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ABSTRACT. For a g-regular Multiresolution Analysis of multiplicity r with
arbitrary dilation matrix A for a general lattice ' in R™, we give necessary
and sufficient conditions in terms of the mask and the symbol of the vector
scaling function in order that an associated wavelet basis exists. We also show
that if 2r(m — 1) > n where m is the absolute value of the determinant of
A, then these conditions are always met, and therefore an associated wavelet
basis of g-regular functions always exists. This extends known results to the
case of multiwavelets in several variables with an arbitrary dilation matrix A
for a lattice I'.

1. INTRODUCTION

The concept of Multiresolution Analysis (MRA) due to Mallat [Mal89] and Meyer
[Mey92] provided the first systematic way to construct orthonormal wavelet bases
of £L?(R) (i.e., orthonormal bases generated by translations and dilations of a single
function). They showed that for every MRA there exists an associated orthonormal
wavelet basis. The rich structure of MRA is generated by another function (the
scaling function) that satisfies a certain self-similarity condition. The problem of
constructing orthonormal wavelets was then shifted to the problem of constructing
MRAs. Using this structure, Daubechies [Dau88] was able to prove the existence
of compactly supported orthonormal wavelets with arbitrary regularity on the line.
After these results, the theory was generalized to different directions in the search
for better wavelets bases with prescribed properties. In particular, the concept of
MRA was extended in higher dimensions, with dilation matrix 27,. In that case,
2™ —1 wavelets are required to generate the basis. The use of dilation matrices other
than 27, allowed the construction of wavelet bases using fewer wavelets. A further
generalization consists in considering MRAs generated by a finite number of scal-
ing functions. The wavelets associated to these MRAs are known as multiwavelets.
There is an extensive literature in multiwavelets; see for example [Alp93], [GLT93],
[GHM94], [HC96], [HSS96], [CDP97], [Ald97], [JRZ99], [Cal99] and [CHM99]. Fi-
nally the lattice Z™ can be replaced by any general lattice in R”. For each of these
generalizations it is important to know if and under which conditions an associated
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wavelet basis exists. This problem has been studied for particular cases of impor-
tance in [Gro87], [Mey92], [Che97], [Woj97], [AK97] and [DS97], but none of these
provide a treatment valid for all generalizations. In this paper we are concerned
with g-regular multiwavelets (see Definition 2.2). We give necessary and sufficient
conditions in terms of the mask and the symbol of the scaling function for the exis-
tence of an associated wavelet basis. We prove these results for the very general case
of orthonormal regular multiwavelets in higher dimensions for an arbitrary dilation
matrix A for a lattice I'. These wavelets are associated to an MRA of multiplicity
r (i.e., r scaling functions). In particular we show that if a wavelet basis exists,
then it is required to have (det(A) — 1)r wavelet functions. We further prove that
if a regular MRA of multiplicity r in R” is given and 2r(det(A) — 1) > n, then the
necessary and sufficient conditions hold and a set of regular multiwavelets always
exists. The regularity of the wavelets is at least of the same order as the regularity
of the scaling functions.

2. LATTICES, TILES AND MULTIRESOLUTION ANALYSIS

Let T be an arbitrary lattice in R” (i.e., I' = R(Z") with R any invertible n x n
matrix with real entries), and let T denote the dual lattice, that is T= (R*)~Yz").
(Here * denotes transpose conjugate.) Now let X and K be fundamental domains
for these lattices e.g., K = R([0,1)") and K= (R*)=1([0,1)") and set k = |det(R)].

Let A be a dilation mairiz for T, i.e., A(T) C T and every eigenvalue A of A
satisfies |A| > 1. Then A* is a dilation for T. The determinant of a dilation matrix
for a lattice is always an integer and its absolute value is the number of cosets of
the quotient group T'/A(T). A digit set for A and T is any set of representatives of
this group.

Let us call B = A~! and m = |det(A)|. Given a digit set D = {dg,...,dm_1}
for A and T, the set @ = {3°72, A=*%¢, : & € D} is compact and always satisfies
(see [GM92], [Hut81]) that @ + T = R” and the self-similarity condition

m—1

AQ)= ) 2+d..

s=0
The measure of Q is equal to the measure of the fundamental domain K of T', if and
only if @ N (Q + k) has measure zero for every k € T'\ {0}. In that case Q is a tile
in the sense that the T-translates {Q + k}rer cover R” with overlaps of measure
zero. For a given dilation matrix it is not always true that there exists a digit set
with the property that Q is a tile. (A counterexample was found in [Pot97].)

In this paper we will assume that a digit set D for A and I exists such that Q
is a tile, i.e. the measure of Q is k. Without loss of generality we will assume that
dy = 0.

We will denote by 'y, the coset AT +dp, h=0,...,m—1.

We will also assume that a digit set D= {70,--.,¥m—1} for the matrix A* and
the lattice I' exists, such that the set Q = Do (A% ke & € D} has measure

1/k. Consequently, Q is compact, tiles the space by [-translates and satisfies the
self-similarity condition

m—1
AQ)=J e+
=0
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The systems {ﬁ 6_2””'“}761: and {y/k e~27* @}, 1 are orthonormal bases of
£?(Q) and LQ(é) respectively.

2.1. A matrix of exponentials. The following lemma, that we will need later, is
a consequence of known orthogonality relations between characters of a group. We
will give a direct short proof here.

Lemma 2.1. Let A be a dilation matriz for a lattice T, with |det(A)| = m. If D
and D are digit sets for A and A*, respectively, then the m X m matriz © defined
by

1 -1
0 = {_6—27r2(A d~'y)}
\/E (d)eDxD

15 unitary.

Proof. For functions f,g : D — C we define the symbol [f,g] = >, p f(d) m
We consider in D the group operation from T'/A(T). If now for each v € D we
consider f, to be the column v of ©, i.e. f,(d) = \/%e_zm(A_ld'V),d € D, we will
show that [f,,, fy,] = 61,+,. Note that by the definition of f,, f,(—d) = f,(d) and
also f,, = fy, if and only if y; = 3.

Now fix any dg € D and consider

f%(do [f%:f% Z f% dO f% )f% Z S d0+d)f72( )

deD deD

= Z f% f% d dO Z f% sz dO) f72( ) - f72(d0)[f711f72]'
deD deD
Then (fy, — fv.)(d)[f+:, fro] = 0 for each d € D. This shows that if 91 # 72, then

[fr1, Fra] = 0. Otherwise, if y1 = yo, then [£,,, f1.] = Y 4ep 1Fn (D)° = D% 1,
which completes the proof. O

2.2. Multiresolution Analysis. A Multiresolution Analysis (MRA) of multiplic-
ity r assoclated to a dilation matrix A and a lattice I' is a sequence of closed
subspaces {V;};jez of £L%(R") which satisfy:

P1 V; C V41 for each j € Z,

P2 g(z) € V; < g(Ax) € V;41 for each j € Z,

P3 (1 V; = {0},
JEL

P4 |J V; is dense in £*(R"), and
JEL

P5 there exist functions ¢1,...,p, € L%(R™) such that the collection of lattice
translates {¢;(2 — k)}rer,i=1,. . forms an orthonormal basis for V.

If these conditions are satisfied, then the vector function ¢ = (¢1,...,¢,)T is
referred to as a scaling vector for the MRA.

Definition 2.2 ([Mey92]). Let ¢ be a non-negative integer A function f on R" is
q-regular if f is in the class C'? and |a = f( )| (1+| I foreach £ = 0,1,2,...

and each multi-index o with |a| < ¢. A g¢-regular MRA is an MRA where the
scaling vector is g-regular.
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Given an MRA we define, as usual, the subspaces W; = V;110V;, j €7, i.e.,
W; is the orthogonal complement of V; in V;1. We seek a set of functions in V;
whose lattice translates form an orthonormal basis of Wy, i.e., a set of functions
fi,..., fi € V1 such that the system {f;(z — k) : i =1,...,1, k € T} is complete
and orthonormal in Wy. If such a set of functions exists, then the MRA structure
will guarantee that the set {mj/Zfi(Aj:B —k)y:i=1,...,1, j€Z, k € T} is an
orthonormal basis of £%(R"). We will show that it is necessary to have exactly
(m — 1)r functions to generate the basis and that a set of functions with this
property always exists provided that 2(m — 1)r > n. Note that in this case (since
Vo L Wyoand V1 = Vo@Wy) the system {g;(z—k), fo(z—Fk): i=1,...)r, s=
1,...,m—1, k €T} forms an orthonormal basis of V.

Therefore, the problem reduces to completing the set of vectors {y;(x — k) : i =
1,...,7, k €T} to an orthonormal basis of V.

The following proposition, that we will need later, is an immediate generalization
of the one-dimensional case (see for example [AK97]).

Proposition 2.3. The system {p;(x — k),i = 1,...,r, k € T} is orthonormal if
and only if Zvef Slw+y)e*(w+7) =kl

3. CHARACTERIZATION OF THE SUBSPACE V;

From now on we assume that an MRA of multiplicity r associated to a dilation
matrix A and a lattice I' in £2(R"), with scaling vector ¢ = (¢1,...,¢,)T €
L?(R™ Cr), is given. From the properties of the MRA we see that the system

(migi(Az—k):i=1,...,rkeT}

form an orthonormal basis of V. This means that for each f = (f1,..., f-)? with
Ji € V1,i=1,...,r there exists a unique sequence o = {ay }rer of 7 X r matrices
with complex entries such that

(3.1) fe) =" arp(Ax — k).

kel

The (s,t) entry of ay is a}' = m(fs(z), pi(Ax — k)), and 3", last]? < 400 for
s,t=1,...,r.

Let f denote the Fourier Transform of the vector f (e, f=(fi, -, f)7, where
fs(w) = [en fs (z)e~2"wdg). Then equation (3.1) can be written in the Fourier
domain as f(w) = M;(B*w)¢(B*w), or f(A*w) = M;(w)p(w) with Mf(w) =
1 Z a —27nik-w
m 2ikel ¥k€ : _ _

Note that M; € L*(K,C""); that is, M; = (mjet)s,tzl,...,r and m}t isal
periodic function for s,t =1,...,r. We will call M; the symbol of f.

It is clear that the converse also holds, that is, if M € £?(K,C"%"), then the

function g defined by §(w) = M (B*w)¢(B*w) has components g; € Vi. Tt is
. 2 _ 1 2 .

straightforward to see that ", ||mjf||22(’~c) = m||fs||22(mn). The following propo-

sition summarizes the results just obtained:

Proposition 3.1. Assume f = (f1,..., )T € L*(R*,C"). Then f, € V1, s =

1,...,7, if and only if there exist I'-periodic and K-square-integrable functions mjf,
s,t=1,...,r, such that f(A*w) = M;(w)p(w) with My (w) = (m;t)syt:h”yr‘
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Moreover,

r r

1 r
Hm?”y(;c) mz||fs||2c2(ﬂgn)~
s=11t=1 s=1

Note that since the system {/m ¢(Az—k), k € T'} is an o.n.b. of V1, the matrix
M; is unique defined for each f € (V1)” up to a set of zero measure. Now we see
that M; can be decomposed into the different cosets of I', that is

My = Mo+ -+ Mym_1)y with Myp(w Z ape” 2Tk,
M per,
If we define
(3.2) upn(w ZCYAk+dh mamikw with A=0,...,m—1,
\/_ker

then we obtain

6—27ridh~w —27rzdh ‘W
(3.3) Mpp(w) = WUM(A*M) and  My(w Z NG ——usp(A"W).
With this notation we have the following lemma:

Lemma 3.2. If f = (f1,..., f-)T and g = (g1,...,9-)7 with fs,g: € V1, then we
have for k and k' in T,

(3.4)

(e =Rl =B,y = [ (ij ufhw)u;h(w)) o 2mi k) g,
h=0

Proof. Let us call H the left-hand side of (3.4). Then by Plancherel’s Theorem,
changing variables and using (3.1) we obtain

H=m M;(w)e(w)p(w)* M, (w)*e—ZwiA(k_k').wdw.
R

Since the symbols of f, g are f‘—periodic and Q is a l:—tile7 we have
1= m [0 @(3 gl + )8+ )M ()oK
VEF

Using that ¢ has orthonormal I-translates and Proposition 2.3 we have

= [ (g ) (5 vt

h'=0
Now we observe that if h # A’, then

/ Mg (@) My (w)e™ 2 AG=ED @ gy = .

) e—27riA(k—k')~wdw.

To see this, note that the entries of My, are trigonometric series in which the
exponentials are of the type e=?™7% with v € I', and the entries of Mgy are
exponentials of the type e~ 2™ W with 7" € Ty Consequently, the products in the
integral will involve the exponentials

(35) 6_27ri(Ak+’y)‘w627”:(Ak1+’yl)«w’
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and since h # h', then T, N Ty, = 0. Thus Ak + v # Ak’ ++', which implies that

the exponentials (3.5) are orthogonal. Hence we have

m—1

H = mKﬁ(Z th(w)M;h(w)> e—27ri(k—k’).A*wdw’
Q

h=0

and using (3.3) and changing variables again we obtain

m—1
H== (Z Ufh(w)u;h(w)) e 2milth=kDw g,

mJja (@) \ 2

Now since A*(é) = U;n:?)l (é + i), we obtain that

m—1
H= nﬁ(E Ufh(w)UZh(w)> e 2milk=k)w g,
Q h=0

4. MAIN RESULTS
Let us now consider m functions gg, ..., gm-1 € (V1) and set

M, =M, and wu;,=wuyyp for h=0,...,m—1

We associate to the functions gy, ..., gm—1 the following two block matrices:
(4.1) Ulgor - gm-)) = [ wn(@) |, pmo s
and

M(g0,~~~,gm—1)((-"‘) = [ MJ(W+B*7h) ]j,h:O,...,m—l’

where as before B = A~!. Note that ¢4 and M are matrix-valued f—periodic
functions (i.e., U(w), M(w) € (C™*")™*™ for each individual w and U(w +7) =
U(w), M(w+75) = M(w), forall§ € f) It is easy to see that the matrix M is
unitary a.e. if and only if for each ¢, j = 0,...,m — 1 we have

3

M;(w + B* ;) M;(w + B*yg) = 6 Irx, forae weR".

k=0

A similar observation applies to U. With this notation we have the following
proposition. The proof is an adaptation of [Woj97], Prop. 5.9, for this more general
context.

Proposition 4.1. If S; = {g;s(z—k): j=0,...,0—-1, s=1,...,r, keTl},
then we have:
(1) The system Sy is orthonormal if and only if the block vector (uon)nr=o0,.  m—1
satisfy ET:_OI uopty, = I ae.
(2) For each | < m, the system S; is orthonormal if and only if the first |
. . m—1 *
block-rows of the matriz U are block orthonormal a.c. (i.e., Y ., Uipui, =
(SZ"]'IT a.e., i,j = 0, ceey l— 1)
(3) The system Sp, is an orthonormal basis for V1 if and only if the block matriz
U(go, ..., gm—1) is unilary a.e.
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Proof. Define the r x r matrix

Hpq = [gps (x — k), g2 (2 — kl)>]syt:1y,,,yr .

Using Lemma 3.2, we see that the entries of the matrix H,, are the Fourier coeffi-
cients of order k — k' of the T'-periodic function \/EZZ:Ol uph (w)uy, (w).

For the proof of part (1) let us consider p = ¢ = 0. If the function go has orthonor-
mal translates, then Hgg = 6y I, and this is equivalent to ZZ:Ol upp(w)ug, (W) =
I, for ae. w.

For part (2) we see that H,, = ép¢ 1, if and only if E;nz_ol uph(w)uzh(w) = bpel,.

Let us now prove part (3). For this, from part (2) we see that if the functions
go, - - -, §gm—1 have orthonormal translates, then the matrix ¢4 has to be unitary. So
we only need to see if the system S,, is complete. Assume not, and let § € V1 be
a function such that

(9,9js(x —k))=0 Vj=0,....m—-1, s=1,....,r, kel.
If g = (3,0,...,0)7, then §(A*w) = M,(w)@(w) with M, € (£2(K))"*". The ma-
trix M, defines a block vector u, in the same way that the block vector u, was
defined by the matrix M,. The block vector u, is block orthogonal to each of the
block vectors (uio, . . ., Ui(m—1)) for s =0,...,m—1. That is, u; = 0, which implies

g=20. O

As a consequence of Proposition 4.1, we see that it is necessary to have mr
functions to generate a basis of V1 by orthogonal lattice translates. The MRA
provides r of these functions (the scaling vector), and these generate the space
Vy. The remaining (m — 1)r will generate the basis of Wy and, consequently, the
wavelet basis when scaling is allowed. Thus, a corollary of Proposition 4.1 1s that
a wavelet basis associated to our MRA requires (m — 1)r functions. In terms of
the unitary matrix U, this translates to the fact that the MRA provides the first
rows and the wavelets the other (m — 1)r.

4.1. Necessary and sufficient conditions for the existence of a wavelet
basis. We will now see equivalent conditions for the existence of a wavelet basis.

If ¢ = (¢1,...,0-)7 € L2R",C") is the scaling vector for an MRA, then ¢
satisfies a refinement equation of the form

p(z) = > crp(Az — k),

kel

for some matrices ¢ in C"™*". The symbol of this refinement equation is the I-

periodic matrix-valued function My € £%(K, C™*") defined by

1 .
My(w) = Ezcke_””k'w, w e R™.

kel
The function ¢ is the unique function satisfying ¢(A*w) = My(w) g(w),w € R™.
Now suppose that My, ..., My,_1 are in £2(K, C™%7). Let us write these func-
tions together with the function My as

1 .
MZ(W) = EZCg’ke_zﬂlk'w, £=0,....m—1.

kel
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In particular set co ;, = cx. Let ¥1,...,%¥m_1 be the vector functions in £2(R™, C")
whose Fourier transforms are defined by the formula

Pe(A*w) = My(w) p(w), =1,...,m—1.

We seek necessary and sufficient conditions on M1y, ..., M,,_1 such that the lattice
translates of {4y, : € =1,...,m—1,i=1,...,r} will form an orthonormal basis
for Wy. These will be formulated in terms of the matrix M(p, ¥1,...,¢¥m—1)
known in the engineering literature as the modulation matriz, and also in terms of
the matrix U (g, ¥1,...,¥m—1), known as the polyphase matriz.

Let us recall here the definitions of M and U for these particular functions:

M, Y1, Y1) = [ Mj(w + B*yn) ]j,hzo,...,m—v
where v are the digits in l~), and
U(p, 1, Pm—1) = [ujnljr=0,. m-1,

where ujp(w) = \/% dker Cj Aktd, e TR
Theorem 4.2. Let {V;}jez be an MRA for L2(R™) of multiplicity r. Then, using
the notation above, the following statements are equivalent:

(a) {Yei(x — k) rer i=1,.. r =1, m—1 forms an orthonormal basis for Wy.

(b) U is unitary a.e.

() M is unitary a.e.

(d) The matriz coefficients {c;t}i = 0, m—1,ker satisfy

1
4.2) — clkc = 6o, 6ij Irxr forevery vET andi,j=0,...,m—1.
k—Av J
m
kel

Proof. The equivalence of (a) and (b) has been proved in Proposition 4.1.
To show the equivalence between (b) and (¢) we will use Lemma 2.1. First, recall

that by (3.3),

m—1 e—27ridz«w

Mj((.u) = Z WUJ'I(A*W) with UJI \/—ZCJAS-l'dZ

sel’

—2mis-w

NowletOShSm—land'yEf). We can write

m—1 e—27rzdz (w+B*7)
up (A" (w + B™7))

My (w + B™7)
=0

m—1 —2mi(d;-B*y)
e .
4. — —2mid; w A* )
- LT ( ual “))

For 0 <t < m — 1 consider the sum

e—27ri((d1 —dy)-B*v)

m—1
27i(d;-B* 'y)Mh (.d + B* )e—Zm'dlwuhl(A*w).
> I

yeD

Now we use Lemma 2.1 to obtain

1 ) . .
LS B o 4 B = (A%,
m
veD
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and therefore
627Ti(dt -B*v)

vm

Equations (4.3) and (4.4) show that U is unitary a.e. if and only if M is unitary
a.e., which shows the equivalence between (b) and (c).

Now we will prove that (c) is equivalent to (d). Let us first prove that if M is
unitary, then the coefficients have to satisfy equation (4.2). Since M is unitary, we

(44) Uht(w) — Z eQm'(dt»B*w)Mh(B*w + B*’}/).

veD

have
Z M;(w + B*y) M]T“ (w+ B™y) = b;jI,x» forae weR".
veD
Writing out the matrix products, this means
m2 Z Z Z il m —2mi((k=k')-(w+B*)) _ 580 for ae. w € B7,
epD t=1 kk'el

Changing variables and the order of summation (k — &' = ¢) we obtain

st “ht —27i(£-B*y) —2mi(lw) _ .. n
m2 E 2 Cik € (k—r) 5 ) e e = &;56,p forae weR".
t=1 k,Lel veb

Considering { = Au+d, u € ', d € D, interchanging the order of summation, and
noting that e=27i(44B*7) = 1 we have for a.e. w € R" that

(4.5)
—27i(d-B* —2mi(Autd-
E Z Z ek S lhmau—a) Ze BT | gmamilAntde) = 66,
k el deD t=1 veb
Now, note that Eveﬁ o—2mi(d-B*y) — E 5 e—2mi(d-B*y) | c—2mi(0-B*7)  Since we

assume that 0 € D, this is just the dot product between rows d and 0 of the unitary
matrix {\/%6_2“(‘1‘3 7)}deD,vef) (see Lemma 2.1) and therefore the expression in

the square brackets is simply m gq. Therefore (4.5) becomes

1 . st _ht —2mi(u-A%w n
EZ [Z (Zczi C?(tk_Au))] e ( ) = 0ij6sp for ae.w € R™.

uel Lkel’ \i=1

Looking at the last equality, and interpreting it as the Fourier expansion of a
periodic function, we have that

1 . S “ht 1 *
EZ (E cik iy Au)) = boubdijésn, or EZ Cik Cj(k—au) = Ooubijlrxr,

kel \t=1 kel

which proves our claim. For the converse, note that all steps are reversible. O

Thus, once an MRA has been found, we can construct a g-regular wavelet basis
for £%(R") if we can construct a particular unitary matrix function M(w). For
each w, the matrix M (w) is of size rm X rm, and the first r rows of this matrix
are known. The g-regularity of ¢ implies that these first » rows are C'*® periodic
functions. If the remaining rows can be completed so that M (w) is C* and unitary
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a.e., then we can find the wavelets that generate the wavelet basis. The smoothness
of M will imply the g-regularity of the wavelet functions.

The question of whether this completion can always be accomplished is a very
difficult open question. The single function multivariate case, with dilation 21, is
solved by the fundamental Lemma of Grochenig [Gro87].

We will see in the next section that if (2m — 2)r > n, then M(w) can always
be completed so as to be smooth and unitary a.e. However, even in this case
it 1s usually difficult to complete the matrix in such a way that the associated
wavelets have some specific properties. For example, it is not known whether,
given a compactly supported vector scaling function, the matrix can be completed
so that the wavelet is compactly supported.

4.2. The matrix completion. In this section we will see that if 2(m—1)r > n and
given r vectors v; € C*® (7~C, Cm’"), such that {v;(w) : ¢ =1,...,r}is an orthonormal
set for all w € R™, then there exist vectors v; € C® (IE,C”"),Z' =r+1,...,mr,
such that {v1(w),...,vmr(w)} is an orthonormal basis of C™" for all w € 7%, or,
equivalently, the matrix with rows v} (w) is unitary for all w € R”™. This result is
a consequence of a proposition due to Ashino and Kametani [AK97] that extends
Grochenig’s Lemma to the case of multiplicity r.

Proposition 4.3 ([AK97]). Let X be a real, compact, C* manifold with dimX=n,
and let s,n and d be positive integers satisfying 2(s — d) > n.
Then, for all C*°-mappings fi: X — C*, 1 =1,...,d, having the property

(fk(:t:),fl(:c)):ékl for k,le{l,...,d},z € X,

there exist C'™°-mappings fi : X — C*, I=d+1,...,s, with the property
(fe(2), fi(2)) = bi for k,le{l,...;s},z e X.

Now we will apply this proposition to prove the existence of a wavelet set.

Theorem 4.4. For each g-regular MRA of R™ of multiplicity r with general di-
lation A such that 2(|det(A)| — 1)r > n, there exists a wavelet set containing
(|det(A)| - 1)r q—regular functions.

Proof. Set X = 7~C, d = r and s = mr in Proposition 4.3 and define v; (w) to be the
row j of the block vector (uwo(w), el uw(m_l)(w)), where u,p is the matrix-valued
function defined in (3.2) and ¢ is the scaling vector. Since Proposition 4.1 (1) holds,
the vectors v;, j = 1,...,r, are orthonormal and we can apply Proposition 4.3 to
obtain (m — 1)r vectors v;, j = r+ 1,..., mr, to construct a unitary matrix with
rows vj(w) for each w € R™. This unitary matrix defines a block unitary matrix
U and consequently a block unitary matrix M. Therefore by Proposition 3.1 the
vector functions 1, ..., ¥m_1 constructed as in (4.1) form a wavelet set. O
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