
MULTIWAVELETS IN Rn WITH AN ARBITRARY DILATION MATRIXCARLOS A. CABRELLI, CHRISTOPHER HEIL, AND URSULA M. MOLTERAbstra
t. We present an outline of how the ideas of self-similarity 
an be applied towavelet theory, espe
ially in 
onne
tion to wavelets asso
iated with a multiresolution analysisof Rn allowing arbitrary dilation matri
es and no restri
tions on the number of s
alingfun
tions. 1. Introdu
tionWavelet bases have proved highly useful in many areas of mathemati
s, s
ien
e, and en-gineering. One of the most su

essful approa
hes for the 
onstru
tion of su
h a basis beginswith a spe
ial fun
tional equation, the re�nement equation. The solution to this re�nementequation, 
alled the s
aling fun
tion, then determines a multiresolution analysis, whi
h inturn determines the wavelet and the wavelet basis. In order to 
onstru
t wavelet bases withpres
ribed properties, we must 
hara
terize those parti
ular re�nement equations whi
h yields
aling fun
tions that possess some spe
i�
 desirable property. Mu
h literature has beenwritten on this topi
 for the 
lassi
al one-dimensional, single-fun
tion, two-s
ale re�nementequation, but when we move from the one-dimensional to the higher-dimensional setting orfrom the single wavelet to the multiwavelet setting it be
omes in
reasingly diÆ
ult to �ndand apply su
h 
hara
terizations.Our goal in this paper is to outline some re
ent developments in the 
onstru
tion ofhigher-dimensional wavelet bases that exploit the fa
t that the re�nement equation is astatement that the s
aling fun
tion satis�es a 
ertain kind of self-similarity. In the 
lassi
alone-dimensional 
ase with dilation fa
tor two, there are a variety of tools in addition to self-similarity whi
h 
an be used to analyze the re�nement equation. However, many of thesetools be
ome diÆ
ult or impossible to apply in the multidimensional setting with a generaldilation matrix, whereas self-similarity be
omes an even more natural and important toolin this setting. By viewing s
aling fun
tions as parti
ular 
ases of \generalized self-similarfun
tions," we showed in [CHM99℄ that the tools of fun
tional analysis 
an be applied to an-alyze re�nement equations in the general higher-dimensional and multi-fun
tion setting. Wederived 
onditions for the existen
e of 
ontinuous or Lp solutions to the re�nement equationin this general setting, and showed how these 
onditions 
an be 
ombined with the analysisof the a

ura
y of s
aling fun
tions from [CHM98℄, [CHM97℄ to 
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2 C. A. CABRELLI, C. HEIL, AND U. M. MOLTERnonseparable (non-tensor produ
t) two-dimensional multiwavelets using a quin
unx dilationmatrix.We will sket
h some of the ideas and results from [CHM99℄ in this paper, attempting toprovide some insights into the te
hniques without dwelling on the mass of te
hni
al detailsthat this generality ne
essitates. We emphasize that this work is intimately tied and 
on-ne
ted to the vast literature on wavelets and re�nement equations, and while we 
annot tra
ethose 
onne
tions here, a full dis
ussion with extensive referen
es is presented in [CHM99℄.In parti
ular, the important and fundamental 
ontributions of Daube
hies, Lagarias, Wang,Jia, Jiang, Shen, Plonka, Strela, and many others are dis
ussed in [CHM99℄.2. Self-SimilarityThe seed for this approa
h 
an be tra
ed ba
k to Bajraktarevi
 [Baj57℄, who in 1957studied solutions to equations of the formu(x) = O(x; (u Æ g1)(x); : : : ; (u Æ gm)(x)) (2.1)where gi :X ! X and O :X � Em ! E, and the solution u :X ! E lies in some fun
tionspa
e F . Bajraktarevi
 proved that, under mild 
onditions on O and the gi, there is a uniquesolution to (2.1). (See also [dR57℄.) A generalized version of this equation of the formu(x) = O(x; '1(x; (u Æ g1)(x)); : : : ; 'm(x; (u Æ gm)(x)) ); (2.2)where 'i :X�E ! E, was studied in [CM99℄. We will state one uniqueness result below, andthen in later se
tions demonstrate the fundamental 
onne
tion between (2.2) and wavelets.If there exists a set B that is self-similar with respe
t to the fun
tions gi, i.e., if B =Smi=1 g�1i (B), then we refer to the solution u of (2.2) as a generalized self-similar fun
tion.This is be
ause at a given point x 2 B, the value of u(x) is obtained by 
ombining the valuesof u(gi(x)) through the a
tion of the operator O, with ea
h gi(x) lying in B.In order to state the uniqueness result, we require the following notation. Let X be a
losed subset of Rn, and let k � k be any �xed norm on C r. Then we de�ne L1(X; C r) to bethe Bana
h spa
e of all mappings u :X ! C r su
h thatkukL1 = supx2X kg(x)k < 1: (2.3)This de�nition is independent of the 
hoi
e of norm on C r in the sense that ea
h 
hoi
e ofnorm for C r yields an equivalent norm for L1(X; C r). If E is a nonempty 
losed subset ofC r, then L1(X;E) will denote the 
losed subset of L1(X; C r) 
onsisting of fun
tions whi
htake values in E. We say that a fun
tion u :X ! E is stable if u(B) is a bounded subset ofE whenever B is a bounded subset of X.The following result is a spe
ial 
ase of more general results proved in [CM99℄. In parti
-ular, we will 
onsider here only uniform versions of this result; it is possible to formulate Lpand other versions as well.Theorem 2.1. Let X be a 
ompa
t subset of Rn, and let E be a 
losed subset of C r. Letk � k be any norm on C r. Let m � 1, and assume that fun
tions wi, 'i, and O are 
hosenwith the following properties.� For ea
h i = 1; : : : ; m, let wi :X ! X be 
ontinuously di�erentiable, inje
tive maps.



MULTIWAVELETS IN Rn 3� Let 'i :X � E ! E for i = 1; : : : ; m satisfy the Lips
hitz-like 
onditionsup1�i�m k'i(x; u)� 'i(x; v)k � C ku� vk: (2.4)� Let O :X � Em ! E be non-expansive for ea
h x 2 X, i.e.,kO(x; u1; : : : ; um)�O(x; v1; : : : ; vm)k � max1�i�m kui � vik: (2.5)Let t0 be an arbitrary point in E. For u 2 L1(X;E), de�neTu(x) = O(x; '1(x;u(w�11 (x))); : : : ; 'm(x;u(w�1m (x)))); (2.6)where we interpret u(w�1i (x)) = t0 if x =2 wi(X): (2.7)If O and the 'i are stable, then T maps L1(X;E) into itself, and satis�eskTu� TvkL1 � C ku� vkL1: (2.8)In parti
ular, if C < 1, then T is 
ontra
tive, and there exists a unique fun
tion v� 2L1(X;E) su
h that Tv� = v�, and, moreover, v� is 
ontinuous. Further, if C < 1 and v(0)is any fun
tion in L1(X;E), then the iteration v(i+1) = Tv(i) 
onverges to v� in L1(X;E).3. Refinement EquationsThe 
onne
tion between Theorem 2.1 and wavelets is provided by the now-
lassi
al 
on
eptof multiresolution analysis (MRA). To 
onstru
t a multiresolution analysis in Rn, one beginswith a re�nement equation of the formf(x) = Xk2� 
k f(Ax� k); x 2 Rn; (3.1)where � is a subset of the latti
e Zn and A is a dilation matrix, i.e., A(Zn) � Zn and everyeigenvalue � of A satis�es j�j > 1. We assume now that A, �, and 
k are �xed for theremainder of this paper.A solution of the re�nement equation is 
alled a s
aling fun
tion or a re�nable fun
tion.If f is s
alar-valued then the 
oeÆ
ients 
k are s
alars, while if one allows ve
tor-valued(f :Rn ! C r) or matrix-valued (f :Rn ! C r�`) fun
tions then the 
k are r� r matri
es. Wewill 
onsider the 
ase f :Rn ! C r in this paper. We say that the number r is the multipli
ityof the s
aling fun
tion f .The fa
t that A 
an be any dilation matrix (instead of just a \uniform" dilation su
h as2I) means that the geometry of Rn must be 
arefully 
onsidered with respe
t to the a
tion ofA. Note that sin
e A(Zn) � Zn, the dilation matrix A ne
essarily has integer determinant.We de�ne m = j det(A)j:By [Mey92℄, to ea
h s
aling fun
tion that generates a MRA there will be asso
iated (m� 1)\mother wavelets," so it is desirable for some appli
ations to 
onsider \small" m.



4 C. A. CABRELLI, C. HEIL, AND U. M. MOLTERThe re�nement operator asso
iated with the re�nement equation is the mapping S a
tingon ve
tor fun
tions u :Rn ! C r de�ned bySu(x) = Xk2� 
k u(Ax� k); x 2 Rn: (3.2)A s
aling fun
tion is thus a �xed point of S.We will fo
us on 
ompa
tly supported solutions of the re�nement equation, and thereforewill require that the subset � be �nite. Let us 
onsider the support of a solution to there�nement equation in this 
ase. For ea
h k 2 Zn, let wk :Rn ! Rn denote the 
ontra
tivemap wk(x) = A�1(x+ k): (3.3)Now let H(Rn) denote the set of all nonempty, 
ompa
t subsets of Rn equipped with theHausdor� metri
. Then it 
an be shown that the mapping w on H(Rn) de�ned byw(B) = Sk2�wk(B) = A�1(B + �) (3.4)is a 
ontra
tive mapping of H(Rn) into itself [Hut81℄. Hen
e there is a unique 
ompa
t setK� su
h that K� = w(K�) = Sk2�A�1(K� + k):In the terminology of Iterated Fun
tion Systems, the set K� is the attra
tor of the IFSgenerated by the 
olle
tion fwkgk2K. It 
an be shown that if f is a 
ompa
tly supportedsolution of the re�nement equation, then ne
essarily supp(f) � K� [CHM99℄.Let D = fd1; : : : ; dmgbe a full set of digits with respe
t to A and Zn, i.e., a 
omplete set of representatives of theorder-m group Zn=A(Zn). Be
ause D is a full set of digits, the latti
e Zn is partitioned intothe m disjoint 
osets�d = A(Zn)� d = fAk � d : k 2 Zng; d 2 D: (3.5)Let Q be the attra
tor of the of the IFS generated by fwdgd2D, i.e., Q is the unique nonempty
ompa
t set satisfying Q = KD = Sd2DA�1(Q+ d):We will say that Q is a tile if its Zn translates 
over Rn with overlaps of measure 0. In that
ase, the Lebesgue measure of Q is 1 [Ban91℄ and the 
hara
teristi
 fun
tion of Q generatesa MRA in Rn [GM92℄. This MRA is the n-dimensional analogue of the Haar MRA in R ,be
ause if we 
onsider dilation by 2 in R with digit set D = f0; 1g, and setw0(x) = 12x and w1(x) = 12x + 12 ;then the set [0; 1℄ satis�es [0; 1℄ = w0([0; 1℄) S w1([0; 1℄)
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Figure 1. Twin Dragon and Parallelogram Attra
torsand therefore is the attra
tor for the IFS fw0; w1g. Note that [0; 1℄ is a tile, and that theLebesgue measure of [0; 1℄ is 1.Example 3.1. Tiles may have a fra
tal boundaries. For example, if we 
onsider the di-lation matrix A1 = � 1 �11 1 � and digit set D = f(0; 0); (1; 0)g, then the tile Q is the
elebrated \twin dragon" fra
tal shown on the left in Figure 1. On the other hand, ifA2 = � 1 11 �1 � and D = f(0; 0); (1; 0)g, then the tile Q is the parallelogram with verti
esf(0; 0); (1; 0); (2; 1); (1; 1)g pi
tured on the right in Figure 1. For these two matri
es A1 andA2, the sublatti
es A1(Z2) and A2(Z2) 
oin
ide. This sublatti
e is 
alled the quin
unx sub-latti
e of Z2. As a 
onsequen
e, these two matri
es A1, A2 are often referred to as quin
unxdilation matri
es. }It is not always the 
ase that, given an arbitrary dilation matrix A, there exists a set ofdigits su
h that the asso
iated attra
tor of fwdgd2D is a tile [Pot97℄, [LW98℄. We will notaddress this question here, and will only 
onsider dilation matri
es for whi
h a tile Q exists,and we assume that the digit set D has been 
hosen in su
h a way that Q is a tile. Withoutloss of generality, we 
an assume that 0 2 D, and therefore the tile Q will 
ontain the origin[CHM99℄.Let us now return to setting up the notation required to 
onne
t the re�nement equation(3.1) to Theorem 2.1.Sin
e supp(f) � K�, whi
h is 
ompa
t, and sin
e Q is a tile and therefore 
overs Rn bytranslates, there exists a �nite subset 
 � Zn su
h thatK� � Q + 
 = S!2
(Q+ !) = fq + ! : q 2 Q; ! 2 
g:Consider now any fun
tion g :Rn ! C r su
h that supp(g) � K�. De�ne the folding of g tobe the fun
tion �g :Q! (C r)
 given by�g(x) = [g(x+ k)℄k2
; x 2 Q:



6 C. A. CABRELLI, C. HEIL, AND U. M. MOLTERIf for k 2 
 we write (�g)k(x) = g(x+ k) for the kth 
omponent of �g(x), then this foldinghas the property that (�g)k1(x1) = (�g)k2(x2) whenever x1, x2 2 Q and k1, k2 2 
 are su
hthat x1 + k1 = x2 + k2 (it 
an be shown that su
h points x1, x2 would ne
essarily have to lieon the boundary of Q [CHM99℄).Here (and whenever we deal with ve
tors indexed by general sets) we 
onsider that 
has been ordered in some way; the 
hoi
e of ordering is not important as long as the sameordering is used throughout. We use square bra
kets, e.g., [uk℄k2
, to denote 
olumn ve
tors,and round bra
kets, e.g., (uk)k2
, to denote row ve
tors.Sin
e Q is the attra
tor of the IFS fwdgd2D, it satis�es Q = Sd2D A�1(Q+ d). Moreover,sin
e Q is a tile, if d1 6= d2 then A�1(Q + d1) \ A�1(Q + d2) has measure zero, and in fa
tit 
an be shown that these sets 
an interse
t only along their boundaries. We will requiresubsets Qd of A�1(Q + d) whose union is Q but whi
h have disjoint interse
tions, i.e., su
hthat Sd2DQd = Q and Qd1 \Qd2 = ; if d1 6= d2: (3.6)A pre
ise method for 
reating these sets Qd is given in [CHM99℄.For ea
h d 2 D, de�ne a matrix Td byTd = [
Aj�k+d℄j;k2
: (3.7)Note that Td 
onsists of an 
�
 
olle
tion of r�r blo
ks, i.e., Td 2 (C r�r)
�
. Assume thatE is a subset (but not ne
essarily a subspa
e) of (C r)
 that is invariant under ea
h matrixTd (we will spe
ify E pre
isely later). Then for ea
h d 2 D we 
an de�ne 'd :Q�E ! E by'd(x; e) = Tde; (3.8)and de�ne O :Q� ED ! E byO(x; fedgd2D) = Xd2D �Qd(x) � ed: (3.9)That is, O(x; fedgd2D) = ed if x 2 Qd. It is easy to see that this operator O is stable andsatis�es the non-expansivity 
ondition (2.5). Now de�ne an operator T a
ting on ve
torfun
tions u :Q! E by Tu(x) = O(x; f'd(x;u(w�1d (x)))gd2D)= Xd2D �Qd(x) � Tdu(Ax� d): (3.10)Or, equivalently, T 
an be de�ned byTu(x) = Tdu(Ax� d) if x 2 Qd: (3.11)This operator T is 
onne
ted to the re�nement operator S de�ned by (3.2) as follows.Proposition 3.2 ([CHM99℄). Let 
 � Zn be su
h that K� � Q+
. If g :Rn ! C r satis�essupp(g) � K�, then �Sg = T�g a.e. (3.12)



MULTIWAVELETS IN Rn 7If the fun
tion g satis�es supp(g) � K� and additionally vanishes on the boundary of K�,then the equality in (3.12) holds everywhere and not merely almost everywhere. This is the
ase, for example, if g is 
ontinuous and supported in K�.In light of Proposition 3.2, in order to solve the re�nement equation (3.1), we need to �nda solution to the equation u = Tu;and this is pre
isely the type of generalized self-similarity that is de�ned in (2.2).To do this, we apply Theorem 2.1. The operator O is non-expansive, the wk are aÆnemaps, and the fun
tions 'd are linear. Hen
e, if there exists a 
onstant C with 0 < C < 1and a norm k � k on (C r)
 su
h that8 d 2 D; 8 x 2 Q; 8 e 2 E; k'd(x; e)k � C kek;then T will have a unique �xed point. Considering the de�nition of 'd, this means that theremust exist a norm in (C r)
 su
h that8 d 2 D; 8 e 2 E; kTdek � C kek:In other words, there must exist a norm under whi
h all the matri
es Td are simultaneously
ontra
tive on some set. This leads naturally to the de�nition of the joint spe
tral radiusof a set of matri
es. Here we will fo
us only on the uniform joint spe
tral radius; it ispossible to 
onsider various generalizations as well. The uniform joint spe
tral radius was�rst introdu
ed in [RS60℄ and was redis
overed and applied to re�nement equations byDaube
hies and Lagarias in [DL92℄.If M = fM1; : : : ;Mmg is a �nite 
olle
tion of s � s matri
es, then the uniform jointspe
tral radius ofM is �̂(M) = lim`!1 max�2P` k�k1=`; (3.13)where P0 = fIg and P` = fMj1 � � �Mj` : 1 � ji � mg:It is easy to see that the limit in (3.13) exists and is independent of the 
hoi
e of norm k � kon C s�s.Note that if there is a norm su
h that maxj kMjk � Æ, then �̂(M) � Æ. Rota and Strang[RS60℄ proved the following 
onverse result.Proposition 3.3. Assume thatM = fM1; : : : ;Mmg is a �nite 
olle
tion of s� s matri
es.If �̂(M) < Æ, then there exists a ve
tor norm k � k on C s su
h that maxj kMjk � Æ.Consequently, a given set of matri
es is simultaneously 
ontra
tive (i.e., there exists a normsu
h that maxj kMjk < 1) if and only if the uniform joint spe
tral radius of M satis�es�̂(M) < 1.We 
an now state the main theorem relating generalized self-similarity to the existen
e ofa 
ontinuous solution to the re�nement equation.



8 C. A. CABRELLI, C. HEIL, AND U. M. MOLTERTheorem 3.4. Let 
 � Zn be a �nite set su
h that K� � Q + 
. Let E be a nonempty
losed subset of (C r)
 su
h that Td(E) � E for ea
h d 2 D. Let V be a subspa
e of (C r)
whi
h 
ontains E � E and whi
h is right-invariant under ea
h Td. De�neF = �g 2 L1(Rn; C r) : supp(g) � K� and �g(Q) � E	: (3.14)If F 6= ; and �̂(fTdjV gd2D) < 1, then there exists a fun
tion f 2 F whi
h is a solution to there�nement equation (3.1), and the 
as
ade algorithm f (i+1) = Sf (i) 
onverges uniformly tof for ea
h starting fun
tion f (0) 2 F . Furthermore, if there exists any 
ontinuous fun
tionf (0) 2 F , then f is 
ontinuous.Proof. We will apply Theorem 2.1 with X = Q and with E the spe
i�ed subset of (C r)
.We let wd, 'd, O, and T be as de�ned above, spe
i�
ally, by equations (3.3), (3.8), (3.9),and (3:10).We will show that the hypotheses of Theorem 2.1 are satis�ed. First, wd(x) = A�1(x+ d)is 
learly inje
tive and 
ontinuously di�erentiable.Se
ond, let Æ be any number su
h that�̂(fTdjV gd2D) < Æ < 1:Then by Proposition 3.3 applied to the matri
es TdjV , there exists a ve
tor norm k � kV onV su
h that maxd2D kTdwkV � Æ kwkV ; all w 2 V:Let k � k denote any extension of this norm to all of (C r)
. Re
all that 'd(x; e) = Tde. Sin
eE � E � V , we therefore have for ea
h x 2 Q and u, v 2 E thatmaxd2D k'd(x; u)� 'd(x; v)k = maxd2D kTd(u� v)k � Æ ku� vk:Therefore the fun
tions 'd satisfy the 
ondition (2.4) with 
onstant C = Æ. It is easy to
he
k that ea
h 'd is stable.Finally, O is non-expansive. Thus, the hypotheses of Theorem 2.1 are satis�ed. Sin
eC < 1, Theorem 2.1 implies that T maps L1(Q;E) into itself, and satis�eskTu� Tvk � C ku� vk:It follows that T is 
ontra
tive on L1(Q;E) and there exists a unique fun
tion v� 2 L1(Q;E)su
h that Tv� = v�. Further, the iteration v(i+1) = Tv(i) 
onverges in L1(Q;E) to v� forea
h fun
tion v(0) 2 L1(Q;E).We want to relate now the �xed point v� for T to a solution to the re�nement equation.First, it 
an be shown that the spa
e F is invariant under the re�nement operator S. Hen
e,by Proposition 3.2, the following diagram 
ommutes, with T in parti
ular being a 
ontra
tion:F ����! L1(Q;E)S??y ??yTF ���!� L1(Q;E):



MULTIWAVELETS IN Rn 9Now suppose that f (0) is any fun
tion in F , and de�ne f (i+1) = Sf (i). Then f (i) 2 F forea
h i, and if we set v(i) = �f (i), thenv(i+1) = �f (i+1) = �Sf (i) = T�f (i) = Tv(i);so v(i) must 
onverge uniformly to v�. By 
hoosing an appropriate 
hoi
e of norm on F (see[CHM99℄), it follows that f (i) 
onverges uniformly to some fun
tion f 2 L1(Rn; C r). Wemust have f 2 F sin
e F is a 
losed subset of L1(Rn; C r). Further,�f = v� = Tv� = T�f = �Sf a.e.:Therefore f satis�es the re�nement equation (3.1) almost everywhere. Sin
e v� is unique,the 
as
ade algorithm must 
onverge to this parti
ular f for any starting fun
tion f (0) 2 F .It only remains observe that if any f (0) 2 F is 
ontinuous, then the iterates f (i) obtainedfrom f (0) are 
ontinuous and 
onverge uniformly to f , so f must itself be 
ontinuous.From the proof of the above theorem, it is 
lear that the rate of 
onvergen
e of the 
as
adealgorithm is geometri
 and 
an be spe
i�ed expli
itly if desired.The pre
eeding theorem immediately suggests two questions:� Does there always exist a spa
e E whi
h is invariant for all Td?� Does F always 
ontain a 
ontinuous fun
tion?The answer to both of these questions is yes, under some mild additional hypotheses.To answer the question of the existen
e of the spa
e E, let us re
all the one-dimensional,single-fun
tion 
ase. In this setting, if we impose the standard \minimal a

ura
y 
ondition"Xk2Z
2k = Xk2Z
2k+1 = 1; (3.15)then E is the hyperplane through (1; 0; : : : ; 0) that is orthogonal to the row ve
tor (1; 1; : : : ; 1).This ve
tor is a 
ommon left eigenve
tor to all of the matri
es Td [DL92℄. The minimal a
-
ura
y 
ondition is so-
alled be
ause it is dire
tly related to the a

ura
y of the solution f .In n-dimensions with multipli
ity r, i.e., with f : Rn ! C r, the a

ura
y of f is de�ned to bethe largest integer � > 0 su
h that every polynomial q(x) = q(x1; : : : ; xn) with deg(q) < �
an be writtenq(x) = Xk2Zn akf(x+ k) = Xk2Zn rXi=1 ak;ifi(x+ k) a.e.; x 2 Rn;for some row ve
tors ak = (ak;1; : : : ; ak;r) 2 C 1�r. If no polynomials are reprodu
ible fromtranslates of f then we set � = 0. We say that f has at least minimal a

ura
y if the 
onstantpolynomial is reprodu
ible from translates of f , i.e., if � � 1. We say that translates of falong Zn are linearly independent if Pk2Zn akf(x+ k) = 0 implies ak = 0 for ea
h k. In onedimension, under the hypotheses of linear independen
e of translates, the minimal a

ura
y
ondition (3.15) implies that f has at least minimal a

ura
y. In the general setting ofn dimensions and multipli
ity r, the minimal a

ura
y 
ondition is more 
ompli
ated toformulate than (3.15). However, this 
ondition is still the appropriate tool to 
onstru
t anappropriate set E. We present here a weak form of the minimal a

ura
y 
ondition, andrefer to [CHM98℄ for a general result.



10 C. A. CABRELLI, C. HEIL, AND U. M. MOLTERTheorem 3.5 ([CHM98℄). Let f :Rn ! C r be an integrable, 
ompa
tly supported solutionof the re�nement equation (3.1), su
h that translates of f along Zn are linearly independent.Then the following statements are equivalent.a) f has a

ura
y � � 1.b) There exists a row ve
tor u0 2 C 1�r su
h that u0f̂(0) 6= 0 andu0 = Xk2�d u0 
k for ea
h d 2 D:In the 
ase that either statement holds, we haveXk2� u0f(x + k) = 1 a.e.Assume now that the minimal a

ura
y 
ondition given in Theorem 3.5 is satis�ed, andlet u0 be the row ve
tor su
h that Pk2Zn u0f(x + k) = 1 a.e. It 
an be shown that thein
lusions supp(f) � K� � Q + 
 imply that if x 2 Q, then the only nonzero terms in theseries Pk2Zn u0f(x+ k) = 1 o

ur when k 2 
. Hen
e, if we set e0 = (u0)k2
, i.e., e0 is therow ve
tor obtained by repeating the blo
k u0 on
e for ea
h k 2 
, thene0�f(x) = Xk2
 u0f(x + k) = Xk2Zn u0f(x+ k) = 1 a.e.; for x 2 Q:Thus the values of �f(x) are 
onstrained to lie in a parti
ular hyperplane E0 in (C r)
,namely, the 
olle
tion of 
olumn ve
tors v = [vk℄k2
 su
h that e0v = Pk2
 u0vk = 1. Thishyperplane E0 is a 
anoni
al 
hoi
e for the set E appearing in the hypotheses of Theorem 3.4.In order to invoke Theorem 3.4, the starting fun
tions f (0) for the 
as
ade algorithm shouldtherefore also have the property that �f (0)(x) always lies in this hyperplane E0. Note thatwith this de�nition of E0, the set of di�eren
es V0 = E0 � E0 is the subspa
e 
onsisting ofve
tors v = [vk℄k2
 su
h that e0v = Pk2
 u0vk = 0. Hen
e the minimal a

ura
y 
onditionimmediately provides an appropriate 
hoi
e for the spa
e E, namely, we take E = E0.Now, having de�ned E = E0, we are ready to address the se
ond question, whether theset F de�ned by (3.14) always 
ontains a 
ontinuous fun
tion. First we rewrite F asF = ng 2 L1(Rn; C r) : supp(g) � K� and Xk2Zn u0g(x+ k) = 1o;and note that this set is determined by two quantities: the set � and the row ve
tor u0. Theset � is the support of the set of 
oeÆ
ients 
k in the re�nement equation and is determinedonly by the lo
ation of the 
k and not their values. The ve
tor u0, on the other hand, isdetermined by the values of the 
k as well as their lo
ations. However, it 
an be shown that,in fa
t, the question of whether F 
ontains a 
ontinuous fun
tion is determined solely by �and not by u0. Thus only the lo
ation of the 
oeÆ
ients 
k is important for this question,and not their a
tual values. This is made pre
ise in the following result.Lemma 3.6 ([CHM99℄). Let � � Zn be �nite, and let u0 be a nonzero row ve
tor in C 1�r.Then the following statements are equivalent.1. F 6= ;.2. F 
ontains a 
ontinuous fun
tion.



MULTIWAVELETS IN Rn 113. KÆ� + Zn = Rn, i.e., latti
e translates of the interior KÆ� of K� 
over Rn.Thus, in designing a multiwavelet system, after 
hoosing the dilation matrix A and digitset D, the next step is to 
hoose a set � will ful�lls the requirements of Lemma 3.6. Small� are preferable, sin
e the larger � is, the larger the matri
es Td will be, and the more
omputationally diÆ
ult the 
omputation of the joint spe
tral radius be
omes. While weexpe
t that some \small" � may fail the requirement KÆ� + Zn = Rn, it is not true that all\large" � will ne
essarily satisfy this requirement (see [CHM99℄ for an example).In summary, on
e we impose the minimal a

ura
y 
ondition and 
hoose an appropriateset �, in order to 
he
k for the existen
e of a 
ontinuous s
aling fun
tion we must evalu-ate the uniform joint spe
tral radius �̂(fTdjV0gd2D). Unfortunately, this might involve the
omputation of produ
ts of large matri
es. It 
an be shown that if the 
oeÆ
ients 
k satisfythe 
onditions for higher-order a

ura
y, then V0 is only the largest of a de
reasing 
hain of
ommon invariant subspa
es V0 � V1 � � � � � V��1of the matri
es Td, and that, as a 
onsequen
e, the value of �̂(fTdjV0gd2D) is determined by thevalue of �̂(fTdjV��1gd2D) [CHM99℄). This redu
tion in dimension 
an ease the 
omputationalburden of approximating the joint spe
tral radius. Moreover, these invariant spa
es Vs aredire
tly determined from the 
oeÆ
ients 
k via the a

ura
y 
onditions, whi
h are a system oflinear equations. Hen
e it is a simple matter to 
ompute the matri
es TdjV��1 . Additionally,the fa
t that a

ura
y implies su
h spe
i�
 stru
ture in the matri
es Td suggests that thisstru
ture 
ould potentially be used to develop theoreti
al design 
riteria for multiwaveletsystems.A �nal question 
on
erns the 
onverse of Theorem 3.4, namely, what 
an we say if after
hoosing 
oeÆ
ients 
k that satisfy the minimal a

ura
y 
ondition, the joint spe
tral radiusof �̂(fTdjV0gd2D) ex
eeds 1? The following theorem answers this question, and is somewhatsurprising be
ause it essentially says that if a given operator has a �xed point, then that op-erator must ne
essarily be 
ontra
tive. This theorem is proved in this generality in [CHM99℄,but is inspired by a one-dimensional theorem of Wang [Wan95℄.Theorem 3.7. Let f be a 
ontinuous, 
ompa
tly supported solution to the re�nement equa-tion (3.1) su
h that f has L1-stable translates (de�ned below). Assume that there exists arow ve
tor u0 2 C 1�r su
h thatu0f̂(0) 6= 0 and u0 = Xk2�d u0 
k for d 2 D:If 
 � Zn is any set su
h thatK� � Q+ 
 and A�1(
 + ��D) \ Zn � 
;then �̂(fTdjV0gd2D) < 1:



12 C. A. CABRELLI, C. HEIL, AND U. M. MOLTERHere, we say that a ve
tor fun
tion g 2 L1(Rn; C r) has L1-stable translates if there exist
onstants C1, C2 > 0 su
h thatC1 supk2� maxi jak;ij � 



Xk2� ak g(x+ k)



L1 � C2 supk2� maxi jak;ijfor all sequen
es of row ve
tors ak = (ak;1; : : : ; ak;r) with only �nitely many ak nonzero.4. Existen
e of Multiresolution AnalysesIn this se
tion we turn to the problem of using the existen
e of a solution to the re�ne-ment equation to 
onstru
t orthonormal multiwavelet bases for L2(Rn). As in the 
lassi
alone-dimensional, single-fun
tion theory, the key point is that a ve
tor s
aling fun
tion whi
hhas orthonormal latti
e translates determines a multiresolution analysis for Rn. The mul-tiresolution analysis then, in turn, determines a wavelet basis for L2(Rn).The main novelty here, more than allowing more than one s
aling fun
tion or working inarbitrary dimensions, is the result of having an arbitrary dilation matrix. The viewpoint ofself-similarity and iterated fun
tion systems still leads naturally to the 
orre
t de
ompositions[CHM99℄.De�nition 4.1. A multiresolution analysis (MRA) of multipli
ity r asso
iated with a dila-tion matrix A is a sequen
e of 
losed subspa
es fVjgj2Z of L2(Rn) whi
h satisfy:P1 V j � V j+1 for ea
h j 2 Z,P2 g(x) 2 V j () g(Ax) 2 Vj+1 for ea
h j 2 Z,P3 Tj2ZV j = f0g,P4 Sj2ZV j is dense in L2(Rn), andP5 there exist fun
tions '1; : : : ; 'r 2 L2(Rn) su
h that the 
olle
tion of latti
e translatesf'i(x� k)gk2Zn; i=1;:::;rforms an orthonormal basis for V0.If these 
onditions are satis�ed, then the ve
tor fun
tion ' = ('1; : : : ; 'r)T is referred to asa ve
tor s
aling fun
tion for the MRA.The usual te
hnique for 
onstru
ting a multiresolution analysis is to start from a ve
torfun
tion ' = ('1; : : : ; 'r)T su
h that f'i(x � k)gk2Zn; i=1;:::;r is an orthonormal system inL2(Rn), and then to 
onstru
t the subspa
es V j � L2(Rn) as follows. First, let V0 be the
losed linear span of the translates of the 
omponent fun
tions 'i, i.e.,V0 = spanf'i(x� k)gk2Zn; i=1;:::;r: (4.1)Then, for ea
h j 2 Z, de�ne V j to be the set of all dilations of fun
tions in V0 by Aj, i.e.,V j = fg(Ajx) : g 2 V0g: (4.2)If fV jgj2Z de�ned in this way forms a multiresolution analysis for L2(Rn) then we say thatit is the MRA generated by '.



MULTIWAVELETS IN Rn 13Example 4.2. In one dimension, the box fun
tion ' = �[0;1) generates a multiresolutionanalysis for L2(R). This MRA is usually referred to as the Haar multiresolution analysis,be
ause the wavelet basis it determines is the 
lassi
al Haar system f2n=2 (2nx � k)gn;k2Z,where  = �[0;1=2) � �[1=2;1).Gr�o
henig and Mady
h [GM92℄ proved that there is a Haar-like multiresolution analysisasso
iated to ea
h 
hoi
e of dilation matrix A and digit set D for whi
h the attra
tor Q = KDis a tile. In parti
ular, they proved that if Q is a tile then the s
alar-valued fun
tion �Qgenerates a multiresolution analysis of L2(Rn) of multipli
ity 1. By extension of the one-dimensional terminology, this MRA is 
alled the Haar MRA asso
iated with A and D. Notethat the fa
t that f�Q(x� k)gk2� forms an orthonormal basis for V0 is a restatement of theassumption that the latti
e translates of the tile Q have overlaps of measure zero. Further,�Q is re�nable be
ause Q is self-similar and be
ause the latti
e translates of Q have overlapsof measure zero.We will 
hara
terize those ' whi
h generate multiresolution analyses in the followingtheorem. To motivate this result, note that property P2 is a
hieved trivially when V j isde�ned by (4.2). Moreover, property P5 is simply a statement that latti
e translates of' are orthonormal. It 
an be seen ([CHM99℄) that the fa
t that ' has orthonormal latti
etranslates implies that property P3 is also automati
ally satis�ed. Thus, the main problem indetermining whether ' generates a multiresolution analysis is the question of when propertiesP1 and P4 are satis�ed. One ne
essary requirement for P1 is 
lear. If ' does generate amultiresolution analysis, then P1 implies that 'i 2 V0 � V1 for i = 1; : : : ; r. Sin
e P2 andP5 together imply that fm1=2 'j(Ax�k)gk2Zn; j=1;:::;r forms an orthonormal basis for V1, ea
hfun
tion 'i must therefore equal some (possibly in�nite) linear 
ombination of the fun
tions'j(Ax � k). Consequently, the ve
tor fun
tion ' must satisfy a re�nement equation of theform '(x) = Xk2Zn 
k '(Ax� k) (4.3)for some 
hoi
e of r� r matri
es 
k. Sin
e we only 
onsider the 
ase where the fun
tions 'ihave 
ompa
t support and sin
e ' has orthonormal latti
e translates, this implies that only�nitely many of the matri
es 
k in (4.3) 
an be nonzero. Hen
e, in this 
ase the re�nementequation in (4.3) has the same form as the re�nement equation (3.1).Theorem 4.3. Assume that ' = ('1; : : : ; 'r)T 2 L2(Rn; C r) is 
ompa
tly supported and hasorthonormal latti
e translates, i.e.,
'i(x� k); 'j(x� `)� = Z 'i(x� k)'j(x� `) dx = Æi;j Æk;`:Let V j � L2(Rn) for j 2 Z be de�ned by (4.1) and (4.2). Then the following statementshold.(a) Properties P2, P3, and P5 are satis�ed.(b) Property P1 is satis�ed if and only if ' satis�es a re�nement equation of the form'(x) = Xk2� 
k '(Ax� k) (4.4)
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es 
k and some �nite set � � Zn.(
) If rXi=1 j'̂i(0)j2 = rXi=1 ����Z 'i(x) dx����2 = jQj = 1; (4.5)then Property P4 is satis�ed. If ' is re�nable, i.e., if (4.4) holds, then Property P4 issatis�ed if and only if (4.5) holds.Note that the assumption that 'i is square-integrable and 
ompa
tly supported impliesthat 'i 2 L1(Rn), so '̂i(0) = R 'i(x) dx is well-de�ned.Theorem 4.3 generalizes a result of Cohen [Coh90℄, whi
h applied spe
i�
ally to the 
aseof multipli
ity 1 and dilation A = 2I. Cohen's estimates used a de
omposition of Rn intodyadi
 
ubes, making essential use of the fa
t that the uniform dilation A = 2I maps dyadi

ubes into dyadi
 
ubes. However, this need not be true for an arbitrary dilation matrixA, so this parti
ular de
omposition is no longer feasible. Instead, the proof in [CHM99℄uses a de
omposition based on the tile Q and the asso
iated Haar multiresolution analysisdis
ussed in Example 4.2. One of the key observations lies in 
ounting the number of latti
etranslates of Q whi
h lie in the interior of a dilated tile AjQ, j � 1. The fa
t that Q isself-similar 
ombined with the fa
t that translates of Q tile Rn with overlaps with measurezero implies that AjQ is a union of exa
tly mj translates of Q, with ea
h su
h translate lyingentirely inside AjQ (but not ne
essarily in the interior of AjQ). It 
an be shown that theratio of the number of those translates Q+k that interse
t the boundary of AjQ to the totalnumber lying inside AjQ 
onverges to zero.We 
on
lude by showing in Figure 2 a pair of wavelets asso
iated to a MRA obtained bynumeri
ally solving the \a

ura
y 2" 
onditions given in [CHM98℄ to obtain the 
oeÆ
ients
k for a s
aling ve
tor ' : R 2 ! R 2 with orthonormal latti
e translates that is re�nablewith respe
t to a quin
unx dilation matrix (these numeri
al estimates were obtained byA. Ruedin). Using the results outlined in this paper, one 
an prove that these 
oeÆ
ientsyield a 
ontinuous s
aling ve
tor whi
h generates a MRA whose \mother wavelets" are thosepi
tured in Figure 2. 5. A
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