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DENSITY OF THE SET OF GENERATORS OF WAVELET

SYSTEMS

CARLOS CABRELLI AND URSULA M. MOLTER

Abstract. Given a function ψ in L2(Rd), the affine (wavelet) system gener-
ated by ψ, associated to an invertible matrix a and a lattice Γ, is the collection
of functions {|det a|j/2ψ(ajx−γ) : j ∈ Z, γ ∈ Γ}. In this article we prove that
the set of functions generating affine systems that are a Riesz basis of L2(Rd)
is dense in L2(Rd).

We also prove that a stronger result is true for affine systems that are a
frame of L2(Rd). In this case we show that the generators associated to a fixed
but arbitrary dilation are a dense set.

Furthermore, we analyze the orthogonal case in which we prove that the
set of generators of orthogonal (not necessarily complete) affine systems, that
are compactly supported in frequency, are dense in the unit sphere of L2(Rd)
with the induced metric. As a byproduct we introduce the p-Grammian of
a function and prove a convergence result of this Grammian as a function of
the lattice. This result gives insight in the problem of oversampling of affine
systems.

1. Introduction

Let ψ be an L2(Rd)-function, a an invertible d× d matrix and Γ a lattice in Rd.
The wavelet system or affine system (ψ, a, Γ), generated by ψ and associated to a
and Γ, is the collection of functions,

(ψ, a, Γ) = {Daj Tγψ : j ∈ Z, γ ∈ Γ} . (1)

Here Ty and Da denote the the unitary operators in L2(Rd) defined by (Tyψ)(x) =
ψ(x − y), y ∈ Rd and (Daψ)(x) = | det a|1/2ψ(ax), a ∈ GLd(R).

Affine systems have been studied in depth during the last 25 years mainly because
of their importance in applications. In addition they proved to be very useful in a
variety of theoretical problems. On the other hand they were studied in the context
of Hilbert spaces where the translation and dilation operators were replaced by
a general group of unitary operators [GLT93, DL98]. Generalizations of wavelet
systems in L2(Rd) with translations not necessarily on a lattice and using different
dilations were also considered [ACM04], [GLL+04].

One of the relevant questions about these systems is whether the collection
(ψ, a, Γ) form an orthonormal basis, a Riesz basis or a frame of the space L2(Rd).

The construction of affine systems with specific prescribed properties is a dif-
ficult problem. Usually it is accomplished imposing conditions on the generators.
This has been one of the core problem from the beginning of wavelet research
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2 C.CABRELLI AND U.MOLTER

[Dau88, Mey88, Mey92, BF94, CHM04] (and references therein). Still there are
many unanswered questions and open problems in the study of affine systems.

One way to get a better understanding of these systems is considering the set
of generators of affine systems having some particular structure, and trying to
answer global questions about these sets. For example, wavelet systems forming a
tight frame of the space have been completely characterized by a set of equations
imposing conditions on the Fourier transform of the generators [CCMW02, CS00,
Bow03]. Another example is the problem of connectivity of the set of generators
which has received considerable attention lately, [Con98, Spe99].

In this article, motivated by a question posed by David Larson [Lar05], we study
the problem of density of the set of generators of affine systems. We prove (Theo-
rem 4.1) that the set of generators forming Riesz bases is dense in L2(Rd) when we
allow diagonal matrices and arbitrary lattices. This theorem gives an even stronger
result, since the generators in the dense set have Fourier transform supported on
wavelet-sets and as a consequence have orthogonal dilations. The proof is obtained
as a combination of the techniques used in the proof of density for wavelet frames
(section 3) and the theory of wavelets sets that has been developed recently by
different groups of researches [BL01, BMM99, BS02, BS04, DLS97, DLS98, ILP98,
SW98, Wan02, Zak96].

The question about density of generators of wavelet frames, is also answered
positively. We obtain a very general result, that confirms the flexibility in their
construction. If a dilation matrix a is chosen arbitrarily, the set of frame generators
associated to the dilation a is dense in L2(Rd) (Theorem 3.2). The main tool here
is the use of the general scheme in frame construction that appears in [ACM04].

Finally in section 5 we study the case of orthogonal affine systems. Since gener-
ators of orthonormal systems have norm one the question here is whether they are
dense in the unit sphere of L2(Rd). It is easy to see that this is not the case when
either the dilation or the lattice is fixed (see section 5).

We first show that for a given function of norm one, we can always find a lattice
Γ and a function with orthonormal translates in that lattice, that is close to the
original function. We then prove that a dilation can be chosen in such a way that
the associated affine system is orthonormal. This proves the density of generators of
orthonormal wavelet systems (not necessarily complete in L2(Rd)) (Theorem 5.2).

The strategy here is the study of the behavior of the Grammian of the generator,
as a function of the lattice. We obtain an interesting result on the convergence of
the p-Grammian. We prove that the p-Grammian of a function converges point-
wise and in Lp([0, 1]d) to the constant function 1 when the lattice expands. This
result is a statement about oversampling.

However the question whether complete orthonormal affine systems are dense in
the sphere remains unanswered.

2. Notation

We will denote by µ the Lebesgue measure in Rd and by GLd(R) the usual group
of invertible matrices in Rd×d. By a lattice Γ we mean Γ = cZd, where c ∈ GLd(R).

The Fourier transform of a function f ∈ L2(Rd) is

f̂(ω) =

∫

Rd

f(x)e−2πixωdx.
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For a measurable Ω ⊂ Rd, KΩ will denote the functions in L2(Rd) with support in
Ω,

KΩ = {f ∈ L2(Rd) : supp(f) ⊆ Ω}. (2)

We will say that a matrix a is expansive if a ∈ GLd(R) and |λ| > 1 for all eigenvalues
λ of a.

Since affine systems depend on the matrix and the lattice involved we consider
the following sets of generators:

WO(a, Γ) :=
{
ψ ∈ L2(Rd) : (ψ, a, Γ) is an orthonormal basis (onb) of L2(Rd)

}

and

WO(a) :=
⋃

c∈GLd(R)

WO(a, cZd)

WO(Γ) :=
⋃

a∈GLd(R)

WO(a, Γ)

WO :=
⋃

a,c∈GLd(R)

WO(a, cZd).

Similarly, we use the notations WR or WF for the corresponding generators of
wavelet Riesz basis and frames respectively.

3. Density of the set of frame generators

In this section we will prove that for a fixed expansive matrix a, the set WF (a)
is dense in L2(Rd).

In what follows diam(S) will denote the diameter of a set S ⊂ Rd and B(0, t)
the ball in Rd centered at 0 and with radius t.

Let X be a discrete set in Rd. The gap ρ of X is defined as:

ρ = ρ(X) = sup
x∈Rd

inf
γ∈X

|x − γ|.

The set X is said to be separated if infγ $=γ′ |γ − γ′| > 0.
For a separated set X Beurling [Beu66] proved the following result:

Theorem (Beurling). Let X ⊂ Rd be separated, and Ω = B(0, r). If rρ < 1/4,
then {e−2πiγωχΩ(ω) : γ ∈ X} is a frame for KΩ.

For a very clear exposition of some of the Beurling density results see [BW99].
We need now the following result which is a particular case of the more general

theorems in [ACM04]. We include its proof here for completeness of this presenta-
tion.

Theorem 3.1. Let a be an expansive matrix and h a bounded compactly supported
function such that |h(ω)| > c > 0, for almost every ω ∈ U := supp(h), and 0 &∈
supp(h). If X ⊂ Rd is a separated set such that the gap ρ(X) < 1

4R where R is such
that U ⊂ B(0, R) then

{Daj Tγψ : j ∈ Z, γ ∈ X}

is a frame of L2(Rd) where ψ̂ = h.
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Proof. By Beurling’s theorem we know that

{e−2πiγωχB(0,R)(ω) : γ ∈ X}

is a frame of KB(0,R) with some frame bounds 0 < m ≤ M < +∞. In particular

{e−2πiγωχU (ω) : γ ∈ X}

is a frame of KU . Using that Da is a unitary operator and calling b = (a−1)t, we
conclude that for each j ∈ Z

{| det(b)|j/2e−2πibjγωχU(bjω) : γ ∈ X}

is a frame of Kb−jU with the same bounds m, M .
Further, by Proposition 5.9 in [ACM04] there exist 0 < p ≤ P < +∞ such that

p <
∑

j∈Z

|h(bjω)|2 < P, a.e. ω ∈ R
d.

Now, since supp(h) = U , if we set hj(ω) = h(bjω) then supp(hj) = b−jU .
Given now f ∈ L2(Rd) and calling fj = hjf we will see that

p‖f‖2 ≤
∑

j

‖fj‖
2 ≤ P‖f‖2, (3)

for

p‖f‖2 =

∫
p|f |2 ≤

∫ ∑

j

|hj |
2|f |2 =

∑

j

∫
|hjf |

2 =
∑

j

‖fj‖
2,

and the upper inequality can be obtained similarly. Using that fj ∈ Kb−jU we have

m‖fj‖
2 ≤

∑

γ

| < fj(ω), | det(b)|j/2e−2πibjγωχb−jU (ω) > |2 ≤ M‖fj‖
2. (4)

In addition, since supp(fj) = b−jU , we have that

< fj(ω), | det(b)|j/2e−2πibjγωχb−jU (ω) >=< f(ω), | det(b)|j/2e−2πibjγωhj(ω) > .
(5)

Using (5) in (4) and summing in j by (3) we get

pm‖f‖2 ≤
∑

j

∑

zg

| < f(ω), | det(b)|j/2e−2πibjγωhj(ω) > |2 ≤ PM‖f‖2.

The claim is now a consequence of Plancherel’s Theorem. !

Now we are ready to state and proof the main result of this section.

Theorem 3.2. The set WF (a) is dense in L2(Rd), for every d×d expansive matrix
a.

Proof. Assume that a function f ∈ L2(Rd) and a positive number ε are given.
We want to approximate f by a wavelet frame function ψ. We will do this by
constructing the Fourier transform of ψ.

• Select g ∈ L2(Rd) such that ĝ is a continuous function and ‖f̂ − ĝ‖2 < ε/2.
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• Choose 0 < r < R < ∞ such that

aB(0, r) ⊂ B(0, R) and

∫

Rd\U
|ĝ(ω)|2dω <

ε2

8
,

where U = {ω : r ≤ |ω| ≤ R}.

• Choose λ > 0, such that 4λ2µ(U) <
ε2

8
, and let

Eλ := {ω ∈ R
d : |ĝ(ω)| > λ}. (6)

• Define a function h in the following way:

h(ω) :=






ĝ(ω) ω ∈ U ∩ Eλ

λ ω ∈ U \ Eλ

0 else

. (7)

• Choose X to be any separated set with gap ρ(X) < 1
4R . (Note that X can

be chosen to be a lattice.)

We will now see that we are indeed under the hypothesis of Theorem 3.1. Since

Q := aB(0, r) \ B(0, r) ⊂ B(0, R) \ B(0, r) = U

we note that by Lemma 5.11 of [ACM04] {ajQ} is a covering of Rd \ {0} and
therefore {ajU} is also a covering of Rd \ {0}.

Finally, h and X were defined to match the hypothesis of Theorem 3.1. Therefore
we can apply that Theorem to conclude that (ψ, a, X) is a frame for L2(Rd), with
ψ = ĥ.

Furthermore,

‖ĝ − h‖2
2 =

∫

U
|ĝ − h|2 +

∫

Rd\U
|ĝ − h|2

<

∫

U\Eλ

|ĝ − h|2dω +
ε2

8

≤ 4λ2µ(U \ Eλ) +
ε2

8
<

ε2

4
where the last inequality comes from the choice of λ.

Finally
‖f − ψ‖2 ≤ ‖f̂ − ĝ‖2 + ‖ĝ − h‖2 < ε.

!

4. The Riesz basis case

In this section we will prove that the set of generators for Riesz basis is dense
when we allow diagonal matrices and arbitrary lattices. Since the requirement of
building a Riesz basis is much stronger than to form a frame, the construction of
the function requires more subtle techniques than for the previous case.

The idea is again to approximate the given function on the Fourier side with
an appropriate function. We will use the construction for the frame wavelets and
adapt it to the Riesz basis case. The main difficulty here lies in the fact that the
elements of the affine system need to be independent, which forces the construction
to be more involved.
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It is worth to remark here, that the construction in the previous section was very
general and stable in the sense that we had freedom to move things a little bit -
and still obtain a satisfactory result. In this section, the construction is tight and
very adapted to the function we want to approximate.

The method we use, is based on a standard wavelet-set construction. Wavelet
sets have been studied and developed by many groups (for references see the In-
troduction). We adapt the construction of [Zak96] and [BS02] to obtain functions
supported on a wavelet set, but which are not constant. In this way we obtain a
Riesz basis, instead of a wavelet basis.

In what follows we will say that two sets A and B in Rd are almost disjoint if
µ(A ∩ B) = 0.

Lemma 4.1. Let Ω ⊂ Rd be a set of finite measure. If {λk}k∈Z ⊂ Rd satisfies
that

{
e2πiλkωχΩ(ω) : k ∈ Z

}
is a Riesz basis for KΩ with bounds A and B and

h ∈ L2(Rd) satisfies that 0 < p < |h(ω)| < P < +∞ then

{h(ω)e2πiλkω : k ∈ Z}

is a Riesz basis for KΩ, with Riesz bounds pAµ(Ω) and PBµ(Ω).
If a ∈ GLd(R) and Ω satisfies that ∪j∈ZajΩ = Rd up to a set of zero measure,

with the union being almost disjoint, and {gk : k ∈ Z} is a Riesz basis for KΩ, then

{Dj
agk : k, j ∈ Z}

is a Riesz basis for L2(Rd) with the same bounds.

Proof. The first assertion is immediate, and the second one follows from the fact
that the dilation is a unitary operator in L2(Rd). !

We are now ready to state the main theorem of this section.

Theorem 4.1. The set WR is dense in L2(Rd). Precisely, if f ∈ L2(Rd), and
ε > 0, there exists a function ψ ∈ L2(Rd), an expansive matrix a ∈ Rd×d, and a
lattice Γ, such that

• ‖f − ψ‖2 < ε and

• (Ψ, a, Γ) is a Riesz basis for L2(Rd).

Before proceeding with the proof let us give the following definition.

Definition 4.1. Let Γ be an arbitrary lattice. A set E ⊂ Rd is Γ-congruent to a
set Ẽ ⊂ Rd, if there exist partitions {Es : s ∈ Γ} of E and {Ẽs : s ∈ Γ} of Ẽ in
measurable sets such that for every s ∈ Γ, Es = Ẽs + s.

In the proof of Theorem 4.1 we will use the L∞-norm of Rd. In this way we will
obtain an orthogonal basis of exponentials supported on the cube B∞(0, R/2) for
some appropiate R. If we multiply the elements in this basis by a function that
is bounded above and bounded away from zero, by the previous Lemma, we will
have a Riesz basis on KB∞(0,R/2). Therefore, looking at the previous construction
in the frame case, we would now need a set U on which |ĝ| is bounded away from
zero, that is Γ-congruent to B∞(0, R/2), and furthermore, that tiles the plane by
dilations by a matrix a. This forces us to be more careful in the choice of r, and
will also limit our choices of Γ and a.



DENSITY OF THE SET OF GENERATORS OF WAVELET SYSTEMS 7

4.1. Proof of Theorem 4.1.

Proof. Let as before g ∈ L2(Rd) be such that ĝ is continuous and ‖f̂ − ĝ‖2 < ε
2 .

We will approximate ĝ with an appropriate function.

• Let R > 0 be such that
∫

Rd\B∞(0,R/2) |ĝ(ω)|2dω < ε2

16 .

• We now select r > 0 small enough such that:

r <
R

3
(8)

∫

B∞(0,r/2)
|ĝ(ω)|2dω <

ε2

16
(9)

and mrd <
ε2

16
where m := max{|ĝ(ω)|2 : ω ∈ B∞(0, R/2)}. (10)

Let now

Γ = RZ
d and a =

R

r
Id×d.

We define

T̃ : R
d −→ R

d

x -→ x + Rξj if x ∈ jth − quadrant

where ξj is the vertex of the cube [−1, 1]d that lies in the jth-quadrant.
Let us call

A0 = B∞(0, r/2) and define Ai := (a−1 ◦ T̃ )i(A0), i = 1, 2, . . . (11)

It will be convenient to use the notation Aj
0 for the intersection of the set A0 with

the jth-quadrant. With this notation, note that

Ai =
⋃

1≤j≤2d

(a−1 ◦ T̃ )i(Aj
0)

=
⋃

1≤j≤2d

TRa−1ξj+···Ra−iξj
(a−i(Aj

0)). (12)

Here Ty denotes the usual translation by y in L2(Rd). Therefore we have that
∞∑

i=1

µ(Ai) = µ(A0)
∞∑

i=1

( r

R

)di
= rd rd

Rd − rd
< rd, (13)

where the last inequality holds by (8).
We define the set

U := a

(
∞⋃

i=0

Ai

)

\

(
∞⋃

i=0

Ai

)

,

and for λ = ε
8(R)d/2 , the function h by

h(ω) :=






ĝ(ω) x ∈ U ∩ Eλ

λ x ∈ U \ Eλ

0 else

where as before
Eλ := {ω ∈ R

d : |ĝ(ω)| > λ}.

Our claim is that ψ with ψ̂ = h satisfies both conditions of the Theorem.
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For the first, let us compute

‖f − ψ‖2 = ‖f̂ − h‖2 ≤ ‖f̂ − ĝ‖2 + ‖ĝ − h‖2 <
ε

2
+ ‖ĝ − h‖2.

To compute ‖ĝ − h‖2 we note that ‖ĝ − h‖2
2 can be split into 3 integrals

∫

U∩Eλ

|ĝ − h|2 +

∫

U\Eλ

|ĝ − h|2 +

∫

Rd\U
|ĝ − h|2. (14)

By the definition of h, the first term in (14) vanishes.
For the second, note that on U \ Eλ, |ĝ(ω)| ≤ λ and therefore

∫

U\Eλ

|ĝ − h|2 ≤ 4λ2µ(U \ Eλ) <
ε2

16
. (15)

For the last term, since h(ω) = 0 if ω &∈ U we have
∫

Rd\U
|ĝ|2 <

∫

B∞(0,R/2)\U
|ĝ|2 +

∫

Rd\B∞(0,R/2)
|ĝ|2. (16)

The right hand side of (16) can be written,
∫

A0

|ĝ|2 +

∫

∪i≥1Ai

|ĝ|2 +

∫

Rd\B∞(0,R/2)
|ĝ|2. (17)

The first and last term in this sum are each smaller than ε2/16 by our choice of r
and R. For the middle one, we use the computation about the measure of ∪i≥1Ai

done in (13) and the choice of r in (10) to obtain
∫

∪i≥1Ai

|ĝ|2dω ≤ mµ(∪i≥1Ai) < mrd <
ε2

16
. (18)

Putting all this together, we obtain

‖ĝ − h‖2
2 <

ε2

4
and therefore ‖f − ψ‖2 < ε. (19)

This proves that the function h can be chosen as close to ĝ as we wish. It remains
to show, that (ψ, a, Γ) is a a Riesz basis. For this, we observe that:

• By construction, U tiles Rd \ 0 by dilations by a.
• Furthermore U tiles Rd by translations on Γ. For this, we first note that if

x ∈ An then

rR

R − r

(
1 −

( r

R

)n)
≤ ‖x‖∞ ≤

rR

R − r

(
1 −

( r

R

)n
(

r + R

2R

))
. (20)

This fact allows us to conclude that:
(1) Ai ⊂ (B∞(0, R/2) \ A0) , i ≥ 1,
(2) Ai ∩ Aj = ∅ i &= j

which allows us to rewrite U

U = a

(
∞⋃

i=0

Ai

)

\

(
∞⋃

i=0

Ai

)

=

(

aA0 \ (
∞⋃

i=0

Ai)

)

∪

(
∞⋃

i=0

T̃Ai

)

.

This shows that U is Γ-congruent to B∞(0, R/2).
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On the other hand, since λ < |h(ω)| < m on U by Lemma 4.1
{

h(ω)
1

Rd/2
e2πi k

R ω : k ∈ Z
d

}

is a Riesz basis for KU .
Thus we found a Riesz basis for KU , and U is a wavelet set for the dilation a and

translation Γ. Therefore, the system (ψ, a, Γ) is a Riesz basis of L2(Rd).
!

Remark. In the above proof, we constructed a function that is supported on a
wavelet set. In this way we in fact prove that a proper subset of WR is dense in
L2(Rd), since the functions in the dense set are supported on a wavelet set. Further,
they generate quasi-orthogonal affine systems, since they have orthogonal dilations
(i.e. < DajTγψ, Daj′ Tγ′ψ >= 0 if j &= j′).

5. Density and Orthogonal Wavelets

In this section we will consider the problem of the density for orthonormal
wavelets. Since orthonormal wavelet functions have norm one, the natural question
in this context is wether they are dense on the unit sphere of L2(Rd) with the
induced metric (i.e. Sd := {f ∈ L2(Rd) : ‖f‖2 = 1}).

An immediate argument, that we will see later, shows that if we fix either the
dilation matrix a or the lattice Γ, then the sets WO(a) and WO(Γ) are not dense
in Sd. If we allow both, the matrix a and the lattice Γ to be arbitrary, it is an open
problem if the set WO is dense in Sd.

In this section we will prove that the set of functions

W̃O := {ψ : ∃ Γ and a ∈ GLd(R), such that (ψ, a, Γ) is an orthonormal system}

is dense in Sd. Note that in W̃O we removed the completeness requirement of the
system.

In particular we prove an interesting property of the Grammian of an arbitrary
function in Lp([0, 1]d) which is of independent interest. This property is then used
to derive some consequences which in particular imply the above mentioned result.

Throughout this section, b will be a matrix in GLd(R). Our first Lemma is a
known result (see for example [Mal89]). We state it here in the form we need it.

Lemma 5.1. Let f ∈ L2(Rd). The following statements are equivalent

(1) The system {T((b∗)−1k)f : k ∈ Zd} is orthonormal in L2(Rd).

(2) The system {f̂(ω)e−2πiω·(b∗)−1k : k ∈ Zd} is orthonormal in L2(Rd).
(3)

∑
s∈Zd || det b|1/2f̂(b(ω + s)|2 = 1 a.e. in [0, 1]d.

(4)
∑

s∈Zd |f̂(ω + bs)|2 = | det b|−1 a.e. in b([0, 1]d).

Proof. We will show (1) ⇔ (3). The rest is trivial.
The system {T((b∗)−1k)f : k ∈ Zd} is orthonormal in L2(Rd), if and only if

δ0,k =

∫

Rd

f(x − (b∗)−1k)f(x)dx =

∫

Rd

e−2πiω·(b∗)−1kf̂(ω)f̂(ω)dω

=

∫

[0,1]d

(
| det b|

∑

s

|f̂(b(ω + s))|2
)

e−2πiω·kdω.

Hence, it will be orthonormal if and only if (3) is satisfied. !
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Note that the sum in (3) can be rewritten as
∑

s∈Zd |TsDbf̂(ω)|2, which motivates
the following definition.

Definition 5.1. If g ∈ L2(Rd) and c ∈ GLd(R), the Grammian of g with respect
to c is the function

gc(ω) =
( ∑

s∈Zd

|TsDcg(ω)|2
)1/2

= | det c|1/2
( ∑

s∈Zd

|g(c(ω + s))|2
)1/2

Note that gc is a Zd-periodic function.

In what follows the set E(g, b) := {ω ∈ Rd : gb(ω) > 0} will be relevant. It is
immediate to verify that, if g ∈ L2(Rd), then

‖gb‖L2([0,1]d) = ‖g‖L2(Rd). (21)

For g ∈ L2(Rd), we define ug by

ug(ω) :=

{
g(ω)

gb(b−1ω) if ω ∈ bE(g, b)

0 otherwise.
(22)

We have the following Lemma, whose proof is immediate.

Lemma 5.2. Let g ∈ L2(Rd) and b ∈ Rd×d an invertible matrix. Then the function
ug defined in (22) satisfies that

(ug)b(ω) = | det b|1/2
( ∑

s∈Zd

|ug(b(ω + s))|2
)1/2

= 1 a. e. ω ∈ E(g, b).

In particular, if µ(E(g, b) ∩ [0, 1]d) = 1 then the function ϕ defined by ϕ̂ = ug has
orthonormal (b∗)−1Zd translates (i.e. {T((b∗)−1k)ϕ : k ∈ Zd} is orthonormal).

The next Lemma states that for each invertible matrix b the distance in L2(Rd) of
two arbitrary functions is bigger than the distance of its Grammians in L2([0, 1]d).

Lemma 5.3. Let g, h ∈ L2(Rd), b ∈ GLd(R) and ug as in (22). Then we have

‖g − h‖L2(Rd) ≥ ‖gb − hb‖L2([0,1]d) and

‖g − ug‖L2(Rd) = ‖gb − χE(g,b)∩[0,1]d‖L2([0,1]d).

Proof. By (21)

‖g − h‖2
L2(Rd) = ‖(g − h)b‖

2
L2([0,1]d)

=

∫

[0,1]d
| det b|

∑

s

|g(b(ω + s)) − h(b(ω + s))|2dω

≥ ‖gb − hb‖L2([0,1]d),

where in the last inequality we used for the +2(Z) norm the inequality ‖x − y‖ ≥
|‖x‖ − ‖y‖|.

For the second equation, we compute directly

‖g − ug‖
2
2 =

∫

bE(g,b)

∣∣∣∣g(ω) −
g(ω)

(| det b|
∑

s |g(ω + bs)|2)1/2

∣∣∣∣
2

dω

=

∫

bE(g,b)

|g(ω)|2

| det b|
∑

s |g(ω + bs)|2

∣∣∣∣∣∣

(

| det b|
∑

s

|g(ω + bs)|2
)1/2

− 1

∣∣∣∣∣∣

2

dω.

If we now periodize and change variables, we obtain the result. !
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Remark. Note that if µ(E(g, b) ∩ [0, 1]d) = 1 then

‖g − ug‖L2(Rd) = ‖gb − χ[0,1]d‖L2([0,1]d).

A consequence of Lemma 5.3 is the following: Assume that we want to be able to
find a function ψ that is close to a given function f ∈ Sd and that has orthonormal
translates with respect to a lattice (b∗)−1Zd. Then we will need that f̂b is close (in
L2([0, 1]d)) to the constant function 1. Now, if for a given matrix b, f̂b is far from
χ[0,1]d , will the choice of a different matrix b improve the error? The next theorem

establishes the interesting result that f̂b in fact converges almost everywhere and
also in norm to χ[0,1]d‖f‖2 when ‖b‖ → 0.

There is a natural interpretation in time domain of this result: when ‖b‖ becomes
small, then ‖(b∗)−1‖ grows, that is the associated lattice (b∗)−1Zd becomes sparser
and since our functions are in L2(Rd) they will have some decay at infinity which
will imply that the scalar product between two of its translates will be small.

In fact the theorem is more general. The convergence also holds for the p-
Grammians of a function f ∈ Lp that we denote by fb,p and are defined as

fb,p(ω) =
(
| det b|

∑
s∈Zd |f(b(ω + s))|p

)1/p
. Note that for p = 2, fb,2 coincides

with our previous fb.
The following theorem is a generalization of a result proved in [JWW05] for the

L1 case in a completely different context.

Theorem 5.1. For any f ∈ Lp(Rd),

fb,p −→ ‖f‖pχ[0,1]d a.e. and in Lp([0, 1]d) when ‖b‖ → 0. (23)

We postpone the proof of the theorem until the last section.
Let us now see, how we deduce from Lemma 5.3 immediately that when the

matrix b is fixed, that is the lattice Γ = (b∗)−1 is fixed, then the set WO(Γ) is not
dense in the sphere: By Parseval, Lemma 5.3 and using that ĝb = 1 a. e. for every
g ∈ WO(Γ) we have for f ∈ Sd and g ∈ WO(Γ):

‖f − g‖L2(Rd) ≥ ‖f̂b − ĝb‖L2([0,1]d) = ‖f̂b − χ[0,1]d‖L2([0,1]d)

The proof is completed choosing a function f in Sd whose Grammian (with respect
to b) is far from χ[0,1]d .

The following argument from Yang Wang [private communication] shows that
if the dilation a is fixed, then WO(a) is not dense in Sd: Assume that WO(a) is
dense in Sd. Let f ∈ Sd be an arbitrary function such that < f, Daf > &= 0. Choose
ψn ∈ WO(a) such that ψn → f, n → ∞ in Sd . Then we have:

0 = < ψn, Daψn > → < f, Daf >,

which is a contradiction.
Now we are ready to prove a density result for the set of generators of orthonor-

mal (not necessarily complete) wavelet systems:

Theorem 5.2. The set W̃O of generators of orthonormal wavelet systems is dense
in Sd in the induced L2(Rd) metric.

Proof. Let f ∈ Sd and ε > 0 be given. Choose r, R, g and h as in Theorem 3.2.
By Theorem 5.1 there exists b ∈ GLd(R) with small enough norm, such that

‖hb − χ[0,1]d‖L2([0,1]d) <
ε

2
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and hb > 0 a.e. Note that this is possible since |h| > 0 in {ω : r ≤ ‖ω‖ ≤ R}. Now
using Lemma 5.3

‖h − uh‖L2(Rd) <
ε

4
and therefore the inverse Fourier transform of uh has orthonormal translates in the
lattice (b∗)−1Zd.

By choosing the dilation a to be a = R
r Id, the set

{
| det a|j/2uh(ajω)e−2πajω(b∗)−1k : k ∈ Z

d, j ∈ Z

}

is orthonormal, and consequently, if ψ is such that ψ̂ = uh{
| det a|j/2ψ(ajx − (b∗)−1k) : k ∈ Z

d, j ∈ Z

}

is an orthonormal wavelet system, and so ψ ∈ WO. Further we have

‖f − ψ‖ ≤ ‖f̂ − ĝ‖ + ‖ĝ − h‖ + ‖h − uh‖ < ε

which shows that WO is dense in L2(Rd). !

5.1. Proof of Theorem 5.1.

Proof. We will divide the proof in several steps. Let us denote the unit cube by
Q = [0, 1]d. We will denote by ‖ ·‖p the p-norm in Lp(Rd), and ‖ ·‖Lp(Q) the p-norm
in Lp(Q).

• We first prove the theorem for the case that f = χI where I is a finite d-
dimensional interval. In this case, we compute

fb(ω) = | det b|
∑

s

χI(b(ω + s)) = | det b|
∑

s

χb−1I(ω + s). (24)

Let

Ni(b) := {s ∈ Z
d : bQ + bs ⊂ I}

No(b) := {s ∈ Z
d : µ((bQ + bs) ∩ I) > 0 and µ((bQ + bs) ∩ Ic) > 0},

and call ni = #Ni and no = #No. Then,
∑

s

χb−1I(ω + s) = (ni + m(b,ω)), m(b,ω) ∈ N, 0 ≤ m(b,ω) ≤ no. (25)

Note that | det b|ni(b) ≤ µ(I) ≤ | det b|(ni(b) + no(b))| and hence

0 ≤ µ(I) − | det b|ni(b) ≤ | det b|no(b). (26)

We will now see that | det b|no(b) → 0 for ‖b‖ → 0. For this take ε > 0, and
let b ∈ GLd(R) be such that ‖b‖ < ε/diam(Q). Since ‖b(x − y)‖ ≤ ‖b‖‖x − y‖
then diam(bQ) ≤ ‖b‖diam(Q) < ε. Therefore, if s ∈ No(b), bQ + bs ⊂ {ω ∈ Rd :
dist(ω, ∂I) < ε}. Now

| det b|n0(b) =
∑

s∈No

µ(bQ + bs) ≤ µ({ω ∈ R
d : dist(ω, ∂I) < ε}) < εc1. (27)

Therefore we see from (26) that

| det b|ni(b) → µ(I) when ‖b‖ → 0, (28)

and using (26) we have | det b|
∑

s χb−1I(ω + s) → µ(I) a.e. Furthermore, fb,p →
µ(I)1/p = ‖f‖p.
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In addition, since | det b|
∑

s χb−1I(ω + s) ≤ | det b|(ni(b) + no(b)) < C for all b
such that ‖b‖ < δ < 1 we can apply dominated convergence to obtain

∫

Q

∣∣∣fb,p − µ(I)1/pχQ

∣∣∣
p
−→ 0 when ‖b‖ → 0. (29)

• Now we will prove the theorem for the case that f is a finite linear combination
of characteristic functions of intervals, i.e. f =

∑k
j=1 αjχIj , where Ij are almost

disjoint d-dimensional intervals (here by almost, we mean that the intersection can
have at most measure 0). By the disjointness of the Ij we immediately obtain

fb,p(ω) =




k∑

j=1

|αj |
p(χIj )

p
b,p




1/p

(30)

and by the previous item, this converges to ‖f‖p.
In addition, because of the uniform boundedness of fb,p with respect to b, we

obtain convergence in Lp(Q) by the dominated convergence theorem.

• Assume now that f > 0, f ∈ Lp(Rd). Let ε > 0 and 0 ≤ gn ↗ f a.e., with gn as
in step 2.

|fb,p(ω) − ‖f‖p| ≤

|fb,p(ω) − (gn)b,p(ω)| + |(gn)b,p(ω) − ‖gn‖p| + |‖gn‖p − ‖f‖p| (31)

First note that, as in Lemma 5.3 for any f, g ∈ Lp(Rd) we have ‖fb,p−gb,p‖Lp(Q) ≤
‖f − g‖p, and therefore

(gn)b,p
‖·‖Lp(Q)
−−−−−→ fb,p. (32)

We can therefore choose a subsequence gnj , such that (gnj )b,p(ω) → fb,p(ω) a.e. in
Q when j → ∞. Hence, for a large enough j, the first and third term in (31) are
each less than ε/4.

Now, for a fixed j, we can choose δ such that, if ‖b‖ < δ, then |(gnj )b,p(ω) −
‖gnj‖p| < ε/2 which gives the point-wise convergence.

For the convergence in Lp(Rd), using the previous results, we write

‖fb,p − ‖f‖p‖Lp(Q) ≤

‖fb,p − (gn)b,p‖Lp(Q) + ‖(gn)b,p − ‖gn‖p‖Lp(Q) + ‖‖gn‖p − ‖f‖p‖Lp(Q) . (33)

By the particular choice of the sequence gn, we have that gn
‖·‖p
−−−→ f . Therefore the

first and last term of (33) go to 0 when n → ∞. The middle term goes to 0 by the
previous step.

Since fb,p = |f |b,p the result holds for arbitrary f ∈ Lp(Rd). !

5.2. Hilbert Spaces. The results in this paper carry over to abstract separable
Hilbert spaces, via unitary isomorphisms, where the translation and dilation oper-
ators are replaced by arbitrary unitary operators. General systems obtained in this
context (unitary systems) have been studied in detail in [DL98].

Finally, we would like to mention that M. Bownik [Bow05], independently of
our work and using different techniques has obtained for the case of wavelet frames
some similar density results as in section 3.
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