
MULTIWAVELETS IN Rn WITH AN ARBITRARY DILATION MATRIXCARLOS A. CABRELLI, CHRISTOPHER HEIL, AND URSULA M. MOLTERAbstrat. We present an outline of how the ideas of self-similarity an be applied towavelet theory, espeially in onnetion to wavelets assoiated with a multiresolution analysisof Rn allowing arbitrary dilation matries and no restritions on the number of salingfuntions. 1. IntrodutionWavelet bases have proved highly useful in many areas of mathematis, siene, and en-gineering. One of the most suessful approahes for the onstrution of suh a basis beginswith a speial funtional equation, the re�nement equation. The solution to this re�nementequation, alled the saling funtion, then determines a multiresolution analysis, whih inturn determines the wavelet and the wavelet basis. In order to onstrut wavelet bases withpresribed properties, we must haraterize those partiular re�nement equations whih yieldsaling funtions that possess some spei� desirable property. Muh literature has beenwritten on this topi for the lassial one-dimensional, single-funtion, two-sale re�nementequation, but when we move from the one-dimensional to the higher-dimensional setting orfrom the single wavelet to the multiwavelet setting it beomes inreasingly diÆult to �ndand apply suh haraterizations.Our goal in this paper is to outline some reent developments in the onstrution ofhigher-dimensional wavelet bases that exploit the fat that the re�nement equation is astatement that the saling funtion satis�es a ertain kind of self-similarity. In the lassialone-dimensional ase with dilation fator two, there are a variety of tools in addition to self-similarity whih an be used to analyze the re�nement equation. However, many of thesetools beome diÆult or impossible to apply in the multidimensional setting with a generaldilation matrix, whereas self-similarity beomes an even more natural and important toolin this setting. By viewing saling funtions as partiular ases of \generalized self-similarfuntions," we showed in [CHM99℄ that the tools of funtional analysis an be applied to an-alyze re�nement equations in the general higher-dimensional and multi-funtion setting. Wederived onditions for the existene of ontinuous or Lp solutions to the re�nement equationin this general setting, and showed how these onditions an be ombined with the analysisof the auray of saling funtions from [CHM98℄, [CHM97℄ to onstrut new examples ofDate: June 28, 1999.1991 Mathematis Subjet Classi�ation. Primary: 39A10; Seondary: 39B62.Key words and phrases. Dilation matrix, joint spetral radius, multiwavelets, nonseparable wavelets,re�nement equations, re�nable funtions, saling funtions, self-similarity, wavelets.The researh of Cabrelli and Molter is partially supported by grants UBACyT TW84 and CONICET,PIP456/98. 1



2 C. A. CABRELLI, C. HEIL, AND U. M. MOLTERnonseparable (non-tensor produt) two-dimensional multiwavelets using a quinunx dilationmatrix.We will sketh some of the ideas and results from [CHM99℄ in this paper, attempting toprovide some insights into the tehniques without dwelling on the mass of tehnial detailsthat this generality neessitates. We emphasize that this work is intimately tied and on-neted to the vast literature on wavelets and re�nement equations, and while we annot traethose onnetions here, a full disussion with extensive referenes is presented in [CHM99℄.In partiular, the important and fundamental ontributions of Daubehies, Lagarias, Wang,Jia, Jiang, Shen, Plonka, Strela, and many others are disussed in [CHM99℄.2. Self-SimilarityThe seed for this approah an be traed bak to Bajraktarevi [Baj57℄, who in 1957studied solutions to equations of the formu(x) = O(x; (u Æ g1)(x); : : : ; (u Æ gm)(x)) (2.1)where gi :X ! X and O :X � Em ! E, and the solution u :X ! E lies in some funtionspae F . Bajraktarevi proved that, under mild onditions on O and the gi, there is a uniquesolution to (2.1). (See also [dR57℄.) A generalized version of this equation of the formu(x) = O(x; '1(x; (u Æ g1)(x)); : : : ; 'm(x; (u Æ gm)(x)) ); (2.2)where 'i :X�E ! E, was studied in [CM99℄. We will state one uniqueness result below, andthen in later setions demonstrate the fundamental onnetion between (2.2) and wavelets.If there exists a set B that is self-similar with respet to the funtions gi, i.e., if B =Smi=1 g�1i (B), then we refer to the solution u of (2.2) as a generalized self-similar funtion.This is beause at a given point x 2 B, the value of u(x) is obtained by ombining the valuesof u(gi(x)) through the ation of the operator O, with eah gi(x) lying in B.In order to state the uniqueness result, we require the following notation. Let X be alosed subset of Rn, and let k � k be any �xed norm on C r. Then we de�ne L1(X; C r) to bethe Banah spae of all mappings u :X ! C r suh thatkukL1 = supx2X kg(x)k < 1: (2.3)This de�nition is independent of the hoie of norm on C r in the sense that eah hoie ofnorm for C r yields an equivalent norm for L1(X; C r). If E is a nonempty losed subset ofC r, then L1(X;E) will denote the losed subset of L1(X; C r) onsisting of funtions whihtake values in E. We say that a funtion u :X ! E is stable if u(B) is a bounded subset ofE whenever B is a bounded subset of X.The following result is a speial ase of more general results proved in [CM99℄. In parti-ular, we will onsider here only uniform versions of this result; it is possible to formulate Lpand other versions as well.Theorem 2.1. Let X be a ompat subset of Rn, and let E be a losed subset of C r. Letk � k be any norm on C r. Let m � 1, and assume that funtions wi, 'i, and O are hosenwith the following properties.� For eah i = 1; : : : ; m, let wi :X ! X be ontinuously di�erentiable, injetive maps.



MULTIWAVELETS IN Rn 3� Let 'i :X � E ! E for i = 1; : : : ; m satisfy the Lipshitz-like onditionsup1�i�m k'i(x; u)� 'i(x; v)k � C ku� vk: (2.4)� Let O :X � Em ! E be non-expansive for eah x 2 X, i.e.,kO(x; u1; : : : ; um)�O(x; v1; : : : ; vm)k � max1�i�m kui � vik: (2.5)Let t0 be an arbitrary point in E. For u 2 L1(X;E), de�neTu(x) = O(x; '1(x;u(w�11 (x))); : : : ; 'm(x;u(w�1m (x)))); (2.6)where we interpret u(w�1i (x)) = t0 if x =2 wi(X): (2.7)If O and the 'i are stable, then T maps L1(X;E) into itself, and satis�eskTu� TvkL1 � C ku� vkL1: (2.8)In partiular, if C < 1, then T is ontrative, and there exists a unique funtion v� 2L1(X;E) suh that Tv� = v�, and, moreover, v� is ontinuous. Further, if C < 1 and v(0)is any funtion in L1(X;E), then the iteration v(i+1) = Tv(i) onverges to v� in L1(X;E).3. Refinement EquationsThe onnetion between Theorem 2.1 and wavelets is provided by the now-lassial oneptof multiresolution analysis (MRA). To onstrut a multiresolution analysis in Rn, one beginswith a re�nement equation of the formf(x) = Xk2� k f(Ax� k); x 2 Rn; (3.1)where � is a subset of the lattie Zn and A is a dilation matrix, i.e., A(Zn) � Zn and everyeigenvalue � of A satis�es j�j > 1. We assume now that A, �, and k are �xed for theremainder of this paper.A solution of the re�nement equation is alled a saling funtion or a re�nable funtion.If f is salar-valued then the oeÆients k are salars, while if one allows vetor-valued(f :Rn ! C r) or matrix-valued (f :Rn ! C r�`) funtions then the k are r� r matries. Wewill onsider the ase f :Rn ! C r in this paper. We say that the number r is the multipliityof the saling funtion f .The fat that A an be any dilation matrix (instead of just a \uniform" dilation suh as2I) means that the geometry of Rn must be arefully onsidered with respet to the ation ofA. Note that sine A(Zn) � Zn, the dilation matrix A neessarily has integer determinant.We de�ne m = j det(A)j:By [Mey92℄, to eah saling funtion that generates a MRA there will be assoiated (m� 1)\mother wavelets," so it is desirable for some appliations to onsider \small" m.



4 C. A. CABRELLI, C. HEIL, AND U. M. MOLTERThe re�nement operator assoiated with the re�nement equation is the mapping S atingon vetor funtions u :Rn ! C r de�ned bySu(x) = Xk2� k u(Ax� k); x 2 Rn: (3.2)A saling funtion is thus a �xed point of S.We will fous on ompatly supported solutions of the re�nement equation, and thereforewill require that the subset � be �nite. Let us onsider the support of a solution to there�nement equation in this ase. For eah k 2 Zn, let wk :Rn ! Rn denote the ontrativemap wk(x) = A�1(x+ k): (3.3)Now let H(Rn) denote the set of all nonempty, ompat subsets of Rn equipped with theHausdor� metri. Then it an be shown that the mapping w on H(Rn) de�ned byw(B) = Sk2�wk(B) = A�1(B + �) (3.4)is a ontrative mapping of H(Rn) into itself [Hut81℄. Hene there is a unique ompat setK� suh that K� = w(K�) = Sk2�A�1(K� + k):In the terminology of Iterated Funtion Systems, the set K� is the attrator of the IFSgenerated by the olletion fwkgk2K. It an be shown that if f is a ompatly supportedsolution of the re�nement equation, then neessarily supp(f) � K� [CHM99℄.Let D = fd1; : : : ; dmgbe a full set of digits with respet to A and Zn, i.e., a omplete set of representatives of theorder-m group Zn=A(Zn). Beause D is a full set of digits, the lattie Zn is partitioned intothe m disjoint osets�d = A(Zn)� d = fAk � d : k 2 Zng; d 2 D: (3.5)Let Q be the attrator of the of the IFS generated by fwdgd2D, i.e., Q is the unique nonemptyompat set satisfying Q = KD = Sd2DA�1(Q+ d):We will say that Q is a tile if its Zn translates over Rn with overlaps of measure 0. In thatase, the Lebesgue measure of Q is 1 [Ban91℄ and the harateristi funtion of Q generatesa MRA in Rn [GM92℄. This MRA is the n-dimensional analogue of the Haar MRA in R ,beause if we onsider dilation by 2 in R with digit set D = f0; 1g, and setw0(x) = 12x and w1(x) = 12x + 12 ;then the set [0; 1℄ satis�es [0; 1℄ = w0([0; 1℄) S w1([0; 1℄)
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Figure 1. Twin Dragon and Parallelogram Attratorsand therefore is the attrator for the IFS fw0; w1g. Note that [0; 1℄ is a tile, and that theLebesgue measure of [0; 1℄ is 1.Example 3.1. Tiles may have a fratal boundaries. For example, if we onsider the di-lation matrix A1 = � 1 �11 1 � and digit set D = f(0; 0); (1; 0)g, then the tile Q is theelebrated \twin dragon" fratal shown on the left in Figure 1. On the other hand, ifA2 = � 1 11 �1 � and D = f(0; 0); (1; 0)g, then the tile Q is the parallelogram with vertiesf(0; 0); (1; 0); (2; 1); (1; 1)g pitured on the right in Figure 1. For these two matries A1 andA2, the sublatties A1(Z2) and A2(Z2) oinide. This sublattie is alled the quinunx sub-lattie of Z2. As a onsequene, these two matries A1, A2 are often referred to as quinunxdilation matries. }It is not always the ase that, given an arbitrary dilation matrix A, there exists a set ofdigits suh that the assoiated attrator of fwdgd2D is a tile [Pot97℄, [LW98℄. We will notaddress this question here, and will only onsider dilation matries for whih a tile Q exists,and we assume that the digit set D has been hosen in suh a way that Q is a tile. Withoutloss of generality, we an assume that 0 2 D, and therefore the tile Q will ontain the origin[CHM99℄.Let us now return to setting up the notation required to onnet the re�nement equation(3.1) to Theorem 2.1.Sine supp(f) � K�, whih is ompat, and sine Q is a tile and therefore overs Rn bytranslates, there exists a �nite subset 
 � Zn suh thatK� � Q + 
 = S!2
(Q+ !) = fq + ! : q 2 Q; ! 2 
g:Consider now any funtion g :Rn ! C r suh that supp(g) � K�. De�ne the folding of g tobe the funtion �g :Q! (C r)
 given by�g(x) = [g(x+ k)℄k2
; x 2 Q:



6 C. A. CABRELLI, C. HEIL, AND U. M. MOLTERIf for k 2 
 we write (�g)k(x) = g(x+ k) for the kth omponent of �g(x), then this foldinghas the property that (�g)k1(x1) = (�g)k2(x2) whenever x1, x2 2 Q and k1, k2 2 
 are suhthat x1 + k1 = x2 + k2 (it an be shown that suh points x1, x2 would neessarily have to lieon the boundary of Q [CHM99℄).Here (and whenever we deal with vetors indexed by general sets) we onsider that 
has been ordered in some way; the hoie of ordering is not important as long as the sameordering is used throughout. We use square brakets, e.g., [uk℄k2
, to denote olumn vetors,and round brakets, e.g., (uk)k2
, to denote row vetors.Sine Q is the attrator of the IFS fwdgd2D, it satis�es Q = Sd2D A�1(Q+ d). Moreover,sine Q is a tile, if d1 6= d2 then A�1(Q + d1) \ A�1(Q + d2) has measure zero, and in fatit an be shown that these sets an interset only along their boundaries. We will requiresubsets Qd of A�1(Q + d) whose union is Q but whih have disjoint intersetions, i.e., suhthat Sd2DQd = Q and Qd1 \Qd2 = ; if d1 6= d2: (3.6)A preise method for reating these sets Qd is given in [CHM99℄.For eah d 2 D, de�ne a matrix Td byTd = [Aj�k+d℄j;k2
: (3.7)Note that Td onsists of an 
�
 olletion of r�r bloks, i.e., Td 2 (C r�r)
�
. Assume thatE is a subset (but not neessarily a subspae) of (C r)
 that is invariant under eah matrixTd (we will speify E preisely later). Then for eah d 2 D we an de�ne 'd :Q�E ! E by'd(x; e) = Tde; (3.8)and de�ne O :Q� ED ! E byO(x; fedgd2D) = Xd2D �Qd(x) � ed: (3.9)That is, O(x; fedgd2D) = ed if x 2 Qd. It is easy to see that this operator O is stable andsatis�es the non-expansivity ondition (2.5). Now de�ne an operator T ating on vetorfuntions u :Q! E by Tu(x) = O(x; f'd(x;u(w�1d (x)))gd2D)= Xd2D �Qd(x) � Tdu(Ax� d): (3.10)Or, equivalently, T an be de�ned byTu(x) = Tdu(Ax� d) if x 2 Qd: (3.11)This operator T is onneted to the re�nement operator S de�ned by (3.2) as follows.Proposition 3.2 ([CHM99℄). Let 
 � Zn be suh that K� � Q+
. If g :Rn ! C r satis�essupp(g) � K�, then �Sg = T�g a.e. (3.12)



MULTIWAVELETS IN Rn 7If the funtion g satis�es supp(g) � K� and additionally vanishes on the boundary of K�,then the equality in (3.12) holds everywhere and not merely almost everywhere. This is thease, for example, if g is ontinuous and supported in K�.In light of Proposition 3.2, in order to solve the re�nement equation (3.1), we need to �nda solution to the equation u = Tu;and this is preisely the type of generalized self-similarity that is de�ned in (2.2).To do this, we apply Theorem 2.1. The operator O is non-expansive, the wk are aÆnemaps, and the funtions 'd are linear. Hene, if there exists a onstant C with 0 < C < 1and a norm k � k on (C r)
 suh that8 d 2 D; 8 x 2 Q; 8 e 2 E; k'd(x; e)k � C kek;then T will have a unique �xed point. Considering the de�nition of 'd, this means that theremust exist a norm in (C r)
 suh that8 d 2 D; 8 e 2 E; kTdek � C kek:In other words, there must exist a norm under whih all the matries Td are simultaneouslyontrative on some set. This leads naturally to the de�nition of the joint spetral radiusof a set of matries. Here we will fous only on the uniform joint spetral radius; it ispossible to onsider various generalizations as well. The uniform joint spetral radius was�rst introdued in [RS60℄ and was redisovered and applied to re�nement equations byDaubehies and Lagarias in [DL92℄.If M = fM1; : : : ;Mmg is a �nite olletion of s � s matries, then the uniform jointspetral radius ofM is �̂(M) = lim`!1 max�2P` k�k1=`; (3.13)where P0 = fIg and P` = fMj1 � � �Mj` : 1 � ji � mg:It is easy to see that the limit in (3.13) exists and is independent of the hoie of norm k � kon C s�s.Note that if there is a norm suh that maxj kMjk � Æ, then �̂(M) � Æ. Rota and Strang[RS60℄ proved the following onverse result.Proposition 3.3. Assume thatM = fM1; : : : ;Mmg is a �nite olletion of s� s matries.If �̂(M) < Æ, then there exists a vetor norm k � k on C s suh that maxj kMjk � Æ.Consequently, a given set of matries is simultaneously ontrative (i.e., there exists a normsuh that maxj kMjk < 1) if and only if the uniform joint spetral radius of M satis�es�̂(M) < 1.We an now state the main theorem relating generalized self-similarity to the existene ofa ontinuous solution to the re�nement equation.



8 C. A. CABRELLI, C. HEIL, AND U. M. MOLTERTheorem 3.4. Let 
 � Zn be a �nite set suh that K� � Q + 
. Let E be a nonemptylosed subset of (C r)
 suh that Td(E) � E for eah d 2 D. Let V be a subspae of (C r)
whih ontains E � E and whih is right-invariant under eah Td. De�neF = �g 2 L1(Rn; C r) : supp(g) � K� and �g(Q) � E	: (3.14)If F 6= ; and �̂(fTdjV gd2D) < 1, then there exists a funtion f 2 F whih is a solution to there�nement equation (3.1), and the asade algorithm f (i+1) = Sf (i) onverges uniformly tof for eah starting funtion f (0) 2 F . Furthermore, if there exists any ontinuous funtionf (0) 2 F , then f is ontinuous.Proof. We will apply Theorem 2.1 with X = Q and with E the spei�ed subset of (C r)
.We let wd, 'd, O, and T be as de�ned above, spei�ally, by equations (3.3), (3.8), (3.9),and (3:10).We will show that the hypotheses of Theorem 2.1 are satis�ed. First, wd(x) = A�1(x+ d)is learly injetive and ontinuously di�erentiable.Seond, let Æ be any number suh that�̂(fTdjV gd2D) < Æ < 1:Then by Proposition 3.3 applied to the matries TdjV , there exists a vetor norm k � kV onV suh that maxd2D kTdwkV � Æ kwkV ; all w 2 V:Let k � k denote any extension of this norm to all of (C r)
. Reall that 'd(x; e) = Tde. SineE � E � V , we therefore have for eah x 2 Q and u, v 2 E thatmaxd2D k'd(x; u)� 'd(x; v)k = maxd2D kTd(u� v)k � Æ ku� vk:Therefore the funtions 'd satisfy the ondition (2.4) with onstant C = Æ. It is easy tohek that eah 'd is stable.Finally, O is non-expansive. Thus, the hypotheses of Theorem 2.1 are satis�ed. SineC < 1, Theorem 2.1 implies that T maps L1(Q;E) into itself, and satis�eskTu� Tvk � C ku� vk:It follows that T is ontrative on L1(Q;E) and there exists a unique funtion v� 2 L1(Q;E)suh that Tv� = v�. Further, the iteration v(i+1) = Tv(i) onverges in L1(Q;E) to v� foreah funtion v(0) 2 L1(Q;E).We want to relate now the �xed point v� for T to a solution to the re�nement equation.First, it an be shown that the spae F is invariant under the re�nement operator S. Hene,by Proposition 3.2, the following diagram ommutes, with T in partiular being a ontration:F ����! L1(Q;E)S??y ??yTF ���!� L1(Q;E):



MULTIWAVELETS IN Rn 9Now suppose that f (0) is any funtion in F , and de�ne f (i+1) = Sf (i). Then f (i) 2 F foreah i, and if we set v(i) = �f (i), thenv(i+1) = �f (i+1) = �Sf (i) = T�f (i) = Tv(i);so v(i) must onverge uniformly to v�. By hoosing an appropriate hoie of norm on F (see[CHM99℄), it follows that f (i) onverges uniformly to some funtion f 2 L1(Rn; C r). Wemust have f 2 F sine F is a losed subset of L1(Rn; C r). Further,�f = v� = Tv� = T�f = �Sf a.e.:Therefore f satis�es the re�nement equation (3.1) almost everywhere. Sine v� is unique,the asade algorithm must onverge to this partiular f for any starting funtion f (0) 2 F .It only remains observe that if any f (0) 2 F is ontinuous, then the iterates f (i) obtainedfrom f (0) are ontinuous and onverge uniformly to f , so f must itself be ontinuous.From the proof of the above theorem, it is lear that the rate of onvergene of the asadealgorithm is geometri and an be spei�ed expliitly if desired.The preeeding theorem immediately suggests two questions:� Does there always exist a spae E whih is invariant for all Td?� Does F always ontain a ontinuous funtion?The answer to both of these questions is yes, under some mild additional hypotheses.To answer the question of the existene of the spae E, let us reall the one-dimensional,single-funtion ase. In this setting, if we impose the standard \minimal auray ondition"Xk2Z2k = Xk2Z2k+1 = 1; (3.15)then E is the hyperplane through (1; 0; : : : ; 0) that is orthogonal to the row vetor (1; 1; : : : ; 1).This vetor is a ommon left eigenvetor to all of the matries Td [DL92℄. The minimal a-uray ondition is so-alled beause it is diretly related to the auray of the solution f .In n-dimensions with multipliity r, i.e., with f : Rn ! C r, the auray of f is de�ned to bethe largest integer � > 0 suh that every polynomial q(x) = q(x1; : : : ; xn) with deg(q) < �an be writtenq(x) = Xk2Zn akf(x+ k) = Xk2Zn rXi=1 ak;ifi(x+ k) a.e.; x 2 Rn;for some row vetors ak = (ak;1; : : : ; ak;r) 2 C 1�r. If no polynomials are reproduible fromtranslates of f then we set � = 0. We say that f has at least minimal auray if the onstantpolynomial is reproduible from translates of f , i.e., if � � 1. We say that translates of falong Zn are linearly independent if Pk2Zn akf(x+ k) = 0 implies ak = 0 for eah k. In onedimension, under the hypotheses of linear independene of translates, the minimal aurayondition (3.15) implies that f has at least minimal auray. In the general setting ofn dimensions and multipliity r, the minimal auray ondition is more ompliated toformulate than (3.15). However, this ondition is still the appropriate tool to onstrut anappropriate set E. We present here a weak form of the minimal auray ondition, andrefer to [CHM98℄ for a general result.



10 C. A. CABRELLI, C. HEIL, AND U. M. MOLTERTheorem 3.5 ([CHM98℄). Let f :Rn ! C r be an integrable, ompatly supported solutionof the re�nement equation (3.1), suh that translates of f along Zn are linearly independent.Then the following statements are equivalent.a) f has auray � � 1.b) There exists a row vetor u0 2 C 1�r suh that u0f̂(0) 6= 0 andu0 = Xk2�d u0 k for eah d 2 D:In the ase that either statement holds, we haveXk2� u0f(x + k) = 1 a.e.Assume now that the minimal auray ondition given in Theorem 3.5 is satis�ed, andlet u0 be the row vetor suh that Pk2Zn u0f(x + k) = 1 a.e. It an be shown that theinlusions supp(f) � K� � Q + 
 imply that if x 2 Q, then the only nonzero terms in theseries Pk2Zn u0f(x+ k) = 1 our when k 2 
. Hene, if we set e0 = (u0)k2
, i.e., e0 is therow vetor obtained by repeating the blok u0 one for eah k 2 
, thene0�f(x) = Xk2
 u0f(x + k) = Xk2Zn u0f(x+ k) = 1 a.e.; for x 2 Q:Thus the values of �f(x) are onstrained to lie in a partiular hyperplane E0 in (C r)
,namely, the olletion of olumn vetors v = [vk℄k2
 suh that e0v = Pk2
 u0vk = 1. Thishyperplane E0 is a anonial hoie for the set E appearing in the hypotheses of Theorem 3.4.In order to invoke Theorem 3.4, the starting funtions f (0) for the asade algorithm shouldtherefore also have the property that �f (0)(x) always lies in this hyperplane E0. Note thatwith this de�nition of E0, the set of di�erenes V0 = E0 � E0 is the subspae onsisting ofvetors v = [vk℄k2
 suh that e0v = Pk2
 u0vk = 0. Hene the minimal auray onditionimmediately provides an appropriate hoie for the spae E, namely, we take E = E0.Now, having de�ned E = E0, we are ready to address the seond question, whether theset F de�ned by (3.14) always ontains a ontinuous funtion. First we rewrite F asF = ng 2 L1(Rn; C r) : supp(g) � K� and Xk2Zn u0g(x+ k) = 1o;and note that this set is determined by two quantities: the set � and the row vetor u0. Theset � is the support of the set of oeÆients k in the re�nement equation and is determinedonly by the loation of the k and not their values. The vetor u0, on the other hand, isdetermined by the values of the k as well as their loations. However, it an be shown that,in fat, the question of whether F ontains a ontinuous funtion is determined solely by �and not by u0. Thus only the loation of the oeÆients k is important for this question,and not their atual values. This is made preise in the following result.Lemma 3.6 ([CHM99℄). Let � � Zn be �nite, and let u0 be a nonzero row vetor in C 1�r.Then the following statements are equivalent.1. F 6= ;.2. F ontains a ontinuous funtion.



MULTIWAVELETS IN Rn 113. KÆ� + Zn = Rn, i.e., lattie translates of the interior KÆ� of K� over Rn.Thus, in designing a multiwavelet system, after hoosing the dilation matrix A and digitset D, the next step is to hoose a set � will ful�lls the requirements of Lemma 3.6. Small� are preferable, sine the larger � is, the larger the matries Td will be, and the moreomputationally diÆult the omputation of the joint spetral radius beomes. While weexpet that some \small" � may fail the requirement KÆ� + Zn = Rn, it is not true that all\large" � will neessarily satisfy this requirement (see [CHM99℄ for an example).In summary, one we impose the minimal auray ondition and hoose an appropriateset �, in order to hek for the existene of a ontinuous saling funtion we must evalu-ate the uniform joint spetral radius �̂(fTdjV0gd2D). Unfortunately, this might involve theomputation of produts of large matries. It an be shown that if the oeÆients k satisfythe onditions for higher-order auray, then V0 is only the largest of a dereasing hain ofommon invariant subspaes V0 � V1 � � � � � V��1of the matries Td, and that, as a onsequene, the value of �̂(fTdjV0gd2D) is determined by thevalue of �̂(fTdjV��1gd2D) [CHM99℄). This redution in dimension an ease the omputationalburden of approximating the joint spetral radius. Moreover, these invariant spaes Vs arediretly determined from the oeÆients k via the auray onditions, whih are a system oflinear equations. Hene it is a simple matter to ompute the matries TdjV��1 . Additionally,the fat that auray implies suh spei� struture in the matries Td suggests that thisstruture ould potentially be used to develop theoretial design riteria for multiwaveletsystems.A �nal question onerns the onverse of Theorem 3.4, namely, what an we say if afterhoosing oeÆients k that satisfy the minimal auray ondition, the joint spetral radiusof �̂(fTdjV0gd2D) exeeds 1? The following theorem answers this question, and is somewhatsurprising beause it essentially says that if a given operator has a �xed point, then that op-erator must neessarily be ontrative. This theorem is proved in this generality in [CHM99℄,but is inspired by a one-dimensional theorem of Wang [Wan95℄.Theorem 3.7. Let f be a ontinuous, ompatly supported solution to the re�nement equa-tion (3.1) suh that f has L1-stable translates (de�ned below). Assume that there exists arow vetor u0 2 C 1�r suh thatu0f̂(0) 6= 0 and u0 = Xk2�d u0 k for d 2 D:If 
 � Zn is any set suh thatK� � Q+ 
 and A�1(
 + ��D) \ Zn � 
;then �̂(fTdjV0gd2D) < 1:



12 C. A. CABRELLI, C. HEIL, AND U. M. MOLTERHere, we say that a vetor funtion g 2 L1(Rn; C r) has L1-stable translates if there existonstants C1, C2 > 0 suh thatC1 supk2� maxi jak;ij � Xk2� ak g(x+ k)L1 � C2 supk2� maxi jak;ijfor all sequenes of row vetors ak = (ak;1; : : : ; ak;r) with only �nitely many ak nonzero.4. Existene of Multiresolution AnalysesIn this setion we turn to the problem of using the existene of a solution to the re�ne-ment equation to onstrut orthonormal multiwavelet bases for L2(Rn). As in the lassialone-dimensional, single-funtion theory, the key point is that a vetor saling funtion whihhas orthonormal lattie translates determines a multiresolution analysis for Rn. The mul-tiresolution analysis then, in turn, determines a wavelet basis for L2(Rn).The main novelty here, more than allowing more than one saling funtion or working inarbitrary dimensions, is the result of having an arbitrary dilation matrix. The viewpoint ofself-similarity and iterated funtion systems still leads naturally to the orret deompositions[CHM99℄.De�nition 4.1. A multiresolution analysis (MRA) of multipliity r assoiated with a dila-tion matrix A is a sequene of losed subspaes fVjgj2Z of L2(Rn) whih satisfy:P1 V j � V j+1 for eah j 2 Z,P2 g(x) 2 V j () g(Ax) 2 Vj+1 for eah j 2 Z,P3 Tj2ZV j = f0g,P4 Sj2ZV j is dense in L2(Rn), andP5 there exist funtions '1; : : : ; 'r 2 L2(Rn) suh that the olletion of lattie translatesf'i(x� k)gk2Zn; i=1;:::;rforms an orthonormal basis for V0.If these onditions are satis�ed, then the vetor funtion ' = ('1; : : : ; 'r)T is referred to asa vetor saling funtion for the MRA.The usual tehnique for onstruting a multiresolution analysis is to start from a vetorfuntion ' = ('1; : : : ; 'r)T suh that f'i(x � k)gk2Zn; i=1;:::;r is an orthonormal system inL2(Rn), and then to onstrut the subspaes V j � L2(Rn) as follows. First, let V0 be thelosed linear span of the translates of the omponent funtions 'i, i.e.,V0 = spanf'i(x� k)gk2Zn; i=1;:::;r: (4.1)Then, for eah j 2 Z, de�ne V j to be the set of all dilations of funtions in V0 by Aj, i.e.,V j = fg(Ajx) : g 2 V0g: (4.2)If fV jgj2Z de�ned in this way forms a multiresolution analysis for L2(Rn) then we say thatit is the MRA generated by '.



MULTIWAVELETS IN Rn 13Example 4.2. In one dimension, the box funtion ' = �[0;1) generates a multiresolutionanalysis for L2(R). This MRA is usually referred to as the Haar multiresolution analysis,beause the wavelet basis it determines is the lassial Haar system f2n=2 (2nx � k)gn;k2Z,where  = �[0;1=2) � �[1=2;1).Gr�ohenig and Madyh [GM92℄ proved that there is a Haar-like multiresolution analysisassoiated to eah hoie of dilation matrix A and digit set D for whih the attrator Q = KDis a tile. In partiular, they proved that if Q is a tile then the salar-valued funtion �Qgenerates a multiresolution analysis of L2(Rn) of multipliity 1. By extension of the one-dimensional terminology, this MRA is alled the Haar MRA assoiated with A and D. Notethat the fat that f�Q(x� k)gk2� forms an orthonormal basis for V0 is a restatement of theassumption that the lattie translates of the tile Q have overlaps of measure zero. Further,�Q is re�nable beause Q is self-similar and beause the lattie translates of Q have overlapsof measure zero.We will haraterize those ' whih generate multiresolution analyses in the followingtheorem. To motivate this result, note that property P2 is ahieved trivially when V j isde�ned by (4.2). Moreover, property P5 is simply a statement that lattie translates of' are orthonormal. It an be seen ([CHM99℄) that the fat that ' has orthonormal lattietranslates implies that property P3 is also automatially satis�ed. Thus, the main problem indetermining whether ' generates a multiresolution analysis is the question of when propertiesP1 and P4 are satis�ed. One neessary requirement for P1 is lear. If ' does generate amultiresolution analysis, then P1 implies that 'i 2 V0 � V1 for i = 1; : : : ; r. Sine P2 andP5 together imply that fm1=2 'j(Ax�k)gk2Zn; j=1;:::;r forms an orthonormal basis for V1, eahfuntion 'i must therefore equal some (possibly in�nite) linear ombination of the funtions'j(Ax � k). Consequently, the vetor funtion ' must satisfy a re�nement equation of theform '(x) = Xk2Zn k '(Ax� k) (4.3)for some hoie of r� r matries k. Sine we only onsider the ase where the funtions 'ihave ompat support and sine ' has orthonormal lattie translates, this implies that only�nitely many of the matries k in (4.3) an be nonzero. Hene, in this ase the re�nementequation in (4.3) has the same form as the re�nement equation (3.1).Theorem 4.3. Assume that ' = ('1; : : : ; 'r)T 2 L2(Rn; C r) is ompatly supported and hasorthonormal lattie translates, i.e.,
'i(x� k); 'j(x� `)� = Z 'i(x� k)'j(x� `) dx = Æi;j Æk;`:Let V j � L2(Rn) for j 2 Z be de�ned by (4.1) and (4.2). Then the following statementshold.(a) Properties P2, P3, and P5 are satis�ed.(b) Property P1 is satis�ed if and only if ' satis�es a re�nement equation of the form'(x) = Xk2� k '(Ax� k) (4.4)



14 C. A. CABRELLI, C. HEIL, AND U. M. MOLTERfor some r � r matries k and some �nite set � � Zn.() If rXi=1 j'̂i(0)j2 = rXi=1 ����Z 'i(x) dx����2 = jQj = 1; (4.5)then Property P4 is satis�ed. If ' is re�nable, i.e., if (4.4) holds, then Property P4 issatis�ed if and only if (4.5) holds.Note that the assumption that 'i is square-integrable and ompatly supported impliesthat 'i 2 L1(Rn), so '̂i(0) = R 'i(x) dx is well-de�ned.Theorem 4.3 generalizes a result of Cohen [Coh90℄, whih applied spei�ally to the aseof multipliity 1 and dilation A = 2I. Cohen's estimates used a deomposition of Rn intodyadi ubes, making essential use of the fat that the uniform dilation A = 2I maps dyadiubes into dyadi ubes. However, this need not be true for an arbitrary dilation matrixA, so this partiular deomposition is no longer feasible. Instead, the proof in [CHM99℄uses a deomposition based on the tile Q and the assoiated Haar multiresolution analysisdisussed in Example 4.2. One of the key observations lies in ounting the number of lattietranslates of Q whih lie in the interior of a dilated tile AjQ, j � 1. The fat that Q isself-similar ombined with the fat that translates of Q tile Rn with overlaps with measurezero implies that AjQ is a union of exatly mj translates of Q, with eah suh translate lyingentirely inside AjQ (but not neessarily in the interior of AjQ). It an be shown that theratio of the number of those translates Q+k that interset the boundary of AjQ to the totalnumber lying inside AjQ onverges to zero.We onlude by showing in Figure 2 a pair of wavelets assoiated to a MRA obtained bynumerially solving the \auray 2" onditions given in [CHM98℄ to obtain the oeÆientsk for a saling vetor ' : R 2 ! R 2 with orthonormal lattie translates that is re�nablewith respet to a quinunx dilation matrix (these numerial estimates were obtained byA. Ruedin). Using the results outlined in this paper, one an prove that these oeÆientsyield a ontinuous saling vetor whih generates a MRA whose \mother wavelets" are thosepitured in Figure 2. 5. AknowledgmentsThe authors thank Professor Lokenath Debnath for organizing the onferene in Orlando(1998) and for inviting us to write this artile.C. Cabrelli and U. Molter also thank the Shool of Mathematis of the Georgia Instituteof Tehnology for inviting us to visit several times, during whih time we performed part ofthe researh for the results behind this paper.Referenes[Baj57℄ M. Bajraktarevi, Sur une �equation fontionnelle, Glasnik Mat.-Fiz. I Astr. 12 (1957), no. 3,201{205.[Ban91℄ C. Bandt, Self-similar sets. V. Integer matries and fratal tilings of Rn, Pro. Amer. Math. So.112 (1991), 549{562.
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