hence H` ∈ V (Φ) ⊂ (L2(Rd))n.
Step 3): We now construct an orthonormal basis of V as follows: Define Ψ =

[ψ1, . . . , ψn]t by the the following equation:

Ψ̂(ω) := G
− 1

2
F1

(ω)F̂1(ω)χB1(ω) + · · ·+G
− 1

2
FL

(ω)F̂L(ω)χBL
(ω) (4.2)

where B` are defined as in the beginning of the proof, and F` as in the
statement of the theorem. By claims 1 and 2, Ψ̂ is well defined and ψi ∈
V (Φ), i = 1, . . . , n.

Step 4): We claim that the set {ψi(x−k) : i = 1, . . . , n k ∈ Zd} forms an orthonormal
basis for V (Φ). To see this, we note that since ψi ∈ V (Φ), i = 1, . . . , n,
Ψ̂ = ĈΨΦ̂. Moreover given ω, there exists some unique ` such that ω ∈ B`,
and GΨ(ω) = GH`

(ω) = I. Thus GΨ(ω) = I, a.e. ω. Therefore by Lemma
1, there exist positive constants B′ and B′′, such that ‖CΨ‖L∞ ≤ B′, and
‖C−1

Ψ ‖L∞ ≤ B′′. It follows that {ψi(x − k) : i = 1, . . . , n, k ∈ Zd} is a
Riesz basis for V (Φ) with Gramian GΨ = I, hence an orthonormal basis
for V (Φ). In particular V (Ψ) = V (Φ).
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Now, since the translates of {ψ1, . . . , ψn} are an orthonormal basis, we
have that if g ∈ V (Φ), then there exists Ĉ ∈ (L2([0, 1]d))n such that ĝ =
ĈΨ̂. So

ĝ(ω) = Ĉ(ω)
∑

`

(G−
1
2

F`
(ω)χB`

(ω))F̂`(ω) =
∑

`

(
Ĉ(ω)G−

1
2

F`
(ω)χB`

(ω)
)
F̂`(ω),

and this last equation can be rewritten as: ĝ =
∑m

i=1 α̂if̂i.

This completes the proof of one of the implications of the Theorem. For the
converse, we proceed by contradiction. Suppose that the set Z =

⋂L
`=1A

c
` has

positive Lebesgue measure.
Since each fi ∈ V (Φ), there exists a 1-periodic measurable m×n matrix Â with

entries in L2([0, 1]d) such that F̂ = ÂΦ̂. If we denote by Âi, i = 1, . . . ,m the i-th
row of Â, so f̂i = ÂiΦ̂, then for each choice ı̃ = (i1, . . . , in), the vector

Fı̃ =


f̂i1

f̂i2
...
f̂in

 =


Âi1Φ̂
Âi2Φ̂

...
Âin

Φ̂

 ,
and if Aı̃ denotes the n× n matrix whose rows are Ai1 , . . . , Ain

, then we have that
GFı̃ = Aı̃GΦA

∗
ı̃ .

Thus, det Âı̃

2
= 0, a.e. on Z, since detGΦ 6= 0 and we are assuming that

detGFı̃ = 0 for all choices of ı̃. Hence any minor of Â of order n is 0 and we
conclude that rank Â < n a.e. on Z.

Since F is a determining set, given any Ĉ, a 1-period vector in (L2([0, 1]d)n, there
exists D̂ a 1-periodic measurable vector of length m such that, Ĉφ̂ = D̂f̂ = D̂(Âφ̂)

Thus for a.e. ω

Ĉ(ω)φ̂(ω) = (D̂(ω)Â(ω))φ̂(ω), i.e.
(
Ĉ(ω)− D̂(ω)Â(ω)

)
(Φ̂) = 0.

Hence, (
Ĉ(ω)− D̂(ω)Â(ω)

)
Φ̂(ω)Φ̂∗(ω)

(
Ĉ(ω)− D̂(ω)Â(ω)

)∗
= 0,

and therefore (
Ĉ(ω)− D̂(ω)Â(ω)

)
GΦ(ω)

(
Ĉ(ω)− D̂(ω)Â(ω)

)∗
= 0.

Since GΦ is positive definite a.e., it follows that

Ĉ(ω)− D̂(ω)Â(ω) = 0 a.e. ω ∈ R. (4.3)

But since rank Â(ω) < n in Z, we can always choose Ĉ(ω) ∈ (rangeÂ)⊥ with
the property that ‖Ĉ(ω)‖ = 1 and Ĉ(ω) = Ĉ(ω + k) for all k ∈ Z so that Ĉ ∈
(L(0, 1)d)(n). Finally, by construction of Ĉ(ω), no D̂ can be found such that (4.3)
is satisfied giving a contradiction. �



SHIFT INVARIANT SPACES 7

References

[1] A. Aldroubi, Oblique projections in atomic spaces, Proc. Amer. Math. Soc., 124(1996), 2051-
2060.
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