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a The theory of iterated fuzzy set systems, IFZS, was introduced by Cabrelli
et al. in [41. They showed that by combining the idea of representing an
image as a fuzzy set with the theory of iterated function systems, it is possible
to generate images with grey or colour levels as attractors of IFZS. The
purpose of this paper is to show that the class of attractors of IFZS is dense
in the class of images, i.e., each image can be approximated with the desired
accuracy. A brief review of the main concepts of IFZS is presented first.

1. Introduction

We first want to present an overview of the theory of iterated fuzzy set
systems (IFZS). Since a complete development of the theory can be found
in [41, we are going to omit most of the proofs. We then show that the set
of images that can be obtained using this approach, is dense in the set of
all images.

The notion of self-similarity and its generalizations 1 , has found a nat-
ural frame in the theory of iterated function systems (IFS): self-similar sets
became attractors of certain systems of maps 110, 1, 81. The generalization
of the concept of self-similarity to a more general class of maps--other than
similarities, introduced more flexibility in the model, widening the class of
sets that have the property to be expressed as smaller copies of themselves.

1 A subset S of an arbitrary set X, is said to be self-similar (in the wide sense) if
thereexista finitenumberofmaps f . fN, ft : X -ý Xsuchthat S = UI <1., N fj(S)
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On the other hand, the use of IFS enabled the construction of self-similar sets
of fractional dimensions, and therefore this theory has found wide applica-
tions in computer graphics to generate fractal images on computers (see for
example [3,13]). The ergodicity involved in the process is another advantage
that this method provides in image generation and representation, see [7].

One of the major applications of IFS theory in image processing, is in
data compression: huge amounts of data can be squeezed into a few number
of parameters. Two questions naturally arise:

"* Which kind of images can be represented through this model, or, how
big is the class of images that can be represented through IFS?

"* Is there an efficient algorithm or method to find that representation?

Regarding the first question, in the case that the maps are contractive
but not necessarily similarities, it has been shown [9] that this class is dense
in the class of compact sets. In image processing language this means, that
to any object in a black and white image, one can associate an IFS code. This
result shows that the so-called inverse problem for fractals and other sets,
that is to find the IFS code associated with any given black and white image,
has at least one solution. It is well known however, that in most of the cases
the solution that can be constructed from the proof of the theorem does not
yield good compression rate. It is a very difficult problem to find an efficient
IFS code for a given black and white image. Some results in that direction
for the one dimensional case can be found in [2, 5, 16].

In the case of images with grey-levels, the IFS theory provides us with
a class of measures that are generated by adding a probability vector to
each IFS code. The ergodicity allows one to generate this measure through
a random iterative algorithm. This approach however, seems to have two
weak points: first, the relation between the parameters and the resulting
measure is not straightforward, and this then becomes a serious difficulty
for the inverse problem. Secondly, the class of measures that can be obtained
through IFS, seems not to be as wide as desirablo. The question of how
big this class of measures is in relation to a suitable space of measures (here
suitable refers to images) seems to be still open.

The IFZS approach to grey-level images considers images as functions
rather than measures, and hereby tends to avoid these problems. In that
direction, Theorem 3.1 of this paper shows that the class of images that can
be generated using IFZS is dense in the class of images, i.e., given a grey-lev.,l
image, we prove that for a given e there exists an IFZS whose attractor is
closer than c to that image.
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2. The iterated fuzzy set systems (IFZS)

2.1. Iterated function systems (IFS)

s Let us briefly recall the basic notions of IFS. Given a compact metric space
(X, d) with distance d, let us consider N contraction mappings wi : X -4 X.
The metric space X, together with the N contraction mappings is referred
to as an Iterated Function System (IFS) and denoted by {X,w}. Usually, in
applications, X is a compact subset of 91'.

If XM(X) denotes the set of all nonempty closed subsets of X, we can
define N set-valued mnaps iv : X-(X) -4 J((X), by ivi(S) = {w (x) : x t S ,
e.g. the image of S under the transformation wi, for all S E [30(X). If h is the
Hausdorff distance in 3f(X):

h(A, B) := max{D(A, B), D(13,A)} (2.1)

where

D(A,B) =sup inf d(x,y) (2.2)
XEA YjEB

then (:-(X), h) is a compact metric space, and iýi are contraction mappings
of X (X). The map W : X- (X) -) X (X) defined by:

N
W(S) = U i[US), VS E 9-0(X) (2.3)

i- 1

is also a contraction on H-(X). Therefore it possesses an unique fixed point
(or invariant set) A, called the attractor of the IFS;

N

A = W(A) = UJ w(A). (2.4)

This shows that A is self-similar with respect to w1 . W WN. This property
is sometimes referred to as the self-tiling property of IFS attractors, meaning
that A can be built with smaller copies of itself. As well, the name attractor
is justified by the following property:

h(W'(S),A--- 0 as n -4 oo, V S E H-f(X). (2.5)

2.2. Fuzzy sets as generalization of sets

The notion of fuzzy sets introduced by Zadeh in 1965 117], has been widely
used in different contexts. We want to use it here in the sense of a general-
ization of the concept of set: If X is an arbitrary (non empty) set, a fuzzy set
(in X) is a function u with domain X and values in [0, 1M, i.e., u : X -4 [0, 1].
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In particular, if S is an ordinary subset of X, its characteristic function Xs
is a fuzzy set. To relate this concept with images, we think of a digitized
picture as a set of pixels, each of which has associated a grey-level; the value
1 representing black or the foreground, the value 0 representing white or the
background. The value u(x) then corresponds to the grey-level of the pixel
x. If the image is black and white, we only have two values: 0 or 1, and
therefore we can represent it by a characteristic function, or a "set."

If T(X) denotes the class of all fuzzy sets in a metric space (X, d), i.e.,
all functions u : X -- [0, 1], we are going to restrict ourselves to a subclass
Y* (X) C 5-(X): namely, u E -* (X) if and only if:

1) u. - (X),
2) u is uppersemicontinuous (u.s.c) on {X, d),
3) u is normal, that is u(xc) = I for some xe t X.

These properties yield the following results:

a: For each 0 < a < 1, the x-level set, defined as ýu]• :- x l X
u(x) _> oc, is a nonempty compact subset of X,

b: Theclosure of {x - X : u(x) > 0,, denoted by [ul', is also a nonempty
compact subset of X.

Note that the characteristic function of a closed set is in 3X ). We also want
to point out here that the level sets of the fuzzy set u completely characterize
u, i.e., knowing u(x),Vx - X, is equivalent to knowing Jul, 0 ! a • 1.

By the above properties, [uV 1 JtW(X), 0 ý< a 1< 1. We now introdu ce
the metric d, on r*(X) (see [6]), which has been used in many applications
of fuzzy set theory [11, 12, 15]:

d,(u,v) = sup h(ul,'vV'i? Vuv JiX). (2.6)
0 a.ix. I

Here h is the Hausdorff metric introduced in (2.1). The metric space
(93 X),d-d, ) is complete. This space represents the generalization of the
space ( h3{(X),h) to fuzzy sets.

At this point we want to incorporate the IFS theory into the fuzzy set
frame. Therefore, we first use the extension principle for fuzzy sets [18, 14]
in order to extend the set-valued maps ivi defined in Section 2.1 to maps
between fuzzy sets, i.e., we want to define a map from ,q"(X) to ',J*(X) which
is equal to ',- (with the earlier mentioned identification) when its domain is
restricted to the characteristic function of a set. Therefore we define for each
u ( Y7(X) and each subset B of X,

ii(B ) :=supu(y : y (. B7, ifB ý-0

ui(0) := , (2.7)



167 Density of fuzzy attractors }

which implies, in particular, ii((x}) = u(x) at each x c X.
For each wi, i = 1, 2,..., N, and each x e X we now define

iii(x) := ii(wi 1 ({x})), (2.8)

where, of course, w- 1 ({x}) = 0 if x ý w(X). If u E 7* X), then each of these
functions ii : X -4 [0, 11 is a fuzzy set in T* (X) (see [4)).

In fuzzy set theory, the union of two fuzzy sets u,v is usually defined as
the fuzzy set sup(u,v). We could then generalize the contraction mapping
W given by equation (2.3) to a map, : 97* (X) - 9* (X) defined by:

iw(u)(x) = sup iii(x), for each u E * (X). (2.9)
1<-i-<N

In [41 it is shown that this is a contraction mapping on Ti*(X) with the d.,-
metric. Therefore it has a unique fuzzy attractor u* E P (X), e.g., •,(u* ) = u*.
It turns out however, that this fuzzy attractor is the characteristic function
of the attractor of the IFS {X, w}. This means that the direct generalization
of the IFS theory to Fuzzy Sets, does not provide us with a bigger class of
attractors. We will see in the next section, how this class can be enlarged
without losing the contractivity of the map ý,.

2.3. Modification of the grey-levels of the attractor

In order to gain more generality with the fuzzy set model, the "grey-level
maps" are introduced. To each uii(x) defined in (2.8), a grey-level map
(pi : [0, 1] --ý [0, 1] is associated, in order to modify the values of u-j, that is
the grey-levels.

Now the supremum of (2.9) is taken over the functions Ui modificd by
the functions (pi; e.g.,

u"- sup t oui1 . (2.10)
1• iý i!: N

In other words, an operator T, : 3"(Xl ) f*(X) is introduced:
(TsU)(X) := sup{p 1oi [U(x)) .... pN (iiN(xfl]

= suptqPo (ii(w7 '(x))).. PN(ii(VVl(X)))W. (2.11)

In order for the operator T, to be well defined, the grey-level functions Wt
have to satisfy certain conditions, namely: for i = 1,2 .. , N,

1) (pi : [0, 1-- [0, 11 is non-decreasing,
2) yj is right continuous on [0, 1),
3) (Pi(0) = 0, and
4) for at least one j E {1,2,..., N(, (0 l(1) 1.
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The fact that (oi are non-decreasing and right continuous, guarantees the
uppersemicontinuity of pi ou for any u in 9r*(X), moreover they are necessary
and sufficient conditions [4]. Property 3) is a natural assumption in the
consideration of grey level functions: if the grey level of a point (pixel) x E X
is zero (the pixel is in the background), then it should remain zero after being
acted upon by the (oi maps.

The set of maps (D = {qoii = 1, 2,..., N}, satisfying the above condi-
tions, together with the N contraction maps wi (which then yield ui) form
the Iterated Fuzzy Set System (IFZS) denoted {X, w, 0).

In [4] it is shown that the operator T, as defined in (2.11) is indeed a
contraction mapping on (J**(X), d.), i.e., T, maps 97*(X) into itself and there
exists an s, 0 <_ s < 1, such that

d. (T,,u,T~v) _< s d.(u,v) Vu,v E V*(X). (2.12)

Therefore, by the Contraction Mapping Principle, T, possesses an unique
fixed point u*, that is:

T~u* = u*. (2.13)

This implies that there exists a unique solution to the functional equation in
the unknown u E P*(X),

u(x) = sup p(,I(w( ' (())),1(4( ()x' / ...... (2.14)
WN (ui(WN x)), .4

for all x E X. The fuzzy set solution, u*, will be called the attor or
fuzzy attractor of the IFZS, since it follows from the Contraction Mapping
Principle that

d,((T,)"v,u*) -4 0 as n oo, Vv E 37*(X). (2.15)

It is easy to find examples showing that these fuzzy attractors are not
longer only characteristic functions of closed sets. Hence, using IFZS, the
class of images that can be obtained using IFS has been widened. In section
Section 3, we show in fact that any image can be obtained (up to an 0) as a
fuzzy attractor of an IFZS. Note that in the case that all pi are the identity
maps, the operator T, reduces to the one defined in equation (2.9).

2.4. Properties of the fuzzy attractors

It is worth mentioning several properties of the fuzzy attractors. The proofs
can be found in [4].

Property 2.1. If A E 9f(X) is the attractor of the IFS {X,w}, and u* E *(X)
denotes the fuzzy attractor of the IFZS 1X, w, (l), then support(W) C A, thatis, [u*]° C A.
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This means, that using the grey-level maps, we are able to modify
the support of our attractor, allowing for example a rough approximation
through the wi, and then a "fine-tuning" using the opj. This property may
be used for applications, if we want to find the IFZS code for an image. Note
that support(u) is exactly equal to A, in the following two cases:

*For alli E {1,2. N),(p i (1)=1, then u*=xA.
"* For all i Ef (1,2 ... N},ýpi are increasing at 0 (i.e., (P-'(0) = 'O). In-

deed, in this case [u* UN wj([ouf]°) = U.J1 wi(A) W(A) =
A.

We should also point out that in the case that (p)(0) > 0 for one j -

f 1,2.... N},this inclusion is not longer true.

Property 2.2. The level sets of the fuzzy attractor satisfy a generalized self-
tiling condition:

N

U*= U 'i([i oU*]7), 0 < x s 1. (2.16)
1 1

This condition is a consequence of the property of the operator T,:
N

[Tu]•' = U wi(kpoi ou]"), Vr T'fX) (see[4]). (2.17)
i I

This property is interesting, since it shows that the fuzzy attractor is no longer
self-similar, in the sense, that it is no longer the union of smaller copies of
itself, but rather a union of modified copies of itself. The modification is given
by the grey-level maps.

Property 2.3 (IFZS Collage Theorem). Let u e .'T(X) and suppose that
there exists an IFZS {X,w, (D; so that

d,(u,T, u) < c, (2.181

where the operator T, is defined by (2.11). Then

d.,(u,u') < i (2.19)

where u" = Tu*u is the invariant fuzzy set of the IFZS, and s is the maximum
contraction factor of the wi.

This means that if the wi are very contractive (i.e., s is very small),
every fuzzy set that remains relatively unchanged after the application of
the operator T•, is close to the fuzzy attractor.

This property, a direct consequence of the contractivity of T%, is (as for
IFS) very useful for the inverse problem.
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3. Density of fuzzy attractors

In this section we will show that the class of fuzzy attractors is dense in
3-*(X) with the d.- metric. In other words, given a fuzzy set u in T*(X),
and c > 0, we can always find a natural number N, N contraction mappings
wi : X --) X, and N greylevel maps yi : [0, 11 , 1', such that the fuzzy
attractor u* of the associated IFZS [X,w, qDý satisfies: d. (u,u*) < F. We
therefore have the following:

Theorem 3.1. If X C ýV is compact and (,f"(X), d, ) is defined as above,
then the class

T) = u* -(X : Wu* is attractor of some IFZS on X

is dense in (rT* (X), d,.

Proof.
Let - > 0 and u ' *(X). The idea of the proof is to find N " N,

W = ,' ..... w1 'and 0 = ! 4TI ... ,.)N, such that:

1) sup c, -j (ci is the contractivitV factor of ,,,;)
2) d-,(Tu,u) < ý, where F, is the operator associated to X,w,jPP

Then, using the IFZS collage theorem (Property 2.3) from 1) and 2) we have:

d, (u, u*)< Z_ 1 I12 =c

where u* is the attractoi c)f 'l IFZS ,X,w, 0, i.e., Tu* -u II
Let us now find w and 0, such that 1) and 2) are satisfied: Let N _ 91,

and x.. xN bean ' -net of Vu], i.e., [ul' '- UN B , where B, B(xxi,
are the open balls of radius • centered at x,.

Let wi : X -- X, wiiX) c B , i = 1_..., N be contraction mappings
with contraction factor ci, with ci < ½. Choose now o, -e 0 and Lji
sup•K- u(x).

Then for 0 z a !-• 1 we have Vula C . B .
We now choose (4p, non-decreasing, right continuous, such that ),(x) }

o(i, Vx [0, 11, and (4i( 1) -o,, i I 1,... N. For example, the stcpfunctions
o(i'xI,.1i satisfy these conditions.

Then

[¢P'-'0 u]C 'X O - i.

But using condition (2.17), we have
N

[r~u]' U V,'(kIpi •,u!') = U, w( 14)i ou]l).
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Now, if the o-dilatation Ds (S) of a nonemptv Closed set S is D' (S
5x X :d (x, S) b, > 0, we can observe that for L) 1

and

w,(S 13, D, (wj(S;)

for 1 i N, -,- closýed sub-et of X. 3.2

We then have:

uU 1), 'u

Using the above equation-, we, then obtaiin

I U U r.

and fwnkc

4. Conclusions

The W /.S mnodel1 repreents a dith'tinlt m1d Pr%)isn1(; a1'pproac h kOcith\ern\
problem for f rat.tal construction and Image encodingý I 11C mntrodurikt n kit
the grev'-level ma '111m h is e to, en Ia rge the claS! (it a ttracthr, Irsvw prt) ke
that thi, ,!ass is, dense in ' X ý, the (p11tuprsniotnioi uia
functions, a space wvhich is, large en1ough t r Image represen tati on gi
the. proofi of the, densit lv kfiw not g~ve an efficient al1gorihin11 to find the
aIppropriate code, but it proi ides a theoretic0 l justification for the' IL//
set approa. 11

OWe bel Ieve, t hat we mighit be aI ,: to )rc LaI\ several Iondtt(ifn "u oft the
model presen-ted here, in order to elýicientlv ,olve the iniverse Problenm WAe
have ex.perimnivnal results comforting our Intuition
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