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Abstract 

Brandt, J., C. Cabrelli, and U. Molter, An algorithm for the computation of the Hutchinson distance, Information 
Processing Letters 40 (1991) 113-117. 

A simple linear-time algorithm for the computation of the Hutchinson metric in the case of finite one-dimensional 
sequences is presented. The algorithm is derived by way of a proof demonstrating that in this case, the Hutchinson metric 
can be expressed as the sum of the absolute values of the partial sums of the pointwise difference of the input measures. 
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There are many settings in which it is desired to compare two probability measures. One currently 
important setting is in approximation of a measure by a fractal model, for instance an iterated function 
system [l]. Here, one would like to compare the approximation to the desired measure in order to 
determine the relative fidelity. The Hutchinson metric [2], defined over the space of probability 
measures, has been suggested to accomplish this comparison. However, practical computation of the 
Hutchinson distance is difficult because it involves optimization over a large space of functions. We have 
found that in the case of finite one-dimensional sequences, the optimization reduces to a simple 
linear-time computation. This algorithm should have immense practical value in assessing the relative 
similarity of two measures. 

Let (X, d) be a metric 
distance between p and v 

space and p and v two probability measures on X, then the utchinson 

is defined by 
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where 

Lip,=(f:X+R:Lip(f)<l), 

and 
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Lip(f) = sup 
If(x) -f(Y) 1 

XfY d(x, Y) ’ 

It can be shown that Lip, is a convex set. 
The supremum in (1) can be taken over a smaller set by observing that /J dp - jxf dv has the same 

value for f as for f + c for any c E R. Therefore we can consider the equivalence relation 

f-g - f-g=const. 

and the supremum in (I) will be the same if it is taken over any subset of Lip, containing at least one 
function in each equivalence class. 

3. ensional se ces 

Let us now consider the discrete one-dimensional case. 
and let 

= p=(k ,,..., p,):O<pi, i=l,..., n and 

Suppose X=(1,..., n} and d(i, j) = 1 i-j 1 

?l 

c cLi= 1 

be the set of probability vectors. 

dH(p, V) = SUP ifipi- ifivi: Ifi-fi I < Ii-jl, 1 &ja 
f i=l i=l 

One can show that the constraints in (2) are equivalent to 

Ifi-fi+l I < 1, l<i<n- 1. 

Defining ‘17 = p - v, (2) can be rewritten as 

dH(CL9 4 = sup ifilli: lfi-fi+i 
f i i=l 

Now consider the hyperplane, P, defined as 

P= x= (x,,...,x,): 
i 

It can be shown that Lip, n P contains exactly 
be rewritten as 

dH(p9 ‘) = “P i firli: I fi -fi+l 
f i=l 

I Gl,i=l,..., n-l . 
i 

(2) 

(3) 

one element of each equiva!ence class, therefore (3) can 

I Gl,i=l,..., n-l, ~fi=O . 
i=l 1 
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Similarly, if P, is defined as 

P,=(x=(x I,...&): x1 =o), 

then Lip, n P, also contains exactly one element of each equivalence class. In this case, (3) yields 

d&, V) = sup cfjqj: Ifi-fi+i I < 1, i= l,..., n- 1, fr =0 . 

f i i= 1 I 

Hence, to compute this distance, one can simply solve the linear programming problem where the cost 
function, Cy=,qixi, is maximized on the vectors satisfying 

i Xj=O; -l,<xi-xi+@, l,<i<n-1. (4) 
i=l 

It is easy to show that these inequalities describe a convex set (a polyhedron) with 2”-’ vertices. 
Therefore, a naive solution such as application of the simplex algorithm would be expected to require 
exponential time. However, the constraints in (4) contain structure which can be exploited to reduce the 
search to linear time. To show this, we shall prove that &..,(p, V) for finite sequences can be expressed in 
a much simpler form, from which the distance computation algorithm immediately follows. 

1. Using the notation above, if p and v are in M, then the Hutchinson distance between p and v 

n-l 

k=l 

where 
k 

Yk = C (Pi- vi)* 
i=S 

Collect the constraints of (4) into an n X n matrix, 

V= 

11 l... 1 
1 -1 0 0 
0 1 -1d:: 0 
. . . . . . . 

d : ::ii-i 
V is a nonsingular matrix and if we call its rows vO, vi, . . . , v,_,,thenthesetofvectors~={v,,...,v,_,~ 
form a basis of the hyperplane P because each vi (i # 0) is in P, they are linearly independent, and the 
dimension of P is n - 1. 

Suppose avector x=(x,,..., x,) is in P, then it can be written in the basis 9 as 

n-1 k 

x= c akvk with ak= xxi. 
k=l i=l 

In particular, since p and v are in _&, then 47 = p - v is in I” Therefore, in the basis LB, 

k=l 
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where 9’k is defined above. For each f, we then have 

where the symbol 
Since (f, 77) < 

n-l n-l 

z.q(f, qJ= CY k(fk -fk+A 
k=l 

k=l 

( , ) denotes the usual scalar product. 

Kf, 17) I9 

n- 1 n-l 

G c _(fk -fk+J G c I&IIfk--fk+l 1. 
ik=l k=l 

n-l 

(f&G c lql 
k=l 

and d&, V) is therefore bounded as 

To complete the proof, we now exhibit a function f” E Lip, such that 
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(5) 

k=l 

The construction of f” is recursive: 

1. Let fp = 0. 

2. Assume that f: has been chosen and let fF+, =fi” - sg(Yj), w h ere sg(x) is the function taking the 
values 1, 0 or - 1, when x is positive, zero or negative respectively. 

To demonstrate that (6) holds, form the scalar product. 

n-l M - ! n-l 

(f09 77) = C-%<fk -fk+,)= Cy@g(&)= c IqJ. 0 
k=l k=l k=l 

It follows from the theorem that in order to determine the Hutchinson distance between p and v we 
need only compute Yk for k = 1,. . . , n - 1. Also, the proof of the theorem yields a method to calculate 
all the vectors where this maximum is reached. If yk # 0 for k = 1,. . . , n - 1, then only one vector 
realizes this maximum, and it is the one given by the construction in the theorem. But if any L?‘~ = 0, then 
there are infinite vectors which realize the maximum and they can be found choosing fk+ 1 to be any 
value between fk - 1 and fk + 1. These observations are summarized in the following corollary: 

Under the hypothesis of the theorem, 

n-l 

k p - 4 = c lyk I =&,(p, v), 
k=l 

(1) hasuniquesolutionin Lip,nP, iff Yk#O fork=l,...,n-1, 
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(2) all the solutions in Lip 1 n P, are gitlen by: 

x, = 6, 
Xi+* =Xi - sg(~i) -I- S(Yi>ai with 1 ai I < 1. (Here the symbol 6 stands for the delta function.) 

Note. Each solution in Lip, can be decomposed as a solution in Lip, f~ P, plus a vector of the form 
(c , . . . , c) with c E II% 

4. Conclusions 

In the case of finite one-dimensional sequences, the Hutchinson distance can be computed by 
summing the absolute value of the partial sums of the difference of the two measures and therefore 
requires linear time. This result does not extend to higher dimensions because the constraints do not 
form a basis in the hyperplane P (even though they gener;ite P, they are not linearly independent). 
However, there are many potential applications of the one-dimensional Hutchinson metric, not only for 
fractal approximation, but for more general comparison problems which arise in such fields as signal 
processing, statistics, and pattern recognition. 
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