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ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to pro-
vide the engineering, mathematical, and scientific communities with significant
developments in harmonic analysis, ranging from abstract harmonic analysis to
basic applications. The title of the series reflects the importance of applications and
numerical implementation, but richness and relevance of applications and imple-
mentation depend fundamentally on the structure and depth of theoretical under-
pinnings. Thus, from our point of view, the interleaving of theory and applications
and their creative symbiotic evolution is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flourished,
developed, and deepened over time within many disciplines and by means of
creative cross-fertilization with diverse areas. The intricate and fundamental rela-
tionship between harmonic analysis and fields such as signal processing, partial
differential equations (PDEs), and image processing is reflected in our
state-of-the-art ANHA series.

Our vision of modern harmonic analysis includes mathematical areas such as
wavelet theory, Banach algebras, classical Fourier analysis, time-frequency analy-
sis, and fractal geometry, as well as the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with
some basic problems in digital signal processing, speech and image processing,
geophysics, pattern recognition, biomedical engineering, and turbulence. These
areas implement the latest technology from sampling methods on surfaces to fast
algorithms and computer vision methods. The underlying mathematics of wavelet
theory depends not only on classical Fourier analysis, but also on ideas from
abstract harmonic analysis, including von Neumann algebras and the affine
group. This leads to a study of the Heisenberg group and its relationship to Gabor
systems, and of the metaplectic group for a meaningful interaction of signal
decomposition methods. The unifying influence of wavelet theory in the afore-
mentioned topics illustrates the justification for providing a means for centralizing
and disseminating information from the broader, but still focused, area of harmonic
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analysis. This will be a key role of ANHA. We intend to publish with the scope and
interaction that such a host of issues demands.

Along with our commitment to publish mathematically significant works at the
frontiers of harmonic analysis, we have a comparably strong commitment to publish
major advances in the following applicable topics in which harmonic analysis plays
a substantial role:

The above point of view for the ANHA book series is inspired by the history of
Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries Fourier analysis has had a major impact on the
development of mathematics, on the understanding of many engineering and sci-
entific phenomena, and on the solution of some of the most important problems in
mathematics and the sciences. Historically, Fourier series were developed in the
analysis of some of the classical PDEs of mathematical physics; these series were
used to solve such equations. In order to understand Fourier series and the kinds of
solutions they could represent, some of the most basic notions of analysis were
defined, e.g., the concept of “function”. Since the coefficients of Fourier series are
integrals, it is no surprise that Riemann integrals were conceived to deal with
uniqueness properties of trigonometric series. Cantor’s set theory was also devel-
oped because of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena,
such as sound waves, can be described in terms of elementary harmonics. There are
two aspects of this problem: first, to find, or even define properly, the harmonics or
spectrum of a given phenomenon, e.g., the spectroscopy problem in optics; second,
to determine which phenomena can be constructed from given classes of har-
monics, as done, for example, by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engi-
neering, mathematics, and the sciences. For example, Wiener’s Tauberian theorem
in Fourier analysis not only characterizes the behavior of the prime numbers, but
also provides the proper notion of spectrum for phenomena such as white light; this
latter process leads to the Fourier analysis associated with correlation functions in
filtering and prediction problems, and these problems, in turn, deal naturally with
Hardy spaces in the theory of complex variables.

Nowadays, some of the theory of PDEs has given way to the study of Fourier
integral operators. Problems in antenna theory are studied in terms of unimodular
trigonometric polynomials. Applications of Fourier analysis abound in signal

Antenna theory
Biomedical signal processing
Digital signal processing

Fast algorithms
Gabor theory and applications

Image processing
Numerical partial differential equations

Prediction theory

Radar applications
Sampling theory

Spectral estimation
Speech processing

Time-frequency and time-scale
analysis

Wavelet theory
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processing, whether with the fast Fourier transform (FFT), or filter design, or the
adaptive modeling inherent in time-frequency-scale methods such as wavelet
theory. The coherent states of mathematical physics are translated and modulated
Fourier transforms, and these are used, in conjunction with the uncertainty prin-
ciple, for dealing with signal reconstruction in communications theory. We are back
to the raison d’être of the ANHA series!

University of Maryland
College Park, MD, USA

John J. Benedetto
Series Editor

ANHA Series Preface vii
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Foreword

Argentina is well known for its strong tradition of fundamental contributions to
harmonic analysis, going back to the pioneering work of Alberto Calderón.
Researchers from around the world gathered in Mar del Plata, Argentina in 2013 for
a very successful CIMPA Research School devoted to new trends in applied har-
monic analysis. In 2017, a second CIMPA school was held at the University of
Buenos Aires, focused on aspects of mathematical analysis which have recently had
a significant impact on image and signal processing. Many of these technological
developments have relied on breakthroughs in both harmonic analysis and geo-
metric measure theory that have yielded solutions to deep theoretical problems in
these fields.

The 2017 CIMPA School gave researchers a chance to see new interfaces
between geometric measure theory and harmonic analysis, and to apply this
knowledge to real-life problems. The following eight courses were presented during
the CIMPA school, especially aimed at Ph.D. students and Postdoctoral researchers
in mathematics, signal processing, and image processing.

The following courses were taught at the school:

• Massimo Fornasier, Variational quantization of measures: An harmonic anal-
ysis approach.

• Karlheinz Gröchenig, Gabor analysis: Applications, theory, and mysteries.
• Stéphane Jaffard, Multifractal analysis based on wavelet bases: Part 1.

Mathematical foundations and p-leaders analysis.
• Pertti Mattila, The Fourier transform and Hausdorff dimension.
• Maria Cristina Pereira, Dyadic harmonic analysis and weighted inequalities.
• Pablo Shmerkin, From additive combinatorics to geometric measure theory.
• Xavier Tolsa, The Riesz transform, rectifiabilty, and harmonic measure.
• Herwig Wendt, Multifractal analysis based on wavelet bases: Part 2.

Estimation, Bayesian models and multivariate data.

ix
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The following plenary talks were also presented by leading researchers from around
the globe:

• Patrice Abry, Multivariate Self-similarity: Multiscale eigen structures for the
estimation of Hurst exponents.

• John Benedetto, Frames and some algebraic forays.
• Jorge Betancor, Hardy spaces with variable exponents.
• Emanuel Carneiro, Regularity theory for maximal operators—An overview.
• Maria Charina, Regularity of refinable functions: Matrix approach.
• Marianna Csornyei, The Kakeya needle problem for rectifiable sets.
• Laura De Carli, Many questions and few answers on exponential bases.
• Martin De Hoop, Frame-based multi-scale Gaussian beams, wavefield

approximation and boundary value problems.
• Patrick Flandrin, The sound of silence—Recovering signals from time-frequency

zeros.
• Alex Iosevich, Finite point configurations: Analysis, combinatorics and number

theory.
• Tamas Keleti, Hausdorff dimension of unions of subsets of lines or k-planes.
• Mihalis Kolountzakis, Measurable Steinhaus sets do not exist for finite sets or

the integers in the plane.
• Roberto Leonarduzzi, p-leader analysis and classification of oscillating

singularities.
• Clothilde Melot, Intertwinning wavelets or multiresolution analysis on graphs

through random forests.
• Shahaf Nitzan, The Balian-Low theorem in the finite dimensional setting.
• Carlos Perez, Borderline weighted estimates for the maximal function and for

rough singular integral operators.
• José Luis Romero, Sharp sampling density conditions for shift-invariant spaces.
• Ville Suomala, Patterns in random fractals.
• Rodolfo Torres, Smoothing properties of bilinear operators and Leibniz-type

rules.
• Yimin Xiao, Fine Properties of Gaussian Random Fields on the Sphere.

During the special days of birthday celebration, the following researchers delivered
talks on many very interesting subjects:

• John Benedetto, Super-resolution by means of Beurling minimal extrapolation.
• Luis Caffarelli, A problem of interacting obstacles.
• Ricardo Durán, Improved Poincaré inequalities in fractional Sobolev spaces.
• Eleonor Harboure, Local Calderón-Zygmund theory on proper open subsets.
• Chris Heil, Wavelets, Self-Similarity, and the Joint Spectral Radius: A

Retrospective.
• Eugenio Hernandez, Greedy algorithm and embeddings.
• Stéphane Jaffard, Wavelets on the hunt for gravitational waves.
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• Irene MartŠnez Gamba, Existence and uniqueness theory for binary collisional
kinetic models.

• Sheldy Ombrosi, Weighted endpoint estimates for commutators of
Calderón-Zygmund operators.

In this volume, we present ten articles based on the courses and plenary talks of the
2017 CIMPA school.

Our Chap. 1 is by John J. Benedetto, Katherine Cordwell, and Mark Magsino, on
the topic of constant amplitude zero autocorrelation sequences. These CAZAC
sequences play important roles in the design of waveforms for radar and commu-
nication. The authors provide a detailed analysis of the connections between
CAZAC sequences and deep mathematical results in Fourier analysis and the theory
of Hadamard matrices. This gives us a unified exposition of the theory of CAZAC
sequences and also introduces new techniques for constructing CAZAC sequences.
Another fundamental contribution is a discussion of the unpublished results of the
late Uffe Haagerup on the number of CAZAC generating cyclic N-roots, and the
connection of this proof to the uncertainty principle.

Chapter 2, by Víctor Almeida, Jorge J. Betancor, Estefanía Dalmasso, and
Lourdes Rodríguez-Mesa, is based on a course given by Betancor during the 2017
CIMPA school. Of course the Lebesgue spaces Lp and their analogous discrete
versions ‘p are ubiquitous throughout harmonic analysis, and mathematical analysis
in general. Versions of the Lebesgue spaces with a variable exponent pðxÞ were first
introduced by Orlicz in 1931. In recent years, variable exponent function spaces
have attracted new attention due to applications in fluids and related areas. In this
chapter, the authors study Hardy spaces with variable exponents, which were first
introduced by Nakai and Sawano and, independently, by Cruz-Uribe and Wang.
While the classical Hardy spaces are naturally adapted to the Laplacian operator,
the authors explain how variable-exponent Hardy spaces are associated with a more
general class of operators, and they also consider local versions of Hardy spaces
with variable exponents.

Emanuel Carneiro reports in Chap. 3 on the recent progress on the regularity
theory of maximal operators and also discusses some of the current open problems
in this area. Maximal operators are a classical subject in harmonic analysis, being
fundamental tools for the proofs of many types of results on pointwise convergence,
including the Lebesgue differentiation theorem and Carleson’s theorem on the
pointwise convergence of Fourier series, and many others. Carneiro focuses on the
classical Hardy–Littlewood maximal operator in this chapter, but while this oper-
ator is classical, the results he surveys are very recent, not to mention deep and
mathematically elegant.

Chapter 4, by Karlheinz Gröchenig and Sarah Koppensteiner, is based on a
course given by Gröchenig at the 2017 CIMPA school. The course is a broad
survey of the structure and characterizations of Gabor frames over lattices. Such
frames have been studied and applied to many scientific and engineering problems,
for many decades. Yet, as the authors explain, it is still extremely difficult to
determine whether a particular window function will generate a Gabor frame over a
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particular lattice! The various characterizations of Gabor frames over lattices all
ultimately involve the issue of the invertibility of some operator, which is an
intrinsically difficult problem. Gröchenig and Koppensteiner masterfully present the
many distinct approaches to Gabor frames in a single streamlined exposition fun-
damentally based on the Poisson Summation Formula.

In Chap. 5, Alex Iosevich considers the Approximate Unit Distance Problem,
which developed out of the Erdös unit distance conjecture, a longstanding and
extremely difficult conjecture in extremal combinatorics. The best known bound for
Erdös’ conjecture is Cn4=3, which was obtained by Spencer, Szemeredi, and Trotter
in 1984. Iosevich considers an approximate setting for this problem and shows that
in that context the bound can be significantly improved for many point sets.

Chapter 6, by Pertti Mattila, is based on the course he gave at the 2017 CIMPA
school. He surveys recent results on the Hausdorff dimension of projections and
intersections of general subsets of Euclidean space, focusing on integral-geometric
properties of Hausdorff dimension and their relations to Kakeya-type problems.
Integral-geometric properties are those related to affine subspaces of Euclidean
spaces and to rigid motions, and Mattila presents estimates of the Hausdorff
dimension of exceptional sets of planes and rigid motions, and projections onto
restricted families of planes.

María Cristina Pereyra gives in Chap. 7 an extended survey of how sparse
techniques have revolutionized the theory of dyadic harmonic analysis and
weighted inequalities. In this chapter, based on the course she gave at the 2017
CIMPA school, Pereyra begins with detailed background on the Hilbert transform
and the maximal function before turning to a comprehensive treatment of dyadic
harmonic analysis, dyadic maximal functions, and dyadic operators. Weighted
operators and sparse domination by positive dyadic operators are then explored, and
the chapter concludes with a summary and a discussion of recent progress. An
extensive list of references complements the exposition of the course.

Chapter 8, by Alberto Criado, Carlos Pérez, and Israel P. Rivera-Ríos, deals with
quantitative weighted BMO estimates. The authors give a new, quantitative proof of
an extrapolation theorem originally due to Harboure, Macías, and Segovia. They
also obtain sharp weighted L1c —BMO-type estimates for some Calderón—
Zygmund operators.

Chapter 9, by Pablo Shmerkin, is also based on a course given at the 2017
CIMPA school. In his survey, Schmerkin presents a self-contained proof of a
formula for the Lq dimensions of self-similar measures on the real line under
exponential separation. This is a special case of more general results by the author
but gives a simpler approach to a setting that is still very important. He also reviews
some applications to the study of Bernoulli convolutions and intersections of
self-similar Cantor sets.

The final chapter, Chap. 10 by Erick Herbin and Yimin Xiao, considers sample
path properties of set-indexed fractional Brownian motion. The Hausdorff dimen-
sions of inverse images and corresponding hitting probabilities are considered.

xii Foreword
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On a personal note, I had the great pleasure of attending both the 2013 and the
2017 CIMPA schools. These were extraordinary events, which allowed researchers
and students from mathematics and science and engineering to learn and interact.
The organizers did a terrific job of organizing two schools that will have a lasting
impact for years to come.

Atlanta, Georgia
June 2019

Christopher Heil
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Preface

The CIMPA school Harmonic Analysis, Geometric Measure Theory and
Applications took place in Buenos Aires during 2 weeks, in August 2017. It was
conceived as a continuation of the very successful previous school New Trends in
Applied Harmonic Analysis Sparse Representations, Compressed Sensing and
Multifractal Analysis which had also been held in Argentina, at Mar del Plata. Once
again, this CIMPA school was a big success, with a large number of Ph.D. students
and young PostDocs, mainly coming from all over Latin America.

Still focused on harmonic analysis taken in a broad sense, the aim of this second
school was to specifically aim at the new interlaces with geometric measure theory
which recently have had a huge impact, in particular, in image and signal pro-
cessing, and how these new understandings can be applied to solve real-life
problems. The relevance of this school was due to the fact that several technological
deadlocks have been recently solved through the resolution of deep theoretical
problems in these areas, and the purpose of the school was to expose their reso-
lutions, but also their implications both for theory and in applications, and the new
challenges which they raise.

In the middle of the school, a climax was reached with the special day in honor
of Ursula Molter, which gave the young audience a great opportunity to revisit 30
years of pure and applied harmonic analysis and geometric measure theory through
the various topics where Ursula has made seminal contributions.

The courses of this CIMPA school were taught by leaders in these areas. Though
the purpose was to expose recent deep breakthroughs, these scientists managed to
meet the challenge of remaining accessible to a broad audience, mainly composed
of Ph.D. students and PostDocs, and of diverse scientific cultures, covering
mathematics, and signal and image processing.

xv
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The school emulated new interactions between these communities, and the
courses collected in this book faithfully transpose the atmosphere of feverish
interdisciplinary interactions that took place during these 2 weeks.

Nashville, USA Akram Aldroubi
CABA (Buenos Aires), Argentina Carlos Cabrelli
Creteil, France Stéphane Jaffard
CABA (Buenos Aires), Argentina Ursula Molter
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Chapter 1
CAZAC Sequences and Haagerup’s
Characterization of Cyclic N-roots

John J. Benedetto, Katherine Cordwell and Mark Magsino

Abstract Constant amplitude zero autocorrelation (CAZAC) sequences play an
important role in waveform design for radar and communication theory. They also
have deep and intricate connections in several topics in mathematics, including
Fourier analysis, Hadamard matrices, and cyclic N -roots. Our goals are to describe
these mathematical connections, to provide a unified exposition of the theory of
CAZAC sequences integrating several diverse ideas, to introduce new techniques
for constructing CAZAC sequences alongside established methods, and to give an
exposition of the fascinating unpublished theorem of Uffe Haagerup (1949–2015),
which proves that the number of CAZAC generating cyclic N -roots is finite. The
role of the uncertainty principle in the proof is essential.

Mathematical Subject Classification: Primary 42Bxx · Secondary 42-06 · 42-02

1.1 Introduction

1.1.1 Background and Goal

In this subsection, we define a constant amplitude zero autocorrelation (CAZAC)
sequence, describe some scenarios where CAZAC sequences play a role and state
the goal of this paper.

Definition 1.1.1 (CAZAC sequence) Given a function, x : Z/NZ −→ C.

a. The autocorrelation, Ax : Z/NZ −→ C, of x is defined by

J. J. Benedetto (B) · K. Cordwell · M. Magsino
Norbert Wiener Center, Department of Mathematics, University of Maryland,
College Park, MD 20742, USA
e-mail: jjb@math.umd.edu
URL: http://www.math.umd.edu/~jjb

© Springer Nature Switzerland AG 2019
A. Aldroubi et al. (eds.), New Trends in Applied Harmonic Analysis,
Volume 2, Applied and Numerical Harmonic Analysis,
https://doi.org/10.1007/978-3-030-32353-0_1
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2 J. J. Benedetto et al.

∀m ∈ Z/NZ, Ax [m] = 1

N

N−1∑

k=0

x[m + k] x[k].

b. The function (sequence), x : Z/NZ → C, is a constant amplitude zero autocor-
relation (CAZAC) sequence if

∀m ∈ Z/NZ, |x[m]| = 1, (CA)

and

∀m ∈ Z/NZ\{0}, 1

N

N−1∑

k=0

x[m + k] x[k] = 0. (ZAC)

Equation (CA) is the condition that x has constant amplitude 1. Equation (ZAC) is
the condition that u has zero autocorrelation for m ∈ (Z/NZ)\{0}, i.e., off the dc
component.

The construction of CAZAC sequences, or modifications where Z AC is replaced
by low autocorrelation, is a central problem in the general area of waveform design;
and it is particularly relevant in several applications in the areas of radar and com-
munications.

In radar, CAZAC sequences can play a role in effective target recognition and
other fundamental applications, see, e.g., [1, 21, 26, 28, 30, 35, 38, 39, 42, 43,
45, 46, 49, 51, 55, 58, 63, 65]. There has been a striking recent application of low
correlation sequences to radar in terms of compressed sensing [36].

In communications, CAZAC sequences can be used to address synchroniza-
tion issues in cellular access technologies, especially code-division multiple access
(CDMA), e.g., [64, 66].

The radar and communication methods have combined in recent advanced mul-
tifunction RF systems (AMRFS).

In radar, there are two main reasons that the sequences x should have the constant
amplitude property (CA). First, a transmitter can operate at peak power if x has
constant peak amplitude—the systemdoes not have to dealwith the surprise of greater
than expected amplitudes. Second, amplitude variations during transmission due to
additive noise can be theoretically eliminated. The zero autocorrelation property
(ZAC) ensures minimum interference between signals sharing the same channel.

The applications referenced above are part of a broad range of applications of
the narrowband and wideband ambiguity function. The ZAC or low autocorrelation
property can be viewed as the boundary value of an ambiguity function, which in
the narrowband case is essentially the short-time Fourier transform (STFT), see [6,
9, 12, 29, 68, 69]. We shall not deal with the ambiguity function in this paper.

There are also purely mathematical roots for the construction of CAZAC
sequences, e.g., [9]. One example, which inspired the role of probability theory in
the subject, is due toWiener, see [7]. Our interest in CAZAC sequences was inspired
by the deep ideas and techniques of Björck and Saffari, e.g., [15, 18, 54], and by the

umolter@dm.uba.ar



1 CAZAC Sequences and Haagerup’s Characterization of Cyclic N -roots 3

good fortune of the first named author to benefit personally by discussions with both
Björck and Saffari.

Our goal is simply stated: for various values of N , count and construct the CAZAC
sequences of length N . This entails providing a unified exposition relating cyclic N -
roots, complex circulant Hadamard matrices, and CAZAC sequences. We require a
profound theorem due toHaagerup [32], see Sect. 1.1.3. His work builds on a brilliant
counterexample by Björck, see Sects. 1.1.2 and 1.4.1, as well as explicit calculations
by many others, e.g., [13, 19]. In pursuit of our goal, we give several new explicit
calculations with the point of view of constructing new CAZAC sequences.

1.1.2 Gaussian and Non-Gaussian CAZAC Sequences

The beautiful story of this subsection was told expertly by Saffari in [54]. To begin,
we define the discrete Fourier transform (DFT).

Definition 1.1.2 a. Given a finite sequence, x = (x[0], x[1], . . . , x[N − 1]) ∈
C

N . The discrete Fourier transform (DFT), FN (x) = x̂ ∈ C
N , of x is defined

by

FN (x)[n] = x̂ [n] = 1

N 1/2

N−1∑

m=0

x[m]e−2πimn/N , n = 0, 1, . . . , N − 1.

Elementary calculations yield the inversion formula,

x[m] = 1

N 1/2

N−1∑

n=0

x̂ [n]e2πimn/N , m = 0, 1, . . . , N − 1, (1.1)

and Parseval’s formula,

N−1∑

m=0

|x[m]|2 =
N−1∑

n=0

|̂x [n]|2. (1.2)

b. Notationally, for a given N , let em = e−2πim/N andWN = e2πi/N = e1. Also, for
a given x ∈ C

N , we denote translation by τ so that τm[k] = x[k − m]. Clearly,
WN is an N -root of unity, and recall that it is primitive N -root of unity if it is
not also an M-root of unity for some M < N . Thus, WM

N is a primitive N -root
of unity if and only if gcd(M, N ) = 1.

c. For a given N , the DFT matrix, DN , is defined as the N × N matrix,

DN =
[

1

N 1/2
W−mn

N

]N−1

m,n=0

,
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4 J. J. Benedetto et al.

and, for convenience, assume that WN is a primitive N -root of unity. Using
Eq. (1.2) we see thatDN is a unitarymatrix, i.e.,D∗

NDN = I , the N × N -identity
matrix, where D∗

N is the complex conjugate of the transpose of DN . The trace
of DN is a sum of Gaussians, as defined in Example 1.1.3. The remarkable
properties of these Gauss sums are stated and proved, with perspective, in [4,
Chap. 3.9].

d. We have that
∀x ∈ C

N , FN (x) = x̂ = DN (x) ∈ C
N ,

see [4, 62] for much more on the DFT.

We shall say that a sequence, x = (x[0], x[1], . . . , x[N − 1]) ∈ C
N , is unimod-

ular if each |x[ j]| = 1, and it is bi-unimodular if each |x[m]| = |̂x [n]| = 1. In
[15], Björck began his analysis of bi-equimodular sequence, i.e., |x[m]| = A for all
m ∈ Z/NZ and |̂x [n]| = B for all n ∈ Z/NZ, also see [18]. It is an interesting fact,
and elementary to verify, that a sequence, x = (x[0], x[1], . . . , x[N − 1]) ∈ C

N , is
bi-unimodular if and only if it is a CAZAC sequence, see Proposition 1.2.1.

Example 1.1.3 (Gaussian sequence) Given an integer N ≥ 2, and define the Gaus-
sian sequence, gN ,a,b[m], m = 0, . . . , N − 1, by the formula

gN ,a,b[m] = Wam2+bm
N , m = 0, . . . , N − 1,

where a, b ∈ Z and gcd(a, N ) = 1, that is, a and N are relatively prime, see Defi-
nition1.1.2, part b. We write gN = gN ,1,0.

Björck and Saffari noted, by an elementary calculation, that if N ≥ 3 is odd, then
{gN [m]}N−1

m=0 = {e2πim2/N }N−1
m=0 is a CAZAC sequence, and also noted that Gauss was

aware of this fact, probably in terms of the bi-unimodular equivalence! In this regard,
see Example 1.2.5.

At Stockholm University in 1983, Per Enflo asked the following question for a
given odd prime p. Is it true that the modified Gaussian sequences, {gp[m]W jm

p }p−1
m=0,

j ∈ Z, are the only bi-unimodular sequences of length p? Gaussian sequences are
the special case when j = 0. The answer was known to be “yes” for p = 3 and
p = 5. A positive answer generally would have helped Enflo with estimates he was
making on exponential sums. Ultimately, he made these estimates independent of
his question, but it led to deep mathematical questions in other directions.

The p = 3 case is elementary to resolve. It is much more involved for the p = 5
case, which was first checked and settled by L. Lovász in 1983 (private communi-
cation to Björck), and proved by Haagerup in 1996 [31], also see Remark 1.1.7 and
Sect. 1.3.
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1 CAZAC Sequences and Haagerup’s Characterization of Cyclic N -roots 5

Björck tried to answer Enflo’s question positively by computer search for p = 7.
However, the counterexample,

(1, 1, 1, eiθ, 1, eiθ, eiθ), θ = arccos

(
−3

4

)
, (1.3)

“popped out” as Björck put it! see [54] and Sect. 1.4.
The rest is history, or, rather, the start of an important, and still unresolved and

incomplete quest.

1.1.3 Haagerup’s Theorem

We shall now state Haagerup’s theorem mentioned in Sect. 1.1.1. In order to do
this, we shall require several notions, which are equivalent to the CAZAC sequence
property. To this end, we begin by defining a cyclic N -root, see [14].

Definition 1.1.4 A cyclic N-root is a solution z = (z0, z1, · · · zN−1) ∈ C
N to the

following set of equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

z0 + z1 + · · · + zN−1 = 0

z0z1 + z1z2 + · · · + zN−1z0 = 0

· · ·
z0z1 · · · zN−2 + · · · + zN−1z0 · · · zN−3 = 0

z0z1 · · · zN−1 = 1.

The second definition we shall need to state Haagerup’s theorem, and to provide
basic perspective, is that of a complex circulant Hadamard matrix.

Definition 1.1.5 a. A complex N × N circulant matrix CN is a square N × N
matrix, where each row vector is rotated one element to the right relative to the
preceding row vector. Thus, a circulant matrix, CN , is defined by one vector,
c ∈ C

N , which appears as the first row of CN . The remaining rows of CN are
each cyclic permutation of the vector cwith offset equal to the row index, see [40].

A complex N × N permutation matrix PN is defined by the property that it has
exactly one entry of 1 in each row and each column and 0s elsewhere.
A complex N × N unitary matrix UN is defined by the property that UN U ∗

N =
I d, where U ∗

N is the conjugate transpose or adjoint of UN and I d is the N × N
identity matrix. Thus, the rows and columns of UN form orthonormal bases
for C

N .
b. An important application of circulant matrices is that they are diagonalized by

the DFT. Thus, a system of N linear equations, CN X = Y ∈ C
N , can be solved

quickly using the fast Fourier transform (FFT), e.g., see [22].
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6 J. J. Benedetto et al.

c. A complex N × N Hadamard matrix HN is a square N × N matrix with uni-
modular entries cm,n ∈ C and mutually orthogonal rows, i.e., HN H∗

N = N Id.
d. Let H1, H2 be two Hadamard matrices. As matrices they are equivalent if they

can be transformed one into the other by elementary row and column operations.
In the case of Hadamard matrices, this is the same as saying that H1 and H2

are equivalent if there exist diagonal unitary matrices D1, D2 and permutation
matrices P1, P2 such that

H2 = D1P1H1P2D2. (1.4)

Motivation for the definition of equivalence is spelled out for dephasedHadamard
matrices in Sect. 1.2.5.

e. Bruzda et al. [13, 19] maintain a website that characterizes N × N Hadamard
matrices for various, small values of N . Also, see [60].

There is a characterization of CAZAC sequences in terms of complex circu-
lant Hadamard matrices [18]. In particular, the first row of any complex circulant
Hadamardmatrix is aCAZACsequence.Moreover, if x : Z

N → C is a given function
and if Hx is a circulant matrix with first row x = (x[0], x[1], . . . , x[N − 1]), then x
is a CAZAC sequence if and only if Hx is a Hadamard matrix, see Proposition 1.2.2.
Finally, there is a one-to-one correspondence between cyclic N-roots and CAZAC
sequences of length N. This correspondence will be stated clearly in Proposition
1.2.4, and we shall prove Propositions 1.2.1, 1.2.2, and 1.2.4 in Sect. 1.2.1.

In [32], Haagerup proved the following deep and fundamental theorem: Theo-
rem1.1.6, cf. his earlier related work [31].

Theorem 1.1.6 For every prime number p, the set of cyclic p-roots in C
p is finite.

Moreover, the number of cyclic p-roots counted with multiplicity is equal to

(
2p − 2

p − 1

)
= (2p − 2)!

(p − 1)!2 .

In particular, the number of complex p × p circulant Hadamard matrices with diag-
onal entries equal to 1 is less than or equal to (2p − 2)!/(p − 1)!2.
Remark 1.1.7 a. Before Haagerup’s theorem, Theorem 1.1.6, it was not known

whether there were finitely many or infinitely many cyclic p-roots for most
primes p.

b. Although elementary for N = 2, 3, 4, it is generally difficult to compute the
number of cyclic N -roots. In fact, prior to Theorem1.1.6, computer algebra,
as opposed to theoretical means, was the only available technology for such
computation, and in this setting N was necessarily small, see Björck and Fröberg
[16, 17] for the cases, 5 ≤ N ≤ 8, as well as [2].
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1 CAZAC Sequences and Haagerup’s Characterization of Cyclic N -roots 7

Table 1.1 r(N ) and ru(N ) for N = 2, . . . , 9

N 2 3 4 5 6 7 8 9

r(N ) 2 6 ∞ 70 156 924 ∞ ∞
ru(N ) 2 6 ∞ 20 48 532 ∞ ∞

For a given N , let

r(N ) =
(
2N − 2

N − 1

)
,

resp., ru(N ), be the number of cyclic N -roots, resp., unimodular cyclic N -roots,
see Table1.1 which is taken from [32]. Backelin and Fröberg [2] contain the
proof that r(7) = 924.

With this information, Faugère conjectured that for a given prime p there are(2p−2
p−1

)
cyclic p-roots. This is the content of Theorem1.1.6 when the number

of cyclic p-roots is counted with multiplicity. The multiplicity is 1 for p =
2, 3, 5, 7, but it is not known if this is true for all primes. In the case p = 9,
Faugère [25] showed there are cyclic 9-roots with multiplicity 4.

c. In Sect. 1.5 we shall outline Haagerup’s proof that the set of cyclic p-roots in C
p

is finite. Although this part of Haagerup’s proof is ingenious, the real depth is
involved in his proof that the number of cyclic p-roots counted with multiplicity
is equal to (2p−2)!

(p−1)!2 .

1.1.4 Outline

Besides the material in Sects. 1.1.1, 1.1.2, and 1.1.3, the outline of what we do is as
follows.

Section1.2 gives the basic theory ofCAZACsequences. InSect. 1.2.1weprove the
various elementary characterizations of CAZAC sequences in terms of the DFT and
bi-unimodular sequences, Hadamard matrices, and cyclic N -roots. Section1.2.2 is
devoted to analyzing equivalence classes of CAZAC sequences. Then, in Sects. 1.2.3
and 1.2.4, we study cyclic p-roots and CAZAC sequences of non-square-free length,
respectively. Finally, Sect. 1.2.5 dealswith technical but useful properties of dephased
Hadamard matrices. These subsections contain new techniques for computation.

Then, in Sect. 1.3, we construct all CAZAC sequences of lengths 3 and 5 in
several ways, e.g., in the case p = 3 we use cyclic 3-roots, Hadamard matrices, and
equivalence classes. In fact, for lengths 3 and 5 all CAZAC sequences are Gaussian
roots of unity, and so we do not have to generalize to other roots of unity. Although
technical, these cases are straightforward and solved by elementarymeans. However,
we provide careful detail to illustrate various computation methods, which may be
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8 J. J. Benedetto et al.

generalized to CAZAC sequences of larger prime lengths where not all CAZAC
sequences can be explicitly listed.

In order to deal with the length 7 case, new ideas arise and this is the content
of Sect. 1.4. We construct two CAZAC sequences, which are not generated by roots
of unity; and, as a result, when written in Hadamard matrix form, they are not
equivalent to the Fourier matrix. One of these sequences can be generalized to other
prime lengths and is known as the Björck sequence, see Sect. 1.4.1.

In Sect. 1.5, we present part of Haagerup’s theorem on counting the number of
CAZAC sequences of prime length p. We write out that part of his proof which
shows that the number of CAZAC sequences of prime length must be finite. His
original work goes on to count them as well, and we refer the reader to his paper
[32], which is available on the Internet albeit unpublished. Even with the assertion
of a finite number of CAZAC sequences and Haagerup’s actual count, it is still not
known how to construct all CAZAC sequences. One of the fascinating aspects of
Haagerup’s assertion of a finite number of CAZAC sequences of prime length is the
natural requirementofTchebotorev’s theorem, re-discovered byTao as an uncertainty
principle inequality used in compressed sensing, and also re-discovered byHaagerup
for this work on CAZAC sequences.

We close with Appendix 1.6 dealingmostly with real Hadamardmatrices, but also
with natural forays into topics as diverse as bent functions in coding theory, Walsh
functions, and wavelet packets, and the solution of the Littlewood conjecture related
to crest factors in antenna theory.

1.2 Characterizations and Properties of CAZAC Sequences

1.2.1 Characterizations of CAZAC Sequences

Proposition 1.2.1 Given a finite sequence, x = (x[0], x[1], . . . , x[N − 1]) ∈ C
N \{0}.

a. x is a CA sequence if and only if x̂ is a ZAC sequence, and x is a ZAC sequence
if and only if x̂ is a CA sequence, although the constant amplitude is not neces-
sarily 1.

b. x = (x[0], x[1], . . . , x[N − 1]) ∈ C
N is a bi-unimodular sequence if and only

if it is a CAZAC sequence.
c. x is a CAZAC sequence if and only if x̂ is a CAZAC sequence.

Proof Parts b and ıc are immediate consequences of part a.
To prove part a we proceed as follows. Suppose x ∈ C

N is CA and let n 	= 0.
Then, using the Parseval formula for the third equality, we have
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1 CAZAC Sequences and Haagerup’s Characterization of Cyclic N -roots 9

N Ax̂ [n] =
N−1∑

k=0

x̂[n + k ]̂x[k] = 〈τ−n x̂, x̂〉 = 〈enx, x〉

=
N−1∑

k=0

|x[k]|2e2πikn/N =
N−1∑

k=0

e2πikn/N = 0,

and so x̂ is ZAC.
Next, suppose that x ∈ C

N\{0} is ZAC and let m 	= 0. Then,

0 = N Ax [m] =
N−1∑

k=0

x[m + k]x[k] = 〈τ−mx, x〉 =
N−1∑

k=0

|̂x[k]|2 e2πimk/N , (1.5)

where the last step follows from the Parseval formula. Let ŷ = |̂x |2, so that by the
inversion theorem, we have

∀m ∈ Z/NZ, y[m] = 1

N 1/2

N−1∑

k=0

ŷ[k] e2πimk/N .

Thus, because of (1.5), we know that y[m] = 0 for m ∈ Z/NZ\{0}, and so

∀n ∈ Z/NZ, ŷ[n] = 1

N 1/2
y[0]

by the definition of the DFT. Hence, by the definition of ŷ, x̂ is constant on Z/NZ,
although not necessarily taking the value 1.

The converse directions in each case are proved by replacing x with x̂ .

Proposition 1.2.2 Given a sequence x : Z/NZ −→ C, and let CN be a complex cir-
culant matrix with first row x = (x[0], · · · , x[N − 1]). Then, x = {x[0], . . . , x[N −
1]} is a CAZAC sequence, where each x[ j] = x j , if and only if CN is a Hadamard
matrix.

Proof First, we show that if x = (x0, · · · , xN−1) is the first row of a complex N × N
circulant Hadamard matrix H , then x is a CAZAC sequence, {x[0], . . . , x[N − 1]},
where each x[m] = xm . Because H is a Hadamard matrix, each entry has norm 1,
so x satisfies the CA condition defining CAZAC sequences. Next, because H is
circulant, H has the form ⎡

⎢⎢⎢⎣

x0 x1 · · · xN−1

x1 x2 · · · x0
. . .

xN−1 x0 · · · xN−2

⎤

⎥⎥⎥⎦ .
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Now, as noted in Definition1.4.1, the orthogonality property of Hadamard matri-
ces implies that HH∗ = N Id. In particular, this means that the inner product of x
with column i of H is zero, where 2 ≤ i ≤ n. Note that column i is of the form
xi , xi+1, · · · , xi+(N−1) where subscripts are taken modulo N . So the i th column is
a rotation of x , and, taken together, columns 2, . . . , N comprise all the nonidentity
rotations of x . So, the inner product of x with any nonidentity rotation of x is 0,
and thus x satisfies the zero autocorrelation property of CAZAC sequences. Hence,
x = {x[0], . . . , x[N − 1]} is a CAZAC sequence.

Conversely, we show that if x = {x[0], . . . , x[N − 1]} is a CAZAC sequence,
then x = (x[0], · · · , x[N − 1]) is the first row of a complex circulant Hadamard
matrix H = CN , of the form

⎡

⎢⎢⎢⎣

x0 x1 · · · xN−1

x1 x2 · · · x0
. . .

xN−1 x0 · · · xn−2

⎤

⎥⎥⎥⎦ .

Now, because x is a CAZAC sequence, the absolute value of each xi is 1. Thus,
H satisfies the unimodular condition of complex Hadamard matrices.

Next, choose any row (xi , xi+1, · · · , xi+(N−1)) of H , where we consider sub-
scriptsmod N . Then,whenwe take the inner product of (xi , xi+1, · · · , xi+(N−1))with
itself, we obtain xi xi + xi+1xi+1 + · · · + xN−1xN−1 = 1 + 1 + · · · + 1 = N , since
the absolute value of each xi is 1. Ifwe take anyother row, (x j , x j+1, . . . , x j+(N−1)), of
H , where i 	= j , then the inner product 〈(xi , xi+1, . . . ,

xi+(N−1)), (x j , x j+1, . . . , x j+(N−1))〉 is zero because x has zero autocorrelation. This
implies that

HH∗ =

⎡

⎢⎢⎢⎣

x0 x1 · · · xN−1

x1 x2 · · · x0
. . .

xN−1 x0 · · · xN−2

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

x0 x1 · · · xN−1

x1 x2 · · · x0
. . .

xN−1 x0 · · · xN−2

⎤

⎥⎥⎥⎦ = NId,

where I d is the identity matrix. Thus, H satisfies the orthogonality property of
complex Hadamard matrices, and hence H = CN is a complex circulant Hadamard
matrix.

First, the proofs of Propositions 1.2.1 and 1.2.2 should be compared with those in
[8]. Further, due to the characterization of CAZAC sequences in Proposition 1.2.2,
there is a basic relation between vector-valued CAZAC sequences and finite unit
norm tight frames (FUNTFs) X for C

d . In order to state this relation, we shall say
that x : Z/NZ −→ C

d is a CAZAC sequence in C
d if each ‖x[k]‖ = 1 and

∀ k = 1, . . . , N − 1,
1

N

N−1∑

m=0

〈x[m + k]x[m]〉 = 0.
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Here, x[m] = (x1[m], . . . , xd [m]), where x j [m] ∈ C, m ∈ Z/NZ, and j =1, . . . , d;
and the inner product is

〈x[k]x[m]〉 =
d∑

j=1

x j [k] x j [m].

Also, recall that X = {xn}N−1
n=0 ⊆ C

d is a FUNTF if spanX = C
d and each ‖xn‖ = 1.

This definition does not reflect the complexity of frames even in the finite FUNTF
case, e.g., see [20], but it is sufficient to state Proposition 1.2.3, see [9] for its proof.

Proposition 1.2.3 Let x = {x[n]}N−1
n=0 be a CAZAC sequence in C. Define

∀ k = 0, . . . , N − 1, v[k] = 1√
d

(x[k], x[k + 1], . . . , x[k + d − 1]) .

Then, v = {v[k]}N−1
k=0 is a CAZAC sequence in C

d and v = {v[k]}N−1
k=0 is a FUNTF

for C
d with frame constant N/d.

The following fundamental result was proved by Björck in 1985 [14].

Proposition 1.2.4 There is a one-to-one correspondence between unimodular cyclic
N-roots andCAZACsequences of length N andwith first term x[0] = 1. In fact, given
such a CAZAC sequence, x, we can obtain the corresponding cyclic N-root with the
formula

(z0, z1, · · · , zN−1) =
(
x[1]
x[0] ,

x[2]
x[1] , · · · ,

x[N − 1]
x[N − 2] ,

x[0]
x[N − 1]

)
.

Proof First, we show that if x = (x0, · · · , xN−1) is a CAZAC sequence with x0 = 1,
then (z0, . . . , zN−1) = (x1/x0, x2/x1, · · · , x0/xN−1) = (x1, x2/x1, · · · , x0/xN−1) is
a unimodular cyclic N -root. First note that |zi | = x1/x0 · x1/x0 = x1/x0 · x0/x1 = 1
for all i , so (z0, . . . , zN−1) is unimodular.

Next, multiplying z0 · · · zN−1 gives

x1
x0

· x2
x1

· · · x0
xN−1

= x1 · · · · xN−1 · x0
x0 · x1 · · · xN−1

= 1,

because all numerators and denominators cancel out.
Because each xi is a unimodular complex number, we can write xi = eiθ for some

θ. Then, xi = e−iθ = 1/xi . Now, adding z0 + · · · + zN−1 gives

x1
x0

+ x2
x1

· · · + x0
xN−1

= x1x0 + x2x1 + · · · + x0xN−1 = 〈(x1, x2, · · · , x0), (x0, x1, . . . , xN−1)〉 = 0

since (x0, . . . , xN ) is a CAZAC sequence and thus satisfies the zero autocorrelation
property.
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12 J. J. Benedetto et al.

Next, taking z0z1 + z1z2 + · · · + zN−1x0 gives

x1
x0

· x2
x1

+ · · · + xN−1

xN−2

x0
xN−1

+ x0
xN−1

x1
x0

= x2x0 + x3x1 + · · · + x0xN−2 + x1xN−1

= 〈(x2, x3, · · · , x1), (x0, x1, . . . , xN−1)〉,

which is 0 by the zero autocorrelation of (x0, . . . , xN ).
In general, if we take z0z1 · · · zi + z1 · · · zi+1 + · · · + zN · z0 · · · zi−1, where 0 ≤

i ≤ N − 1, we get

x1
x0

· x2
x1

· · · xi
xi−1

+ · · · + xN−1

xN−2

x0
xN−1

· · · xi−2

xi−3
+ x0

xN−1

x1
x0

· · · xi−1

xi−2

= xi x0 + xi+1x1 + · · · + xi−2xN−2 + xi−1xN−1

= 〈(xi , xi+1, · · · , xi−1), (x0, x1, . . . , xN−1)〉,

which is 0 by the zero autocorrelation of (x0, . . . , xN ).
Thus, we see that (z0, . . . , zN−1) is a cyclic unimodular N -root, as desired.
Now, we show that if (z0, . . . , zN−1) is a cyclic N -root where x0 = 1, then if we

recursively define x0 = 1, xk = xk−1zk−1, then we get a CAZAC sequence (Note that
this forces zk−1 = xk/xk−1, as before).

Certainly |x0| = 1. Assume inductively that |xk−1| = 1. Then |xk | = |xk−1|
|zk−1| = |zk−1| = 1 because (z0, . . . , zN−1) is unimodular.

Also, we can compute

〈(x0, . . . , xN−1), (xi , . . . , xi+(N−1))〉 = x0xi + · · · + xN−1xi+(N−1) = x0
xi

+ · · · + xN−1

xi+(N−1)
,

and we have already seen that this is z0z1 · · · zi + z1 · · · zi+1 + · · · + zN · z0 · · · zi−1,

which we know to be 0 because (z0, . . . , zN−1) is a cyclic N -root.

Example 1.2.5 We state the following modest extensions of the Gaussian CAZAC
sequence example of Example 1.1.3.

a. Given an integer N ≥ 2.

M =
{
N , N odd,
2N , N even,

and let WM be a primitive M-root of unity. Then, {Wm2

M }N−1
m=0 is a CAZAC

sequence of length N . We refer to {Wm2

M }N−1
m=0 as the Wiener sequence, see [9]

and Sect. 1.3.4.
b. Given an odd integer N ≥ 3. Then, {gN ,a,b[m]}N−1

m=0 is a CAZAC sequence.
c. Generally, for any CAZAC sequence of length N , we can construct a sequence

of length N 2 in a systematic way. The construction is due to Milewski, see [9].
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1 CAZAC Sequences and Haagerup’s Characterization of Cyclic N -roots 13

1.2.2 Equivalence Classes of CAZAC Sequences

There are several meaningful ways of defining equivalence classes on CAZAC
sequences. We shall employ the following elementary definition. Two CAZAC
sequences, x and y, on Z/NZ, are equivalent if x = cy for some |c| = 1, e.g., see
Haagerup [32]. Do there exist only finitely many non-equivalent CAZAC sequences
inZ/NZ? The answer to this question is “yes” for N prime and “no” for N = MK 2,
see, e.g., [9, 54]. For the case of non-prime square-free N , special cases are known,
and there are published arguments asserting general results.

Another definition of equivalence, which was developed in [9], is the following.
Two CAZAC sequences, x and y, on Z/NZ, are defined to be 5-operation equiv-
alent if they can be obtained from one another by means of compositions of the
five operations: rotation, translation, decimation, linear frequency modulation, and
conjugation. These 5-equivalence operations for CAZAC sequences are defined as
follows for all k ∈ Z/NZ:

1. (Rotation) y[k] = cx[k], for some |c| = 1.
2. (Translation) y[k] = x[k − m], for somem ∈ Z/NZ.
3. (Decimation) y[k] = x[mk], for somem ∈ Z/NZ for which gcd(m, N ) = 1.
4. (Linear Frequency Modulation) y[k] = Wk

N x[k].
5. (Conjugation) y[k] = x[k].
Example 1.2.6 (Equivalence relations between CAZAC sequences and cyclic roots)
Suppose two CAZAC sequences, x and y, defined on Z/NZ have associated cyclic
N-roots {zk} and {wk}. It is straightforward to verify the following relations (stated
for all k ∈ Z/NZ) between the 5-equivalence operations for CAZAC sequences, and
how they become relations between cyclic N-roots.

1. y[k] = cx[k] =⇒ wk = zk .
2. y[k] = x[k − m] =⇒ wk = zk−m .
3. y[k] = x[mk] =⇒ wk = ∏mk+m

j=mk+1 z j .
4. y[k] = Wk

N x[k] =⇒ wk = WNzk .
5. y[k] = x[k] =⇒ wk = zk .

In particular, the 5-equivalence operations for CAZAC sequences give rise to oper-
ations under which cyclic N-roots are closed.

Thus, CAZACsequences that are equivalent are also 5-operation equivalent.How-
ever, generally, CAZAC sequences that are 5-operation equivalent are not equivalent.
This is significant because the numbers in Table1.1 refer to the number of equivalent
CAZAC sequences.

In practice, twoCAZACsequences, x and y, are not equivalent if x[0] = y[0] = 1,
but x[k] 	= y[k] for some k > 0. It is clearly more difficult to check if two CAZAC
sequences are 5-operation equivalent than if they are equivalent.

Additionally, there are questions about how these two notions of equivalence
among CAZAC sequences relate to equivalence classes of the corresponding
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14 J. J. Benedetto et al.

Hadamard matrices. It is not true that CAZAC sequences from two equivalent
Hadamard matrices will be equivalent in the sense of the 5-equivalence operations.

1.2.3 Cyclic p-roots

In order to address the problem of finding all cyclic p-roots computationally, where
p is prime, we developed a Python script which checks every permutation of the
p-roots of unity by brute force and tried to see if and when they are cyclic p-roots.
Based on this script, we were led to formulate the following result. The result itself,
along with a combinatorial argument, leads to all 20 cyclic 5-roots with modulus 1,
see Sect. 1.3.5.

Proposition 1.2.7 Let p be an odd prime, and recall that Wp = e2πi/p. If s ∈
{1, · · · , p − 1} and r ∈ {1, · · · , p}, then (Wr

p,W
r+s
p ,Wr+2s

p , · · · ,Wr+(p−1)s
p ) is a

cyclic p-root.

Proof Given any cyclic p-root, we can obtain another cyclic p-root by multiplying
by Wr

p. In particular, we can assume without loss of generality that r = 0. Fix s ∈
{0, · · · , p − 1}. The t th equation (0 ≤ t < p) in the cyclic p-root system can be
written as

p−1∑

k=0

t−1∏

�=0

xk+� = 0

so we would like to verify that

p−1∑

k=0

t−1∏

�=0

Ws(k+�)
p = 0. (1.6)

To this end, we compute directly and obtain

p−1∑

k=0

t−1∏

�=0

Ws(k+�)
p =

p−1∑

k=0

Wskt
p

t−1∏

�=0

Ws�
p =

p−1∑

k=1

Wskt
p W

s
∑t−1

�=0 �
p =

p−1∑

k=1

Wskt
p Wst (t−1)/2

p

= Wst (t−1)/2
p

p−1∑

k=1

Wskt
p = 0,

since Wst
p is a primitive p-root of unity. For the last (pth) equation we want to show

p−1∏

k=0

Wsk
p = 1. (1.7)
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1 CAZAC Sequences and Haagerup’s Characterization of Cyclic N -roots 15

To verify this, we once again compute directly, and obtain

p−1∏

k=0

Wsk
p = W

s
∑p−1

k=0 k
p = Wsp(p−1)/2

p = es(p−1)πi = 1,

since p is odd. Combining Eqs. (1.6) and (1.7) gives us that (1,Ws
p, . . . ,W

(p−1)s
p ) is

a cyclic p-root.

Corollary 1.2.8 The number of cyclic p-roots that are comprised of p-roots of unity
is bounded below by p(p − 1).

Proof Each cyclic p-root in Proposition 1.2.7 is comprised of roots of unity. There
are two parameters: s and r . Note that s can take up to p − 1 different values, and r
can take up to p different values. Thus, the number of possible cyclic p-roots that can
be formed by Proposition 1.2.7 is p(p − 1). This gives us the desired lower bound.

In particular, as a consequence of Corollary 1.2.8, all 20 cyclic 5-roots with mod-
ulus 1 are generated by Proposition 1.2.7. It is natural to speculate that all cyclic
p-roots are given by Proposition 1.2.7, and that the lower bound p(p − 1) of Corol-
lary 1.2.8 is the exact number of cyclic p-roots that are comprised of p-roots of
unity.

1.2.4 CAZAC Sequences of Non-square-free Length

Much of the following material is found in [18] but has been recorded here for
completeness.

Theorem 1.2.9 Let c ∈ C
N be any constant amplitude sequence of length N ≥ 2,

and let σ be any permutation of the set {0, 1, · · · , N − 1}. Define a new sequence,
x ∈ C

N 2
, by the formula,

∀a, b ∈ {0, 1, · · · , N − 1}, x[aN + b] = c[b]e2πiaσ(b)/N .

Then, x is a CAZAC sequence of length N 2.

Proof Without loss of generality, assume |c[i]| = 1 for all i = 0, 1, . . . , N − 1. The
sequence, x , is CA by its definition. We shall prove that x is also ZAC by verifying
that x̂ is CA. Let WN 2 = e2πi/N

2
. Then,

|̂x[ j]| =
∣∣∣∣∣∣

N 2−1∑

k=0

x[k]W−k j
N 2

∣∣∣∣∣∣
=

∣∣∣∣∣

N−1∑

a=0

N−1∑

b=0

x[aN + b]W−(aN+b) j
N 2

∣∣∣∣∣
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16 J. J. Benedetto et al.

=
∣∣∣∣∣

N−1∑

a=0

N−1∑

b=0

c[b]WNaσ(b)
N 2 W−aN j

N 2 W−bj
N 2

∣∣∣∣∣ =
∣∣∣∣∣

N−1∑

b=0

c[b]W−bj
N 2

N−1∑

a=0

WNaσ(b)
N 2 W−aN j

N 2

∣∣∣∣∣

=
∣∣∣∣∣

N−1∑

b=0

c[b]W−bj
N 2

N−1∑

a=0

WN (σ(b)− j)a
N 2

∣∣∣∣∣ . (1.8)

Note that the inner sum of (1.8) is 0 unless σ(b) ≡ j mod N , in which case the inner
sum is N . Thus, we can rewrite (1.8), taking j modulo N if necessary, as

|̂x[ j]| =
∣∣∣∣∣

N−1∑

b=0

c[b]W−bj
N 2

N−1∑

a=0

WN (σ(b)− j)a
N 2

∣∣∣∣∣ = |Nc[σ−1( j)W−σ−1( j) j
N 2 | = N .

Corollary 1.2.10 Given an integer N ≥ 2. There are infinitely many non-equivalent
CAZAC sequences of length N 2 whose first term is 1.

We now wish to extend Theorem1.2.9 to arbitrary sequences whose length is not
square-free.

Theorem 1.2.11 Let Q ≥ 2 be an integer, let N 2 be the largest square dividing Q,
let σ be any permutation of {0, 1, · · · , N − 1}, and consider the primitive M-root
WM, where M = Q/N. If c ∈ C

N is a constant amplitude sequence of length N,
then define a new sequence, x ∈ C

Q, by the formula

∀a ∈ {0, · · · , M − 1} and ∀b ∈ {0, · · · , N − 1}, x[aN + b] = c[b]Waσ(b)+Na(a−1)/2
M .

If at least one of N and M − 1 is even, then x is a CAZAC sequence of length Q.

Proof Without loss of generality, assume |c[i]| = 1 for every i ∈ {0, · · · , N − 1}.
First, we note that x can be extended to an Q-periodic function on all of Z. Indeed,
if we let k ∈ C

Q be written as k = aN + b, then

x[Q + k]
x[k] = x[(M + a)N + b]

x[aN + b] = c[b]W (M+a)σ(b)+N (M+a)(M+a−1)/2
M

c[b]Waσ(b)+Na(a−1)/2
M

= WMσ(b)
M Waσ(b)

M WN (M2+2Ma−M)
M WNa(a−1)/2

M

Waσ(b)
M WNa(a−1)/2

M

= WMσ(b)
M WNM(2a+(M−1))/2

M = 1,

since both terms are an M th root of unity raised to a power which is an integer
multiple of M .

Using this, we can directly compute the autocorrelation of x at u = r N + s, where
r ∈ {0, · · · , M − 1} and s ∈ {0, · · · , N − 1} and at least one of r and s is nonzero,
i.e., u 	= 0. Let k = aN + b and θ = � b+s

N �. Then,
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1 CAZAC Sequences and Haagerup’s Characterization of Cyclic N -roots 17

Ax [u] =
Q−1∑

k=0

x[k + u]x[k] =
M−1∑

a=0

N−1∑

b=0

x[(a + r + θ)N + (b + s)]x[aN + b]

=
M−1∑

a=0

N−1∑

b=0

c[b + s]W (a+r+θ)σ(b+s)+N (a+r+θ)(a+r+θ−1)/2
M c[b]W−aσ(b)−Na(a−1)/2

M

= Cr

N−1∑

b=0

c[b + s]c[b]W Nθ(2r+θ−1)
2 +(r+θ)σ(b+s)

M

M−1∑

a=0

Wa(σ(b+s)−σ(b)+N (r+θ))
M ,

(1.9)

where Cr = WN (r2−r)/2
M . If s = 0, then θ = 0 for every b ∈ {0, · · · , N − 1}, and we

can write (1.9) as

Cr

N−1∑

b=0

|c[b]|2Wrσ(b)
M

M−1∑

a=0

WaNr
M = Cr

M−1∑

a=0

N−1∑

b=0

Wr(σ(b)+aN )
M . (1.10)

Since σ is a permutation of {0, · · · , N − 1}, we can make a substitution q = σ(b)
and reorder as necessary to rewrite (1.10) as

Cr

M−1∑

a=0

N−1∑

q=0

Wr(aN+q)

M = Cr

Q−1∑

k=0

Wrk
M = 0,

since r 	= 0 mod N . If s 	= 0, then in the inner sum of (1.9) we observe that 0 <

|σ(b + s) − σ(b)| < N , and thus N does not divide (σ(b + s) − σ(b) + N (r + θ))
for any fixed b. It then follows thatM does not divide (σ(b + s) − σ(b) + N (r + θ))
for any fixed b and the inner sum is 0 for every b. Thus, if s 	= 0 then (1.9) is 0 as
well.

Corollary 1.2.12 Given an integer Q ≥ 2 that is not square-free. There are infinitely
many non-equivalent CAZAC sequences of length Q whose first term is 1.

Proof Take c[0] = 1. Let N 2 be the largest square dividing Q and M = Q/N . If
either N is even or M is odd, then Theorem1.2.11 applies immediately and the
sequence given in Theorem1.2.11 gives us infinitely many CAZAC sequences. If N
is odd andM is even, then Q has exactly one factor of 2. Thus, we canwriteM = 2M ′
with M ′ odd. In Theorem1.2.11, replace Q by Q/2 and M with M ′, and let y be
the resulting CAZAC sequence of length Q/2. We can then construct a CAZAC
sequence of length Q by taking the Kronecker product z ⊗ y of z = (1, i) ∈ C

2 by
y ∈ C

Q/2, so that

z ⊗ y =
(
y[0], y[1], . . . , y

[
Q

2
− 1

]
, i y[0], i y[1], . . . , i y

[
Q

2
− 1

])
.
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18 J. J. Benedetto et al.

1.2.5 Dephased Hadamard Matrices

One property that follows from the definition of equivalence classes of complex
Hadamard matrices is that every complex Hadamard matrix is equivalent to a unique
dephased Hadamard matrix, i.e., a Hadamard matrix with a first row and first column
of 1s.

The website [19] maintained by Bruzda et al. states the following construction of
this dephased form.

Proposition 1.2.13 [19] Given an N × N complex Hadamard matrix,

H =

⎡

⎢⎢⎢⎣

h0,0 h0,1 · · · h0,N−1

h1,0 h1,1 · · · h1,N−1
...

...
. . .

...

hN−1,0 hN−1,1 · · · hN−1,N−1

⎤

⎥⎥⎥⎦ .

The equivalent dephased form is

D1HD2 =

⎡

⎢⎢⎢⎢⎣

h0,0 0 · · · 0
0 h1,0 · · · 0
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · hN−1,0

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

h0,0 h0,1 · · · h0,N−1
h1,0 h1,1 · · · h1,N−1

.

.

.

.

.

.
. . .

.

.

.

hN−1,0 hN−1,1 · · · hN−1,N−1

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

1 0 · · · 0
0 h0,0h0,1 · · · 0
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · h0,0h0,N−1

⎤

⎥⎥⎥⎥⎦
.

(1.11)
Moreover, the equivalent dephased form is unique.

Proof We compute the matrix product in Eq. (1.11). In the first step, we have

D1HD2 =

⎡

⎢⎢⎢⎢⎣

h0,0h0,0 h0,0h0,1 · · · h0,0h0,N−1

h1,0h1,0 h1,0h1,1 · · · h1,0h1,N−1

.

.

.
.
.
.

. . .
.
.
.

hN−1,0hN−1,0 hN−1,0hN−1,1 · · · hN−1,0hN−1,N−1

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

1 0 · · · 0
0 h0,0h0,1 · · · 0
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · h0,0h0,N−1

⎤

⎥⎥⎥⎥⎦
,

from which we obtain

D1HD2 =

⎡

⎢⎢⎢⎣

h0,0h0,0 h0,0h0,0h0,1h0,1 · · · h0,0h0,0h0,N−1h0,N−1

h1,0h1,0 ∗ · · · ∗
...

...
. . .

...

hN−1,0hN−1,0 ∗ · · · ∗

⎤

⎥⎥⎥⎦ .

We now verify that D1HD2 is a Hadamard matrix. First, because each hi j has
norm 1, and by norm multiplicativity, we see that each entry of D1HD2 has norm 1.
Next, note that (D1HD2)(D1HD2)

∗ = D1HD2D∗
2H

∗D∗
1 . Because D1 and D2 are

unitary matrices, we have D2D∗
2 = I and D1D∗

1 = I ; and because H is a Hadamard
matrix, HH∗ = N Id. Thus, we obtain D1HD2D∗

2H
∗D∗

1 = ND1 I D∗
1 = N Id.
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1 CAZAC Sequences and Haagerup’s Characterization of Cyclic N -roots 19

This matrix is dephased because the i th entry of the first column is of the form
hi,0hi,0 = 1 for 0 ≤ i ≤ N − 1 and the i th entry of the first row, for 1 ≤ i ≤ N − 1,
is of the form h0,0h0,0h0,i h0,i = 1.

Next, assume that there are a0, . . . , aN−1, b0, . . . , bN−1 such that |ai | = |bi | = 1
for 0 ≤ i ≤ N − 1 and

⎡

⎢⎢⎢⎣

a0 0 · · · 0
0 a1 · · · 0
...

...
. . .

...

0 0 · · · aN−1

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

1 1 · · · 1
1 ∗ · · · ∗
...

...
. . .

...

1 ∗ · · · ∗

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

b0 0 · · · 0
0 b1 · · · 0
...

...
. . .

...

0 0 · · · bN−1

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

1 1 · · · 1
1 ∗ · · · ∗
...

...
. . .

...

1 ∗ · · · ∗

⎤

⎥⎥⎥⎦ . (1.12)

Calculating the left side of (1.12), we have

⎡

⎢⎢⎢⎣

a0 a0 · · · a0
a1 ∗ · · · ∗
...

...
. . .

...

aN−1 ∗ · · · ∗

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

b0 0 · · · 0
0 b1 · · · 0
...

...
. . .

...

0 0 · · · bN−1

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

1 1 · · · 1
1 ∗ · · · ∗
...

...
. . .

...

1 ∗ · · · ∗

⎤

⎥⎥⎥⎦ ,

and so we obtain
⎡

⎢⎢⎢⎣

a0b0 a0b1 · · · a0bN−1

a1b0 ∗ · · · ∗
...

...
. . .

...

aN−1b0 ∗ · · · ∗

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

1 1 · · · 1
1 ∗ · · · ∗
...

...
. . .

...

1 ∗ · · · ∗

⎤

⎥⎥⎥⎦ .

From this,wefinda0 = · · · = aN−1 = b−1
0 andb0 = · · · = bN−1 = a−1

0 . Saya0 =
x and b0 = x−1. Then, Eq. (1.12) becomes

⎡

⎢⎢⎢⎣

x 0 · · · 0
0 x · · · 0
...

...
. . .

...

0 0 · · · x

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

1 1 · · · 1
1 ∗ · · · ∗
...

...
. . .

...

1 ∗ · · · ∗

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

x−1 0 · · · 0
0 x−1 · · · 0
...

...
. . .

...

0 0 · · · x−1

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

1 1 · · · 1
1 ∗ · · · ∗
...

...
. . .

...

1 ∗ · · · ∗

⎤

⎥⎥⎥⎦ ,

or

xx−1

⎡

⎢⎢⎢⎣

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

1 1 · · · 1
1 ∗ · · · ∗
...

...
. . .

...

1 ∗ · · · ∗

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

1 1 · · · 1
1 ∗ · · · ∗
...

...
. . .

...

1 ∗ · · · ∗

⎤

⎥⎥⎥⎦ ,

and, thus, we have
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⎡

⎢⎢⎢⎣

1 1 · · · 1
1 ∗ · · · ∗
...

...
. . .

...

1 ∗ · · · ∗

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

1 1 · · · 1
1 ∗ · · · ∗
...

...
. . .

...

1 ∗ · · · ∗

⎤

⎥⎥⎥⎦ .

Therefore, the equivalent dephased form is unique.

1.3 Roots of Unity CAZAC Sequences of Prime Length

1.3.1 Introduction

All CAZAC sequences of lengths 3 and 5 are roots of unity, and they are known.
We shall give the calculations, not only for exposition, but because they provide
us with the ability to explore various methods for explicitly computing CAZAC
sequences in different ways. For the case of p = 3, we shall give three different
techniques. The first uses the correspondence between cyclic N -roots and CAZAC
sequences, the second uses the correspondence between CAZAC sequences and
Hadamard matrices, and the last capitalizes on the various notions of equivalence
of CAZAC sequences. Then we proceed similarly for the case p = 5. There are 6
unimodular cyclic 3-roots and 20 unimodular cyclic 5-roots, see Table1.1. We shall
see that some of our calculations apply for arbitrary prime lengths and shall close the
section by putting the material in the context of the 5-operation equivalence relations
defined in Sect. 1.2.2.

1.3.2 Constructing CAZAC Sequences of Length 3 Using
Cyclic 3-roots

We first would like to look at the specific case of cyclic 3-roots, which correspond to
CAZACsequences of length 3. In this casewe are looking for solutions (x, y, z) ∈ C

3

to the system of equations,

⎧
⎪⎨

⎪⎩

x + y + z = 0

xy + yz + zx = 0

xyz = 1.

(1.13)

This system is easily solvable in the following way. First, multiply the second equa-
tion in (1.13) by z. This yields

xyz + yz2 + xz2 = 0.
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By factoring z in the last two terms on the left-hand side and using the third equation
in (1.13) we have

1 + z2(x + y) = 0.

Rearranging the first equation in (1.13) gives us that x + y = −z. Substituting this
into the above, we obtain

1 − z3 = 0,

or, in other words, z must be a third root of unity. Note that the same computations
can also be applied to x and y, and thus x and y must also be third roots of unity.

This leads to the conjecture that the six permutations of the third roots of unity
(1, e2πi/3, e4πi/3) indeed generate all six CAZAC sequences of length 3. To this end,
first let us write all six permutations of the third roots of unity and the corresponding
candidate CAZAC sequences. Then, we verify that the sequences really are CAZAC
sequences by observing that they are knownCAZAC sequences or 5-operation equiv-
alent.

The six permutations of the third roots of unity are

1. (1, e2πi/3, e4πi/3)
2. (1, e4πi/3, e2πi/3)
3. (e2πi/3, 1, e4πi/3)
4. (e2πi/3, e4πi/3, 1)
5. (e4πi/3, 1, e2πi/3)
6. (e4πi/3, e2πi/3, 1).

Let (z0, z1, z2) be a permutation of the third roots of unity. To convert (z0, z1, z2) to
the corresponding CAZAC sequence, we begin by letting x[0] = 1. Then, we define
x[1] and x[2] as

x[1] = z0

x[2] = z0z1.

Using this, we can construct Table1.2.

Table 1.2 Cyclic 3-roots and CAZAC sequences of length 3

Cyclic 3-root CAZAC sequence

(1, e2πi/3, e4πi/3) (1, 1, e2πi/3)

(1, e4πi/3, e2πi/3) (1, 1, e4πi/3)

(e2πi/3, 1, e4πi/3) (1, e2πi/3, e2πi/3)

(e2πi/3, e4πi/3, 1) (1, e2πi/3, 1)

(e4πi/3, 1, e2πi/3) (1, e4πi/3, e4πi/3)

(e4πi/3, e2πi/3, 1) (1, e4πi/3, 1)
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In particular, each of the six sequences generated by the six permutations of the
roots of unity generates either a known CAZAC sequence or an aforementioned
transformation of a known CAZAC sequence. Thus, Table1.2 lists all six CAZAC
sequences of length 3.

1.3.3 Constructing CAZAC Sequences of Length 3 Using
Hadamard Matrices

In [13, 19], it is stated that all 3 × 3 Hadamard matrices are equivalent to the Fourier
matrix. In fact, we shall obtain this result from computations in this subsection. The
website [19] further characterizes the set of 3 × 3 Hadamard matrices into two types:

⎧
⎨

⎩

⎡

⎣
eia 0 0
0 eib 0
0 0 eic

⎤

⎦ ·
⎡

⎣
1 1 1
1 W3 W 2

3
1 W 2

3 W3

⎤

⎦ ·
⎡

⎣
1 0 0
0 eix 0
0 0 eiy

⎤

⎦

⎫
⎬

⎭
⋃

⎧
⎨

⎩

⎡

⎣
eia 0 0
0 eib 0
0 0 eic

⎤

⎦ ·
⎡

⎣
1 1 1
1 W 2

3 W3

1 W3 W 2
3

⎤

⎦ ·
⎡

⎣
1 0 0
0 eix 0
0 0 eiy

⎤

⎦

⎫
⎬

⎭ ,

where a, b, c, x, y ∈ [0, 2π). We shall use these two forms to find all 3 × 3 circulant
Hadamard matrices.

First, we consider the first form and compute the matrix product:

⎡

⎣
eia 0 0
0 eib 0
0 0 eic

⎤

⎦ ·
⎡

⎣
1 1 1
1 W3 W 2

3
1 W 2

3 W3

⎤

⎦ ·
⎡

⎣
1 0 0
0 eix 0
0 0 eiy

⎤

⎦ =
⎡

⎣
eia ei(a+x) ei(a+y)

eib ei(b+x+ 2
3 π) ei(b+y− 2

3 π)

eic ei(c+x− 2
3 π) ei(c+y+ 2

3 π)

⎤

⎦ .

(1.14)
In order for this matrix to be circulant, the following system of equations must hold
mod 2π:

⎧
⎪⎨

⎪⎩

a = b + x + 2π
3 = c + y + 2π

3

c = a + x = b + y + 4π
3

a + y = b = c + x + 4π
3 .

(1.15)

From the first equation in (1.15) we have

a = b + x + 2

3
π. (1.16)

Using (1.16) in the second equation of (1.15), we calculate that
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c = a + x =
(
b + x + 2

3
π

)
+ x = b + 2x + 2

3
π. (1.17)

From (1.16), (1.17), and the third equation of (1.15), we obtain

y = c + x + 4

3
π − a =

(
b + 2x + 2

3
π

)
+ x + 4

3
π −

(
b + x + 2

3
π

)
= 2x + 4

3
π.

(1.18)
Finally, returning to the first equation of (1.15) and using (1.17) and (1.18), we have

b = c + y − x =
(
b + 2x + 2

3
π

)
+

(
2x + 4

3
π

)
− x = b + 3x + 2π. (1.19)

In particular, (1.19) implies that 3x ≡ 0 mod 2π, i.e., x is 2
3π, 0, or − 2

3π. Letting
x = 2

3π, we obtain as one solution: x = 2
3π, a = 4

3π + b, c = b, and y = 2
3π, where

b is left indeterminate.
As such, we return to (1.14) and use this solution to compute

⎡

⎣
ei(

4
3 π+b) 0 0
0 eib 0
0 0 eib

⎤

⎦ ·
⎡

⎣
1 1 1
1 W3 W 2

3
1 W 2

3 W3

⎤

⎦ ·
⎡

⎣
1 0 0
0 e

2
3 πi 0

0 0 e
2
3 πi

⎤

⎦ = eib

⎡

⎢⎣
e− 2

3 πi 1 1
1 e− 2

3 πi 1
1 1 e− 2

3 πi

⎤

⎥⎦ .

The first row of the resulting circulant Hadamard matrix is eib(e
−2
3 πi , 1, 1). We let

b = 2
3π and choose (1, e

2
3 πi , e

2
3 πi ) as the representative for this class of CAZAC

sequences and find our first CAZAC sequence.
As a second solution, we choose x = 0, which gives a = 2

3π + b, c = 2
3π + b,

and y = 4
3π, where b is again indeterminate. We return to (1.14) and compute

⎡

⎣
ei(

2
3 π+b) 0 0
0 eib 0
0 0 ei(

2
3 π+b)

⎤

⎦ ·
⎡

⎣
1 1 1
1 W3 W 2

3
1 W 2

3 W3

⎤

⎦ ·
⎡

⎣
1 0 0
0 1 0
0 0 e

4
3πi

⎤

⎦ = eib

⎡

⎢⎣
e

2
3 πi e

2
3 πi 1

1 e
2
3 πi e

2
3 πi

e
2
3 πi 1 e

2
3 πi

⎤

⎥⎦ .

The first row of this circulant Hadamard matrix is eib(e
2
3 πi , e

2
3 πi , 1). Letting b =

− 2
3π, we have (1, 1, e

4
3 πi ) as our second CAZAC sequence.

The final solution is x = − 2
3π, a = b, c = b − 2

3π, and y = 0, where b is inde-
terminate. Returning to (1.14), we take

⎡

⎣
eib 0 0
0 eib 0
0 0 ei(b− 2

3 π)

⎤

⎦ ·
⎡

⎣
1 1 1
1 W3 W 2

3
1 W 2

3 W3

⎤

⎦ ·
⎡

⎣
1 0 0
0 e− 2

3 πi 0
0 0 1

⎤

⎦ = eib

⎡

⎢⎣
1 e− 2

3 πi 1
1 1 e− 2

3 πi

e− 2
3 πi 1 1

⎤

⎥⎦ .

The first row of this circulant Hadamard matrix is eib(1, e− 2
3 πi , 1), and so letting

b = 0, we have (1, e
4
3 πi , 1) as our third CAZAC sequence.
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Now, we consider the second form of 3 × 3 Hadamard matrices in the union
written at the beginning of this subsection, and take the product,

⎡

⎣
eia 0 0
0 eib 0
0 0 eic

⎤

⎦ ·
⎡

⎣
1 1 1
1 W 2

3 W3

1 W3 W 2
3

⎤

⎦ ·
⎡

⎣
1 0 0
0 eix 0
0 0 eiy

⎤

⎦ =
⎡

⎣
eia ei(a+x) ei(a+y)

eib ei(b+x− 2
3 π) ei(b+y+ 2

3 π)

eic ei(c+x+ 2
3 π) ei(c+y− 2

3 π)

⎤

⎦ .

(1.20)
In order for the right-hand side matrix to be circulant, the following equations must
hold mod 2π: ⎧

⎪⎨

⎪⎩

a = b + x + 4π
3 = c + y + 4π

3

c = a + x = b + y + 2π
3

a + y = b = c + x + 2π
3 .

(1.21)

Using the first equation in (1.21), we have

a = b + x + 4

3
π. (1.22)

Next, using the second equation in (1.21) and as well as (1.22), we calculate that

c = a + x =
(
b + x + 4

3
π

)
+ x = b + 2x + 4

3
π. (1.23)

We now use the third equation in (1.21) along with (1.22) and (1.23), and obtain

y = c + x + 2

3
π − a =

(
b + 2x + 4

3
π

)
+ x + 2

3
π −

(
b + x + 4

3
π

)
= 2x + 2

3
π

(1.24)
Finally, we return to the first equation of (1.21) and use (1.23) and (1.24) to compute

b = c + y − x =
(
b + 2x + 4

3
π

)
+

(
2x + 2

3
π

)
− x = b + 3x + 2π. (1.25)

Similar to the previous calculations, (1.25) gives 3x ≡ 0 mod 2π, or x = 2
3π, x = 0,

i.e., x is 0, 2
3π or − 2

3π.
Our first solution is x = 2

3π, a = b, c = b + 2
3π, and y = 0, where b is arbitrary.

As such, we return to (1.20) and compute

⎡

⎣
eib 0 0
0 eib 0
0 0 ei(b+ 2

3 π)

⎤

⎦ ·
⎡

⎣
1 1 1
1 W3 W 2

3
1 W 2

3 W3

⎤

⎦ ·
⎡

⎣
1 0 0
0 e

2
3 π 0

0 0 1

⎤

⎦ = eib

⎡

⎢⎣
1 e

2
3 πi 1

1 1 e
2
3 πi

e
2
3 πi 1 1

⎤

⎥⎦ .

The first row of the resulting circulant Hadamard matrix is eib(1, e
2
3 πi , 1), and so

letting b = 0 we obtain (1, e
2
3 πi , 1) as the fourth CAZAC sequence.
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Our second solution is x = 0, y = 2
3π, a = b + 4

3π, and c = b + 4
3π where b is

arbitrary. In this case, we take

⎡

⎣
ei(b+ 4

3 π) 0 0
0 eib 0
0 0 ei(b+ 4

3π)

⎤

⎦ ·
⎡

⎣
1 1 1
1 W3 W 2

3
1 W 2

3 W3

⎤

⎦ ·
⎡

⎣
1 0 0
0 1 0
0 0 e

2
3 π

⎤

⎦ = eib

⎡

⎢⎣
e− 2

3 πi e− 2
3 πi 1

1 e− 2
3 πi e− 2

3 πi

e− 2
3 πi 1 e− 2

3 πi

⎤

⎥⎦ .

The first row of this circulant Hadamard matrix is eib(e− 2
3 πi , e− 2

3 πi , 1), and so letting
b = 2

3π we obtain (1, 1, e
2
3 πi ) as the fifth CAZAC sequence.

A third solution is x = − 2
3π, y = − 2

3π, a = b + 2
3π, and c = b. We take

⎡

⎣
ei(b+ 2

3 π) 0 0
0 eib 0
0 0 eib

⎤

⎦ ·
⎡

⎣
1 1 1
1 W3 W 2

3
1 W 2

3 W3

⎤

⎦ ·
⎡

⎣
1 0 0
0 e− 2

3 π 0
0 0 e− 2

3 π

⎤

⎦ = eib

⎡

⎢⎣
e

2
3 πi 1 1
1 e

2
3 πi 1

1 1 e
2
3 πi

⎤

⎥⎦ .

The first row of this Hadamard matrix is eib(e
2
3 πi , 1, 1), and so letting b = − 2

3π we

obtain (1, e
4
3πi , e

4
3πi ) as the sixth and final CAZAC sequence.

To summarize, the six CAZAC sequences that we have obtained are

(1, e2πi/3, e2πi/3)

(1, 1, e4πi/3)

(1, e4πi/3, 1)

(1, e2πi/3, 1)

(1, 1, e2πi/3)

(1, e4πi/3, e4πi/3);

and they are associated with the following circulant Hadamard matrices:

⎡

⎣
1 e2πi/3 e2πi/3

e2πi/3 1 e2πi/3

e2πi/3 e2πi/3 1

⎤

⎦ ,

⎡

⎣
1 1 e4πi/3

e4πi/3 1 1
1 e4πi/3 1

⎤

⎦ ,

⎡

⎣
1 e4πi/3 1
1 1 e4πi/3

e4πi/3 1 1

⎤

⎦

⎡

⎣
1 e2πi/3 1
1 1 e2πi/3

e2πi/3 1 1

⎤

⎦ ,

⎡

⎣
1 1 e2πi/3

e2πi/3 1 1
1 e2πi/3 1

⎤

⎦ ,

⎡

⎣
1 e4πi/3 e4πi/3

e4πi/3 1 e4πi/3

e4πi/3 e4πi/3 1

⎤

⎦ .

Note that these CAZAC sequencesmatch the CAZAC sequences found in Sect. 1.3.2.
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1.3.4 5-Operation Equivalence Relations

Let p be prime. In this subsection, we show that the 5-operation equivalence relation
is an equivalence relationwhich is generated by a groupG acting onU p

p ⊆ C
p, where

U p
p is the group of ordered p-tuples of p-roots of unity. We apply this to the specific

cases of p = 3 and p = 5 in Sect. 1.3.5 to illustrate yet another way to generate all
CAZAC sequences of length 3 and also to generate all sequences of length 5 in the
process. We define the five operations again in the following way:

1. c0x[n] = x[n] and c1x[n] = x[n];
2. τbx[n] = x[n − b], b ∈ Z/pZ;
3. πcx[n] = x[cn], c ∈ Z/pZ, c 	= 0;
4. ed x[n] = e2πidn/px[n], d ∈ Z/pZ;
5. ω f x[n] = e2πi f/px[n], f ∈ Z/pZ.

With this, we can define the set G as

G = {(a, b, c, d, f ) : a ∈ {0, 1}, b, c, d, f ∈ Z/pZ, c 	= 0},

which has size |G| = 2p3(p − 1). To each element (a, b, c, d, f ) ∈ G we associate
the operator ω f edπcτbca . To motivate the group operation, we take (a, b, c, d, f ),
(h, j, k, �,m) ∈ G. One can show that the composition of the associated operators
is

(ωme�πkτ j ch) ◦ (ω f edπcτbca) = ωm+(−1)h( f − jc)e�+(−1)hkdπckτcj+bca+h .

As such we define the operation: G × G → G by

(a, b, c, d, f ) · (h, j, k, �,m) = (a + h, cj + b, ck, � + (−1)hkd,m + (−1)h( f − jc)).

Theorem 1.3.1 The operation · defines a group operation for G. In particular, (G, ·)
is a group.

Proof We need to show that the operation is associative, has an identity element,
and that each element has an inverse. It is easily verified that the identity element is
(0, 0, 1, 0, 0). Given an element (a, b, c, d, f ) ∈ G, it is elementary to verify that

(a, b, c, d, f )−1 = (−a,−bc−1, c−1, (−1)−a+1c−1d, (−1)−a+1( f + bc−1d)).

Finally, for associativity we first compute

(v,w, x, y, z) · ((a, b, c, d, f ) · (h, j, k, �,m))

= (v,w, x, y, z) · (a + h, cj + b, ck, � + (−1)hkd,m + (−1)h( f − jc))

= (a + h + v, cj x + bx + w, ckx, � + (−1)hkd + (−1)a+hcky,

m + (−1)h( f − jc) + (−1)a+h(z − cj x − bx)).
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Then, we compute

((v,w, x, y, z) · (a, b, c, d, f )) · (h, j, k, �,m)

= (a + v, bx + w, cx, d + (−1)acy, f + (−1)a(z − bx)) · (h, j, k, �,m)

= (a + h + v, cx j + bx + w, ckx, � + (−1)hkd + (−1)a+hkcy,

m + (−1)h( f − jc) + (−1)a+h(z − cj x − bx)).

Consequently, · is an associative operation.

Since (G, ·) is a group, it defines a proper group action onU p
p . There are p(p − 1)

many CAZAC sequences which start with 1 in U p
p . If we construct all CAZAC

sequences in U p
p , including those whose first term is not 1, we see that there are

p2(p − 1) CAZAC sequences in U p
p .

Theorem 1.3.2 Let p be an odd prime and let x ∈ U p
p be the Wiener sequence

x[n] = e2πisn
2/p, where s ∈ Z/pZ, see Example 1.2.5. Denote the stabilizer of x

under the group (G, ·) as Gx . If p ≡ 1 mod 4, then |Gx | = 4p. If p ≡ 3 mod 4,
then |Gx | = 2p. In particular, the orbit of x has size p2(p − 1)/2 if p ≡ 1 mod 4
and has size p2(p − 1) if p ≡ 3 mod 4.

Proof First, let (a, b, c, d, f ) ∈ G, and note that

(ω f edπcτbca)(x)[n] = W f +dn
p cax[cn − b] = W f +dn+(−1)as(cn−b)2

p .

Setting n = 0 gives the condition that for (a, b, c, d, f ) ∈ G,

f + (−1)asb2 ≡ 0 mod p, (1.26)

from which we conclude that

f ≡ −(−1)asb2 mod p. (1.27)

Setting n = 1 and substituting for f as in (1.27) gives us another condition, viz.,

(−1)as(c − b)2 + d − (−1)asb2 ≡ s mod p. (1.28)

From (1.28) we can solve for d to obtain

d ≡ s + (−1)as(2bc − c2) mod p. (1.29)

Now, note that for any other n > 1,we can use (1.27) and (1.29) to obtain the equation

(−1)as(nc − b)2 + n + (−1)as(2bc − c2)n − (−1)asb2 ≡ sn2 mod p. (1.30)
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After expanding and cancelling terms, we reduce (1.30) to

c2 ≡ (−1)a mod p. (1.31)

If a = 0, then (1.31) has two solutions, which we shall denote by c+
0 and c−

0 . If
a = 1, then by the law of quadratic reciprocity, (1.31) has two solutions, c+

1 and c−
1 if

p ≡ 1 mod 4, but no solutions if p ≡ 3 mod 4. Thus, if p ≡ 3 mod 4, we obtain
the following as stabilizers of x :

1. (0, b, c+
0 , 1 + 2bc+

0 − (c+
0 )2,−b2)

2. (0, b, c−
0 , 1 + 2bc−

0 − (c−
0 )2,−b2)

which holds for any b ∈ Z/pZ. If p ≡ 1 mod 4, then the following two sets of
stabilizers also hold:

1. (0, b, c+
1 , 1 + 2bc+

1 − (c+
1 )2,−b2)

2. (0, b, c−
1 , 1 + 2bc−

1 − (c−
1 )2,−b2)

for any b ∈ Z/pZ. Thus, if p ≡ 1 mod p there are 4p stabilizers for x , and if p ≡ 1
mod p there are 2p stabilizers for x .

Corollary 1.3.3 If p ≡ 3 mod 4, there is only one equivalence class of CAZAC
sequences in U p

p .

Theorem 1.3.4 Let p ≡ 1 mod 4, and x, y ∈ C
N . Let x = e2πin

2/p and y =
e2πisn

2/p, where s is not a quadratic residue modulo p. Then, x and y belong to
different 5-operation equivalence classes.

Proof Let s = 1 in the proof of Theorem1.3.2, and for (a, b, c, d, f ) ∈ G, we have

(ω f edπcτbca)(ϕ)[n] = W f +dn
p caϕ[cn − b] = W f +dn+(−1)a(cn−b)2

p .

Emulating the proof of Theorem1.3.2, we let n = 0 and obtain the condition,

f ≡ −(−1)ab2 mod p.

Now letting n = 1 we have the condition,

d ≡ s + (−1)a(2bc − c2) mod p.

For arbitrary n > 1, we obtain

(−1)a(nc − b)2 + sn + (−1)a(2bc − c2)n − (−1)ab2 ≡ sn2 mod p. (1.32)

After expanding and cancelling terms, we calculate that

c2 ≡ (−1)as mod p.
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Since p ≡ 1 mod 4 and s is not a residue modulo p, (1.32) cannot be solved for
either value of a. Thus, x and y must belong to different equivalence classes.

Corollary 1.3.5 If p ≡ 1 mod 4, then there are exactly two equivalence classes of
CAZAC sequences in U p

p both of which have size p2(p − 1)/2.

1.3.5 5-Operation Equivalence for Lengths 3 and 5

We now apply the results from Sect. 1.3.4 to show there is only one 5-operation
equivalence class for length 3 CAZAC sequences. Indeed, suppose that x = (1, 1,
e2πi/3). Then, the other five CAZAC sequences can be obtained from 5-operation
equivalency as follows:

1. c1x = (1, 1, e4πi/3)
2. e1c1x = (1, e2πi/3, e2πi/3)
3. e1x = (1, e2πi/3, 1)
4. e2x = (1, e4πi/3, e4πi/3)
5. e2c1x = (1, e4πi/3, 1).

Corollary 1.3.5 tells us that there are two 5-operation equivalence classes in the
case p = 5. To write them explicitly, we start with the Wiener sequence,

x = (1, e2πi/5, e8πi/5, e8πi/5, e2πi/5).

We show that we can obtain 10 CAZAC sequences by applying 5-operation equiva-
lencies to x :

1. x = (1, e2πi/5, e8πi/5, e8πi/5, e2πi/5)
2. c1x = (1, e8πi/5, e2πi/5, e2πi/5, e8πi/5)
3. ω1τ1c1x = (1, e2πi/5, 1, e4πi/5, e4πi/5)
4. ω4τ1x = (1, e8πi/5, 1, e6πi/5, e6πi/5)
5. ω4τ2c1x = (1, e6πi/5, e8πi/5, e6πi/5, 1)
6. ω1τ2x = (1, e4πi/5, e2πi/5, e4πi/5, 1)
7. ω4τ3c1x = (1, 1, e6πi/5, e8πi/5, e6πi/5)
8. ω1τ3x = (1, 1, e4πi/5, e2πi/5, e4πi/5)
9. ω1τ4c1x = (1, e4πi/5, e4πi/5, 1, e2πi/5)
10. ω4τ4x = (1, e6πi/5, e6πi/5, 1, e8πi/5).

To find the other orbit, we use the fact that 3 is not a quadratic residue modulo 5
and apply Theorem1.3.4. We then let x be the Wiener sequence,

x = (1, e6πi/5, e4πi/5, e4πi/5, e6πi/5),

and we compute

1. x = (1, e6πi/5, e4πi/5, e4πi/5, e6πi/5)
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2. c1x = (1, e4πi/5, e6πi/5, e6πi/5, e4πi/5)
3. ω3τ1c1x = (1, e6πi/5, 1, e2πi/5, e2πi/5)
4. ω2τ1x = (1, e4πi/5, 1, e8πi/5, e8πi/5)
5. ω2τ2c1x = (1, e8πi/5, e4πi/5, e8πi/5, 1)
6. ω3τ2x = (1, e2πi/5, e6πi/5, e2πi/5, 1)
7. ω2τ3c1x = (1, 1, e8πi/5, e4πi/5, e8πi/5)
8. ω3τ3x = (1, 1, e2πi/5, e6πi/5, e2πi/5)
9. ω3τ4x = (1, e2πi/5, e2πi/5, 1, e6πi/5)
10. ω2τ4x = (1, e8πi/5, e8πi/5, 1, e4πi/5).

In conclusion, we have explicitly shown that the p = 3 case has exactly one orbit
and have shown which 5-operation transformations generate them starting with

x = (1, 1, e2πi/3).

In the p = 5 casewehave explicitly shown that there are twoorbits under 5-operation
equivalence. We generated both orbits using two different Wiener sequences and
have written the 5-operation transformations that generate them.

1.4 Non-roots of Unity CAZAC Sequences of Prime Length

1.4.1 Björck sequences of prime length

In Sect. 1.1.2, we stated Björck’s 1984 counterexample, Eq. (1.3), showing that not
all CAZAC sequences of length 7 are Gaussian sequences or even roots of unity.

Let p be a prime number, and let ( k
p ) denote the Legendre symbol modulo p,

defined as
(
k

p

)
=

⎧
⎨

⎩

0, if k ≡ 0 (mod p),
1, if k ≡ n2 (mod p) for some n ∈ Z,

−1, if k 	≡ n2 (mod p) for all n ∈ Z.

Thus, we can define the function Λ : Z/pZ −→ {+1, 0,−1} as

Λ[k] =
(
k

p

)
.

The pre-image of+1 under the functionΛ is the setQ of nonzero quadratic residues
modulo p; and the pre-image of −1 under the function Λ is the setQC of quadratic
non-residues modulo p. Λ is a character of the multiplicative group (Z/pZ)×.
This means that Λ, when restricted to (Z/pZ)×, is a group homomorphism into the
multiplicative groupC

× = C\{0}. See [34], Chaps. 5 and 6, for a classical treatment,
and [6] for a critical application estimating values of the ambiguity function bymeans
of estimates in terms of Weil’s proof of the Riemann hypothesis for finite fields.
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Definition 1.4.1 Let p be a prime number, and so Z/pZ is a field.
If p ≡ 1 (mod 4), the Björck sequence, bp : Z/pZ → C, of length p, is defined

as
∀k = 0, 1, ..., p − 1, bp[k] = eiθp(k),

where

θp(k) =
(
k

p

)
arccos

(
1

1 + √
p

)
.

If p ≡ 3 (mod 4), or, equivalently, for p ≡ −1 (mod 4), the Björck sequence,
bp : Z/pZ → C, of length p, is defined as

∀k = 0, 1, ..., p − 1, bp[k] =
{
eiθp(k), if k ∈ QC ⊆ (Z/pZ)×,

1, otherwise,

where

θp(k) = arccos

(
1 − p

1 + p

)
.

In [14] Björck proved that Björck sequences are CAZAC sequences, and elab-
orated on it in [15] by analyzing the structure of bi-equimodular functions. The
structure is related to the subgroup of the multiplicative group (Z/pZ)×, e.g., the
group of quadratic residues. It was in this context that he used Proposition 1.2.4 in
[15], and which he had originally proved in [14]. The following is Björck’s main
theorem on the topic. Because of the role of the Legendre symbol in the definition
of Björck sequences, it is natural to expect a more computational proof of Theorem
1.4.2 in terms of the Legendre symbol. This was done by [5].

Theorem 1.4.2 Let p be prime.

a. If p ≡ 1 (mod 4), then bp : Z/pZ → C is a 3-valued CAZAC sequence of
length p.

b. If p ≡ 3 (mod 4), then bp : Z/pZ → C is a 2-valued CAZAC sequence of
length p.

Remark 1.4.3 a. Let p ≡ 1 (mod 4). Note that the Legendre symbol sequence of
length p has the form {0, 1, . . . ,−1, . . . , 1}, i.e., ( p−1

p ) = 1, see Example1.4.4.
In this case of p ≡ 1 (mod 4), Definition1.4.1 is equivalent to the following
sequence constructed by replacing elements of the Legendre sequence. We
replace 0 by 1, every term 1 by

η = exp

(
i arccos

√
p − 1

p − 1

)
= 1√

p + 1
+ i

√
p + 2

√
p√

p + 1
,

and every term −1 by the complex conjugate η of η. Then, 1, η, η are the three
values of this Björck CAZAC sequence. See Saffari [54] for a generalization.
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b. Let p ≡ 3 (mod 4). Note that the Legendre symbol sequence of length p has
the form {0, 1, . . . ,−1, . . . ,−1}, i.e., (

p−1
p ) = −1, see Example1.4.4. In this

case of p ≡ 3 (mod 4), Definition1.4.1 is equivalent to the following sequence
constructed by replacing elements of the Legendre sequence. We replace 0 by
1, every term −1 by

ξ = exp

(
i arccos

1 − p

1 + p

)
= 1 − p

1 + p
+ i

2
√
p

1 + p
,

and leave the original 1s as they are. Then, 1, ξ are the two values of this Björck
CAZAC sequence.

Example 1.4.4 a. As an example of the assertion in Remark1.4.3 that if p ≡
1 (mod 4), then the Legendre symbol sequence of length p has the form
{0, 1, . . . ,−1, . . . , 1}, i.e., (

p−1
p ) = 1, let p = 13. Consequently, 12 ≡ 52

(mod 13).
b. As an example of the assertion in Remark1.4.3 that if p ≡ 3 (mod 4), then the

Legendre symbol sequence of length p has the form {0, 1, . . . ,−1, . . . ,−1}, i.e.,
(
p−1
p ) = −1, let p = 19. In this case, it is generally difficult to prove assertions

of the form,
k 	≡ n2 (mod p) for all n ∈ Z.

Fortunately, we have Legendre’s theorem, which asserts for k 	= 0 that

(
k

p

)
≡ k(p−1)/2 (mod p),

and so (
p − 1

p

)
=

(−1

p

)
=

{
1, if p ≡ 1 (mod 4),
−1, if p ≡ 3 (mod 4),

[34].
c. By straightforward calculations, we see that Björck sequences are Gaussian for

p = 3, 5.
d. The theory of frames and CAZAC sequences are natural allies, especially in the

case of non-Gaussian CAZAC sequences such as the Björck sequences, e.g., see
[10, 44]. In fact, finiteGabor frames forCd withCAZACsequences as generating
functions are a natural source of examples and direction for finding further
examples, in order to deal with open questions in topics such as compressed
sensing and Zauner’s conjecture in quantum mechanics.
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1.4.2 Circulant Hadamard Matrices not Equivalent toD7

If we consider p × p Hadamard matrices, where p is prime, we want to know if the
Hadamard matrices generated by CAZAC sequences are always equivalent to Dp,
the p × p DFTmatrix. If p = 2, 3, 5, then we have already noted that all Hadamard
matrices are equivalent to Dp, regardless of whether or not they are generated by a
CAZAC sequence [19].

If p = 7, then Björck’s example shows that there are Hadamard matrices not
equivalent to D7 [19]. One such Hadamard matrix H1 is defined as follows. Let
θ = arccos(−3/4) and let d = exp(iθ), and set

H1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1
1 d−1 1 d d−1 d 1
1 d−1 d−1 d 1 1 d
1 d−2 d−2 d−1 d−1 1 d−1

1 1 d−1 1 d−1 d d
1 d−2 d−1 d−1 d−2 d−1 1
1 d−1 d−2 1 d−2 d−1 d−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

[19, 31]. To continue the process, let P1 = P2 = Id7 and D1, D2 be the following
matrices:

D1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 d 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 d 0
0 0 0 0 0 0 d

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, D2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 d 0 0 0 0 0
0 0 d 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 d 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then, we can define an equivalent circulant Hadamard matrix H2 by

H2 = D1H1D2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 d d 1 d 1 1
1 1 d d 1 d 1
1 1 1 d d 1 d
d 1 1 1 d d 1
1 d 1 1 1 d d
d 1 d 1 1 1 d
d d 1 d 1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In particular, the first column of H2 is the length 7 Björck sequence and so H2 is the
Hadamard matrix associated with the length 7 Björck sequence.

Another matrix, which is equivalent to neither D7 nor H1, is
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J1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1
1 a−2 a−1b−1 a−1c−1 a−1 a−1c a−1b
1 a−1b−1 a−2b−2 a−1b−2c−1 a−1b−1c−1 a−1b−1c a−1c
1 a−1c−1 a−1b−2c−1 a−2b−2c−2 a−1b−2c−2 a−1b−1c−1 a−1

1 a−1 a−1b−1c−1 a−1b−2c−2 a−2b−2c−2 a−1b−2c−1 a−1c−1

1 a−1c a−1b−1c a−1b−1c−1 a−1b−2c−1 a−2b−2 a−1b−1

1 a−1b a−1c a−1 a−1c−1 a−1b−1 a−2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where a ≈ exp(4.312839i), b ≈ exp(1.356228i), c ≈ exp(1.900668i), see [16,
19]. The numbers, a, b, and c, are algebraic numbers whose explicit values can be
found in [16]. We can put these two matrices in circulant form by multiplying J1 on
the left and right by the matrix,

D =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 a 0 0 0 0 0
0 0 ab 0 0 0 0
0 0 0 abc 0 0 0
0 0 0 0 abc 0 0
0 0 0 0 0 ab 0
0 0 0 0 0 0 a

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Carrying out the multiplication, the circulant form of J1, denoted as J2, can be
written as

J2 = DJ1D =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 a ab abc abc ab a
a 1 a ab abc abc ab
ab a 1 a ab abc abc
abc ab a 1 a ab abc
abc abc ab a 1 a ab
ab abc abc ab a 1 a
a ab abc abc ab a 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

1.5 Haagerup’s Theorem

1.5.1 Introduction

We shall now outline that part of Haagerup’s proof of his Theorem 1.1.6 [32] in
which he proves that there are only finitely many cyclic p-roots. The complete proof
in which the precise number of cyclic p-roots is computed requires sophisticated
complex analysis that is beyond the scope of our theme.

At the risk of oversimplifying, the proof that there are only finitely many cyclic
p-roots is divided into two parts: an ingenious algebraic manipulation using the
DFT, coupled with an application of the uncertainty principle for Z/pZ.
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1.5.2 Algebraic Manipulation

Recall that cyclic N -roots are solutions z = (z0, . . . , zN−1) ∈ C
N of the system of

equations: ⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

z0 + z1 + · · · + zN−1 = 0

z0z1 + z1z2 + · · · + zN−1z0 = 0

· · ·
z0z1 · · · zN−2 + · · · + zN−1z0 · · · zN−3 = 0

z0z1 · · · zN−1 = 1,

(1.33)

see Definition 1.1.4. In particular, because of the last equation of (1.33), z j ∈ C
× =

C\{0} for any cyclic N -root z ∈ C
N . Haagerup makes several substitutions to trans-

form (1.33).
First, assume z ∈ C

N is a cyclic N -root. Let x0 = 1 and x j = z0z1 · · · z j−1 for
all j = 1, . . . , N − 1. Thus, x j+1/x j = z j for j = 0, . . . , N − 2, where the last
equation of (1.33) guarantees that x j+1/x j is well defined. Further, for j = N − 1,
we have

x0
xN−1

= 1

z0z1 · · · zN−2
= zN−1,

because z0z1 · · · zN−1 = 1 by the last equation of (1.33). Substituting these equa-
tions, which relate the x j and zi , into (1.33) we see that x = (x0, . . . , xN−1) is a
solution to the system,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x0 = 1
x1
x0

+ x2
x1

+ · · · + x0
xN−1

= 0
x2
x0

+ x3
x1

+ · · · + x1
xN−1

= 0

· · ·
xN−1

x0
+ x0

x1
+ · · · + xN−2

xN−1
= 0.

(1.34)

Conversely, if x = (x0, . . . , xN−1) ∈ (C×)N is a solution to the system (1.34), then
it is easy to check that

z = (z0, . . . , zN−1) =
(
x1
x0

,
x2
x1

, . . . ,
x0

xN−1

)
∈ (C×)N

is a solution to (1.33). Haagerup says that solutions x to (1.34) are cyclic N-roots
on the x-level.

Second, assume x = (x0, . . . , xN−1) ∈ (C×)N is a cyclic N -root on the x-level.
Let y j = 1/x j , for j = 0, . . . , N − 1. Then,

(x, y) = (x0, . . . , xN−1, y0, . . . , yN−1) ∈ (C×)N × (C×)N
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is a solution to the system,

⎧
⎪⎨

⎪⎩

x0 = y0 = 1,

xk yk = 1, 1 ≤ k ≤ N − 1,∑N−1
m=0 xk+m ym = 0, 1 ≤ k ≤ N − 1.

(1.35)

Conversely, if (x, y) ∈ C
N × C

N is solution to (1.35), then, noting the condition
xk yk = 1 of (1.35), it is easy to check that x ∈ (C×)N and that x is a solution to
(1.34). Haagerup says solutions (x, y) ∈ C

N × C
N to (1.35) are cyclic N-roots on

the (x, y)-level.
Third, Haagerup introduces the DFT into the mix and proves that the system

of equations (1.35) for the cyclic N -roots on the (x, y)-level are equivalent to the
following system of equations for (x, y) ∈ C

N × C
N :

⎧
⎪⎨

⎪⎩

x0 = y0 = 1

xm ym = 1, 1 ≤ m ≤ N − 1

x̂n ŷ−n = 1, 1 ≤ n ≤ N − 1.

(1.36)

Without providing the details, we can see how the third equation of (1.36) is deduced
from (1.35) by writing out the product x̂n ŷ−n .

Sincewebegan recording these equivalenceswith cyclic N -roots z = (z0, . . . , zN )

as defined in Sect. 1.1.3, we wrote xm, x̂n in (1.36), but this is really x[m], x̂ [n] in
the notation from Sect. 1.1.2.

None of the details in this subsection is difficult to prove, butHaagerup’s strategy
is dazzling! The transformations from the cyclic N -roots problem (1.33) to that of
(1.36) preserve the number of distinct solutions, and so solving (1.36) is equivalent
to solving (1.33), viz., if there are 0 ≤ M ≤ ∞ solutions to one, then there are
0 ≤ M ≤ ∞ solutions to the other. As such, Haagerup’s proof that the set of cyclic
p-roots is finite will be to solve (1.36).

1.5.3 The Uncertainty Principle for Z/ pZ

In order to prove that the set of cyclic p-roots is finite (Theorem1.5.6), Haagerup’s
strategy requiredTheorems1.5.3 and 1.5.5. Theorem1.5.3 is an uncertainty principle
for the finite Abelian group Z/pZ, where p is prime. Its proof uses Chebotarëv’s
theorem, a fact known to Haagerup in 1996. We should point out that Gabidulin also
understood the role of Chebotarëv’s theorem if one wanted to prove Theorem1.5.6.

Theorem 1.5.1 (Chebotarëv 1926) Let p be prime and letDp be the unitary Fourier
matrix on C

p, defined as

DN =
[

1

N 1/2
W−mn

N

]N−1

m,n=0

,
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see Definition1.1.2. Then, all square submatrices of Dp have nonzero determinant.

Remark 1.5.2 There have been many different proofs of this theorem since Cheb-
otarëv’s original proof in 1926.A sampling of authors of published proofs is
Danilevskii (1937), Reshetnyak (1955), Dieudonné (1970), M. Newman (1975),
Evans and I. Stark (1977), Stevenhagen and Lenstra (1996), Goldstein, Guralnick,
and Isaacs (c. 2004), and Tao (2005). There is also the proof by Frenkel (2004)
that he first wrote down as a solution to a problem in the 1998 Schweitzer Com-
petition! In fact, Chebotarëv’s original proof provides much more information than
Theorem1.5.1 asserts, see [57], which is also a spectacular exposition of Chebo-
tarëv’s life andmathematical contributions, including his celebrated density theorem.

Independently, Tao [61] used Theorem1.5.1 in order to prove Theorem1.5.3.
Further, he noted that the two results are equivalent, a fact discovered independently
by András Biró. Theorem1.5.3 itself is a refinement for the setting of Z/pZ of the
uncertainty principle inequality,

|supp(u)| |supp(̂u)| ≥ |G|, (1.37)

whereG is a finite Abelian group, u : G −→ C is a function, û is the discrete Fourier
transform of u, |X | is the cardinality of X, and supp(u) = {x ∈ G : u(x) 	= 0} is the
support of u, see [62] for a systematic treatment of the discrete Fourier transform.
The inequality, (1.37), is due to Donoho and Stark [24], cf., [56].

Theorem 1.5.3 If u 	= 0 ∈ C
p and û = Fpu is the discrete Fourier transform of u,

then |supp(u)| + |supp(̂u)| ≥ p + 1, where |supp(u)|, the support of u, denotes the
number of nonzero coordinates of u.

Algebraic varieties are a central object of study in algebraic geometry. Classically,
and for us, an algebraic variety is defined as the set of solutions of a system of
polynomial equations over the real or complex numbers. The following is a basic
theorem.

Theorem 1.5.4 A compact algebraic variety in C
N is a finite set, e.g., see [52],

Theorem13.3.

Theorem 1.5.5 If the number of solutions (x, y) ∈ C
N × C

N to (1.36) is infinite,
then there are u, v ∈ C

N\{0} such that ukvk = 0 and ûk v̂−k = 0 for each 0 ≤ k ≤
N − 1.

Proof Let W ⊆ C
N × C

N denote the set of solutions to (1.36), and assume W is an
infinite set. Since W is an algebraic variety, then, by Theorem1.5.4 and the Heine–
Borel theorem, W must be unbounded. Choose a sequence {(x (m), y(m))} ⊆ W for
which

lim
m→∞(||x (m)||22 + ||y(m)||22)1/2 = ∞.

Let u(m) and v(m) be the normalizations of x (m) and y(m), respectively, i.e., u(m) =
x (m)/||xm ||2. Therefore, the sequence, {(u(m), v(m))}, is contained in a compact set.
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Suppose that this sequence converges to (u, v), passing to a subsequence if necessary.
Because each (x (m), y(m)) is a solution to (1.36), x (m)

0 = y(m)
0 = 1 for allm ∈ N. Thus,

||x (m)||22 = 1 + cm and ||y(m)||22 = 1 + dm, where cm, dm > 0. It follows that

||x (m)||22||y(m)||22 = (1 + cm)(1 + dm) ≥ 1 + cm + dm = ||x (m)||22 + ||y(m)||22 − 1.

Hence, by our choice of {(x (m), y(m))}, we have

lim
m→∞ ||x (m)||22||y(m)||22 = ∞.

Now, from (1.36), we know that x (m)
k y(m)

k = x̂ (m)
k ŷ(m)−k = 1 for each m ≥ 1 and

each 1 ≤ k ≤ N − 1; and so

ukvk = ûk v̂−k = lim
m→∞(||x (m)||2||y(m)||2)−1

for 1 ≤ k ≤ N − 1. In addition, this equality is also true for k = 0, because x (m)
0 =

y(m)
0 = 1. Therefore, since

lim
m→∞ ||x (m)||2||y(m)||2 = ∞,

we have that ukvk = ûk v̂−k = 0.

Theorem 1.5.6 (Haagerup) The set of cyclic p-roots is finite.

Proof Let N = p in (1.36). Assume for the sake of obtaining a contradiction that the
set of solutions to (1.36) is infinite. Then, by Theorem 1.5.5, there are u, v ∈ C

p\{0}
with ukvk = 0 and ûk v̂−k = 0, k = 0, 1, . . . , p − 1.

This means that supp(u) ∩ supp(v) = ∅ and supp(̂u) ∩ (−supp(̂v)) = ∅. In par-
ticular, we obtain |supp(u)| + |supp(v)| ≤ p and |supp(̂u)| + |supp(v̂)| ≤ p; and
so,

|supp(u)| + |supp(v)| + |supp(̂u)| + |supp(̂v)| ≤ 2p.

However, by Theorem1.5.3, we have

|supp(u)| + |supp(v)| + |supp(̂u)| + |supp(̂v)| ≥ 2(p + 1),

and this gives the desired contradiction.

1.6 Appendix—Real Hadamard Matrices

Definition 1.6.1 A real Hadamardmatrix is a squarematrix whose entries are either
+1 or −1 and whose rows are mutually orthogonal.

umolter@dm.uba.ar



1 CAZAC Sequences and Haagerup’s Characterization of Cyclic N -roots 39

Let H be a real Hadamard matrix of order n. Then, the matrix

[
H H
H −H

]

is a real Hadamard matrix of order 2n. This observation can be applied repeatedly,
as Kronecker products, to obtain the following sequence of real Hadamard matrices:

H1 = [
1
]
,

H2 =
[
H1 H1

H1 −H1

]
=

[
1 1
1 −1

]
,

H4 =
[
H2 H2

H2 −H2

]
=

⎡

⎢⎢⎣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤

⎥⎥⎦ , · · · .

Thus,

H2k =
[
H2k−1 H2k−1

H2k−1 −H2k−1

]

=

⎡

⎢⎢⎣

H2k−2 H2k−2 H2k−2 H2k−2

H2k−2 −H2k−2 H2k−2 −H2k−2

H2k−2 H2k−2 −H2k−2 −H2k−2

H2k−2 H2k−2 −H2k−2 H2k−2

⎤

⎥⎥⎦ . (1.38)

This method of constructing real Hadamard matrices is due to Sylvester (1867)
[59]. In this manner, he constructed real Hadamard matrices of order 2k for every
nonnegative integer k.

Hadamard conjecture 1. The Hadamard conjecture 1 is that a real Hadamard
matrix of order 4k exists for every positive integer k [37]. Real Hadamard matrices
of orders 12 and 20 were constructed by Hadamard in 1893 [33]. He also proved
that if U is a unimodular matrix of order n, then |det(U )| � nn/2, with equality in
the case U is real if and only if U is a real Hadamard matrix [33]. In 1933, Paley
discovered a construction that produces a real Hadamard matrix of order q + 1
when q is a prime power that is congruent to 3 modulo 4, and that produces a real
Hadamard matrix of order 2(q + 1) when q is a prime power that is congruent to 1
modulo 4 [47]. In fact, the Hadamard conjecture 1 should probably be attributed to
Paley. The smallest order that cannot be constructed by a combination of Sylvester’s
and Paley’s methods is 92. A real Hadamard matrix of this order was found by
computer by Baumert, Golomb, and Hall in 1962. They used a construction, due
to Williamson, that has yielded many additional orders. In 2004, Hadi Kharaghani
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and Behruz Tayfeh-Rezaie constructed a real Hadamard matrix of order 428. As a
result, the smallest order for which no real Hadamard matrix is presently known is
668.

Hadamard conjecture 2. If x : Z/NZ −→ R is CAZAC sequence for N ≥ 2,
then the Hadamard conjecture 2 asserts that N = 4 and x is a translate of the 4-
tuple ±[1, 1, 1,−1]. The conjecture goes back to Ryser [53]. From definitions it
is straightforward to show that N = 4M2. The major progress has been made by
Turyn (1965), B. Schmidt (1999 and 2000), Leung, Ma, and B. Schmidt (2004), see
[41]. They proved that the Hadamard conjecture 2 is true if M is a power of a prime
greater than 3 as well as it being true for all N ≤ 1011.

Remark 1.6.2 (Finite abelian groups) It is natural to pose the problems that we have
considered about CAZAC sequences on Z/NZ for the general case of finite Abelian
groups, G. In fact, Gauss’ theorem asserts that every such G can be written as

G = Z/N1Z × · · · Z/NnZ,

where the N j can be chosen as powers of primes. Beyond its purely mathematical
interest, see [27, 62], this extension is important in coding theory, e.g., the analysis of
bent functions and difference sets for the groupZ/2Z

n by Dillon (1975) and Rothaus
(1976), independently, see, e.g., [23, 48, 54].

Remark 1.6.3 (Walsh functions andwavelet packets) Hadamardmatrices are closely
connected with Walsh functions [3]. The normalized Walsh functions [67] form an
orthonormal basis for L2(T). Every Walsh function is constant over each of a finite
number of subintervals of (0, 1).Aset ofWalsh functionswritten down in appropriate
order as rows of a matrix will give a real Hadamard matrix of order 2n as obtained
by Sylvester’s method. When Walsh functions are transported to the real line in
the correct way, they not only provide an orthonormal basis for L2(R) but are the
primordial example of wavelet packets using multiresolution analysis in wavelet
theory, e.g., see [11].

Remark 1.6.4 (The Littlewood flatness problem and antenna theory) Let UN denote
the class of unimodular trigonometric polynomials U (γ) = ∑N

n=0 un e
2πinγ , i.e.,

|un| = 1 for n = 0, . . . , N . The Littlewood flatness problem is to determine whether
or not there are UN ∈ UN for which

limN→∞
‖UN‖∞
‖UN‖2 = 1. (1.39)

It turns out that Gauss sums and their variants play a natural role in dealing with
(1.39). There have been herculean efforts to prove (1.39), sometimes in concert with
subtle failures only discovered by relatively herculean efforts. Finally, Kahane (1980)
proved that such polynomials exist, but it still remains to construct them, see [50].
The ratio in (1.39) is the crest factor of UN , and UN combined with (1.39) play a
role in antenna array signal processing where crest factors are analyzed, see [4] for
details and references.
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Chapter 2
Hardy Spaces with Variable Exponents

Víctor Almeida, Jorge J. Betancor, Estefanía Dalmasso
and Lourdes Rodríguez-Mesa

Abstract In this paper, wemake a survey on some recent developments of the theory
of Hardy spaces with variable exponents in different settings.

2.1 Introduction

In this paper, we gather the essential contents of the talk “Hardy spaces with vari-
able exponents” given by the second author at the CIMPA2017 Research School-IX
Escuela Santaló Harmonic Analysis, Geometric Measure Theory and Applications,
which took place in Buenos Aires, Argentina, from July 31 to August 11, 2017. We
give an overview of the latest advances about Hardy and local Hardy spaces with
variable exponents in different contexts.We cannot be exhaustive andwe recommend
the interested reader to consult the references at the end of this paper and others that
can be found in them.
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2.2 Lebesgue Spaces with Variable Exponents

Lebesgue spaces with variable exponents appeared for the first time in a paper of
Orlicz [51] in 1931. He considered the discrete case �(pi ), where (pi )∞i=1 is a sequence
in [1,∞), and the continuous one L p(·)(R), where p is a real [1,∞)-valued function.
Orlicz proved variable exponents versions of Hölder’s inequality. Nakano [49] in
1950 studied the so-called modular spaces which constituted a generalization of the
variable exponent Lebesgue spaces, that is, they are a special case of the modular
one.

Several groups of researchers have developed the theory of modular spaces, in
particular, of variable exponents Lebesgue spaces during the second half of the twen-
tieth century. In [23, pp. 2 and 3], some highlights in the evolution of the theory are
mentioned. We point out that many of the basic properties of variable exponents
Lebesgue and Sobolev spaces inRn were established by Kováčik and Rákosník [42].

With the arrival of the new century, the study of variable exponent function spaces
has gained a new impetus. This has been due to inter alia to applications where these
spaces play an important role. For instance, in recent years increasing attention has
been paid to the study of the so-called electrorheological fluids that have high tech-
nological interest. They have an important feature; their viscosity and other of their
mechanical characteristics can change drastically when they are in the presence of an
electromagnetic field. To model electrorheological fluids, variable exponent spaces
are the natural setting [22, 54, 55, 67]. Also, these spaces appear in the model-
ing of non-Newtonian fluids with thermo-corrective effects [5]. Variable exponent
spaces are connected with variational integrals with nonstandard growth and coerci-
tivity conditions [1, 74]. Variable exponent models for image restoration have been
studied in [14, 35, 45].

On the other hand, from a theoretical point of view, a fundamental fact that justifies
the new interest in the study of variable exponent spaces was the discovery of the
correct regularity condition, the so-called log-Hölder continuity condition, for the
variable exponents. Diening [24] uses this condition to establish the boundedness of
the Hardy–Littlewood maximal function on L p(·)(Ω) when Ω is bounded. We will
come back to this question later.

The theory of Lebesgue spaces with variable exponents has been collected in an
exhaustiveway in themonographs ofDiening et al. [23] andCruz-Uribe and Fiorenza
[16]. We recall here the definitions and some properties of L p(·)(Ω) that also serve
to fix our notation.

LetΩ be an open subset ofRn and let p : Ω → (0,∞) be a measurable function.
We consider p−(Ω) = ess inf

x∈Rn
p(x), p+(Ω) = ess sup

x∈Rn
p(x) and assume that 0 <

p−(Ω) ≤ p+(Ω) < ∞ except other thing is said. When Ω = R
n , we just write p−

and p+, respectively.
If f is ameasurable complex-valued function defined onΩ , we define themodular

�p(·)( f ) of f by

�p(·)( f ) :=
∫

Ω

| f (x)|p(x)dx,
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and we say that f ∈ L p(·)(Ω) when �p(·)(λ f ) < ∞, for some λ > 0.
The Luxemburg norm ‖ · ‖p(·) on L p(·)(Ω) is defined by

‖ f ‖p(·) = inf

{
λ > 0 : �p(·)

(
f

λ

)
≤ 1

}
, f ∈ L p(·)(Ω).

A first definition of L p(·)(Ω) including the case p+(Ω) = ∞ was introduced by
Sharpudinov [57] in one dimension and then, in higher dimension, by Kováčik and
Rákosník [42]. (L p(·)(Ω), ‖ · ‖p(·)) is a Banach space provided that p−(Ω) ≥ 1 and
it is reflexive when p−(Ω) > 1.

The Hardy–Littlewood maximal function M defined by

M( f )(x) = sup
B�x

1

|B|
∫
B∩Ω

| f (y)|dy, x ∈ R
n,

where the supremum is taken over all those balls B in R
n such that x ∈ B is a very

useful tool in harmonic analysis. Many authors have studied the behavior of the
maximal function M on variable exponent Lebesgue spaces.

Lerner proved in [44, Theorem 1.1] that if 1 < p− ≤ p+ < ∞ there existsC > 0
for which ∫

Rn

(M( f )(x))p(x)dx ≤ C
∫
Rn

| f (x)|p(x)dx

if and only if p(x) = p0, x ∈ R
n , for some 1 < p0 < ∞.

The following conditions for the exponents are usual in variable exponent settings.
We say that an exponent p is locally log-Hölder continuous on Ω when there exists
C > 0 for which

|p(x) − p(y)| ≤ C

log(e + 1/|x − y|) , x, y ∈ Ω.

It is said that p satisfies the log-Hölder decay condition if there exists α∞ ∈ R and
C > 0 such that

|p(x) − α∞| ≤ C

log(e + |x |) , x ∈ Ω.

When p is locally log-Hölder continuous and satisfies the log-Hölder decay condition
in Ω , we say that p is globally log-Hölder continuous in Ω .

Diening [24] proved that the maximal function defines a bounded operator from
L p(·)(Rn) into itself provided that p is locally log-Hölder continuous on Rn and p is
constant outside a ball. This result was improved by Cruz-Uribe et al. [18] relaxing
the second property which is replaced by the log-Hölder decay condition for p in
R

n . Nekvinda [50] proved the boundedness of M in L p(·)(Rn) by replacing the
assumption that p is constant outside a ball in R

n by a weaker decay condition at
infinity involving an integral, that is, there exist β∞ > 1 and C > 0 such that
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∫
Rn\{p(x)=β∞}

|p(x) − β∞|C1/|p(x)−β∞|dx < ∞.

In [18, 24, 50], 1 < p− ≤ p+ < ∞ is assumed. On the other hand, Pick and Ružička
[53] established that the local log-Hölder condition is the optimal continuitymodulus.
The condition p− > 1 is necessary for the maximal operator to be bounded from
L p(·)(Rn) into itself (see [18]). The L p(·)-boundedness of M including the case
p+ = ∞ was shown by Diening et al. [25].

When Ω is a bounded open subset of Rn , Diening [24] proved that if p is locally
log-Hölder continuous in Ω , M defines a bounded operator in L p(·)(Ω).

Manyothers have investigated L p(·)-boundedness properties for themaximal oper-
ator in different directions: weak-type inequalities, weighted inequalities, metric
spaces, homogeneous type spaces, . . .. Our previous comments are only concerned
about strong-type results.

It is well known that if q ∈ (0,∞) and {Ωi }∞i=0 is a partition of R
n , then

‖ f ‖qq =
∞∑
i=0

‖ f χΩi ‖qq . (2.1)

This property allows us to pass from local to global results. It is clear that it is not
possible to get a property like the last one in variable exponent settings.

Gogatishvili et al. [32] andHästö [36] have proved partial versions of (2.1) in L p(·)
contexts. Suppose that {Q j }∞j=1 is a partition of Rn into cubes with equal size and
ordered so that i > j if dist (0, Qi ) > dist (0, Q j ), and α > 0.We define a partition
norm ‖ · ‖p(·),{Q j },α by

‖ f ‖p(·),{Q j },α =
⎛
⎝ ∞∑

j=1

‖ f χQ j ‖α
p(·)

⎞
⎠

1/α

.

Note that if p(x) = q = α, x ∈ R
n , (2.1) says that ‖ f ‖p(·),{Q j },α = ‖ f ‖q . In [36,

Theorem 2.4] it was proved that if p(·) is globally log-Hölder continuous in R
n ,

‖ f ‖p(·),{Q j },α∞ ∼ ‖ f ‖p(·), f ∈ L p(·)(Rn). This result allows us to upgrade properties
proved on bounded sets, to global results, valid in all of Rn [32, 36].

2.3 Hardy Spaces with Variable Exponents

The study of Hardy spaces started at the beginning of the twentieth century in the
context of Fourier series and complex analysis of one variable. The theory of classical
real Hardy spaces H p(Rn) was originated by the paper of Stein and Weiss [61] in
the early 1960s and it was initially tied closely to the theory of harmonic functions.
Real variable methods were incorporated into this topic in the celebrated paper of
Fefferman and Stein [31]. Hardy spaces H p(Rn) reduce to Lebesgue spaces L p(Rn)
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2 Hardy Spaces with Variable Exponents 49

when 1 < p < ∞, and they are suitable substitutes of L p(Rn) when 0 < p ≤ 1,
especially with respect to the boundedness of operators, playing an important role
in various fields of analysis and partial differential equations. Since the appearance
of [31] Hardy spaces have been the object of much research. In [60, Chaps. III and
IV], a systematic presentation of the main properties of Hardy spaces in R

n can be
encountered.

Hardy spaces with variable exponent have been introduced in recent years by
Nakai and Sawano [48] and, independently, by Cruz-Uribe and Wang [19]. In this
exposition we take [19] as a starting point.

By S(Rn) we denote the Schwartz space and S′(Rn) represents the dual space
of S(Rn). The first definitions of Hardy space H p(·)(Rn) are given by using maxi-
mal functions. Suppose that f ∈ S′(Rn). For every φ ∈ S(Rn) we define the radial
maximal function Mφ( f ) by

Mφ( f ) = sup
t>0

|( f ∗ φt )|,

where φt (x) = 1
tn φ( xt ), x ∈ R

n and t > 0.
For every N ∈ N we denote by SN the following subset of S(Rn)

SN = {
φ ∈ S(Rn) : max|α|≤N

sup
x∈Rn

(1 + |x |)N |Dαφ(x)| ≤ 1
}
,

and the grand maximal functions MN ( f ) of f defined by

MN ( f ) = sup
φ∈SN

Mφ( f ).

Also the corresponding nontangential Poissonmaximal functionN ( f ), of f , is given
by

N ( f )(x) = sup
t>0

sup
|x−y|<t

|Pt ( f )(y)|, x ∈ R
n,

where P represents the Poisson kernel in Rn:

P(x) = Γ ( n+1
2 )

π(n+1)/2

1

(1 + |x |2)(n+1)/2
, x ∈ R

n.

In order to the definition of Pt ( f ), t > 0 makes sense, in the corresponding one of
N ( f ), we need to restrict the action ofN to the set of bounded tempered distributions
f . That is, those f ∈ S′(Rn) such that f ∗ φ ∈ L∞(Rn), for every φ ∈ S(Rn).
As in [19] we say that a measurable function p : Rn → (0,∞) is in MP0 when

0 < p− ≤ p+ < ∞ and there exists 0 < p0 < p− such that the Hardy–Littlewood
maximal operator M is bounded from L p(·)/p0(Rn) into itself.

A variable exponent version of the classical result in [60, Theorem 1, p. 91] is the
following.
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Theorem 2.3.1 ([19, Theorem 3.1]) Given p(·) ∈ MP0, for every f ∈ S′(Rn), the
following assertions are equivalent.

(a) There exists φ ∈ S(Rn) being
∫
Rn φ(x)dx 
= 0, such that Mφ( f ) ∈ L p(·)(Rn).

(b) For all N > n
p0

+ n + 1, MN ( f ) ∈ L p(·)(Rn).

(c) f is a bounded distribution and N ( f ) ∈ L p(·)(Rn).

Furthermore, the quantities ‖Mφ( f )‖p(·), ‖MN ( f )‖p(·), and ‖N ( f )‖p(·) are com-
parable with constants that depend only on p(·) and n but not on f .

Let p(·) ∈ MP0. A tempered distribution f ∈ S′(Rn) is said to be in H p(·)(Rn)

when (a) (equivalently, (b) or (c)) in Theorem 2.3.1 is satisfied. For every f ∈
H p(·)(Rn) we define

‖ f ‖H p(·)(Rn) = ‖MN ( f )‖p(·),

being N ∈ N, N > n
p0

+ n + 1.
Latter [43] andCoifman [15] obtained atomic characterizations for classicalHardy

spaces. Stromberg and Torchinsky [62] described the distributions inweightedHardy
spaces by using atoms. Inspired by the last two mentioned atom decompositions, in
[19, 48] (see also [56]) the variable exponent Hardy space H p(·)(Rn) is characterized
by using atoms.

Let p(·) ∈ MP0. Assume that 1 < q ≤ ∞. We say that a function a is a (p(·), q)-
atom associated with the ball B when

(i) supp a ⊂ B;
(ii) ‖a‖q ≤ |B|1/q‖χB‖−1

p(·);
(iii)

∫
Rn a(x)xαdx = 0, for every α ∈ N

n , |α| ≤ [n(1/p0 − 1)].
Here |α| = α1 + α2 + ... + αn , whenα = (α1,α2, ...,αn) ∈ N

n , and, for every β >

0, [β] denotes the unique k ∈ N such that k ≤ β < k + 1.

Theorem 2.3.2 ([19, Theorem 7.1]) Suppose p(·) ∈ MP0. Then, a distribution f ∈
H p(·)(Rn) if, and only if, for every q > 1, there exist, for each j ∈ N, λ j > 0 and a
(p(·), q)-atom a j associated with the ball B j such that f = ∑∞

j∈N λ ja j , where the

series converges in H p(·)(Rn), and
∞∑
j∈N

λ j

‖χBj ‖p(·)
χBj ∈ L p(·)(Rn). Furthermore, if

q > 1 and we define, for every f ∈ H p(·)(Rn),

‖ f ‖H p(·)
at (Rn)

= inf

∥∥∥∥∥∥
∞∑
j∈N

λ j

‖χBj ‖p(·)
χBj

∥∥∥∥∥∥
p(·)

,

where the infimum is taken over all the pair of sequences ({λ j }∞j=1, {Bj }∞j=1) such
that, for every j ∈ N, λ j > 0 and there exists a (p(·), q)-atom a j associated with the
ball B j , and that f = ∑∞

j=1 λ ja j , in H p(·)(Rn), then ‖ f ‖H p(·)(Rn) ∼ ‖ f ‖H p(·)
at (Rn)

.
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2 Hardy Spaces with Variable Exponents 51

We now define, for every f ∈ S′(Rn), φ ∈ S(Rn) and j ∈ Z,

φ( j) = φ(2− j x), x ∈ R
n,

and
φ( j)(D) f = (φ( j) f̂ )̌.

If φ ∈ S(Rn) the Fourier transform φ̂ of φ is given by

φ̂(y) =
∫
Rn

e−2πi x ·yφ(x)dx, y ∈ R
n,

and the inverse Fourier transform φ̌ of φ is defined by φ̌(y) = φ̂(−y), y ∈ R
n . The

Fourier transform f̂ and the inverse Fourier transform f̌ of f ∈ S′(Rn) are defined
by duality.

A Triebel–Lizorkin-type characterization of H p(·)(Rn) was established in [48].

Theorem 2.3.3 ([48, Theorem 5.7]) Assume that p(·) is globally log-Hölder con-
tinuous in R

n. Let ϕ ∈ S(Rn) such that suppϕ ⊂ B(0, 4)\B(0, 1/4) verifying that∑∞
j=−∞ |ϕ( j)(y)|2 > 0, y ∈ R

n\{0}. Then, there exists C > 0 such that, for every
f ∈ H p(·)(Rn),

1

C
‖ f ‖H p(·)(Rn) ≤

∥∥∥∥∥∥

⎛
⎝∑

j∈Z
|ϕ( j)(D) f |2

⎞
⎠

1/2∥∥∥∥∥∥
p(·)

≤ C‖ f ‖H p(·)(Rn). (2.2)

Variable exponent Hardy spaces H p(·)(Rn) also can be characterized by using
other Littlewood–Paley functions (see [77]). We consider the following square-type
functions. By S∞(Rn) we denote the subspace of S(Rn) constituted by all those φ ∈
S(Rn) such that 0 /∈ supp φ̂. S′∞(Rn) represent the dual space of S∞(Rn). Suppose
that φ ∈ S(Rn) satisfying that

supp φ̂ ⊂ {y ∈ R
n : 1/2 ≤ |y| ≤ 2}

and, for a certain C > 0,

|φ̂(y)| ≥ C, 3/5 ≤ |y| ≤ 5/3.

It is clear that φ ∈ S∞(Rn). For every f ∈ S′∞(Rn), we define

g( f )(x) =
{∫ ∞

0
| f ∗ φt (x)|2 dt

t

}1/2

, x ∈ R
n,
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that can be seen as a continuous version of the square function being in the center of
the chain of inequalities (2.2),

S( f )(x) =
{∫ ∞

0

∫
|x−y|<t

| f ∗ φt (x)|2 dydt
tn+1

}1/2

, x ∈ R
n,

and, for every λ > 0,

g∗
λ( f )(x) =

{∫ ∞

0

∫
Rn

(
t

t + |x − y|
)λn

| f ∗ φt (x)|2 dydt
tn+1

}1/2

, x ∈ R
n.

Theorem 2.3.4 ([77, Theorem 1.4 and Corollary 1.5]) Suppose that p(·) is globally
log-Hölder continuous in Rn. Then, f ∈ H p(·)(Rn) if, and only if, f ∈ S′∞(Rn) and
S( f ) ∈ L p(·)(Rn). Furthermore, there exists C > 0 such that

1

C
‖ f ‖H p(·)(Rn) ≤ ‖S( f )‖p(·) ≤ C‖ f ‖H p(·)(Rn) f ∈ H p(·)(Rn).

The same assertion is true if S( f ) is replaced by g( f ) or g∗
λ( f ) when λ ∈ (1 +

2
min{2,p−} ,∞).

The property in Theorem 2.3.4 must be understood in the following way: if f ∈
S′∞(Rn) and S( f ) ∈ L p(·)(Rn), then there exists a unique g ∈ S′(Rn) such that <

g,ψ >=< f,ψ >, ψ ∈ S∞(Rn), g ∈ H p(·)(Rn), and ‖g‖H p(·)(Rn) ≤ ‖S( f )‖p(·).
Hardy spaces H p(·)(Rn) also can be characterized by using the corresponding

intrinsic square function in the sense ofWilson [66]. Thiswas proved in [77, Theorem
1.8].

For every j = 1, 2, ..., n and f ∈ L p(Rn), 1 ≤ p < ∞, the j th Riesz transform
R j f of f is defined by

R j ( f )(x) = lim
ε→0+

Γ ((n + 1)/2)

π(n+1)/2

∫
|y|>ε

y j
|y|n+1

f (x − y)dy, a.e. x ∈ R
n.

It is well known that the Riesz transforms define bounded operators from L p(Rn)

into itself, for every 1 < p < ∞, and from L1(Rn) into L1,∞(Rn).
We say that a distribution f ∈ S′(Rn) is restricted at infinity when there exists

r0 > 1 such that f ∗ φ ∈ Lr (Rn), for every r ≥ r0 and φ ∈ S(Rn). The definition of
Riesz transforms R j ( f ), j = 1, 2, ..., n, for every restricted at infinity distribution
f ∈ S′(Rn) can be encountered in [60, p. 123].
In [72, Theorems 1.5 and 1.6], Yang, Zhuo and Nakai characterized H p(·)(Rn) by

Riesz transforms.

Theorem 2.3.5 ([72, Theorem 1.6]) Assume that m ∈ N, m ≥ 2, and p(·) is a
globally log-Hölder continuous function in R

n such that p− ∈ ( n−1
n+m−1 ,∞). Let

umolter@dm.uba.ar



2 Hardy Spaces with Variable Exponents 53

f ∈ S′(Rn) and φ ∈ S(Rn) such that
∫
Rn φ = 1. The following assertions are equiv-

alent:

(a) f ∈ H p(·)(Rn),
(b) f ∈ S′(Rn) is restricted at infinity and

sup
t>0

⎛
⎝‖ f ∗ φt‖p(·) +

m∑
k=1

n∑
j1,..., jk=1

‖R j1 ...R jk ( f ) ∗ φt‖p(·)

⎞
⎠ < ∞.

Furthermore, there exists C > 0 such that

1

C
‖ f ‖H p(·)(Rn) ≤ sup

t>0

⎛
⎝‖ f ∗ φt‖p(·) +

m∑
k=1

n∑
j1,..., jk=1

‖R j1 ...R jk ( f ) ∗ φt‖p(·)

⎞
⎠

≤ C‖ f ‖H p(·)(Rn), f ∈ H p(·)(Rn).

Riesz transforms are a typical example of Calderón–Zygmund singular integrals.
L p(·)(Rn) and H p(·)(Rn)-boundedness properties of singular integrals havebeen stud-
ied, for instance, in [17, 19, 20, 27].

Fefferman and Stein [31] proved that the dual space of H 1(Rn) is the space
BMO(Rn) of functions with bounded mean oscillation in Rn . The dual of the space
H p(Rn)when0 < p < 1was characterized as aLipschitz space of exponent 1/p − 1
[29]. The dual space of H p(·)(Rn) was described in [48].

By Pd(R
n) we denote the set of polynomials in R

n having degree less or equal
than d, being d ∈ N. Suppose that f ∈ L1

loc(R
n), d ∈ N and Q is a cube inRn . There

exists a unique polynomial P ∈ Pd(R
n) such that, for every q ∈ Pd(R

n),

∫
Q
( f (x) − P(x))q(x)dx = 0.

We denote this unique polynomial by Pd
Q( f ).

If 1 ≤ q ≤ ∞, Ψ : Q → (0,∞) is a function defined on the set Q of cubes inRn

with sides parallel to the coordinates axis, and f ∈ Lq
loc(R

n), we define

‖ f ‖Lq,Ψ,d = sup
Q∈Q

1

Ψ (Q)

(
1

|Q|
∫
Q

| f (x) − Pd
Q( f )(x)|qdx

)1/q

,

when q < ∞, and

‖ f ‖Lq,Ψ,d = sup
Q∈Q

1

Ψ (Q)
‖ f (x) − Pd

Q( f )‖L∞(Q),
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when q = ∞. The Campanato space Lq,Ψ,d(R
n) is that one constituted by those f ∈

Lq
loc(R

n) such that ‖ f ‖Lq,Ψ,d < ∞. By identifying f ∈ Lq,Ψ,d(R
n) with g = f + P ,

where P ∈ Pd(R
n), in Lq,Ψ,d(R

n), the Campanato space is a Banach space.
Note that when Ψ (Q) = 1, Q ∈ Q, Lq,Ψ,d(R

n) coincides with BMO(Rn), and if
α ∈ (0, 1) andΨ (Q) = |Q|1/α−1, Q ∈ Q,Lq,Ψ,d(R

n) reduces to the Lipschitz space
of exponent α in Rn .

Theorem 2.3.6 ([48, Theorem 7.5]) Assume that p(·) is a global log-Hölder con-
tinuous function such that 0 < p− ≤ p+ ≤ 1, p+ < q ≤ ∞, and dp(·) = {d ∈ N ∪
{0} : p−(n + d + 1) > n}. We consider the function Ψ : Q → (0,∞) defined by
Ψ (Q) = ‖χQ‖p(·)|Q|−1, Q ∈ Q. Then, the dual space (H p(·)(Rn))′ can be identi-
fied with the Campanato space Lq ′,Ψ,dp(·) (R

n), where 1/q ′ + 1/q = 1.

Variable exponent weak Hardy spaces in Rn were considered in [73].
Bownik [9] introduced Hardy spaces associated with anisotropies defined by an

expansive matrix in Rn . Recently, Hardy–Lorentz spaces with variable exponents in
anisotropic settings have been studied in [4, 46].

Zhuo et al. [75] defined variable exponent Hardy spaces H p(·)(X) where X is a
RD-homogeneous-type space.

2.4 Hardy Spaces with Variable Exponents Associated with
Operators

ClassicalHardy spaces H p(Rn) are adapted, in some sense, to the Laplacian operator.
However, these spaces are not useful in important problems involving other operators
different from the Laplacian. It is necessary to introduce Hardy spaces adapted to
the linear operators in the same way as the classical Hardy spaces are related to the
Laplacian. The theory of Hardy spaces associated with operators has been developed
by many authors in the last years (see, for instance, [6, 8, 28, 30, 37–39, 58, 59,
68]).

Motivated by the above papers and those ones mentioned in Sect. 2.3, Dachun
Yang and his collaborators have introduced and studied variable exponent Hardy
spaces associated to operators [39, 69, 71, 76].

We now precise the class of operators that we consider here. By L we denote a
nonnegative selfadjoint operator on L2(Rn). Then,−L generates a bounded analytic
semigroup {e−t L}t>0. It is usual to assume on {e−t L}t>0 some kind of exponential
bound properties as the following.

(A1) (Gaussian estimates [71, 76]) For every t > 0 the kernel of the operator e−t L

is a measurable function Kt onRn × R
n satisfying that there existC, c > 0 such that

|Kt (x, y)| ≤ C

tn/2
exp

(
−c

|x − y|2
t

)
, t > 0, x, y ∈ R

n.
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(A2) (Reinforced off-diagonal estimates Davies–Gaffney estimates [37]) There
exist C, c > 0 such that

| < e−t L( f1), f2 > | ≤ C exp

(
−[dist (U1,U2)]2

ct

)
‖ f1‖2‖ f2‖2, t > 0,

for every f1, f2 ∈ L2(Rn) such that supp( fi ) ⊂ Ui ⊂ R
n , i = 1, 2.

(A3) ([69]) There exist pL ∈ [1, 2) and qL ∈ (2,∞] such that, for every k ∈ N,
{(t L)ke−t L}t>0 satisfy the reinforced (pL , qL) off-diagonal estimates on balls [7].

Many interesting operators satisfy these assumptions. Some of them are the fol-
lowing ones:

(a) Schrödinger operator L = −� + V , where as usual,Δ represents the Laplacian
operator and 0 ≤ V ∈ L1

loc(R
n).

(b) Second-order divergence forms elliptic operators L = −div(A∇), where A =
(ai, j )ni, j=1 is such that ai, j = a j,i , i, j = 1, 2, ..., n and for a certain λ > 0,

1

λ
|y|2 ≤

n∑
i, j=1

ai, j (x)yi y j ≤ λ|y|2, x, y ∈ R
n.

(c) Magnetic operators: L = −(∇ + ia)(∇ − ia), where a = (a j )
n
j=1 ∈ L2

loc(R
n,Rn).

In order to define variable exponent Hardy spaces associated to L , we consider
the following Littlewood–Paley functions:

• The area square function defined by the heat semigroup {e−t L}t>0

SL ,h( f )(x) =
(∫ ∞

0

∫
|x−y|<t

|t2Le−t2L( f )(y)|2 dydt
tn+1

)1/2

, x ∈ R
n.

• The area square function defined by the Poisson semigroup {e−t
√
L}t>0

SL ,P( f )(x) =
(∫ ∞

0

∫
|x−y|<t

|t Le−t
√
L( f )(y)|2 dydt

tn+1

)1/2

, x ∈ R
n.

Let Ψ be an even function in S(R) such that
∫
R

Ψ (z)dz 
= 0. We define Ψ (t
√
L),

t > 0, by using functional calculus. Note that ifΨ (z) = e−z2 , z ∈ R, thenΨ (t
√
L) =

e−t2L , t > 0. We consider the following maximal functions:

– Radial maximal function

Ψ +
L ( f )(x) = sup

t>0
|Ψ (t

√
L)( f )(x)|, x ∈ R

n.

– Non tangential maximal function: with α > 0,
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Ψ ∗
L ,α( f )(x) = sup

t>0
sup

|x−y|<αt
|Ψ (t

√
L)( f )(y)|, x ∈ R

n.

– Grand maximal function

�∗
L ,α( f )(x) = sup

Ψ ∈SN ,even(R)

Ψ ∗
L ( f )(x), x ∈ R

n,

where Ψ ∗
L = Ψ ∗

L ,1 and SN ,even(R) = {φ ∈ S(R) : φ is even and max
0≤m≤N

sup
z∈R

(1 +
|z|)N |DmΨ (z)| ≤ 1}.
The operators SL ,h , SL ,P , Ψ +

L , Ψ ∗
L ,α, and �∗

L ,α are sublinear operators and are
bounded from L2(Rn) into itself.

Suppose that T is a sublinear and bounded operator from L2(Rn) into itself and
p(·) is a global log-Hölder continuous in Rn .

We define the space

H
p(·)
T (Rn) = { f ∈ L2(Rn) : T ( f ) ∈ L p(·)(Rn)}.

The (p(·), T )-Hardy space H p(·)
T (Rn) is defined as the completion ofHp(·)

T (Rn) with
respect to the quasinorm ‖ · ‖H p(·)

T (Rn)
given by

‖ f ‖H p(·)
T (Rn)

= ‖T ( f )‖p(·), f ∈ H
p(·)
T (Rn).

According to this definition, we can consider variable exponent Hardy spaces associ-
ated with the operator L by using the sublinear operators SL ,h, SL ,P , Ψ +

L , Ψ ∗
L ,α, and

�∗
L ,α.
Let 1 < q ≤ ∞ and M ∈ N. A function a ∈ Lq(Rn) is called a (p(·), q, M)L -

atom associated with the ball B inRn when there exists b in the domains of LM such
that

(i) a = LMb,
(ii) supp(Lkb) ⊂ B, k = 0, 1, 2, ..., M,

(iii) ‖(r2B L)kb‖q ≤ r2MB |B|1/q‖χB‖−1
p(·), k = 0, 1, 2, ..., M. Here rB represents the

radius of B.

We say that f ∈ L2(Rn) has a (p(·), q, M)L -atomic representation when f =∑
j∈N λ ja j , where the series converges in L2(Rn), and, for every j ∈ N, λ j > 0 and

a j is a (p(·), q, M)L -atom associated with the ball Bj , satisfying that

⎛
⎝∑

j∈N

(
λ j

‖χBj ‖p(·)

)p

χBj

⎞
⎠

1/p

∈ L p(·)(Rn).

Here and in the sequel p = min{1, p−}.
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2 Hardy Spaces with Variable Exponents 57

The spaceHp(·)
L ,at,q,M (Rn) consists of all those f ∈ L2(Rn) having a (p(·), q, M)L -

atomic representation. For every f ∈ H
p(·)
L ,at,q,M(Rn), we define

‖ f ‖H p(·)
L ,at,q,M (Rn)

= inf

∥∥∥∥∥∥

⎛
⎝∑

j∈N

(
λ j

‖χBj ‖p(·)

)p

χBj

⎞
⎠

1/p∥∥∥∥∥∥
p(·)

,

where the infimum is taken over all those pair of sequences {λ j } j∈N and {Bj } j∈N such
that, for every j ∈ N, λ j > 0 and there exists a (p(·), q, M)L -atom a j associated
with the ball Bj satisfying that f = ∑

j∈N λ ja j in L2(Rn) and

⎛
⎝∑

j∈N

(
λ j

‖χBj ‖p(·)

)p

χBj

⎞
⎠

1/p

∈ L p(·)(Rn).

The atomic Hardy space H p(·)
L ,at,q,M (Rn) is defined as the completion ofHp(·)

L ,at,q,M (Rn)

with respect to the quasinorm ‖ · ‖H p(·)
L ,at,q,M (Rn)

.

Let 1 < q ≤ ∞, ε > 0 and M ∈ N. A function a ∈ Lq(Rn) is called a (p(·), q,

ε, M)L -molecule associated with the ball B inRn when there exists b in the domains
of LM such that

(i) a = LMb,
(ii) ‖χSi (B)Lkb‖q ≤ 2−iεr2(M−k)

B |B|1/q‖χB‖−1
p(·), k = 0, 1, 2, ..., M , and i ∈ N,

where rB is the radius of B, S0(B) = B and Si (B) = 2i B\2i−1B, i ∈ N, i ≥ 1.

We say that f ∈ L2(Rn) has a (p(·), q, ε, M)L -molecular representation when
f = ∑

j∈N λ ja j , where the series converges in L2(Rn), and, for every j ∈ N, λ j > 0
and a j is (p(·), q, ε, M)L -molecule associated with the ball Bj , satisfying that

⎛
⎝∑

j∈N

(
λ j

‖χBj ‖p(·)

)p

χBj

⎞
⎠

1/p

∈ L p(·)(Rn).

By H
p(·)
L ,mol,q,ε,M(Rn), we denote the space constituted by all those f ∈ L2(Rn)

having a (p(·), q, ε, M)L -molecular representation. We define,
for every f ∈ H

p(·)
L ,mol,q,ε,M (Rn),

‖ f ‖H p(·)
L ,mol,q,ε,M (Rn)

= inf

∥∥∥∥∥∥

⎛
⎝∑

j∈N

(
λ j

‖χBj ‖p(·)

)p

χBj

⎞
⎠

1/p∥∥∥∥∥∥
p(·)

,

where the infimum is taken over all those pair of sequences {λ j } j∈N and {Bj } j∈N
such that, for every j ∈ N, λ j > 0 and there exists a (p(·), q, ε, M)L -molecule a j
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58 V. Almeida et al.

associated with the ball Bj satisfying that f = ∑
j∈N λ ja j in L2(Rn) and

⎛
⎝∑

j∈N

(
λ j

‖χBj ‖p(·)

)p

χBj

⎞
⎠

1/p

∈ L p(·)(Rn).

The molecular Hardy space H p(·)
L ,mol,q,ε,M(Rn) is defined as the completion of

H
p(·)
L ,mol,q,ε,M(Rn) with respect to the quasinorm ‖ ‖H p(·)

L ,mol,q,ε,M (Rn)
.

Atomic and molecular representations are very useful to study the boundedness
properties of operators in Hardy spaces.

In the following results, the coincidence of the above-defined Hardy spaces is
established.

Theorem 2.4.1 ([71, Theorem 3.13] and [76, Theorems 1.8 and 1.11]) Assume that
L is a nonnegative and selfadjoint operator in L2(Rn) and it satisfies (A1). Let p(·) be
a globally log-Hölder continuous function in Rn such that 0 < p+ ≤ 1, q ∈ (1,∞)

and M ∈ N ∩ (n/2[1/p− − 1],∞). Then, for every α ∈ (0,∞) and Ψ ∈ S(Rn)

such that Ψ is even and
∫
Rn Ψ (x)dx 
= 0, the spaces H p(·)

L ,at,q,M (Rn), H p(·)
SL ,h(R

n),

H p(·)
�∗

L ,α
(Rn), H p(·)

Ψ ∗
L ,α

(Rn) and H p(·)
L ,mol,q,ε,M (Rn) coincide, and the corresponding quasi-

norms are equivalent provided that p− > n/(n + ε) with ε > 0 and N ∈ N large
enough.

Theorem 2.4.2 ([76, Theorems 1.17]) Suppose that L is a nonnegative and selfad-
joint operator in L2(Rn) and it satisfies (A1). Assume also that if, for every t > 0,
the function Kt denotes the kernel of the integral operator e−t L , there exist C > 0
and μ ∈ (0, 1] such that

|Kt (y1, x) − Kt (y2, x)| ≤ C

tn/2

|y1 − y2|k
tμ/2

, t > 0 and x, y1, y2 ∈ R
n.

Let p(·) be a globally log-Hölder continuous function in R
n such that 0 < p+ ≤ 1,

q ∈ (1,∞), and M ∈ N ∩ (n/2[1/p− − 1],∞). Then, the spaces H p(·)
L ,at,q,M(Rn),

and H p(·)
Ψ +

L
(Rn) coincide and the corresponding quasinorms are equivalent provided

that Ψ ∈ S(Rn) is even and
∫
Rn Ψ (x)dx 
= 0.

In order to prove H p(·)
L ,at,q,M (Rn) = H p(·)

Ψ +
L ,α

(Rn) in Theorem 2.4.2, a Lipschitz con-

dition for the kernel functions is needed. We are going to present a particular case
where this extra property is not necessary in order to that the equality of radial and
atomic Hardy spaces holds.

We consider the magnetic Schrödinger operator

L = (∇ − ia)(∇ − ia) + V,
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2 Hardy Spaces with Variable Exponents 59

where a ∈ L2
loc(R

n,Rn) and 0 ≤ V ∈ L1
loc(R

n). This operator satisfies all the
assumptions in Theorem 2.4.2 except, in general, the Lipschitz one.

We consider Ψ (z) = e−z2 , z ∈ R, and α > 0. It is clear that Ψ +
L ( f ) ≤ Ψ ∗

L ,α( f ),

for every f ∈ L2(Rn). Hence, H p(·)
Ψ ∗

L ,α
(Rn) is continuously contained in H p(·)

Ψ +
L

(Rn). By

proceeding as in [39, p. 483] we can see that, for every ω ∈ A∞(Rn) (see [60] for
definitions) and 0 < p ≤ 1, there exists C > 0 such that

‖Ψ ∗
L ,α( f )‖L p(Rn ,ω) ≤ C‖Ψ +

L ( f )‖L p(Rn ,ω), f ∈ L2(Rn) ∩ L p(Rn,ω).

According to the extension of Rubio de Francia extrapolation theorem proved in
[17, Corollary 1.10], if p(·) is a globally log-Hölder continuous function in Rn , then

‖Ψ ∗
L ,α( f )‖p(·) ≤ C‖Ψ +

L ( f )‖p(·), f ∈ H p(·)
Ψ +

L
(Rn),

and H p(·)
Ψ +

L
(Rn) is continuously contained in H p(·)

Ψ ∗
L ,α

(Rn).

Thus, it is proved that H p(·)
Ψ ∗

L ,α
(Rn) = H p(·)

Ψ +
L

(Rn) with equivalent quasinorms pro-

vided that p(·) is globally log-Hölder continuous in Rn .
The dual space of H p(·)

�∗
L ,α

(Rn) is characterized as a Campanato-type space in [71,
Theorem 4.3] provided that the operator L satisfies the following properties:

(a) L is one to one and it has dense range in L2(Rn) and a bounded H∞ functional
calculus in L2(Rn).

(b) For every t > 0 the kernel of the integral operator e−t L is a measurable bounded
function Kt in Rn × R

n such that

|Kt (x, y)| ≤ t−n/mg

( |x − y|
t1/m

)
, t > 0 and x, y ∈ R

n,

where m > 0 and g is a positive, bounded, and decreasing function on (0,∞)

satisfying that, for every ε > 0,

lim
r→∞ rn+εg(r) = 0.

In [2] are defined variable exponent Hardy spaces on graphs associated with
weighted discrete Laplacians. It is remarkable that in this discrete setting the uni-
tary sets have positive measure. This fact implies that the arguments developed by
Uchiyama [65] or Grafakos et al. [34] do not work for the variable exponent Hardy
spaces studied in [2], so the authors have not been able to characterize it by maximal
functions.
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2.5 Local Hardy Spaces with Variable Exponents

Local Hardy spaces h p(Rn), 0 < p ≤ 1, were introduced byGoldberg [33]. They are
spaces of tempered distributions that are much better suited to problems associated
with partial differential equations than the classical Hardy spaces. In particular, some
pseudo-differential operators are bounded in local Hardy spaces h p(Rn) but they are
not bounded on Hardy spaces H p(Rn) [33].

If φ ∈ S(Rn) we define the local maximal function

mφ( f ) = sup
0<t≤1

| f ∗ φt |, f ∈ S′(Rn),

and, for every N ∈ N, the local grand maximal function

mN ( f ) = sup
φ∈SN

|mφ( f )|, f ∈ S′(Rn).

We consider the strip S = {(x, t) : x ∈ R
n and t ∈ (0, 1)}. By P0

t (x), x ∈ R
n , t ∈

(0, 1), we denote the function whose Fourier transform P̂0
t with respect to x is given

by

P̂0
t (y) = sinh((1 − t)2π|y|)

sinh(2π|y|) , y ∈ R
n and t ∈ (0, 1).

The Poisson kernel for the strip S is

Pt (x) = P0
t (x) + P0

1−t (x), x ∈ R
n and t ∈ (0, 1).

Note that, for every t ∈ (0, 1), Pt ∈ S(Rn). For every f ∈ S′(Rn) and φ ∈ S(Rn),
we define the nontangetial maximal function m∗ by

m∗( f )(x) = sup
|x−y|≤t<1/2

|( f ∗ φt )(y)|, x ∈ R
n.

Goldberg [33] proved the following fundamental result.

Theorem 2.5.1 ([33]) For every f ∈ S′(Rn) and 0 < p ≤ ∞ the following asser-
tions are equivalent.

(i) There exists φ ∈ S(Rn) such that
∫
Rn φ(x)dx 
= 0 and mφ( f ) ∈ L p(Rn).

(ii) For every N large enough mN ( f ) ∈ L p(Rn).
(iii) m∗( f ) ∈ L p(Rn).

Furthermore, for every f ∈ S′(Rn) and 0 < p ≤ ∞ the quantities ‖m∗( f )‖p,
‖mφ( f )‖p and ‖mN ( f )‖p are equivalent being the equivalence constant dependent
of p but independent of f .

We say that a tempered distribution f is in h p(Rn), 0 < p ≤ ∞, when properties
(i), (i i), or (i i i) in Theorem 2.5.1 are satisfied. For every 0 < p ≤ ∞, h p(Rn) is
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2 Hardy Spaces with Variable Exponents 61

endowed with the quasinorm ‖ · ‖h p(Rn) defined by

‖ f ‖h p(Rn) = ‖mN ( f )‖p, f ∈ h p(Rn).

The classical Hardy space H p(Rn) is contained properly in h p(Rn), for every
0 < p ≤ ∞, and h p(Rn) can be identified with L p(Rn) when 1 < p ≤ ∞.

The following result connects H p(Rn) and h p(Rn).

Theorem 2.5.2 ([33]) Assume that φ ∈ S(Rn) such that
∫
Rn xαφ(x)dx = 0, when

α ∈ N
n and |α| ≤ [n(1/p − 1)]. Then, there exists C > 0 such that, for every f ∈

h p(Rn), f − f ∗ φ ∈ H p(Rn) and ‖ f − f ∗ φ‖H p(Rn) ≤ C‖ f ‖h p(Rn).

As a consequence of Theorem 2.5.2 atomic characterizations of the distribution
in h p(Rn) can be obtained.

Let 0 < p ≤ 1. We say that a measurable function a in R
n is a local p-atom

associated with the ball B when

(i) supp a ⊂ B;
(ii) ‖a‖∞ ≤ |B|−1/p;
(iii)

∫
Rn a(x)xαdx = 0, for every α ∈ N

n , |α| ≤ 1 + [n(1/p − 1)], when the radius
of B, rB ≥ 1.

Note that any null moment is required when rB ≥ 1 in contrast with the global
H p(Rn) spaces.

Theorem 2.5.3 ([33]) Let 0 < p ≤ 1. A distribution f ∈ S′(Rn) is in h p(Rn) if and
only if f = ∑

j∈N λ ja j in S′(Rn), where {λ j } j∈N ⊂ (0,∞) such that
∑

j∈N λ
p
j < ∞

and, for every j ∈ N, a j is a local p-atom. Furthermore, the quantities ‖ f ‖h p(Rn)

and (
∑

j∈N λ
p
j )

1/p are equivalent.

In [52] the local Hardy spaces h p(Rn) are characterized by using local Riesz trans-
forms.Bui [10], see also [64], proved that h p(Rn) coincideswith theTriebel–Lizorkin
spaces F0,2

p (Rn). Local Hardy spaces in different contexts can be encountered in [11,
21, 63, 70].

Local Hardy spaces associated with operators have been studied in [12, 13, 34,
40].

Diening et al. [26] defined the variable exponent local Hardy space h p(·)(Rn) as
the Triebel–Lizorkin space F0,2

p(·)(R
n) with variable integrability. Nakai and Sawano

[48] characterized h p(·)(Rn) by using local maximal functions.
Assume that p(·) is globally log-Hölder continuous in R

n . A distribution f ∈
S′(Rn) is in h p(·)(Rn) when mN ( f ) ∈ L p(·)(Rn). The quasinorm ‖ · ‖h p(·)(Rn) is
defined by

‖ f ‖h p(·)(Rn) = ‖mN ( f )‖p(·), f ∈ h p(·)(Rn).

We have that (see [48, Theorem 3.3])

‖ f ‖h p(·)(Rn) ∼ ‖ sup
j∈N

Ψ( j)(D) f ‖p(·), f ∈ h p(·)(Rn),
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where Ψ ∈ S(Rn) and
∫
Rn Ψ (x)dx 
= 0.

A variable exponent version of Theorem 2.5.2 was established in [48, Lemma
9.1]. Using this result the authors proved in [48, Theorem 9.2] proved that h p(·)(Rn)

and F0,2
p(·)(R

n) are isomorphic.
In [3] we define local Hardy spaces with variable exponents associated to opera-

tors. We consider an operator L that is nonnegative and selfadjoint in L2(Rn) which
satisfies estimation (A1) in Sect. 2.4.

Our definition of variable exponent local Hardy space associated with L is moti-
vated by those ones due to Carbonaro, McIntosh and Morris [13], who defined the
local Hardy space h1 of differential forms on Riemannian manifolds, and Cao et al.
[12] who studied local Hardy spaces associated with inhomogeneous higher order
elliptic operators.

We consider now the localized area square integral function SlocL defined by

SlocL ( f )(x) =
(∫ 1

0

∫
B(x,t)

|t2Le−t2L( f )(y)|2 dydt
tn+1

)1/2

, x ∈ R
n,

for every f ∈ S′(Rn).
We say a function f ∈ L2(Rn) is in h

p(·)
L (Rn) when SlocL ( f ) ∈ L p(·)(Rn) and

SI ( f ) ∈ L p(·)(Rn). Here SI denotes the area square integral function associated with
the identity operator, that is,

SI ( f )(x) =
(∫ ∞

0

∫
|x−y|<t

|t2e−t2( f )(y)|2 dydt
tn+1

)1/2

, x ∈ R
n.

The quasinorm ‖ · ‖h p(·)
L (Rn)

is defined by

‖ f ‖h p(·)
L (Rn)

= ‖SlocL ( f )‖p(·) + ‖SI ( f )‖p(·), f ∈ h
p(·)
L (Rn).

We defined the local Hardy space h p(·)
L (Rn) as the completion of hp(·)

L (Rn) with
respect to ‖ · ‖h p(·)

L (Rn)
.

We now establish molecular characterizations of h p(·)
L (Rn). Let M ∈ N and ε > 0.

A function m ∈ L2(Rn) is said to be a (p(·), 2, M, ε)L ,loc-molecule associated with
the ball B with radius rB when

(i) rB ≥ 1 and ‖χSi (B)m‖2 ≤ 2−iε|2i B|1/2‖χ2i B‖−1
p(·) i ∈ N;

(ii) rB ∈ (0, 1) and there exists b in the domain of LM such that m = LMb and, for
every k ∈ {0, 1, ..., M},

‖χSi (B)L
kb‖2 ≤ 2−iεr2(M−k)

B |2i B|1/2‖χ2i B‖−1
p(·), i ∈ N.

We say that f ∈ L2(Rn) is in h
p(·)
L ,mol,M,ε(R

n) when f = ∑
j∈N λ jm j , where the

series converges in L2(Rn), and, for every j ∈ N, λ j > 0 and m j is a (p(·), 2,
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M, ε)L ,loc-molecule associated with the ball Bj , satisfying that

⎛
⎝∑

j∈N

(
λ j

‖χBj ‖p(·)

)p

χBj

⎞
⎠

1/p

∈ L p(·)(Rn).

The quasinorm ‖ · ‖h p(·)
L ,mol,M,ε(R

n)
is defined as follows, for every f ∈ h

p(·)
L ,mol,M,ε(R

n),

‖ f ‖H p(·)
L ,mol,M,ε(R

n)
= inf

∥∥∥∥∥∥

⎛
⎝∑

j∈N

(
λ j

‖χBj ‖p(·)

)p

χBj

⎞
⎠

1/p∥∥∥∥∥∥
p(·)

,

where the infimum is taken over all the pairs of sequences {λ j } j∈N and {Bj } j∈N
being, for every j ∈ N, λ j > 0 and there exists a (p(·), 2, M, ε)L ,loc-molecule m j

associated with the ball Bj such that f = ∑
j∈N λ jm j in L2(Rn) and

⎛
⎝∑

j∈N

(
λ j

‖χBj ‖p(·)

)p

χBj

⎞
⎠

1/p

∈ L p(·)(Rn).

By h p(·)
L ,mol,2,M,ε(R

n) we denote the completion of hp(·)
L ,mol,2,M,ε(R

n) with respect to
‖ · ‖h p(·)

L ,mol,2,M,ε(R
n)
.

Theorem 2.5.4 ([3, Theorem 1.1]) Suppose that p(·) is a global log-Hölder contin-
uous function in Rn such that p+ < 2.

(i) If ε > n(1/p− − 1/p+) and M ∈ N such that 2M > n(2/p− − 1/2 − 1/p+),
then

h p(·)
L ,mol,2,M,ε(R

n) ⊂ h p(·)
L (Rn).

(ii) If ε > 0 and M ∈ N, h p(·)
L (Rn) ⊂ h p(·)

L ,mol,2,M,ε(R
n).

The embeddings in (i) and (ii) are algebraic and topological.

By Theorem 2.5.4, we can see that H p(·)
L (Rn) ⊂ h p(·)

L (Rn) and that
h p(·)
L (Rn) = hqL(R

n), when p(x) = q, x ∈ R
n , with 0 < q ≤ 1. Also we obtain the

next property.

Theorem 2.5.5 ([3, Corollary 1.4]) Let p(·) be a globally log-Hölder continu-
ous function in R

n such that p+ < 2. Then, h p(·)
L (Rn) ⊂ L p(·)(Rn). Furthermore,

h p(·)
L (Rn) = H p(·)

L (Rn) = L p(·)(Rn), provided that p− > 1.

The following result is a generalization of another one obtained by Kemppainen
when p(x) = 1, x ∈ R

n [41, Theorem 7].
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Theorem 2.5.6 ([3, Theorem 1.5]) Assume that p(·) is a globally log-Hölder con-
tinuous function in R

n such that p+ < 2. If inf σ(L) > 0, where σ(L) denotes the
spectrum of L in L2(Rn), then h p(·)

L (Rn) = H p(·)
L (Rn) and their quasinorms are

equivalent.

The Hermite operator (also called harmonic oscillator) is the Schrödinger oper-
ator with potential V (x) = |x |2, that is, H = −� + |x |2. The spectrum of H in
L p(Rn), 1 < p < ∞, is σ(H) = {2k + n : k ∈ N}. The twisted Laplacian operator
L is defined by

L = 1

2

n∑
j=1

((∂x j + iy j )
2 + (∂y j − i x j ))

2, (x = (x1, ..., xn), y = (y1, ..., yn)) ∈ R
n × R

n .

The spectrum of L in L2(Rn) is σ(L) = {2k + n : k ∈ N}. Our Theorem 2.5.6
applies for H and L. We note that L is a magnetic Laplacian operator. Mauceri et
al. [47] defined the Hardy space H 1

L(Rn). Our result in Theorem 2.5.6 extends other
ones obtained in [47].

Molecular characterizations established in Theorem 2.5.4 allow us to get the
following generalization to variable exponents settings for the results given in [40].

Theorem 2.5.7 ([3, Theorem 1.6]) Let p(·) be a globally log-Hölder continuous
function in Rn such that p+ < 2. Then, h p(·)

L (Rn) = H p(·)
L+I (R

n), and the quasinorms
are equivalent.
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Chapter 3
Regularity of Maximal Operators:
Recent Progress and Some Open
Problems

Emanuel Carneiro

Abstract This is an expository paper on the regularity theory of maximal operators,
when these act on Sobolev and BV functions, with a special focus on some of
the current open problems in the topic. Overall, a list of fifteen research problems
is presented. It summarizes the contents of a talk delivered by the author in the
CIMPA 2017 Research School—Harmonic Analysis, Geometric Measure Theory,
and Applications, in Buenos Aires, Argentina.

Subject Classification: 42B25 · 26A45 · 46E35 · 46E39

3.1 Introduction

Maximal operators are classical objects in analysis. They usually arise as important
tools to prove different sorts of pointwise convergence results, e.g., Lebesgue’s dif-
ferentiation theorem, Carleson’s theorem on the pointwise convergence of Fourier
series, pointwise convergence of solutions of PDEs to the initial datum, and so on.
Despite being extensively studied for decades, maximal operators still conceal some
of their secrets, and understanding the intrinsicmapping properties of these operators
in different function spaces still remains an active topic of research.

Throughout this paper, we focus on the most classical of these objects, the Hardy–
Littlewood maximal operator, and some of its variants. As we shall see, it will be
important for our discussion to consider the centered and uncentered versions of this
operator, discrete analogues, fractional analogues, and convolution-type analogues.
For f ∈ L1

loc(R
d), we define the centered Hardy–Littlewood maximal function M f
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by

M f (x) = sup
r>0

1

m(B(x, r))

∫
B(x,r)

| f (y)| dy , (3.1.1)

where B(x, r) is the open ball of center x and radius r , and m(B(x, r)) denotes its
d-dimensional Lebesgue measure. The uncentered maximal function M̃f at a point x
is defined analogously, taking the supremum of averages over open balls that contain
the point x , but that are not necessarily centered at x .

One of the fundamental results in harmonic analysis is the theorem of Hardy and
Littlewood that states that M : L1(Rd) → L1,∞(Rd) is a bounded operator. By inter-
polation with the trivial L∞-estimate, this yields the boundedness of M : L p(Rd) →
L p(Rd) for 1 < p ≤ ∞. Another consequence of the weak-(1, 1) bound for M is the
Lebesgue’s differentiation theorem. The L p-mapping properties of the uncentered
maximal operator M̃ are exactly the same.

One may consider the action of the Hardy–Littlewood maximal operator in other
function spaces and investigate whether it improves, preserves, or destroys the a
priori regularity of an initial datum f . This type of question is essentially the main
driver of what we refer to here as regularity theory for maximal operators. Let us
denote by W 1,p(Rd) the Sobolev space of functions f ∈ L p(Rd) that have a weak
gradient ∇ f ∈ L p(Rd), with norm given by

‖ f ‖W 1,p(Rd ) = ‖ f ‖L p(Rd ) + ‖∇ f ‖L p(Rd ).

In 1997, J. Kinnunen wrote an enlightening paper [17], establishing the bounded-
ness of the operator M : W 1,p(Rd) → W 1,p(Rd) for 1 < p ≤ ∞. This marks the
beginning of our story. After that, a number of interesting works have devoted their
attention to the investigation of the action of maximal operators on Sobolev spaces
and on the closely related space of functions of bounded variation. This survey paper
is brief account of some of the developments in this topic over the last 20years, with
a special focus on a list of 15 open problems that may guide new endeavors.

The choice of topics and problems presented here is obviously biased by the
personal preferences of the author and is by no means exhaustive. We shall present
just a couple of brief proofs of some of the earlier results to give a flavor to the reader
of what is going on, for the main purpose of this expository paper is to provide a
light and inviting reading on the topic, especially to newcomers. We refer the reader
to the original papers for the proofs of the results mentioned here.

For simplicity, all functions considered in this paper are real-valued functions.

3.2 Kinnunen’s Seminal Work

Let us start by revisiting the main result of [17] and its elegant proof.

Theorem 3.2.1 (Kinnunen, 1997—cf. [17]) Let 1 < p < ∞ and let f ∈ W 1,p(Rd).
Then M f is weakly differentiable and

umolter@dm.uba.ar
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∣∣∂i M f (x)
∣∣ ≤ M

(
∂i f )(x) (3.2.1)

for almost every x ∈ R
d . Therefore, M : W 1,p(Rd) → W 1,p(Rd) is bounded.

Proof Let B = B(0, 1) ⊂ R
d be the unit ball and define

ϕ(x) := χB(x)

m(B)
, (3.2.2)

where χB is the characteristic function of B. For r > 0 let us define

ϕr (x) := r−d ϕ(x/r).

With this notation we plainly have

M f (x) = sup
r>0

(ϕr ∗ | f |)(x).

Fix 1 ≤ i ≤ d. Recall that if f ∈ W 1,p(Rd) then | f | ∈ W 1,p(Rd) and |∂i | f || = |∂i f |
almost everywhere (see, for instance, [22, Theorem 6.17]). Let us enumerate the
positive rational numbers as {r1, r2, r3, . . .} and define h j := ϕr j ∗ | f |. Then h j ∈
W 1,p(Rd) and ∂i h j = ϕr j ∗ ∂i | f |.

Let N ≥ 1 be a natural number and define gN (x) := max1≤ j≤N h j (x). Note that
gN ∈ W 1,p(Rd) with

gN (x) ≤ M f (x)

and (see [22, Theorem 6.18])

|∂igN (x)| ≤ max
1≤ j≤N

|∂i h j (x)| ≤ M(∂i f )(x) (3.2.3)

for almost every x ∈ R
d . Then {gN }N≥1 is a bounded sequence in W 1,p(Rd)with the

property that gN (x) → M f (x) pointwise as N → ∞. Since W 1,p(Rd) is a reflexive
Banach space, by passing to a subsequence if necessary, we may assume that gN

converges weakly to a function g ∈ W 1,p(Rd) (a crucial point in this argument is
that this weak limit is already born in W 1,p(Rd)). Standard functional analysis tools
(for instance, using Mazur’s lemma [6, Corollary 3.8 and Exercise 3.4]) lead to the
conclusion that M f = g ∈ W 1,p(Rd) and that the upper bound (3.2.3) is preserved
almost everywhere up to the weak limit. The latter assertion leads to (3.2.1). ��
We call the attention of the reader for the use of the reflexivity of the space W 1,p(Rd),
for 1 < p < ∞, in the conclusion of the proof above. This is one of the obstacles
when one considers the endpoint case p = 1, as we shall see in the next section.
The case p = ∞ can be dealt with directly. In fact, if f ∈ W 1,∞(Rd) then f can be
modified on a set of measure zero to become Lipschitz continuous, with Lipschitz
constant L ≤ ‖∇ f ‖∞. With the notation of the proof above, for a fixed r , each
average ϕr ∗ | f | is Lipschitz with constant at most L . The pointwise supremum of
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uniformly Lipschitz functions is still Lipschitz with (at most) the same constant. This
shows that M : W 1,∞(Rd) → W 1,∞(Rd) is a bounded operator.

If one is not necessarily interested in pointwise estimates for the derivative of the
maximal function, there is a simpler argument using the characterization of Sobolev
spaces via difference quotients [16, Theorem 1]. This covers the general situation of
sublinear operators that commute with translations. Recall that an operator A : X →
Y , acting between linear function spaces X and Y , is said to be sublinear if A f ≥ 0
a.e. for f ∈ X , and A( f + g) ≤ A f + Ag a.e. for f, g ∈ X . In what follows we let
fy(x) := f (x + y) for x, y ∈ R

d .

Theorem 3.2.2 (Hajłasz andOnninen, 2004—cf. [16])Assume that the operator A :
L p(Rd) → L p(Rd), 1 < p < ∞, is bounded and sublinear. If A( fy) = (A f )y for
all f ∈ L p(Rd) and all y ∈ R

d , then A : W 1,p(Rd) → W 1,p(Rd) is also bounded.

Proof Let ei be the unit coordinate vector in the xi direction. For t > 0 we have

‖(A f )tei − A f ‖L p(Rd ) = ‖A( ftei ) − A f ‖L p(Rd )

≤ ‖A( ftei − f )‖L p(Rd ) + ‖A( f − ftei )‖L p(Rd )

≤ C ‖ ftei − f ‖L p(Rd )

≤ C t ‖∂i f ‖L p(Rd ).

The last inequality above follows from [14, Lemma 7.23]. Since the difference quo-
tients

{
((A f )tei − A f )/t

}
t>0 are uniformly bounded in L p(Rd), an application of

[14, Lemma 7.24] guarantees that A f ∈ W 1,p(Rd) and

‖∂i A f ‖L p(Rd ) ≤ C ‖∂i f ‖L p(Rd ).

This concludes the proof. ��
In the scope of Theorem 3.2.2, one may consider the spherical maximal operator.
Letting Sd−1(x, r) ⊂ R

d be the (d − 1)-dimensional sphere of center x and radius
r , this operator is defined as

MS f (x) = sup
r>0

1

ωd−1rd−1

∫
Sn−1(x,r)

| f (z)| dσ(z), (3.2.4)

where σ is the canonical surface measure on Sd−1(x, r) and ωd−1 = σ
(
Sd−1(0, 1)

)
.

A remarkable result of Stein [37] in dimension d ≥ 3, and Bourgain [5] in dimen-
sion d = 2, establishes that MS : L p(Rd) → L p(Rd) is a bounded operator for p >

d/(d − 1). It plainly follows from Theorem 3.2.2 that MS : W 1,p(Rd) → W 1,p(Rd)

is also bounded for p > d/(d − 1) (the case p = ∞ is treated directly).
Theorem 3.2.1 has been extended in many different ways over the last years,

and we now mention a few of such related results. Kinnunen and Lindqvist [18]
extended Theorem 3.2.1 to a local version of the maximal operator. In this setting,
one considers a domainΩ ⊂ R

d , functions f ∈ W 1,p(Ω), and the maximal operator
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is taken over balls entirely contained in the domain Ω . Extensions of Theorem 3.2.1
to a multilinear setting are considered in the work of the author and Moreira [11]
and by Liu and Wu [24], and a similar result in fractional Sobolev spaces is the
subject of the work of Korry [20]. A fractional version of the Hardy–Littlewood
maximal operator is considered in the paper [19] by Kinnunen and Saksman (we
will return to this particular operator later on). An interesting variant of this result
on Hardy–Sobolev spaces is considered in the recent work of Pérez et al. [33].

3.3 The Endpoint Sobolev Space

With the philosophy that averaging is a smoothing process, we would like to under-
stand if certain smoothing features are still preserved when we take a pointwise
supremum over averages. Understanding the situation described in Theorem 3.2.1 at
the endpoint case p = 1 is a subtle issue. Of course, if f ∈ L1(Rd) is nonidentically
zero, we already know that f /∈ L1(Rd), and the interesting question is whether one
can control the behavior of the derivative of the maximal function. The following
question was raised in the work of Hajłasz and Onninen [16, Question 1] and remains
one of the main open problems in the subject.

Question 1 (Hajłasz and Onninen, 2004—cf. [16]) Is the operator f 
→ |∇M f |
bounded from W 1,1(Rd) to L1(Rd)? Same question for the uncentered operator M̃.

Naturally, this involves proving that M f is weakly differentiable, and establishing
the bound

‖∇M f ‖L1(Rd ) ≤ C
(‖ f ‖L1(Rd ) + ‖∇ f ‖L1(Rd )

)
, (3.3.1)

for some universal constant C = C(d). If the global estimate (3.3.1) holds for every
f ∈ W 1,1(Rd), a simple dilation argument implies that one should actually have

‖∇M f ‖L1(Rd ) ≤ C ‖∇ f ‖L1(Rd ),

which reveals the true nature of the problem: if one can control the variation of the
maximal function by the variation of the original function (the term variation here
is used as the L1-norm of the gradient).

Several interesting papers addressed Question 1, which has been answered affir-
matively in dimension d = 1, but remains vastly open in dimensions d ≥ 2. We now
comment a bit on these results.

3.3.1 One-Dimensional Results

The achievements in dimension d = 1 started with the work of Tanaka [38], for
the uncentered maximal operator M̃ . In this particular work, Tanaka showed that if
f ∈ W 1,1(R) then M̃ f is weakly differentiable and
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∥∥(
M̃ f

)′∥∥
L1(R)

≤ 2 ‖ f ′‖L1(R) (3.3.2)

(see also [23]). This result was later refined byAldaz and Pérez Lázaro in [1, Theorem
2.5]. Letting Var ( f ) denote the total variation of a function f : R → R, they proved
the following very interesting result.

Theorem 3.3.1 (Aldaz and Pérez Lázaro, 2007—cf. [1]) Let f : R → R be a func-
tion of bounded variation. Then M̃ f is an absolutely continuous function and we
have the inequality

Var
(
M̃ f

) ≤ Var ( f ). (3.3.3)

We comment on the two main features of this theorem. First, the regularizing effect
of the operator M̃ takes a mere function of bounded variation into an absolutely
continuous function. The proof of this fact relies on the classical Banach–Zarecki
theorem. This regularizing effect is not shared by the centered maximal operator M ,
as it can be seen by simply taking f to be the characteristic function of an interval.
In this sense, the uncentered operator is more regular than the centered one, and in
many instances in this theory it is a more tractable object. Second, the inequality
(3.3.3) with constant C = 1 is sharp, as it can be seen again by taking f to be the
characteristic function of an interval. Note, in particular, that (3.3.3) indeed refines
(3.3.2), since any function f ∈ W 1,1(R) can be modified on a set of measure zero
to become absolutely continuous. The core of this argument comes from the fact
that the maximal function does not have points of local maxima in the set where it
disconnects from the original function (sometimes referred to here as detachment
set).

Proving an inequality of the same spirit as (3.3.3) for the one-dimensional centered
Hardy–Littlewood maximal operator is a harder task. In this situation, there may
be local maxima of M f in the detachment set (one may see this, for instance, by
considering f = δ−1 + δ1, where δx0 denotes the Dirac delta function at the point x0;
in this case, the point x = 0 is a local maximum for M f ; of course, technically one
would have to smooth out this example to view the Dirac deltas as actual functions)
and the previous argument of Aldaz and Pérez Lázaro cannot directly be adapted. In
the work [21], O. Kurka proved the following remarkable result.

Theorem 3.3.2 (Kurka, 2015—cf. [21]) Let f : R → R be a function of bounded
variation. Then

Var (M f ) ≤ 240004Var ( f ). (3.3.4)

The proof of this theorem relies on a beautiful, yet rather intricate, argument of
induction on scales (from which one arrives at the particular constant C = 240004).
Things seem to be tailor-made to the case of theHardy–Littlewoodmaximal function,
and it would be interesting to see if the argument can be adapted to treat other
convolution kernels (discussed in the next section). The constant C = 240004 is
certainly intriguing, but there seems to be no philosophical reason to justify this
order of magnitude. This leaves the natural open question.
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Question 2 Let f : R → R be a function of bounded variation. Do we have

Var (M f ) ≤ Var ( f )?

Or at least, can one substantially improve on Kurka’s constant C = 240004?

Despite the innocence of the statement of Question 2, the reader should not under-
estimate its difficulty. As a matter of fact, the reader is invited to think a little bit
about this question to get acquainted with some of its obstacles. This is a beautiful
example of an open question in this research topic. These usually have relatively
simple statements and their solutions might only require “elementary" tools, but the
difficulty lies in how to properly combine these tools.

Recently, Ramos [34] considered a hybrid version between M and M̃ in dimension
d = 1. For α ≥ 0, we may define the non-tangential maximal operator Mα by

Mα f (x) := sup
(y,t) : |x−y|≤αt

1

2t

∫ y+t

y−t
| f (s)| ds.

In this setting, we notice that M0 = M and M1 = M̃ . Ramos shows that

Var (Mα f ) ≤ Var (Mβ f ) (3.3.5)

if α ≥ β, and from Theorem 3.3.2 one readily sees that

Var (Mα f ) ≤ C Var ( f )

for all α ≥ 0. From Theorem 3.3.1 we may take C = 1 if α ≥ 1. Ramos
[34, Theorem 1] goes further and establishes the following result.

Theorem 3.3.3 (Ramos, 2017—cf. [34]) Let α ∈ [ 13 ,∞) and let f : R → R be a
function of bounded variation. Then

Var(Mα f ) ≤ Var( f ). (3.3.6)

The constant C = 1 in inequality (3.3.6) is sharp as it can be easily seen by taking f
to be the characteristic function of an interval. The proof of Ramos for Theorem 3.3.3
extends the argument of Aldaz and Pérez Lázaro [1], in particular establishing the
crucial property that Mα f has no local maxima in the detachment set for α > 1/3.
The case α = 1/3 in (3.3.6) is obtained by a limiting argument. The interesting thing
here is that α = 1/3 is the threshold for this property. Indeed, if α < 1/3, by taking
f = δ−1 + δ1 we see that x = 0 is a local maximum of Mα f , see [34, Theorem 2]
(again, one must smooth out this example, since the Dirac deltas are actually singular
measures and not exactly functions of bounded variation—but this can be done with
no harm). We conclude the one-dimensional discussion with the following question
(which, by (3.3.5), would follow from an affirmative answer to Question 2).
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Question 3 Let f : R → R be a function of bounded variation. Do we have

Var(Mα f ) ≤ Var( f ) (3.3.7)

for 0 ≤ α < 1
3 ?Alternatively, what is the smallest value of α for which (3.3.7) holds?

3.3.2 Multidimensional Results

Question 1 remains open, in general, for dimensions d ≥ 2. There have been a few
particular works that made interesting partial progress and we now comment on three
of them, namely [15, 28, 35].

In the paper [15], Hajłasz and Malý consider a slightly weaker notion of differ-
entiability. A function f : R

d → R is said to be approximately differentiable at the
point x0 ∈ R

d if there exists a vector L = (L1, L2, . . . , Ld) such that for any ε > 0
“…the set

Aε :=
{

x ∈ R
d : | f (x) − f (x0) − L(x − x0)|

|x − x0| < ε

}

has x0 as a density point.” If this is the case, the vector L is unique determined
and it is called the approximate differential of f at x0. This is a weaker notion
than that of classical differentiability or weak differentiability. In fact, if a function
f is differentiable at a point x0 then it is approximately differentiable at x0 and
L = ∇ f (x0), and similarly, if f is weakly differentiable then it is approximately
differentiable and its approximate differential is equal to the weak derivative a.e.,
see, for instance, [13, Sect. 6.1.3, Theorem 4]. The main result of [15] reads as
follows.

Theorem 3.3.4 (Hajłasz andMalý, 2010—cf. [15]) If f ∈ L1(Rd) is approximately
differentiable a.e. then the maximal function M f is approximately differentiable a.e.

The recent interesting work of Luiro [28] answers Question 1 affirmatively in the
case of the uncentered maximal function M̃ and restricted to radial functions f .

Theorem 3.3.5 (Luiro, 2017—cf. [28]) If f ∈ W 1,1(Rd) is radial, then M̃ f is
weakly differentiable and

∥∥∇ M̃ f
∥∥

L1(Rd )
≤ C ‖∇ f ‖L1(Rd ),

where C = C(d) is a universal constant.

This raises a natural question, another interesting particular case of Question 1.

Question 4 Does Theorem 3.3.5 hold for the centered maximal operator M acting
on radial functions f ?
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In [35], Saari studies the regularity of maximal operators via generalized Poincaré
inequalities. An interesting corollary [35, Corollary 4.1] of the main result of this
paper establishes that, if f ∈ W 1,1(Rd), then the distributional partial derivatives
∂i M̃ f (or ∂i M f ) can be represented as functions hi ∈ L1,∞(Rd) when they act on
smooth functions with compact support not meeting a certain singularity set.

Finally, let us briefly return to the spherical maximal operator MS defined in
(3.2.4). Recall that we have shown in the previous section that MS is bounded in
W 1,p(Rd) for d ≥ 2 and p > d/(d − 1).We conclude this sectionwith the following
question, originally proposed in [16, Question 2].

Question 5 (Hajłasz andOnninen, 2004—cf. [16]) Let d ≥ 2. Is MS : W 1,p(Rd) →
W 1,p(Rd) bounded for 1 < p ≤ d/(d − 1)?

Note that p = 1 is not actually part of Question 5. In this case, the operator f 
→
|∇MS f | is not bounded fromW 1,1(Rd) to L1(Rd). A counterexample is given in [16].

3.4 Maximal Operators of Convolution Type

Let ϕ : R
d → R be a nonnegative and integrable function with

∫
Rd

ϕ(x) dx = 1.

As before, for t > 0, we let ϕt = t−d ϕ(x/t). We define here the maximal operator
of convolution type associated to ϕ by

Mϕ f (x) = sup
t>0

(
ϕt ∗ | f |)(x).

Recall that the centeredHardy–Littlewoodmaximal operator ariseswhen the kernelϕ
is given by (3.2.2).Whenϕ admits a radial decreasingmajorant in L1(Rd), a classical
result of Stein [36, Chap. III, Theorem 2] establishes that Mϕ : L p(Rd) → L p(Rd)

is a bounded operator for 1 < p ≤ ∞, and at p = 1 we have a weak-(1, 1) estimate.
Theorem 3.2.2 plainly implies that Mϕ : W 1,p(Rd) → W 1,p(Rd) is bounded for p >

1 (again, the case p = ∞ can be dealt with directly), and we may ask ourselves the
same sort of questions as in the previous section, with respect to the regularity of this
operator at the endpoint Sobolev space W 1,1(Rd).

As it turns out, we may have some advantages in considering certain smooth
kernels. This additional leverage may come, for instance, from partial differential
equations naturally associated to the kernel ϕ. This is well exemplified in the work
[12], where two special kernels are considered: the Poisson kernel

ϕ(x) = Γ
(

d+1
2

)
π(d+1)/2

1

(|x |2 + 1)(d+1)/2
, (3.4.1)
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and the Gauss kernel

ϕ(x) = 1

(4π)d/2
e−|x |2/4. (3.4.2)

For the Poisson kernel (3.4.1), the function u(x, t) = ϕt (x) solvesLaplace’s equation
utt + �x u = 0 on the upper half-space (x, t) ∈ R

d × (0,∞). For the Gauss kernel
(3.4.2), the function u(x, t) = ϕ√

t (x) solves the heat equation ut − �x u = 0 on
the upper half-space (x, t) ∈ R

d × (0,∞). The qualitative properties of these two
partial differential equations (namely, the correspondingmaximumprinciples and the
semigroup property) can be used to establish a positive answer for the convolution-
type analogue of Question 2 in these cases [12, Theorems 1 and 2].

Theorem 3.4.1 (Carneiro and Svaiter, 2013—cf. [12]) Let ϕ be given by (3.4.1) or
(3.4.2), and let f : R → R be a function of bounded variation. Then

Var (Mϕ f ) ≤ Var ( f ).

Remark In [12, Theorems 1 and 2] it is also proved that, for every dimension d ≥ 1,
if f ∈ W 1,2(Rd), then we have (for ϕ given by (3.4.1) or (3.4.2))

∥∥∇Mϕ f
∥∥

L2(Rd )
≤ ‖∇ f ‖L2(Rd ). (3.4.3)

Additionally, if d = 1, an analogous inequality to (3.4.3) holds on L p(R) for all
p > 1.

Theorem 3.4.1 has been extended to a larger family of kernels in the work [7]. The
general version of the result in Theorem 3.4.1 is the theme of the following question.

Question 6 Let ϕ be a convolution kernel as described above, and let f : R → R

be a function of bounded variation. Can we show that

Var (Mϕ f ) ≤ C Var ( f ) (3.4.4)

with C = C(ϕ)? For which ϕ can we actually show (3.4.4) with C = 1?

3.5 Fractional Maximal Operators

For 0 ≤ β < d and f ∈ L1
loc(R

d), we define the centered Hardy–Littlewood frac-
tional maximal function Mβ f by

Mβ f (x) = sup
r>0

1

m(B(x, r))1−
β
d

∫
B(x,r)

| f (y)| dy.

when β = 0 we plainly recover (3.1.1). The uncentered fractional maximal function
M̃β f is defined analogously, with the supremum of the fractional averages being
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taken over balls that simply contain the point x but are not necessarily centered
at x . Such fractional maximal operators have connections to potential theory and
partial differential equations. By comparison with an appropriate Riesz potential,
one can show that if 1 < p < ∞, 0 < β < d/p and q = dp/(d − β p), then Mβ :
L p(Rd) → Lq(Rd) is bounded. When p = 1 we have again a weak-type bound (for
details, see [36, Chap.V, Theorem 1]).

In [19], Kinnunen and Saksman studied the regularity properties of such fractional
maximal operators, arriving at the following interesting conclusions [19, Theorems
2.1 and 3.1].

Theorem 3.5.1 (Kinnunen and Saksman, 2003—cf. [19]) Let 1 < p < ∞.

(i) For 0 ≤ β < d/p and q = dp/(d − β p) the operator Mβ : W 1,p(Rd) → W 1,q

(Rd) is bounded.
(ii) Assume that 1 ≤ β < d/p and that f ∈ L p(Rd). Then Mβ f is weakly differen-

tiable and there exists a constant C = C(d,β) such that

|∇Mβ f (x)| ≤ C Mβ−1 f (x)

for almost every x ∈ R
d .

Part (i) of Theorem 3.5.1 extends the original result of Kinnunen (Theorem 3.2.1) to
this fractional setting. One can prove it by using the characterization of the Sobolev
spaces via the difference quotients as in the proof of Theorem 3.2.2. Part (ii) of
Theorem 3.5.1 presents a beautiful regularization effect of this operator when the
fractional parameter β is greater than or equal to 1.

In light of Theorem 3.5.1, it is then natural to ask ourselves what happens in
the endpoint situation p = 1 and q = d/(d − β). Let us first consider the case 1 ≤
β < d. If f ∈ W 1,1(Rd), by the Sobolev embedding we have f ∈ L p∗

(Rd), where
p∗ = d/(d − 1), and hence f ∈ Lr (Rd) for any 1 ≤ r ≤ p∗. We may choose r with
1 < r < d such that 1 ≤ β < d/r . Using part (ii) of Theorem 3.5.1 we have that Mβ

is weakly differentiable and

∥∥∇Mβ f
∥∥

Lq (Rd )
≤ C

∥∥Mβ−1 f
∥∥

Lq (Rd )
≤ C ′ ‖ f ‖L p∗

(Rd ) ≤ C ′′‖∇ f ‖L1(Rd ).

This shows that the map f → |∇Mβ f | is bounded from W 1,1(Rd) to Lq(Rd) in this
case. We are thus left with the following endpoint question, first posed in [9].

Question 7 Let 0 ≤ β < 1 and q = d/(d − β). Is the map f → |∇Mβ f | bounded
from W 1,1(Rd) to Lq(Rd)? Same question for the uncentered version M̃β .

A complete answer to Question 7 was achieved in dimension d = 1 for the uncen-
tered fractional maximal operator M̃β in [9, Theorem 1]. To state this result we need
to introduce a generalized version of the concept of variation of a function. For a
function f : R → R and 1 ≤ q < ∞, we define its q-variation as

umolter@dm.uba.ar



80 E. Carneiro

Var q( f ) := sup
P

(
N−1∑
n=1

| f (xn+1) − f (xn)|q
|xn+1 − xn|q−1

)1/q

, (3.5.1)

where the supremum is taken over all finite partitions P = {x1 < x2 < . . . < xN }.
This is also known as the Riesz q-variation of f (see, for instance, the discussion
in [2] for this object and its generalizations). Naturally, when q = 1, this is the
usual total variation of the function. A classical result of F. Riesz (see [32, Chap. IX
Sect. 4, Theorem 7]) states that, if 1 < q < ∞, then Var q( f ) < ∞ if and only if f
is absolutely continuous and its derivative f ′ belongs to Lq(R). Moreover, in this
case, we have that

‖ f ′‖Lq (R) = Var q( f ).

In [9, Theorem 1], the author and J. Madrid proved the following regularizing
effect.

Theorem 3.5.2 (Carneiro and Madrid, 2017—cf. [9]) Let 0 ≤ β < 1 and q =
1/(1 − β). Let f : R → R be a function of bounded variation such that M̃β f �≡ ∞.
Then M̃β f is absolutely continuous and its derivative satisfies

∥∥(
M̃β f

)′∥∥
Lq (R)

= Var q
(
M̃β f

) ≤ 81/q Var ( f ). (3.5.2)

The constant C = 81/q in (3.5.2) arises naturally with the methods employed in
[9] and it is not necessarily sharp (in fact, we have seen that, when β = 0 and
q = 1, this inequality holds with constant C = 1). The problem of finding the sharp
constant in this inequality is certainly an interesting one. The strategy of [9] to prove
Theorem 3.5.2 in the pure fractional case β > 0 is very different from that of the
proof of Theorem 3.3.1. While in the proof of Theorem 3.3.1 the essential idea
is to prove that the maximal function does not have any local maxima in the set
where it disconnects from the original function, in the fractional case β > 0, the
mere notion of the disconnecting set is ill-posed, since one does not necessarily have
M̃β( f )(x) ≥ | f (x)| a.e. anymore. To overcome this challenge, the author andMadrid
in [9] adopt a suitable bootstrapping procedure to bound the q-variation of M̃β f on
certain intervals by the variation of f in larger (but still somewhat comparable)
intervals.

In the higher dimensional case, partial progress on Question 7 was obtained by
Luiro andMadrid in the recent work [29]. They considered the uncentered fractional
maximal operator M̃β acting on radial functions. The following result is therefore
the fractional analogue of Theorem 3.3.5.

Theorem 3.5.3 (Luiro and Madrid, 2017—cf. [29]) Given 0 < β < 1 and q =
d/(d − β), there is a constant C = C(d,β) such that for every radial function
f ∈ W 1,1(Rd) we have that M̃β f is weakly differentiable and

∥∥∇ M̃β f
∥∥

Lq (Rd )
≤ C ‖∇ f ‖L1(Rd ).
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We can hence ask ourselves the follow-up question, which is a particular case of
Question 7.

Question 8 Does Theorem 3.5.3 hold for the centered fractional maximal operator
Mβ acting on radial functions f ?

Also in the higher dimensional case, the very interesting recent work of
Beltran et al. [3] establishes endpoint bounds for derivatives of fractional maxi-
mal functions in the spirit of the ones proposed in Question 7. They consider the
slightly different settings of maximal operators either associated to smooth convo-
lution kernels or to a lacunary set of radii in dimensions d ≥ 2 (see [3, Theorem
1]). In this work, they also show that the spherical maximal operator maps L p into
first-order Sobolev spaces in dimensions d ≥ 5. One of the novelties in the approach
of [3] is the use of Fourier analysis techniques.

3.6 Discrete Analogues

The problems we have discussed so far can also be considered in a discrete setup.
A point n ∈ Z

d is a d-uple n = (n1, n2, . . . , nd) with each ni ∈ Z. For a function
f : Z

d → R (or, in general, for a vector-valued function f : Z
d → R

m), we define
its �p-norm as usual:

‖ f ‖�p(Zd ) =
(∑

n∈Zd

| f (n)|p

)1/p

, (3.6.1)

if 1 ≤ p < ∞, and
‖ f ‖�∞(Zd ) = sup

n∈Zd

| f (n)|.

The gradient ∇ f of a discrete function f : Z
d → R is the vector

∇ f (n) = (
∂1 f (n), ∂2 f (n), . . . , ∂d f (n)

)
,

where
∂i f (n) = f (n + ei ) − f (n),

and ei = (0, 0, . . . , 1, . . . , 0) is the canonical i th base vector. If f : Z → R is a given
function, we define its total variation as

Var ( f ) = ‖ f ′‖�1(Z) =
∑
n∈Z

| f (n + 1) − f (n)|.

If f ∈ �p(Zd), observe by the triangle inequality that we have ∇ f ∈ �p(Zd) as
well. Therefore, if we were to copy and paste the definition of the Sobolev space
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W 1,p(Rd) to the discrete setting, we would simply find the space �p(Zd) with a
norm equivalent to (3.6.1). Hence, in what follows, some of the questions that were
formulated using the Sobolev spaces W 1,p(Rd) in the continuous setting will now
be formulated within �p(Zd).

3.6.1 One-Dimensional Results

Wemay start by defining the discrete analogue of (3.1.1) in the one-dimensional case.
For f : Z → R we define the discrete centered one-dimensional Hardy–Littlewood
maximal function M f : Z → R by

M f (n) = sup
r≥0

1

(2r + 1)

r∑
k=−r

| f (n + k)|,

where the supremum is taken over nonnegative and integer values of r . Analogously,
we define the uncentered version of this operator by

M̃ f (n) = sup
r,s≥0

1

(r + s + 1)

s∑
k=−r

| f (n + k)|,

where the supremum is taken over nonnegative and integer values of r and s. As in
the continuous case, the uncentered version is more friendly for the sort of questions
we investigate here. For instance, the analogue of Theorem 3.3.1 was established in
[4, Theorem 1].

Theorem 3.6.1 (Bober, Carneiro, Pierce and Hughes, 2012—cf. [4]) If f : Z → R

is a function of bounded variation, then

Var
(M̃ f

) ≤ Var ( f ).

This inequality is sharp as one can see by the “delta” example f (0) = 1 and f (n) = 0
for n �= 0. The same sort of inequality in the centered case is subtler. Assume for a
moment that we have

Var (M f ) ≤ Var ( f ) (3.6.2)

for any f : Z → R of bounded variation. Then, by (3.6.2) and an application of the
triangle inequality, we would have the weaker inequality

Var (M f ) ≤ 2‖ f ‖�1(Z). (3.6.3)

Inequality (3.6.3) was proved in [4, Theorem 1] with constantC = 2 + 146
315 replacing

the constant C = 2, and it was proved with the sharp constant C = 2 in the recent
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work of Madrid [30, Theorem 1.1]. The fact that C = 2 is sharp in (3.6.3) is again
seen by taking the delta example.

The interesting part of the story is that (3.6.2) is still not known. The BV-
boundedness in the discrete centered case was proved by Temur [39], adapting the
circle of ideas developed by Kurka [21] for the continuous case.

Theorem 3.6.2 (Temur, 2013—cf. [39]) If f : Z → R is a function of bounded
variation, then

Var (M f ) ≤ C Var ( f )

with C = (72000)212 + 4 = 294912004.

We record here the open inequality (3.6.2).

Question 9 Let f : Z → R be a function of bounded variation. Do we have

Var (M f ) ≤ Var ( f )?

Or at least, can one substantially improve on Temur’s constant C = 294912004?

Having discussed the classical case, we may now consider the discrete fractional
case. For 0 ≤ β < 1 and f : Z → R, we define the one-dimensional discrete cen-
tered fractional maximal operator by

Mβ f (n) = sup
r≥0

1

(2r + 1)1−β

r∑
k=−r

| f (n + k)|

and its uncentered version by

M̃β f (n) = sup
r,s≥0

1

(r + s + 1)1−β

s∑
k=−r

| f (n + k)|.

For f : Z → R and 1 ≤ q < ∞, the discrete analogue of (3.5.1) is the q-variation
defined by

Var q( f ) =
(∑

n∈Z
| f (n + 1) − f (n)|q

)1/q

= ‖ f ′‖�q (Z).

The discrete analogue of Theorem 3.5.2 was also established in [9].

Theorem 3.6.3 (Carneiro and Madrid, 2017—cf. [9]) Let 0 ≤ β < 1 and q =
1/(1 − β). Let f : Z → R be a function of bounded variation such that M̃β f �≡ ∞.
Then ∥∥(M̃β f

)′∥∥
�q (Z)

= Var q
(M̃β f

) ≤ 41/q Var ( f ).
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As in the continuous case, we remark that the constant C = 41/q above is not nec-
essarily sharp. The same inequality for the centered fractional case is currently an
open problem.

Question 10 Let 0 < β < 1 and q = 1/(1 − β). Let f : Z → R be a function of
bounded variation such that Mβ f �≡ ∞. Do we have

Var q(Mβ f ) ≤ C Var ( f )

for some universal constant C?

3.6.2 Multidimensional Results

In discussing the multidimensional discrete setting, we allow ourselves a more gen-
eral formulation, in which we consider maximal operators associated to general
convex sets. Let Ω ⊂ R

d be a bounded open convex set with Lipschitz boundary.
Let us assume that 0 ∈ int(Ω). For r > 0 we write

Ω(x, r) = {
y ∈ R

d; r−1(y − x) ∈ Ω
}
,

and for r = 0 we consider
Ω(x, 0) = {x}.

This object is the “Ω-ball of center x and radius r” in our maximal operators
below. For instance, to work with regular �p-balls, one should consider Ω = {x ∈
R

d; ‖x‖p < 1}, where ‖x‖p = (|x1|p + |x2|p + · · · + |xd |p)
1
p for x = (x1, x2, . . . ,

xd) ∈ R
d . These convex Ω-balls have roughly the same behavior as the regular

Euclidean balls from the geometric and arithmetic points of view. For instance, we
have the following asymptotics [25, Chap.VI , Sect. 2, Theorem 2], for the number
of lattice points N (x, r) of Ω(x, r),

N (x, r) = CΩ rd + O
(
rd−1

)

as r → ∞, where CΩ = m(Ω) is the d-dimensional volume of Ω, and the constant
implicit in the big O notation depends only on the dimension d and on the set Ω .

Given 0 ≤ β < d and f : Z
d → R, we denote by MΩ,β the discrete centered

fractional maximal operator associated to Ω , i.e.,

MΩ,β f (n) = sup
r≥0

1

N (0, r)1−
β
d

∑
m∈Ω(0,r)

| f (n + m)|,
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and we denote by M̃Ω,β its uncentered version

M̃Ω,β f (n) = sup
Ω(x,r)�n

1

N (x, r)1−
β
d

∑
m∈Ω(x,r)

| f (m)|.

Here r is a nonnegative real parameter.
The �p − �q boundedness numerology for these discrete operators is the very

same as the continuous fractional Hardy–Littlewood maximal operator (see [9] for
a discussion), that is, if 1 < p < ∞, 0 < β < d/p and q = dp/(d − β p), then
MΩ,β : �p(Zd) → �q(Zd) is bounded (same for M̃Ω,β). Motivated by the end-
point philosophy in the continuous setting, a typical question here should be: let
0 ≤ β < d and q = d/(d − β); for a discrete function f : Z

d → R do we have
‖∇MΩ,β f ‖�q (Zd ) ≤ C(d,Ω,β) ‖∇ f ‖�1(Zd )? (same question for M̃Ω,β). As in the
continuous case, this question admits a positive answer if 1 ≤ β < d. In the harder
case 0 ≤ β < 1, the current state of affairs is that one has a family of estimates that
approximate the conjectured bounds (but unfortunately blow up when one tries to
get exactly there). This was established in [9, Theorem 3] and we quote below.

Theorem 3.6.4 (Carneiro and Madrid, 2017—cf. [9]).

(i) Let 0 ≤ β < d and 0 ≤ α ≤ 1. Let q ≥ 1 be such that

q >
d

d − β + α
.

Then there exists a constant C = C(d,Ω,α,β, q) > 0 such that

‖∇MΩ,β f ‖�q (Zd ) ≤ C ‖∇ f ‖1−α
�1(Zd )

‖ f ‖α
�1(Zd ) ∀ f ∈ �1(Zd). (3.6.4)

Moreover, the operator f 
→ ∇MΩ,β f is continuous from �1(Zd) to �q(Zd).
(ii) Let 1 ≤ β < d and 0 ≤ α < 1. Let

q = d

d − β + α
.

Then there exists a constant C = C(d,Ω,α,β) > 0 such that

‖∇MΩ,β f ‖�q (Zd ) ≤ C ‖∇ f ‖1−α
�1(Zd )

‖ f ‖α
�1(Zd ) ∀ f ∈ �1(Zd).

Moreover, the operator f 
→ ∇MΩ,β f is continuous from �1(Zd) to �q(Zd).

The same results hold for the discrete uncentered fractional maximal operator
M̃Ω,β .

Remark Theorem 3.6.4 already brings some continuity statements. These shall be
further discussed in the next section.
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By a suitable dilation argument, in [9] it is shown that inequality (3.6.4) can only
hold if

q ≥ d

d − β + α
. (3.6.5)

The argument to show (3.6.5) goes roughly as follows. Consider, for instance, the
uncentered case where Ω = (−1, 1)d is the unit open cube. Let k ∈ N and con-
sider the cube Qk = [−k, k]d and its characteristic function fk := χQk . One has

‖ fk‖�1(Zd ) ∼d kd , ‖∇ fk‖�1(Zd ) ∼d kd−1, and ‖∇M̃Ω,β fk‖�q (Zd ) �Ω,β,d k
d
q −1+β . One

can see this last estimate by considering the region H = {n = (n1, n2, . . . , nd) ∈
Z

d; n1 ≥ 4dk ; |ni | ≤ k, for i = 2, 3, . . . , d} and showing that the maximal func-
tion at n ∈ H is realized by the cube of side n1 + k that contains the cube Qk .
Then we sum |M̃Ω,β fk(n + e1) − M̃Ω,β fk(n)|q from n1 = 4dk to∞, and then sum
these contributions over the ∼ kd−1 possibilities for (n2, . . . , nd). Letting k → ∞
we obtain the necessary condition (3.6.5).

This leaves us the following open question.

Question 11 Let 0 ≤ β < 1 and q = d/(d − β). For a discrete function f : Z
d →

R do we have ‖∇MΩ,β f ‖�q (Zd ) ≤ C(d,Ω,β) ‖∇ f ‖�1(Zd )? More generally, does the
inequality (3.6.4) hold for all α ≤ β and q = d/(d − β + α)? (Analogous questions
for M̃Ω,β).

3.7 Continuity

Wenow turn to the final chapter of our discussion, inwhichwe consider the continuity
properties of themappings we have addressed so far. The classical Hardy–Littlewood
maximal operator M is a sublinear operator, i.e., M( f + g)(x) ≤ M f (x) + Mg(x)

pointwise. Having this property at hand, it is easy to see that the fact that M :
L p(Rd) → L p(Rd) is bounded (for 1 < p ≤ ∞) implies that this map is also con-
tinuous. In fact, if f j → f in L p(Rd), then

‖M f j − M f ‖L p(Rd ) ≤ ‖M( f j − f )‖L p(Rd ) ≤ C ‖ f j − f ‖L p(Rd ) → 0.

Same reasoning applies to its uncentered, fractional, or discrete versions (all being
sublinear operators).

At the level of the (weak) derivatives, these operators, in principle, are not
necessarily sublinear anymore. In light of the boundedness of the operator M :
W 1,p(Rd) → W 1,p(Rd), for 1 < p ≤ ∞, established by Kinnunen, it is then a nat-
ural and nontrivial question to ask whether this operator is also continuous. This
question is attributed to T. Iwaniec and was first explicitly posed in the work of
Hajłasz and Onninen [16, Question 3], in the case 1 < p < ∞. It was settled affir-
matively by Luiro in [26, Theorem 4.1].
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Theorem 3.7.1 (Luiro, 2007—cf. [26]) The operator M : W 1,p(Rd) → W 1,p(Rd)

is continuous for 1 < p < ∞.

Remark In the case p = ∞, the continuity of M : W 1,∞(Rd) → W 1,∞(Rd) does not
hold, as pointed out to the author by H. Luiro. A counterexample may be constructed
along the following lines (in dimension d = 1, say). Take a smooth f with compact
support such that (M f )′ has a point of discontinuity. Letting fh(x) = f (x + h),
one sees that fh → f in W 1,∞(R) as h → 0, but (M( fh))

′ = (M f )′h � (M f )′ in
L∞(R) as h → 0.

The proof of Luiro for Theorem 3.7.1 is very elegant. It provides an important
qualitative study of the convergence properties of the sets of “good radii” (i.e., the
radii that realize the supremum in the definition of the maximal function) and estab-
lishes an explicit formula for the derivative of the maximal function (in which one
is able to move the derivative inside the integral over a ball of good radius). It also
uses crucially the L p-boundedness of the maximal operator. A similar study of the
continuity properties of the local maximal operator on subdomains of R

d was also
carried out by Luiro in [27].

3.7.1 Endpoint Study

As we have done many times before in this paper, we now turn our attention to the
endpoint p = 1. So far, we have established several boundedness results at p = 1,
and we nowwant to ask ourselves if such maps are continuous. For instance, the very
first one of such boundedness results is Tanaka’s inequality (3.3.2) that establishes
that f 
→ (M̃ f )′ is bounded from W 1,1(R) to L1(R). The corresponding continuity
question is: if f j → f ∈ W 1,1(R) as j → ∞, do we have (M̃ f j )

′ → (M̃ f )′ in
L1(R) as j → ∞? This was settled affirmatively in [10, Theorem 1].

Theorem 3.7.2 (Carneiro, Madrid and Pierce, 2017—cf. [10]) The map f 
→(
M̃ f

)′
is continuous from W 1,1(R) to L1(R).

The proof of this result is quite subtle and different from Luiro’s approach to The-
orem 3.7.1 since one does not have the L1-boundedness of the maximal operator.
The authors in [10] develop a fine analysis toward the required convergence using
the qualitative description of the uncentered maximal function (and the one-sided
maximal functions) on the disconnecting set. The corresponding question for the
one-dimensional centered maximal function M is even more challenging and it is
currently open.

Question 12 Is the map f 
→ (M f )′ is continuous from W 1,1(R) to L1(R)?

In light of inequalities (3.3.3) and (3.3.4), one may ask similar (and harder) con-
tinuity questions on the Banach space of normalized functions of bounded variation.
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Throughout the rest of this section, let us denote by BV (R) the (Banach) space of
functions f : R → R of bounded total variation with norm

‖ f ‖BV (R) = | f (−∞)| + Var ( f ),

where f (−∞) = limx→−∞ f (x). Since

‖M̃ f ‖L∞(R) ≤ ‖ f ‖L∞(R) ≤ ‖ f ‖BV (R),

together with (3.3.3) we see that M̃ : BV (R) → BV (R) is bounded. The same holds
for M : BV (R) → BV (R). The corresponding continuity statements arise as inter-
esting open problems that would be qualitatively stronger than Theorem 3.7.2 or
Question 12, if confirmed.

Question 13 Is the map M̃ : BV (R) → BV (R) continuous?

Question 14 Is the map M : BV (R) → BV (R) continuous?

3.7.2 Fractional Setting

We now move the endpoint discussion to the fractional setting as considered in
Sect. 3.5. As in the classical setting considered above, we may think of the end-
point continuity questions assuming a (stronger) W 1,1(R) convergence or a (weaker)
BV (R) convergence on the source space. With respect to the first type, the corre-
sponding continuity statement to Theorem 3.5.2 was established in [31].

Theorem 3.7.3 (Madrid, 2018—cf. [31]) Let 0 < β < 1 and q = 1/(1 − β). The
map f 
→ (

M̃β f
)′

is continuous from W 1,1(R) to Lq(R).

The analogous continuity question for the centered one-dimensional fractional max-
imal operator, for which the boundedness is not yet known (see Question 7), is an
interesting open problem.

Question 15 Let 0 < β < 1 and q = 1/(1 − β). Is the map f 
→ (Mβ f )′ bounded
and continuous from W 1,1(R) to Lq(R)?

With respect to the second type of continuity statement, in which one assumes the
BV (R)-convergence on the source space, the interesting fact is that the fractional
endpoint maps are not continuous. This was shown in [10, Theorems 3 and 4] and
we quote the results below.

Theorem 3.7.4 (Carneiro, Madrid and Pierce, 2017—cf. [10]) Let 0 < β < 1 and
q = 1/(1 − β).
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(i) (Uncentered case) The map f 
→ (
M̃β f

)′
is not continuous from BV (R) to

Lq(R), i.e., there is a sequence { f j } j≥1 ⊂ BV (R) and a function f ∈ BV (R)

such that ‖ f j − f ‖BV (R) → 0 as j → ∞ but

∥∥(
M̃β f j

)′ − (
M̃β f

)′∥∥
Lq (R)

= Var q
(
M̃β f j − M̃β f

)
� 0

as j → ∞.
(ii) (Centered case) There is a sequence { f j } j≥1 ⊂ BV (R) and a function f ∈

BV (R) such that ‖ f j − f ‖BV (R) → 0 as j → ∞ but Var q
(
Mβ f j − Mβ f

)
� 0

as j → ∞.

Notice the slightly different wordings in the items (i) and (ii) of the theorem above.
The reason is that in the centered case we do not know yet if the analogue of Theorem
3.5.2 holds. Theorem 3.7.4 (ii) says that, regardless of the map f 
→ (Mβ f )′ being
bounded from BV (R) to Lq(R) or not, it is not continuous.

3.7.3 Discrete Setting

To consider similar continuity issues in the discrete setting, we define the Banach
space BV (Z) as the space of functions f : Z → R of bounded total variation with
norm

‖ f ‖BV(Z) = ∣∣ f (−∞)
∣∣ + Var ( f ),

where f (−∞) := limn→−∞ f (n). Recall the discussion on the beginning of Sect. 3.6
in which we said that there is no actual space W 1,1(Z), as this is simple �1(Z) with
a different norm. Then, in the instances where we assumed a W 1,1(R)-convergence
in the continuous setting, we will be assuming an �1(Z)-convergence in the discrete
setting. As a particular case of the general framework of Theorem 3.6.4 (which is
[9, Theorem 3]) we see that the maps f 
→ (Mβ f )′ and f 
→ (M̃β f )′ are con-
tinuous from �1(Z) to �q(Z) for 0 ≤ β < 1 and q = 1/(1 − β) (the case β = 0 of
these results had previously been obtained in [8]). Therefore, we have an affirmative
answer for the discrete analogues of Theorems 3.7.2 and 3.7.3 and Questions12 and
15.

The BV (Z)-continuity is a much more interesting issue. For the classical discrete
Hardy–Littlewood maximal operators, we can affirmatively answer the analogues of
Questions13 and 14. This was accomplished in [10, Theorem 2] for the uncentered
case and in [31, Theorem 1.2] for the centered case. We collect these results below.

Theorem 3.7.5 (Carneiro, Madrid and Pierce, 2017—cf. [10]) The map M̃ :
BV (Z) → BV (Z) is continuous.

Theorem 3.7.6 (Madrid, 2018—cf. [31]) The map M : BV (Z) → BV (Z) is con-
tinuous.
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As in the continuous cases, the fractional discrete maximal operators are not
continuous on BV (Z), as observed in [10, Theorems 5 and 6].

Theorem 3.7.7 (Carneiro, Madrid and Pierce, 2017—cf. [10]) Let 0 < β < 1 and
q = 1/(1 − β).

(i) (Uncentered case) The map f 
→ (M̃β f
)′

is not continuous from BV (Z) to
�q(Z), i.e., there is a sequence { f j } j≥1 ⊂ BV (Z) and a function f ∈ BV (Z)

such that ‖ f j − f ‖BV (Z) → 0 as j → ∞ but

∥∥(M̃β f j
)′ − (M̃β f

)′∥∥
�q (Z)

= Var q
(M̃β f j − M̃β f

)
� 0

as j → ∞.
(ii) (Centered case) There is a sequence { f j } j≥1 ⊂ BV (Z) and a function f ∈

BV (Z) such that ‖ f j − f ‖BV (Z) → 0 as j → ∞ but Var q
(Mβ f j − Mβ f

)
� 0 as j → ∞.

Note again the slight difference in the wording between parts (i) and (ii) of the
statement above. This is due to the fact that the map f 
→ (Mβ f )′ is not yet known
to be bounded from BV (Z) to �q(Z). Nevertheless, it is not continuous.

3.7.4 Summary

Table3.1 collects the 16 different situations in which we analyzed the endpoint conti-
nuity (all of them one-dimensional). These arise from the following pairs of possibil-
ities: (i) centered versus uncentered maximal operator; (ii) classical versus fractional

Table 3.1 One-dimensional endpoint continuity program

W 1,1—
continuity;
continuous
setting

BV—continuity;
continuous
setting

�1—continuity;
discrete setting

BV—continuity;
discrete setting

Centered classical
maximal operator

OPEN:
Question12

OPEN:
Question14

YESb:
Theorem3.6.4

YES:
Theorem3.7.6

Uncentered
classical maximal
operator

YES:
Theorem3.7.2

OPEN:
Question13

YESb:
Theorem3.6.4

YES:
Theorem3.7.5

Centered
fractional
maximal operator

OPENa:
Question15

NOa:
Theorem3.7.4

YES:
Theorem3.6.4

NOa:
Theorem3.7.7

Uncentered
fractional
maximal operator

YES:
Theorem3.7.3

NO:
Theorem3.7.4

YES:
Theorem3.6.4

NO:
Theorem3.7.7

aCorresponding boundedness result not yet known
bResult previously obtained in [8, Theorem 1]
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maximal operator; (iii) continuous versus discrete setting; and (iv) W 1,1 (or �1) versus
BV continuity. The word YES in a box below means that the continuity of the corre-
sponding map has been established, whereas the word NO means that the continuity
fails. The remaining boxes are marked as OPEN problems.
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Chapter 4
Gabor Frames: Characterizations
and Coarse Structure

Karlheinz Gröchenig and Sarah Koppensteiner

Abstract This chapter offers a systematic and streamlined exposition of the most
important characterizations of Gabor frames over a lattice.

4.1 Introduction

Given a point z = (x, ξ) ∈ R
2d in time–frequency space (phase space), we define

the corresponding time–frequency shift π(z) acting on a function f ∈ L2(Rd) by

π(z) f (t) = e2π iξ ·t f (t − x) .

Gabor analysis deals with the spanning properties of sets of time–frequency shifts.
Specifically, for a window function g ∈ L2(Rd) and a discrete set Λ ⊆ R

2d , which
we will always assume to be a lattice, we would like to understand when the set

G(g,Λ) = {π(λ)g : λ ∈ Λ}

is a frame. This means that there exist positive constants A, B > 0 such that

A‖ f ‖2L2 ≤
∑

λ∈Λ

|〈 f, π(λ)g〉|2 ≤ B‖ f ‖2L2 ∀ f ∈ L2(Rd). (4.1.1)

For historical reasons a frame with this structure is called a Gabor frame, or some-
times a Weyl–Heisenberg frame.

The motivation for studying sets of time–frequency shifts is in the foundations
of quantum mechanics by Neumann [35] and in information theory by Gabor [17].
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Since 1980 the investigation of Gabor frames has stimulated the interest of many
mathematicians in harmonic, complex, andnumerical analysis and engineers in signal
processing and wireless communications.

Whereas (4.1.1) expresses a strong formof completeness (with stability built in the
definition), a complementary concept is the linear independence of time–frequency
shifts. Specifically, we ask for constants A, B > 0 such that

A‖c‖2�2 ≤
∥∥∥

∑

λ∈Λ

cλπ(λ)g
∥∥∥
2

L2
≤ B‖c‖2�2 ∀c ∈ �2(Λ) , (4.1.2)

and in this case G(g,Λ) is called a Riesz sequence in L2(Rd). Riesz sequences are
important in wireless communications: a data set (cλ)λ∈Λ is transformed into an
analog signal f = ∑

λ∈Λ cλπ(λ)g and then transmitted. The task at the receiver’s
end is to decode the data (cλ). In this context (4.1.2) expresses the fact that the
coefficients cλ are uniquely determined by f and that their recovery is feasible in a
robust way.

In this chapter, we restrict our attention to sets of time–frequency shifts over
a lattice Λ, i.e., Λ = AZ2d for an invertible, real-valued 2d × 2d matrix A. The
lattice structure implies the translation invariance π(λ)G(g,Λ) = G(g,Λ) (up to
phase factors) and is at the basis of a beautiful and deep structure theory and of many
characterizations of (4.1.1) and (4.1.2).

After three decades, we have a clear understanding of the structures governing
Gabor systems. Our goal is to collect the most important characterizations of Gabor
frames and offer a systematic exposition of these structures. In the center of these
characterizations is the duality theorem for Gabor frames. To our knowledge, all
other characterizations within the L2-theory follow directly from this fundamental
duality. In particular, the celebrated characterizations of Janssen and Ron–Shen are
consequences of the duality theorem, and the characterization of Zeevi and Zibulski
for rational lattices also becomes a corollary.

Even with this impressive list of different criteria at our disposal, it remains very
difficult to determine whether a given window function and lattice generate a Gabor
frame. Ultimately, each criterion (within the L2-theory) is formulated by means of
the invertibility of some operator, and proving invertibility is always difficult. This
fact explains perhaps why there are so many general results about Gabor frames, but
so few explicit results about concrete Gabor frames.

Yet, there are some success stories due to Lyubarski [34], Seip [38],
Janssen [30, 31], and some recent progress for totally positive windows [23, 24].
All these results have applied some of the characterizations presented here, or even
invented some new ones. On the other hand, most questions about concrete Gabor
systems remain unanswered, and so far every explicit conjecture about Gabor frames
(with one exception) has been disproved by counterexamples.

To document some of the many white spots on the map of Gabor frames, let us
mention two specific examples. (i) Let g1(t) = (1 − |t |)+ be the hat function (or
B-spline of order 1). It is known that for all α > 0 the Gabor system G(g1, αZ × 2Z)
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is not a Gabor frame. But it is not known whether G(g1, 0.33Z × 2.001Z) is a frame.
(ii) Let h1(t) = te−π t2 be the first Hermite function. It is known that G(h1, αZ ×
βZ) is not a Gabor frame whenever αβ = 2/3 [33]. But it is not known whether
G(h1,Z × 0.66666Z) is a frame. In both cases, there is numerical evidence that
these Gabor systems are frames, but so far there is no proof despite an abundance of
precise criteria to check.

The novelty of our approach is the streamlined sequence of proofs, so that most
of the structure theory of Gabor frames fits into a single, short chapter. In view of
dozens of contributions to every aspect of Gabor analysis, we hope that this survey
will be useful and inspire work on concrete open questions. The only prerequisite is
the thorough mastery of the Poisson summation formula and some basic facts about
frames and Riesz sequences.

The chapter is organized as follows: Sect. 4.2 covers the main objects of Gabor
analysis. Section4.3 is devoted to the interplay between the short-time Fourier trans-
form, the Poisson summation formula, and commutativity of time–frequency shifts.
The central Sect. 4.4 offers a complete proof of the duality theorem for Gabor frames.
Section4.5 sketches the main theorems about the coarse structure of Gabor frames.
A list of criteria that are tailored to rectangular frames is discussed and proved in
Sect. 4.6. In Sect. 4.7, we derive the criterion of Zeevi and Zibulski for rational lat-
tices, and Sect. 4.8 presents a number of (technically more advanced) criteria some
of which have recently become useful. Except for the last section, we fully prove all
statements.

4.2 The Objects of Gabor Analysis

Let g ∈ L2(Rd) be a nonzerowindow function andΛ ⊆ R
2d a lattice. The setG(g,Λ)

is called a Gabor frame if there exist positive constants A, B > 0 such that

A‖ f ‖2L2 ≤
∑

λ∈Λ

|〈 f, π(λ)g〉|2 ≤ B‖ f ‖2L2 ∀ f ∈ L2(Rd). (4.2.1)

The frame inequality (4.2.1) can be recast by means of functional analytic prop-
erties of certain operators associated to a Gabor system G(g,Λ). We will use the
frame operator S = Sg,Λ defined by

Sg,Λ f =
∑

λ∈Λ

〈 f, π(λ)g〉π(λ)g.

Then G(g,Λ) is a frame if and only if Sg,Λ is bounded and invertible on L2(Rd). The
extremal spectral values A, B are called the frame bounds. If they can be chosen to
be equal A = B, then the frame operator is a multiple of the identity, and G(g,Λ) is
called a tight frame.

We will also use the Gramian operator G = Gg,Λ defined by its entries
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96 K. Gröchenig and S. Koppensteiner

Gλμ = 〈π(μ)g, π(λ)g〉.

In this notation, G(g,Λ) is a Riesz sequence if and only if Gg,Λ is bounded and
invertible on �2(Λ).

If the upper inequality in (4.2.1) is satisfied, then the frame operator iswell-defined
and bounded on L2(Rd) and the Gramian operator is bounded on �2(Λ). In this case,
we call G(g,Λ) a Bessel sequence.

The underlying object of this definition is the short-time Fourier transform of f
with respect to the window function g ∈ L2(Rd), which is defined by

Vg f (z) = Vg f (x, ξ) =
∫

Rd

f (t)ḡ(t − x)e−2π iξ ·t dt .

We will need the following properties of the short-time Fourier transform.

Lemma 4.2.1 (Covariance property) Let f, g ∈ L2(Rd) and w, z ∈ R
2d . Then

Vg(π(w) f )(z) = e−2π i(z2−w2)·w1Vg f (z − w) and (4.2.2)

Vπ(w)g(π(w) f )(z) = e2π i z·IwVg f (z), (4.2.3)

where I = ( 0 Id−Id 0

)
denotes the standard symplectic matrix and Id is the d-di-

mensional identity matrix.

The covariance property follows by a straightforward computation.

Proposition 4.2.2 (Orthogonality relations) Let f, g, h, γ ∈ L2(Rd).

(i) Then Vg f, Vγ h ∈ L2(R2d) and

〈Vg f, Vγ h〉L2(R2d ) = 〈 f, h〉L2(Rd )〈g, γ 〉L2(Rd ). (4.2.4)

In particular, if ‖g‖z = 1, then Vg is an isometry from L2(Rd) to L2(R2d).
(ii) Furthermore, for all z ∈ R

2d ,

(
Vg f Vγ h

)
(̂z) = (

Vgγ V f h
)
(Iz). (4.2.5)

Proof (i) We first write the short-time Fourier transform as

Vg f (x, ξ) =
∫

Rd

f (t)g(t − x) e−2π iξ ·t dt = F2T ( f ⊗ ḡ)(x, ξ) ,

with the coordinate transform T F(x, t) = F(t, t − x) and the partial Fourier trans-
form F2F(x, ξ) = ∫

Rd F(x, t)e−2π iξ ·t dt . Since F2 is unitary by Plancherel’s theo-
rem and T is unitary by the transformation formula for integrals, we obtain
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4 Gabor Frames: Characterizations and Coarse Structure 97

〈Vg f, Vγ h〉L2(R2d ) = 〈F2T ( f ⊗ ḡ),F2T (h ⊗ γ̄ )〉L2(R2d )

= 〈 f ⊗ ḡ, h ⊗ γ̄ 〉L2(R2d ) = 〈 f, h〉L2(Rd )〈g, γ 〉L2(Rd ).

(ii) By the Cauchy–Schwarz inequality the product Vg f Vγ h is in L1(R2d), therefore
the Fourier transform is defined pointwise, and we obtain

(
Vg f Vγ h

)
(̂z) =

∫

R2d
Vg f (w) Vγ h(w)e−2π iw·zdw

=
∫

R2d
Vπ(Iz)g

(
π(Iz) f )(w) Vγ h(w)dw

= 〈γ, π(Iz)g〉〈h, π(Iz) f 〉,

where we first used I2 = −I2d and the covariance property (4.2.3), then the orthog-
onality relations (4.2.4) to separate the integral into two inner products.

4.3 Commutation Rules and the Poisson Summation
Formula in Gabor Analysis

In this section, we exploit the invariance properties of a Gabor system for the struc-
tural interplay between the short-time Fourier transform and time–frequency lattices.

4.3.1 Poisson Summation Formula

If Λ is a lattice, then the function Φ(z) = ∑
λ∈Λ |〈 f, π(z + λ)g〉|2 satisfies Φ(z +

ν) = Φ(z) for ν ∈ Λ and thus is periodic with respect to Λ. It is therefore natural
to study the Fourier series of Φ. The mathematical tool is the Poisson summation
formula, and this is in fact the mathematical core of all existing characterizations of
Gabor frames over a lattice.1

We formulate the Poisson summation formula explicitly for an arbitrary lattice
Λ = AZ2d where A denotes an invertible, real-valued 2d × 2d matrix. We write
Λ⊥ = (AT )−1

Z
2d for the dual lattice and Λ◦ = IΛ⊥ for the adjoint lattice with

I = ( 0 Id−Id 0

)
.

The volume of the lattice is volΛ = | det(A)|, and the reciprocal value D(Λ) =
vol(Λ)−1 is the density or redundancy of Λ.

We first formulate a sufficiently general version of the Poisson summation for-
mula [39].

1The terminology is often a bit different, e.g., [37] uses a “fiberization technique.”

umolter@dm.uba.ar



98 K. Gröchenig and S. Koppensteiner

Lemma 4.3.1 Assume that Λ = AZ2d and F ∈ L1(R2d). Then the periodization
Φ(x) = ∑

λ∈Λ F(x − λ) is in L1(R2d/Λ).

(i) The Fourier coefficients of Φ are given by Φ̂(ν) = F̂(ν) for all ν ∈ Λ⊥.
(ii) Poisson summation formula—general version: Let Kn be a summability kernel2

then ∑

λ∈Λ

F(z + λ) = vol(Λ)−1 lim
n→∞

∑

ν∈Λ⊥
Kn(ν)F̂(ν) e2π iν·z .

with convergence in L1(R2d/Λ).
(iii) If (F̂(ν))ν∈Λ⊥ ∈ �1(Λ⊥), then the Fourier series converges absolutely and Φ

coincides almost everywhere with a continuous function.

By applying the Poisson summation formula to the function Vg f Vγ h and a lattice
Λ, we obtain an important identity for the analysis of Gabor frames. This technique is
so ubiquitous in Gabor analysis that Janssen [29] and later Feichtinger and Luef [16]
called it the “Fundamental Identity of Gabor Analysis.”

Theorem 4.3.2 Let f, g, h, γ ∈ L2(Rd), and Λ = AZ2d be a lattice.

(i) Then

∑

λ∈Λ

Vg f (z + λ)Vγ h(z + λ) = vol(Λ)−1 lim
n→∞

∑

μ∈Λ◦
Kn(−Iμ)Vgγ (μ)V f h(μ)e2π iμ·Iz

(4.3.1)
holds almost everywhere with convergence in L1(R2d/Λ).

(ii) Assume in addition that both G(g,Λ) and G(γ,Λ) are Bessel sequences and
that

∑
μ∈Λ◦ |Vgγ (μ)| < ∞. Then

∑

λ∈Λ

Vg f (z + λ)Vγ h(z + λ) = vol(Λ)−1
∑

μ∈Λ◦
Vgγ (μ)V f h(μ)e2π iμ·Iz ∀z ∈ R

2d .

(4.3.2)

Proof (i) We apply the Poisson summation formula to the product Vg f Vγ h and the
lattice Λ and obtain

∑

λ∈Λ

Vg f (z + λ)Vγ h(z + λ) = vol(Λ)−1 lim
n→∞

∑

ν∈Λ⊥
Kn(ν)

(
Vg f Vγ h

)
(̂ν) e2π iν·z

= vol(Λ)−1 lim
n→∞

∑

ν∈Λ⊥
Kn(ν)

(
Vgγ V f h

)
(Iν) e2π iν·z

= vol(Λ)−1 lim
n→∞

∑

μ∈Λ◦
Kn(−Iμ)Vgγ (μ)V f h(μ) e2π iμ·Iz ,

where we used Proposition 4.2.2 to rewrite the Fourier transform in the first line.

2It suffices to take the Fourier coefficients of the multivariate Fejer kernel F̂n(k) = ∏d
j=1

(
1 −

|k j |
n+1

)
+ and set Kn(ν) = F̂n(AT ν) = F̂n(k) for ν = (AT )−1k ∈ Λ⊥.
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4 Gabor Frames: Characterizations and Coarse Structure 99

(ii) If
∑

μ∈Λ◦ |Vgγ (μ)| < ∞, then the right-hand side of (4.3.2) converges abso-
lutely to a continuous function, and we do not need the summability kernel. Next we
rewrite the left-hand side with the help of identity (4.2.2) as

Φ(z) =
∑

λ∈Λ

Vg(π(−z) f )(λ)Vγ (π(−z)h)(λ) ,

where, as so often, the phase factors cancel. Since G(g,Λ) is a Bessel sequence with
Bessel bound Bg, we know that

‖Vg(π(−z) f − f )|Λ‖�2 ≤ B1/2
g ‖π(−z) f − f ‖L2 .

This means that the map z �→ Vg(π(−z) f )|Λ is continuous from R to �2(Λ) for
all f ∈ L2(Rd). Likewise, the map z �→ Vγ (π(−z)h)|Λ is continuous for all h ∈
L2(Rd).

This observation implies that the left-hand side is also a continuous function.
Thus both sides of (4.3.2) are continuous and coincide almost everywhere, therefore
(4.3.2) must hold everywhere.

4.3.2 Commutation Rules

In the fundamental identity (4.3.1) the adjoint lattice Λ◦ appears as a consequence
of the Poisson summation formula. We now present a more structural property of the
adjoint lattice.

Lemma 4.3.3 Let Λ ⊆ R
2d be a lattice. Then its adjoint lattice is characterized by

the property

Λ◦ = {μ ∈ R
2d : π(λ)π(μ) = π(μ)π(λ) ∀λ ∈ Λ}.

Proof Let z ∈ R
2d and λ = Ak ∈ Λ for some k ∈ Z

2d . A straightforward computa-
tion yields π(z)π(λ) = e2π i(λ1·z2−λ2·z1)π(λ)π(z). Consequently, the time–frequency
shifts commute if and only if

1 = e2π i(λ1·z2−λ2·z1) = e2π iλ·Iz = e2π i Ak·Iz .

This holds for all k ∈ Z
2d if and only if Ak · Iz = k · ATIz ∈ Z for all k ∈

Z
2d , which is precisely the case when ATIz ∈ Z

2d , or equivalently when z ∈
I−1(AT )−1

Z
2d = Λ◦.

This interpretation of the adjoint lattice is crucial for an important technical point.

Lemma 4.3.4 (Bessel duality) Let g ∈ L2(Rd) and Λ ⊆ R
2d be a lattice. Then

G(g,Λ) is a Bessel sequence if and only if G(g,Λ◦) is a Bessel sequence.
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100 K. Gröchenig and S. Koppensteiner

Proof The proof is inspired by [10].
Fix h ∈ S(Rd) with ‖h‖L2 = 1. Then G(h, M) is a Bessel sequence for every

lattice M ⊆ R
2d . Next let Q = A[0, 1)2d be a fundamental domain of Λ = AZ2d ,

i.e., R2d = ⋃
λ∈Λ λ + Q as a disjoint union. As a consequence we may write∫

R2d f (z) dz = ∫
Q

∑
λ∈Λ f (z − λ) dz for f ∈ L1(R2d).

Now assume that G(g,Λ) is a Bessel sequence. Let c = (cμ)μ∈Λ◦ ∈ �2(Λ◦) be
a finite sequence and f = ∑

μ∈Λ◦ cμπ(μ)g. Since Vh : L2(Rd) → L2(R2d) is an
isometry by Proposition 4.2.2, we obtain

‖ f ‖2L2(Rd ) = ‖Vh f ‖2L2(R2d )

=
∫

Q

∑

λ∈Λ

∣∣∣〈
∑

μ∈Λ◦
cμπ(μ)g, π(−λ + z)h〉

∣∣∣
2
dz :=

∫

Q
I (z) dz .

(4.3.3)

We now reorganize the sum over μ. First we use π(−λ + z) = γz,λπ(λ)∗π(z) for
somephase factor |γz,λ| = 1. Thenweuse the commutativityπ(λ)π(μ) = π(μ)π(λ)

for all λ ∈ Λ,μ ∈ Λ◦ (Lemma 4.3.3). This is the heart of the proof, and the reader
should convince herself that the proof does not work without this property.We obtain

〈
∑

μ∈Λ◦
cμπ(μ)g, π(−λ + z)h〉 = γ̄λ,z〈π(λ)g,

∑

μ∈Λ◦
c̄μπ(μ)∗π(z)h〉

= γ̄λ,z〈π(λ)g, π(z)
∑

μ∈Λ◦
c̄−μγμ,zπ(μ)h〉 .

Since bothGabor familiesG(g,Λ) andG(h,Λ◦) are Bessel sequences by assumption
(with constants Bg and Bh), we obtain a pointwise estimate for the integrand I (z) in
(4.3.3):

I (z) =
∑

λ∈Λ

∣∣∣γ̄λ,z〈π(z)
∑

μ∈Λ◦
c̄−μγμ,zπ(μ)h, π(λ)g〉

∣∣∣
2

≤ Bg

∥∥∥π(z)
∑

μ∈Λ◦
c̄−μγμ,zπ(μ)h

∥∥∥
2

L2(Rd )

≤ BgBh

∑

μ∈Λ◦
|c̄−μγμ,z|2 = BgBh‖c‖2�2 .

Integration over z now yields

∥∥∥
∑

μ∈Λ◦
cμπ(μ)g

∥∥∥
2

L2
=

∫

Q
I (z) dz ≤ BgBh| det A|‖c‖2�2 ,

and thus G(g,Λ◦) is a Bessel sequence.
Since Λ = (Λ◦)◦, the proof of the converse is the same.
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4 Gabor Frames: Characterizations and Coarse Structure 101

4.4 Duality Theory

The duality theory relates the spanning properties of a Gabor family G(g,Λ) on a
latticeΛ to the spanning properties ofG(g,Λ◦) over the adjoint lattice. The following
duality theorem is the central result of the theory of Gabor frames. We will see that
most structural results about Gabor frames can be derived easily from it.

Theorem 4.4.1 (Duality theorem) Let g ∈ L2(Rd) and Λ ⊆ R
2d be a lattice. Then

the following are equivalent:

(i) G(g,Λ) is a frame for L2(Rd).
(ii) G(g,Λ◦) is a Bessel sequence and there exists a dual window γ ∈ L2(Rd) such

that G(γ,Λ◦) is a Bessel sequence satisfying

〈γ, π(μ)g〉 = vol(Λ)δμ,0 ∀μ ∈ Λ◦. (4.4.1)

(iii) G(g,Λ◦) is a Riesz sequence for L2(Rd).

We follow the proof sketch given in the survey article [20].

Proof (i) ⇒ (ii): Since G(g,Λ) is a Gabor frame, there exists a dual window γ in
L2(Rd) such that G(γ,Λ) is a frame and the reconstruction formula

f =
∑

λ∈Λ

〈 f, π(λ)g〉π(λ)γ

holds for all f ∈ L2(Rd) with unconditional L2-convergence. We apply the recon-
struction formula to π(z)∗ f and take the inner product with π(z)∗h for z ∈ R

2d and
h ∈ L2(Rd). Then we have

〈 f, h〉 = 〈π(z)∗ f, π(z)∗h〉 =
∑

λ∈Λ

〈π(z)∗ f, π(λ)g〉〈π(λ)γ, π(z)∗h〉

=
∑

λ∈Λ

Vg f (z + λ)Vγ h(z + λ) := Φ(z)

for all f, h ∈ L2(Rd) and all z ∈ R
2d . This means that the Λ-periodic function Φ on

the right-hand side is constant.
By Proposition 4.2.2 (ii) the Fourier coefficients of the right-hand side are given

by
Φ̂(ν) = (

Vg f Vγ h
)

(̂ν) = Vgγ (μ)V f h(μ) ,

where ν ∈ Λ⊥ and μ = Iν ∈ Λ◦. Since these are the Fourier coefficients of a con-
stant function, they must satisfy

vol(Λ)−1Vgγ (μ)V f h(μ) = 〈 f, h〉δμ,0 ∀μ ∈ Λ◦.
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102 K. Gröchenig and S. Koppensteiner

As this identity holds for all f, h ∈ L2(Rd), we obtain the biorthogonality relation

vol(Λ)−1〈γ, π(μ)g〉 = δμ,0 ∀μ ∈ Λ◦.

By assumption both G(g,Λ) and G(γ,Λ) are frames and thus Bessel sequences;
therefore, Lemma 4.3.4 implies that both G(g,Λ◦) and G(γ,Λ◦) are Bessel
sequences.

(ii) ⇒ (i): We use the biorthogonality and read the fundamental identity (4.3.2)
backward:

vol (Λ)−1
∑

μ∈Λ◦
Vgγ (μ)V f h(μ)e2π iμ·Iz =

∑

λ∈Λ

Vg f (z + λ) Vγ h(z + λ) .

Since both G(g,Λ◦) and G(γ,Λ◦) are Bessel sequences, Lemma 4.3.4 implies that
the Gabor systems G(g,Λ) and G(γ,Λ) are also Bessel sequences. Furthermore∑

μ∈Λ◦ |Vgγ (μ)| < ∞ by the biorthogonality relation (4.4.1); hence, all assumptions
of Theorem 4.3.2 are satisfied and guarantee that (4.3.2) holds pointwise. For z = 0
and f = h we thus obtain

‖ f ‖2L2 =
∑

λ∈Λ

〈 f, π(λ)g〉 〈π(λ)γ, f 〉 .

Since both sets G(g,Λ) and G(γ,Λ) are Bessel sequences with Bessel bounds Bg

and Bγ , respectively, the frame inequality for G(g,Λ) is obtained as follows:

‖ f ‖4L2 ≤
( ∑

λ∈Λ

|〈 f, π(λ)g〉|2
) ( ∑

λ∈Λ

|〈 f, π(λ)γ 〉|2
)

≤ Bγ ‖ f ‖2L2

∑

λ∈Λ

|〈 f, π(λ)g〉|2 ≤ BgBγ ‖ f ‖4L2 .

(ii) ⇒ (iii): By assumption, the Bessel sequences G(g,Λ◦) and G(γ,Λ◦) satisfy
the biorthogonal condition (4.4.1), thus

〈π(ν)γ, π(μ)g〉 = e−2π i(μ2−ν2)·ν1 〈γ, π(μ − ν)g〉 = vol(Λ)δμ−ν,0 ∀μ, ν ∈ Λ◦ .

(4.4.2)
Define γ̃ := vol(Λ)−1γ , then (4.4.2) implies that G(γ̃ ,Λ◦) is a biorthogonal Bessel
sequence for G(g,Λ◦). This means that G(g,Λ◦) is a Riesz sequence.

(iii) ⇒ (ii): By assumption G(g,Λ◦) is a Riesz sequence, i.e., a Riesz basis for
its closed linear span, which we denote by K := span{G(g,Λ◦)}. By the general
properties of Riesz bases [5], there exists a Bessel sequence {eν : ν ∈ Λ◦} inK such
that

〈eν, π(μ)g〉 = δν,μ ∀μ, ν ∈ Λ◦.

On the other hand, since K is invariant with respect to π(ν) for all ν ∈ Λ◦, we have
that π(ν)e0 is also in K and satisfies the biorthogonality
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4 Gabor Frames: Characterizations and Coarse Structure 103

〈π(ν)e0, π(μ)g〉 = e−2π i(μ2−ν2)·ν1〈e0, π(μ − ν)g〉 = δ0,μ−ν .

This implies that eν − π(ν)e0 ∈ K ∩ K⊥ = {0}.
After the normalization γ := vol(Λ)−1e0, the set G(γ,Λ◦) = {vol(Λ)−1eν : ν ∈

Λ◦} satisfies the biorthogonality relations (4.4.1) and is a Bessel sequence by the
properties of Riesz bases.

The duality theory was foreshadowed by Rieffel’s abstract work on noncommuta-
tive tori [36]. The biorthogonality relations (4.4.1) were discovered by the engineers
Wexler andRaz [41] and characterize all possible dualwindows (seeCorollary 4.4.4).
Janssen [27, 28], Daubechies et al. [10], and Ron–Shen [37] made the results of
Wexler and Raz rigorous and further expanded upon them which became the duality
theory for separable lattices. The theory for general lattices is due to Feichtinger
and Kozek [15]. Recently, Jakobsen and Lemvig [26] formulated density and duality
theorems for Gabor frames along a closed subgroup of the time–frequency plane.
We remark that the duality theory also holds verbatim for general locally compact
Abelian groups admitting a lattice.

Remark 4.4.2 (Frame bounds and an alternative proof) By rewriting Janssen’s proof
of the duality theory in [28] for general lattices, one can show that

AIL2 ≤ Sg,Λ ≤ BIL2 ⇐⇒ AI�2 ≤ vol(Λ)−1Gg,Λ◦ ≤ BI�2 .

Hence, the family G(g,Λ) is a frame with frame bounds A, B > 0 if and only if
G(g,Λ◦) is a Riesz sequence with bounds vol(Λ)A, vol(Λ)B > 0, respectively.

Definition 4.4.3 Let g ∈ L2(Rd) and G(g,Λ) be a Bessel sequence. We call γ ∈
L2(Rd) a dual window for G(g,Λ) if G(γ,Λ) is a Bessel sequence and the recon-
struction property

f =
∑

λ∈Λ

〈 f, π(λ)g〉π(λ)γ =
∑

λ∈Λ

〈 f, π(λ)γ 〉π(λ)g

holds for all f ∈ L2(Rd).

The duality theorem now yields the following characterization of all dual
windows.

Corollary 4.4.4 Suppose g, γ ∈ L2(Rd) and Λ ⊆ R
2d such that G(g,Λ) and

G(γ,Λ) are Bessel sequences. Then γ is a dual window for G(g,Λ) if and only
if the Wexler–Raz biorthogonality relations (4.4.1) are satisfied.
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104 K. Gröchenig and S. Koppensteiner

Proof This is simply the equivalence (i) ⇔ (ii) of Theorem 4.4.1.

We conclude this section with a characterization of tight Gabor frames.

Corollary 4.4.5 A Gabor system G(g,Λ) is a tight frame if and only if G(g,Λ◦) is
an orthogonal system. In this case the frame bound satisfies A = vol(Λ)−1‖g‖2L2 .

Proof If G(g,Λ) is a tight frame, then the frame operator is just a multiple of the
identity, i.e., S = AIL2 . Hence, the canonical dualwindow is of the form γ = S−1g =
1
Ag and the biorthogonality relations (4.4.1) yield

〈g, π(μ)g〉 = A〈γ, π(μ)g〉 = Avol(Λ)δμ,0 ∀μ ∈ Λ◦.

Therefore, G(g,Λ◦) is an orthogonal system and in particular A = vol(Λ)−1‖g‖2L2 .
Conversely, let G(g,Λ◦) be an orthogonal system, i.e.,

〈g, π(μ)g〉 = ‖g‖2L2δμ,0 ∀μ ∈ Λ◦.

Then by Theorem 4.3.2 with γ = g, h = f and z = 0, we obtain

vol(Λ)−1‖g‖2L2‖ f ‖2L2 =
∑

λ∈Λ

|〈 f, π(λ)g〉|2

and thus G(g,Λ) is a tight frame.

4.5 The Coarse Structure of Gabor Frames

Many of the fundamental properties of Gabor frames can be derived with little effort
from the duality theorem. In the following, we deal with the density theorem, the
Balian–Low theorem, and the existence of Gabor frames.

4.5.1 Density Theorem

To recover f from the inner products 〈 f, π(λ)g〉, we need enough information. The
density theorem quantifies this statement. The density theorem has a long history
and has been proved many times. We refer to Heil’s comprehensive survey [25]. Our
point is that it follows immediately from the duality theory.

Theorem 4.5.1 (Density theorem) Let g ∈ L2(Rd) and Λ ⊆ R
2d be a lattice. Then

the following holds:

(i) If G(g,Λ) is a frame for L2(Rd), then 0 < vol(Λ) ≤ 1.
(ii) If G(g,Λ) is a Riesz sequence in L2(Rd), then vol(Λ) ≥ 1.
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(iii) G(g,Λ) is a Riesz basis for L2(Rd) if and only if it is a frame and vol(Λ) = 1.

Proof (i) Let γ = S−1g be the canonical dual window of G(g,Λ). Then g possesses
the following two distinguished representations with respect to the frame G(g,Λ):

g = 1 · g =
∑

λ∈Λ

〈g, π(λ)γ 〉π(λ)g .

By the general properties of the dual frame [11], the latter expansion has the coeffi-
cients with the minimum �2-norm, therefore

∑

λ∈Λ

|〈g, π(λ)γ 〉|2 ≤ 1 +
∑

λ �=0

0 = 1 .

Consequently, with the biorthogonality (4.4.1) (in fact, we only need the condition
for μ = 0) we obtain

vol(Λ)2 = 〈g, γ 〉2 ≤
∑

λ∈Λ

|〈g, π(λ)γ 〉|2 ≤ 1 , (4.5.1)

which is the density theorem.
(ii) The volume of the adjoint lattice is vol(Λ◦) = vol(Λ)−1. Therefore, the claim

is equivalent to (i) by Theorem 4.4.1.
(iii) A Riesz basis is a Riesz sequence that is complete in the Hilbert space, and

therefore is also a frame. Consequently, both (i) and (ii) apply and thus vol(Λ) = 1.
Conversely, ifG(g,Λ) is a framewith vol(Λ) = 1, thenwe have equality in (4.5.1)

and thus 〈g, π(λ)γ 〉 = δλ,0 for λ ∈ Λ. Since the Gabor system G(γ,Λ) is a Bessel
sequence and biorthogonal to G(g,Λ), we deduce that G(g,Λ) is a Riesz sequence,
and by the assumed completeness it is a Riesz basis for L2(Rd).

The above proof of the density theorem is due to Janssen [27].

4.5.2 Existence of Gabor Frames for Sufficiently
Dense Lattices

In the early treatments of Gabor frames, one finds many qualitative statements that
assert the existence of Gabor frames. Typically, they claim that for a window function
g ∈ L2(Rd) with “sufficient” decay and smoothness and for a “sufficiently dense”
latticeΛ the Gabor system G(g,Λ) is a frame for L2(Rd). For a sample of results, we
refer to [8, 12, 40]. In this section,we derive such a qualitative result as a consequence
of the duality theorem.

We will measure decay and smoothness by means of time–frequency concentra-
tion as follows: we say that g belongs to the modulation space M∞

vs
(Rd) if
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|Vgg(z)| ≤ C(1 + |z|)−s ∀z ∈ R
2d .

This is not the standard definition of the modulation space, but it is the most con-
venient definition for our purpose. A systematic exposition of modulation spaces is
contained in [18].

To quantify the density of a lattice Λ = AZ2d , we set simply

‖Λ‖ = ‖A‖op ,

with the understanding that this definition is highly ambiguous and depends more
on the choice of a basis A for the lattice than on the lattice itself.

Theorem 4.5.2 Assume that g ∈ M∞
vs

(Rd) for some s > 2d. Then there exists a τ0

depending on g such that for every lattice Λ = AZ2d with ‖A‖op < τ0 the Gabor
system G(g,Λ) is a frame for L2(Rd).

In other words, there exists a sufficiently small neighborhood V of the zero matrix
such that G(g, AZ2d) is a frame for every A ∈ V .

Proof Invariably, qualitative existence theorems in Gabor analysis (and more gen-
erally in sampling theory) use the fact that an operator that is close enough to the
identity operator is invertible. For this proof,we use the duality theoremand show that
on the adjoint lattice, which is sufficiently sparse, the Gramian matrix is diagonally
dominant and therefore invertible.

Without loss of generality we assume that ‖g‖L2 = 1, then the Gramian can be
written as G = I + R, where Gμ,ν = 〈π(ν)g, π(μ)g〉 and R is the off-diagonal part
of G.

We now make the following observations about R:
(i) If ‖A‖op = δ and μ = I(AT )−1k ∈ Λ◦, then |k| = |ATI−1I(AT )−1k| ≤

‖A‖op|μ| = δ|μ| and therefore

(1 + |μ|)−s ≤ (1 + δ−1|k|)−s .

(ii) By applying a simplified version of Schur’s test to the self-adjoint operator R,
the operator norm of R can estimated by

‖R‖op ≤ sup
μ∈Λ◦

∑

ν �=μ

|〈π(ν)g, π(μ)g〉|

= sup
μ∈Λ◦

∑

ν �=μ

|〈g, π(μ − ν)g〉|

≤
∑

μ �=0

(1 + |μ|)−s (4.5.2)

≤
∑

k∈Zd

k �=0

(1 + δ−1|k|)−s := ϕ(δ) .
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(iii) Since s > 2d, ϕ(δ) is finite for all δ > 0, and ϕ is a continuous, increasing
function that satisfies

lim
δ→0+ ϕ(δ) = 0 and lim

δ→∞ ϕ(δ) = ∞ .

Consequently, there is a τ0 such that ϕ(τ0) = 1. For δ < τ0 we then obtain that

‖R‖op ≤ ϕ(δ) < 1 ,

thereforeG is invertible on �2(Λ◦). Thismeans thatG(g,Λ◦) is a Riesz sequence, and
by duality G(g,Λ) is a frame, whenever the matrix A defining Λ = AZ2d satisfies
‖A‖op < τ0.

The above proof highlights the role of the duality theorem in the qualitative exis-
tence proof. By emphasizing some technicalities about modulation spaces, one may
prove a slightly more general version of the existence theorem.We say that g belongs
to the modulation space M1(Rd) if

∫

R2d
|〈g, π(z)g〉| dz < ∞ .

The proof of Theorem 4.5.2 can be extended to yield the following result.

Theorem 4.5.3 ( [12, 13]) Assume that g ∈ M1(Rd). Then there exists a τ0 depend-
ing on g such that for every lattice Λ = AZ2d with ‖A‖op < τ0 the Gabor system
G(g,Λ) is a frame for L2(Rd).

These existence results are complemented by an important theorem of Bekka [3]:
For every lattice Λ with vol (Λ) ≤ 1, there exists a window g ∈ L2(Rd) such that
G(g,Λ) is a frame.

4.5.3 Balian–Low Theorem

The Balian–Low theorem (BLT) states that for a window with a mild decay in time–
frequency the necessary density conditionmust be strict. In the standard formulation,
the window a Gabor frame G(g,Λ) at the critical density vol (Λ) = 1 lacks time–
frequency localization. We refer to the surveys [4, 7] for a detailed discussion of
the Balian–Low phenomenon in dimension 1. For higher dimensions and arbitrary
lattices, the BLT follows from an important deformation result of Feichtinger and
Kaiblinger [14] with useful subsequent improvements in [1, 22].

Theorem 4.5.4 Assume that g ∈ M∞
vs

(Rd) for some s > 2d and that G(g,Λ) is a
frame for L2(Rd). Then there exists an ε0 > 0 such that G(g, (1 + τ)Λ) is a frame
for every τ with |τ | < ε0.
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Proof We only give the proof idea and indicate where the duality theorem enters. Let
Λ̃ = (1 + τ)Λ, then its adjoint lattice is Λ̃◦ = (1 + τ)−1Λ◦. If G(g,Λ) is a frame,
then the Gramian operator G = Gg,Λ◦ is invertible on �2(Λ◦). Set ρ = (1 + τ)−1

and we consider the cross-Gramian operator G̃ρ with entries

G̃ρ
μν = 〈π(ρν)g, π(μ)g〉 μ, ν ∈ Λ◦ .

We argue that
lim
ρ→1

‖G̃ρ − G‖op = 0 . (4.5.3)

This implies that for |ρ − 1| < ε0 for some ε0 the cross-Gramian operator G̃ρ is
invertible on �2(Λ◦). Now a perturbation result for Riesz bases that goes back to
Paley–Wiener (see, e.g., [5]) implies that G(g, (1 + τ)−1Λ) is a Riesz sequence, and
by the duality theorem G(g, (1 + τ)Λ) is a frame.

The proof of (4.5.3) is similar to the proof of Theorem 4.5.2. We apply Schur’s
test to estimate the operator norm of G̃ρ − G. Given δ > 0, we may choose R > 0
such that

∑

μ:|μ−ν|>R

|G̃ρ
μν − Gμν | < δ/2 for all ν ∈ Λ◦ and 1/2 < ρ < 2 ,

and likewise
∑

ν:|μ−ν|>R |G̃ρ
μν − Gμν | < δ/2 for all μ ∈ Λ◦. As in (4.5.2), this is

possible because g ∈ M∞
vs

(Rd) guarantees the off-diagonal decay of G and G̃ρ .
Next, we choose ε0 > 0 such that for |ρ − 1| < ε0

∑

μ:|μ−ν|≤R

|G̃ρ
μν − Gμν | =

∑

μ:|μ−ν|≤R

|〈π(ρν)g − π(ν)g, π(μ)g〉| < δ/2

and
∑

ν:|μ−ν|≤R |G̃ρ
μν − Gμν | < δ/2. Combining both estimates yields

‖G̃ρ − G‖op < δ.

Again, the optimal assumption on g in Theorem 4.5.4 is that it belongs toM1(Rd).

Corollary 4.5.5 Assume that vol(Λ) = 1 and G(g,Λ) is a frame for L2(Rd). Then
g /∈ M∞

vs
(Rd) for all s > 2d.

Proof If g ∈ M∞
vs

andG(g,Λ)were a frame for some latticeΛwith vol(Λ) = 1, then
by Theorem 4.5.4 the Gabor system G(g, (1 + τ)Λ) would also be a frame for some
τ > 0. But vol

(
(1 + τ)Λ

) = (1 + τ)2dvol(Λ) > 1, and this contradicts the density
theorem.
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4 Gabor Frames: Characterizations and Coarse Structure 109

4.5.4 The Coarse Structure of Gabor Frames and Gabor
Riesz Sequences

One of the principal questions of Gabor analysis is the question under which con-
ditions on a window g and a lattice Λ the Gabor system G(g,Λ) is a frame for
L2(Rd) or a Riesz sequence in L2(Rd). To formalize this, we define the full frame
set Ffull(g) of g to be the set of all lattices Λ such that G(g,Λ) is a frame and the
reduced frame set F(g) to be the set of all rectangular lattices αZd × βZd such that
G(g, αZd × βZd) is a frame. Formally,

Ffull(g) = {Λ ⊆ R
2d lattice : G(g,Λ) is a frame }

F(g) = {(α, β) ⊆ R
2
+ : G(g, αZd × βZd) is a frame } .

We summarize the results of the previous sections in the main result about the
coarse structure of Gabor frames, i.e., results that hold for arbitrary Gabor systems
over a lattice.

Theorem 4.5.6 If g ∈ M∞
vs

(Rd) for some s > 2d or in M1(Rd), then Ffull(g) is an
open subset of {Λ : vol(Λ) < 1} and contains a neighborhood of 0.

Likewise, F(g) is open in {(α, β) ∈ R
2+ : αβ < 1} and contains a neighborhood

of (0, 0) in R2+.

Theorem 4.5.6 should not be underestimated. It compresses the efforts of dozens of
articles into a single statement. It contains the existence of Gabor frames, the density
theorem, and theBalian–Low theorem. For each result, there are now several different
proofs (with subtle differences in the hypotheses) and many ramifications. What is
perhaps new in our presentation is the close connection of the coarse structure of
Gabor frames to the duality theory.

4.6 The Criterion of Janssen, Ron, and Shen for
Rectangular Lattices

In this and the following section, we consider rectangular lattices of the form Λ =
αZd × βZd for α, β > 0. Observe that the adjoint of such a lattice is

Λ◦ = I
( 1

α
Id 0
0 1

β
Id

)
Z
2d = 1

β
Z
d × 1

α
Z
d ,

and is again a rectangular lattice.
For convenience, we denote G(g, α, β) := G(g, αZd × βZd).

Definition 4.6.1 Let g ∈ L2(Rd) and Λ = αZd × βZd with α, β > 0. The pre-
Gramian matrix P(x) is defined by
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P(x) j,k = g
(
x + α j − k

β

) ∀ j, k ∈ Z
d ,

and the Ron–Shen matrix R(x) := P(x)∗P(x) has the entries

R(x)k,l =
∑

j∈Zd

g
(
x + α j − k

β

)
g
(
x + α j − l

β

) ∀k, l ∈ Z
d .

Theorem 4.6.2 Let g ∈ L2(Rd) and Λ = αZd × βZd with α, β > 0 be a rectangu-
lar lattice. Then the following are equivalent:

(i) G(g, α, β) is a frame for L2(Rd).
(ii) G(g, α, β) is a Bessel sequence and there exists a dual window γ ∈ L2(Rd)

such that G(γ, α, β) is a Bessel sequence satisfying

∑

j∈Zd

γ (x + α j)ḡ
(
x + α j − k

β

) = βdδk,0 ∀k ∈ Z
d and a.e. x ∈ R

d .

(4.6.1)

(iii) G(g, 1
β
, 1

α
) is a Riesz sequence for L2(Rd).

(iv) There exist positive constants A, B > 0 such that for all c ∈ �2(Zd) and almost
all x ∈ R

d

A‖c‖2�2 ≤
∑

j∈Zd

∣∣∣
∑

k∈Zd

ckg
(
x + α j − k

β

)∣∣∣
2 ≤ B‖c‖2�2 . (4.6.2)

(v) There exist positive constants A, B > 0 such that the spectrum of almost every
Ron–Shen matrix is contained in the interval [A, B]. This means

σ(R(x)) ⊆ [A, B] for a.e. x ∈ R
d .

(vi) The set of pre-Gramians {P(x)} is uniformly bounded on �2(Zd) and has a set of
uniformly bounded left-inverses. This means that there exist Γ (x) : �2(Zd) →
�2(Zd) such that

Γ (x)P(x) = I�2(Zd ) for a.e. x ∈ R
d ,

‖Γ (x)‖ ≤ C for a.e. x ∈ R
d .

Proof The equivalence of (i) and (iii) is Theorem4.4.1. The equivalence of conditions
(iv), (v), and (vi) is mainly of linguistic nature, and the mathematical content is in
the equivalence (iii) ⇔ (iv).

(iv) ⇔ (v): For all sequences c ∈ �2(Zd), we have
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∑

j∈Zd

∣∣∣
∑

k∈Zd

ckg
(
x + α j − k

β

)∣∣∣
2 = 〈P(x)c, P(x)c〉 = 〈R(x)c, c〉.

Hence, inequality (4.6.2) becomes

A‖c‖2�2 ≤ 〈R(x)c, c〉 ≤ B‖c‖2�2 ∀c ∈ �2(Zd),

for almost all x ∈ R
d , which is equivalent toσ(R(x)) ⊆ [A, B] for almost all x ∈ R

d .
(iv) ⇒ (iii): For this proof we write time-frequency shifts with the translation

operator Tx f (t) = f (t − x) and the modulation operator Mξ f (t) = e2π iξ ·t f (t). Let
c ∈ �2(Z2d) be a finite sequence and f = ∑

k,l∈Zd ck,l M l
α
Tk

β
g. For fixed k, the sum

over l is a trigonometric polynomial

pk(x) :=
∑

l∈Zd

ck,l e
2π i l

α
·x

with period α in each coordinate, and its L2-norm over a period Qα := [0, α]d given
by ∫

Qα

|pk(x)|2dx = αd
∑

l∈Zd

|ck,l |2 .

To calculate the L2-norm of f , we use the periodization trick and obtain

‖ f ‖2L2 =
∥∥∥

∑

k∈Zd

pk · Tk
β
g
∥∥∥
2

L2

=
∫

Rd

∣∣∣
∑

k∈Zd

pk(x)g
(
x − k

β

)∣∣∣
2
dx

=
∫

Qα

∑

j∈Zd

∣∣∣
∑

k∈Zd

pk(x)g
(
x + α j − k

β

)∣∣∣
2
dx .

Next, for every x ∈ Qα we apply assumption (4.6.2) to the integrand
and obtain

‖ f ‖2L2 ≥
∫

Qα

A
∑

k∈Zd

|pk(x)|2dx

= αd A
∑

k,l∈Zd

|ck,l |2 = αd A‖c‖2�2

for all finite sequences c ∈ �2(Z2d). The upper bound follows analogously, and thus
G(g, 1

β
, 1

α
) is a Riesz sequence.

(iii) ⇒ (iv): By assumption,
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A‖c‖2�2 ≤
∥∥∥

∑

k,l∈Zd

ck,l M l
α
Tk

β
g
∥∥∥
2

L2
≤ B‖c‖2�2

for all c ∈ �2(Z2d). We apply this fact to sequences c of the form ck,l := akbl for
a, b ∈ �2(Zd). Then ‖c‖2

�2(Z2d )
= ‖a‖2

�2(Zd )
‖b‖2

�2(Zd )
.

Every p ∈ L2(Qα) can be written as Fourier series p(x) = ∑
l∈Zd ble2π il·

x
α with

coefficients b ∈ �2(Zd). Hence, we obtain for arbitrary a ∈ �2(Zd) and p ∈ L2(Qα)

A

αd
‖a‖2�2(Zd )

∫

Qα

|p(x)|2dx = A‖a‖2�2(Zd )‖b‖2�2(Zd ) = A‖c‖2�2(Z2d )

≤
∥∥∥

∑

k,l∈Zd

akblM l
α
Tk

β
g
∥∥∥
2

L2

=
∫

Rd

|p(x)|2
∣∣∣
∑

k∈Zd

akg
(
x − k

β

)∣∣∣
2
dx

=
∫

Qα

∑

j∈Zd

|p(x + α j)|2
∣∣∣
∑

k∈Zd

akg
(
x + α j − k

β

)∣∣∣
2
dx

=
∫

Qα

|p(x)|2
∑

j∈Zd

∣∣∣
∑

k∈Zd

akg
(
x + α j − k

β

)∣∣∣
2
dx .

(4.6.3)

Since L2(Qα) contains all characteristic functions of measurable subsets in Qα ,
(4.6.3) implies

A

αd
‖a‖2�2 ≤

∑

j∈Zd

∣∣∣
∑

k∈Zd

akg
(
x + α j − k

β

)∣∣∣
2

for a.e. x ∈ R
d

for all a ∈ �2(Zd). The upper bound follows analogously.
(v) ⇒ (vi): Suppose that the spectrum of almost all R(x) is contained in the

interval [A, B] for some positive constants A, B > 0. Then the set of pre-Gramians
is uniformly bounded by B1/2 since R(x) = P(x)∗P(x).

As R(x) is invertible, we may define the pseudo-inverse Γ (x) := R(x)−1P(x)∗.
Then

Γ (x)P(x) = I�2(Zd )

and
‖Γ (x)‖ ≤ ‖R(x)−1‖‖P(x)‖ ≤ A−1B1/2.

(vi) ⇒ (v): By assumption, every P(x) possesses a left inverse Γ (x) with control
of the operator norm. This implies
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‖c‖2�2 = ‖Γ (x)P(x)c‖2�2 ≤ ‖Γ (x)‖2‖P(x)c‖2�2
≤ C2〈R(x)c, c〉 ≤ C2‖P(x)‖2‖c‖2�2 ≤ C2D2‖c‖2�2 .

for all c ∈ �2(Z2d) and almost all x ∈ R
d . This is (v).

(ii) ⇔ (iii) and (ii) ⇔ (vi): Condition (ii) can be understood as explicit version
of (vi). Alternatively, it is a slight reformulation of the biorthogonality condition
(4.4.1), once again with the Poisson summation formula:

∑

j∈Zd

γ (x + α j)ḡ
(
x + α j − k

β

) = 1

αd

∑

j∈Zd

〈γ, M j
α
Tk

β
g〉e2π i j

β
·x = βdδk,0 .

Formulation (4.6.1) of the biorthogonality is due to Janssen [29]. Conditions (iv)
and (v) were discovered by Ron and Shen [37]. The criterion (vi) is from [24].

The results of Ron and Shen are more general and hold for separable lattices
of the form PZd × QZ

d with invertible, real-valued d × d matrices P, Q. In this
setting, Theorem 4.6.2 holds with the appropriate modifications (just replace the
scalar multiplication with α, β, 1/α, 1/β by the matrix–vector multiplication with
P , Q, P−1, Q−1 and use appropriate fundamental domains).

Condition (iv) has been the master tool of Janssen in his work on exponential
windows [30] and “Zak transforms with few zeros” [31]. The construction of a dual
window was used by Janssen [27] to give a signal-analytic proof of the theorem of
Lyubarski and Seip. Recently, the biorthogonality condition for the dual window
was used successfully in the analysis of totally positive windows of finite type [24].
Christensen et al. [6] haveused (4.6.1) to compute explicit formulas for dualwindows.

Condition (iv) also lends itself to proving qualitative sufficient conditions for the
existence of Gabor frames. By imposing the diagonal dominance of R(x), one can
derive some conditions on g to guarantee thatG(g, α, β) is a frame. The easiest case is
R(x) being a family of diagonal matrices. In this way, one obtains the “painless non-
orthogonal expansions” of Daubechies et al. [9]. This fundamental result precedes
the era of wavelets and Gabor analysis, and yields all Gabor frames that are used for
real applications, e.g., in signal analysis or speech processing.

Theorem 4.6.3 (Painless non-orthogonal expansions) Suppose g ∈ L∞(Rd) with
supp g ⊆ [0, L]d . If α ≤ L and β ≤ 1

L , then G(g, α, β) is a frame if and only if

0 < ess inf
x∈Rd

∑

k∈Zd

|g(x − αk)|2.

Proof By assumption, we have 1
β

≥ L . If 1
β

> L , then the supports of Tk
β
g and T l

β
g

are disjoint for k �= l; if 1
β

= L , then the supports of Tk
β
g and T l

β
g overlap on a set

of measure zero and we may modify g so that Tk
β
g T l

β
g = 0 everywhere for k �= l.

Consequently,
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R(x)k,l =
∑

j∈Zd

g
(
x + jα − k

β

)
g
(
x + jα − l

β

)

=
∑

j∈Zd

∣∣g
(
x + jα − k

β

)∣∣2 δk,l ,

and thus R(x) is a diagonal matrix for almost all x . Clearly, a diagonal matrix is
bounded and invertible if and only if its diagonal is bounded above and away from
zero; therefore, the assertion of Theorem 4.6.3 follows immediately.

Theorem 4.6.2 can also be reformulated in terms of frames for L2(Td). For this
we recall that the Zak transform with respect to the parameter α > 0 is defined by

Zα f (x, ξ) :=
∑

k∈Zd

f (x − αk)e2π iαk·ξ .

Most characterizations of a Gabor frame over a rectangular lattice can be formulated
bymeans of the Zak transform.Here is the general version attached to Theorem 4.6.2.

Theorem 4.6.4 Let g ∈ L2(Rd) and Λ = αZd × βZd with α, β > 0. Then the fol-
lowing are equivalent:

(i) G(g, α, β) is a frame for L2(Rd).
(ii) {Z 1

β
g(x + α j, β . ) : j ∈ Z

d} is a frame for L2(Td) for almost all x ∈ R
d with

frame bounds independent of x.

Proof By Theorem 4.6.2, G(g, α, β) is a Gabor frame if and only if there exist
positive constants A, B > 0 such that

A‖c‖2�2 ≤
∑

j∈Zd

∣∣∣
∑

k∈Zd

ckg
(
x + α j − k

β

)∣∣∣
2 ≤ B‖c‖2�2 (4.6.4)

for all c ∈ �2(Zd) and almost all x ∈ R
d .

Using Parseval’s identity for Fourier series, we interpret the inner sum over k
as an inner product of periodic L2-functions. The Fourier series of c is ĉ(ξ) =∑

k∈Zd cke2π ik·ξ , and the Fourier series of the sequence
(
g(x + α j − k/β)

)
k∈Zd (for

fixed x) is precisely the Zak transform

Z 1
β
g(x + α j, βξ) =

∑

k∈Zd

g
(
x + α j − k

β

)
e2π ik·ξ .

Consequently,

∑

k∈Zd

ckg
(
x + α j − k

β

) =
∫

Td

ĉ(ξ)Z 1
β
g(x + α j, βξ)dξ
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and (4.6.4) just says that the set {Z 1
β
g(x + α j, β·) : j ∈ Z

d} is a frame for L2(Td)

for almost all x ∈ R
d . Furthermore, the frame bounds can be chosen to be A and B

independent of x .

4.7 Zak Transform Criteria for Rational Lattices—The
Criteria of Zeevi and Zibulski

All criteria formulated so far are expressed by the invertibility of an infinite matrix
or of an operator on an infinite-dimensional space. For rectangular lattices Λ =
αZd × βZd withαβ ∈ Q, onemay further reduce the effort and study the invertibility
of a family of finite-dimensional matrices.

Assume that αβ = p/q ≤ 1 for p, q ∈ N. In order to simplify the labeling of
vectors and matrices, we define Eq := {0, 1, . . . , q − 1}d and Ep := {0, 1, . . . ,
p − 1}d . We then write j ∈ Z

d uniquely as j = ql + r for l ∈ Z
d and r ∈ Eq . Using

the quasi-periodicity of the Zak transform, we obtain

Z 1
β
g(x + α j, βξ) = Z 1

β
g
(
x + p

qβ (ql + r), βξ
) = e2π i pl·ξ Z 1

β
g
(
x + p

qβ r, βξ
)
.

Thus for rational values of αβ, we obtain a function systemwhich factors into certain
complex exponentials and some functions. The frame property of such a system is
characterized in the following lemma.

Lemma 4.7.1 Let {hr : r ∈ F} ⊆ L2(Td) be a finite set and p ∈ N such that
card F ≥ card Ep = pd . Furthermore, letA(ξ) be the matrix with entriesA(ξ)r,s =
hr (ξ + s

p ) for r ∈ F, s ∈ Ep. Then the following are equivalent:

(i) The set {e2π i pl·ξhr (ξ) : l ∈ Z
d , r ∈ F} is a frame for L2(Td).

(ii) There exist A, B > 0 such that the singular values of A(ξ) are contained in
[A1/2, B1/2] for almost all ξ ∈ T

d .
(iii) There exist A, B > 0 such that σ(A∗(ξ)A(ξ)) ⊆ [A, B] for almost all ξ ∈ T

d .

The condition card F ≥ pd is essential; otherwise, the matrix A(ξ) cannot be
injective and A∗(ξ)A(ξ) cannot be invertible.

Proof For f ∈ L2(Td) and ξ ∈ Q1/p = [0, 1
p ]d , we write the vector y(ξ) =(

f (ξ + s
p )

)
s∈Ep

. Then the inner product of f with the frame functions hr (ξ)e2π i pl·ξ

can be written as

〈 f, hre2π i pl·ξ 〉 =
∫

[0, 1
p ]d

∑

s∈Ep

f (ξ + s
p )hr (ξ + s

p )e
−2π i pl·ξ dξ

=
∫

[0, 1
p ]d

(A(ξ)y(ξ)
)
r
e−2π i pl·ξ dξ .
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Since {pd/2e2π i pl·ξ : l ∈ Z
d} is an orthonormal basis for L2(Q1/p), we now obtain

∑

l∈Zd

∑

r∈F
|〈 f, hre2π i pl·ξ 〉|2 =

∑

r∈F

∑

l∈Zd

∣∣∣
∫

Q1/p

(A(ξ)y(ξ))r e
−2π i pl·ξ dξ

∣∣∣
2

= 1

pd
∑

r∈F

∫

Q1/p

|(A(ξ)y(ξ))r |2 dξ

= 1

pd

∫

Q1/p

|A(ξ)y(ξ)|2 dξ .

If the singular values of A are all in an interval [A1/2, B1/2], then |A(ξ)y(ξ)|2 =
〈A(ξ)∗A(ξ)y(ξ), y(ξ)〉 ≥ A|y(ξ)|2. Therefore

∑

l∈Zd

∑

r∈F
|〈 f, hre2π i pl·ξ 〉|2 = 1

pd

∫

Q1/p

|A(ξ)y(ξ)|2 dξ

≥ A

pd

∫

Q1/p

|y(ξ)|2 dξ (4.7.1)

= A

pd

∫

Q1/p

∑

s∈Ep

| f (ξ + s
p )|2 dξ = A

pd
‖ f ‖2L2(Td ) .

Similarly, the upper framebound follows. Thus the set {hr (ξ)e2π i pl·ξ : l ∈ Z
d , r ∈ F}

is a frame for L2(Td).
Conversely, assume that {hr (ξ)e2π i pl·ξ : l ∈ Z

d , r ∈ F} is a frame for L2(Td).
Then (4.7.1) says that for all f ∈ L2(Td) with associated vector-valued function
y(ξ) = (

f (ξ + s
p )

)
s∈Ep

we must have

A

pd

∫

Q1/p

|y(ξ)|2 dξ ≤ 1

pd

∫

Q1/p

|A(ξ)y(ξ)|2 dξ ≤ B

pd

∫

Q1/p

|y(ξ)|2 dξ . (4.7.2)

Nowwe diagonalizeA(ξ)∗A(ξ). SinceA∗A is a measurable matrix-valued func-
tion on Td , its diagonalization can be chosen to be measurable (see Azoff [2]). This
means that there exist two measurable matrix-valued functions U ,D such that U(ξ)

is a unitary matrix,D(ξ) is of diagonal form andA(ξ)∗A(ξ) = U(ξ)∗D(ξ)U(ξ) for
all ξ ∈ T

d .
Hence (4.7.2) is equivalent to

A
∫

Q1/p

|ỹ(ξ)|2 dξ ≤
∫

Q1/p

〈D(ξ)ỹ(ξ), ỹ(ξ)〉 dξ ≤ B
∫

Q1/p

|ỹ(ξ)|2 dξ (4.7.3)

for all vector-valued functions ỹ(ξ) = U(ξ)y(ξ) with components in L2(Q1/p).
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4 Gabor Frames: Characterizations and Coarse Structure 117

Clearly, inequality (4.7.3) can only hold if σ(D(ξ)) = σ(A(ξ)∗A(ξ)) ⊆ [A, B]
for almost all ξ ∈ Q1/p.

We now apply this lemma to the set {e2π i pl·ξ Z 1
β
(x + p

qβ r, βξ) : l ∈ Z
d , r ∈ Eq}

and obtain the characterization of Zeevi and Zibulski for rational rectangular lat-
tices [42, 43].

Theorem 4.7.2 Let g ∈ L2(Rd) and αβ = p/q ∈ Q with p/q ≤ 1. For x, ξ ∈ R
d

let Q(x, ξ) be the matrix with entries

Q(x, ξ)r,s = Z 1
β
g
(
x + p

βq r, βξ + βs
p

) ∀r ∈ Eq , s ∈ Ep .

TheGabor familyG(g, α, β) is a frame for L2(Rd) if and only if the singular values of
Q(x, ξ) are contained in an interval [A1/2, B1/2] ⊆ (0,∞) for almost all x, ξ ∈ R

d .

Proof By Theorem 4.6.4, G(g, α, β) is a frame if and only if {Z 1
β
g(x + α j, βξ) :

j ∈ Z
d} = {e2π i pl·ξ Z 1

β
g(x + αr, βξ) : l ∈ Z

d , r ∈ Eq} is a frame for L2(Td). Now,
the claim follows from Lemma 4.7.1 with the functions hr (ξ) = Z 1

β
g(x + αr, βξ).

The Zak transform has been used frequently to derive theoretical properties of
Gabor frames. The Zeevi–Zibulski matrices in particular are very useful for com-
putational issues, and several important counterexamples have been discovered first
through numerical tests before being proved rigorously [32, 33]. On the other hand, it
seems to be very difficult to apply directly and decide rigorously whether a concrete
Gabor system is a frame or not.

4.8 Further Characterizations

So far, we have discussed characterization of Gabor frames that work for arbitrary
windows in L2(Rd). On a technical level, we have not used more than the Poisson
summation formula. Under mild additional conditions that are standard in time–
frequency analysis, one can prove further characterizations for Gabor frames. These,
however, require additional and more advanced mathematical tools, such as spectral
invariance, a noncommutative version of Wiener’s lemma or Beurling’s method of
weak limit. For this reason, we state these characterizations without proofs.

4.8.1 The Wiener Amalgam Space and Irrational Lattices

This condition refines Theorem 4.6.2 for irrational lattices. As the appropriate class
of window, we use the Wiener amalgam space W0 = W (C, �1). It consists of all
continuous functions g for which the norm
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‖g‖W =
∑

k∈Zd

sup
x∈Q1

|g(x + k)|

is finite.

Theorem 4.8.1 ([21])Assume that g ∈ W0 andΛ = αZd × βZd withαβ /∈ Q. Then
G(g, α, β) is a frame for L2(Rd) if and only if there exists some x0 ∈ Qα such that
R(x0) is invertible on �2(Zd).

Thus for irrational lattices, it suffices to check the invertibility of a single Ron–
Shen matrix R(x) instead of all matrices. Although this condition looks useful, it has
not yet found any applications.

4.8.2 Janssen’s Criterion Without Inequalities

Theorem 4.8.2 ([23]) Assume that g ∈ W0 and Λ = αZd × βZd . Then G(g, α, β)

is a frame if and only if the pre-Gramian P(x) is one-to-one on �∞(Zd) for all
x ∈ R

d .

Put differently, to show that G(g, α, β) is a frame, one has to show that

∑

k∈Zd

ckg(x + α j − k
β
) = 0 =⇒ c ≡ 0 ,

with the added subtlety that c is only a bounded sequence, but not necessarily in
�2(Zd), as is the case in Theorem 4.6.2.

In general, it is easier to verify the injectivity of an operator than to prove its
invertibility; therefore, Theorem 4.8.2 is a strong result. It has been applied success-
fully for the study of totally positive windows of Gaussian type in [23] and carries
potential for further applications.

4.8.3 Gabor Frames Without Inequalities

This group of conditions holds for arbitrary lattices and windows in M1(Rd). As is
well known, the modulation space M1(Rd) is a natural condition in many problems
in time–frequency analysis, because it is invariant under the Fourier transform and
manyother transformations.Bychoosing a suitable norm,M1(Rd)becomes aBanach
space and its dual space M∞(Rd) consists of all tempered distributions f ∈ S ′(Rd)

that satisfy
sup
z∈R2d

|Vϕ f (z)| < ∞

for some (or equivalently, for all) Schwartz functions ϕ.
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4 Gabor Frames: Characterizations and Coarse Structure 119

Theorem 4.8.3 ([19]) Let g ∈ M1(Rd)andΛ ⊆ R
2d be a lattice. Then the following

are equivalent:

(i) G(g,Λ) is a frame for L2(Rd), i.e., Sg,Λ is invertible on L2(Rd).
(ii) The frame operator Sg,Λ is one-to-one on M∞(Rd).
(iii) The analysis operator Cg,Λ : f �→ (〈 f, π(λ)g〉)

λ∈Λ
is one-to-one from M∞(Rd)

to �∞(Λ).
(iv) The synthesis operator Dg,Λ◦ : c �→ ∑

λ∈Λ◦ cλπ(λ)g is one-to-one from �∞(Λ◦)
to M∞(Rd).

(v) The Gramian operator Gg,Λ◦ is one-to-one on �∞(Λ◦).

Conceptually, it seems easier to verify that an operator is one-to-one; therefore, one
may hope that these conditions will become useful when research on Gabor frames
will move from rectangular lattices toward arbitrary ones.
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Chapter 5
On the Approximate Unit Distance
Problem

Alex Iosevich

Abstract The Erdös unit distance conjecture in the plane says that the number of
pairs of points from a point set of size n separated by a fixed (Euclidean) distance is
≤ Cεn1+ε for any ε > 0. The best known bound isCn

4
3 . We show that if the set under

consideration is homogeneous, or, more generally, s-adaptable in the sense of [12],
and the fixed distance is much smaller than the diameter of the set, then the exponent
4
3 is significantly improved, even if we consider a small range of distances instead of
a fixed value. Corresponding results are also established in higher dimensions. The
results are obtained by solving the corresponding continuous problem and using a
continuous-to-discrete conversion mechanism. The degree of sharpness of results is
tested using the known results on the distribution of lattice points in dilates of convex
domains.

5.1 Introduction

One of the hardest longstanding conjectures in extremal combinatorics is the Erdös
unit distance conjecture ([2], see also [1]). It says that if P is a planar point set with
n points, then the number of pairs of elements of P a fixed Euclidean distance apart
is bounded by Cεn1+ε for every ε > 0. The best known bound, obtained by Spencer,
Szemeredi and Trotter [16], is Cn

4
3 . An interesting development occurred in 2005

when Pavel Valtr [17] proved that if the Euclidean distance is replaced by a distance
induced by the norm defined by a bounded convex set with a smooth boundary
and nonvanishing curvature, then the Cn

4
3 bound is, in general, best possible. A

much earlier construction due to Jarnik (see, e.g., [14] and the references contained
therein) also yields the same bound, except that the boundary of the Jarnik domain
is not smooth.

The purpose of this paper is to show that for a wide variety of point sets, the Cn
4
3

bound for the number of occurrences of the unit distance can be extended to the
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approximate setting and significantly improved if we count the number of pairs of
points separated by a distance that is much smaller than the diameter of the set. Our
main result is the following.

Definition 5.1.1 Given a finite set P of size n in [0, 1]d , d ≥ 2,we define the discrete
s-energy of P by the relation

Is(P) = n−2
∑

p �=p′∈P

|p − p′|−s
.

Theorem 5.1.2 Let B be a symmetric bounded convex set in R
d , d ≥ 2, with

a smooth boundary and everywhere nonvanishing Gaussian curvature. Let P ⊂
[0, 1]d , d ≥ 2, with #P = n. Suppose that P is δ-separated with n− 2

d+1 ≤ h ≤ δ ≤
n− 1

d . Then

#
{
(p, p′) ∈ P × P : r ≤ ||p − p′||B ≤ r + h

} ≤ Cr
d−1
2 n2h

(
C ′ + I d+1

2
(P)

)
.

Remark 5.1.3 Note that the condition h ≤ δ ≤ n− 1
d above simply comes from the

fact that it is impossible make n points in [0, 1]d separated by more than cn− 1
d .

Definition 5.1.4 We say that P ⊂ [0, 1]d is homogeneous if there exist C, c > 0
such that the points of P are cn− 1

d -separated and every ball of radius Cn− 1
d contains

at least one point of P . Note that these conditions imply that #P ≈ n.

Corollary 5.1.5 Suppose that P ⊂ [0, 1]d is homogeneous. Then

#{(p, p′) ∈ P × P : r ≤ |p − p′| ≤ r + n− 2
d+1 } ≤ Cr

d−1
2 n2−

2
d+1 .

In particular, when d = 2,

#{(p, p′) ∈ P × P : r ≤ |p − p′| ≤ r + n− 2
3 } ≤ Cr

1
2 n

4
3 .

Corollary 5.1.5 follows from Theorem 5.1.2 and the following calculation that
can be found in, for instance, [10, 12]. We shall carry out this calculation at the end
of the paper for the sake of completeness.

Lemma 5.1.6 Let P ⊂ [0, 1]d , d ≥ 2, be ahomogeneous set. ThenIs(P) is bounded
with constants independent of n for any s ∈ [0, d).

Remark 5.1.7 The discrete d+1
2 -energy is bounded independently of n for a wide

variety of point sets far beyond homogeneous sets. See [12] for a thorough description
of these and related issues.

We now describe some consequences of our main result for well-distributed sets,
which are those sets that are statistically like lattices but do not necessarily possess
any of their arithmetic properties. More precisely, we have the following definition.
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5 On the Approximate Unit Distance Problem 123

Definition 5.1.8 We say that P ⊂ R
d of size n is well-distributed if there exists

c > 0 such that |p − p′| ≥ c and every unit lattice cube in R
d ∩ [0, n 1

d ]d contains
exactly one point of P .

While this is essentially a rescaled version of Definition 5.1.4, it provides a natural
venue of comparison with lattice point counting problems that we are going to use
to test the sharpness of the results of this paper in Sect. 5.1.1. The following result
is just a rescaled version of Corollary 5.1.5.

Corollary 5.1.9 Let B be a symmetric bounded convex set in R
d , d ≥ 2, with a

smooth boundary and everywhere nonvanishing Gaussian curvature. Let P be a
well-distributed set of size n. Then for k ∈ (1, n

1
d ),

#
{
(p, p′) ∈ P × P : k ≤ ||p − p′||B ≤ k + n− d−1

d(d+1)

}
≤ Cn2−

2
d+1 · Λ, (5.1.1)

where

Λ =
(

k

n
1
d

) d−1
2

. (5.1.2)

In particular, if d = 2, the left-hand side of (5.1.1) is bounded by Cn
4
3 ·

(
k

n
1
2

) 1
2
,

which is an improvement over the known Cn
4
3 bound when k = o(n

1
2 ).

Remark 5.1.10 It was pointed out to the author by Solymosi that if one considers
the exact unit distance problem, Corollary 5.1.9 can be improved. More precisely, a
standard cell decomposition and cutting technique can be used to show that

#
{
(p, p′) ∈ P × P : ||p − p′||B = k

} ≤ Cn
4
3 ·

(
k

n
1
2

) 2
3

,

and a corresponding result can be obtained in higher dimensions aswell. Zahl pointed
out that Solymosi’s method with the proof of the two-dimensional case of Corollary
5.1.9 as input allows one to improve the conclusion of Corollary 5.1.9 slightly to the
statement

#
{
(p, p′) ∈ P × P : k − n− 1

6 ≤ ||p − p′||B ≤ k + n− 1
6

}
≤ Cn

4
3 ·

(
k

n
1
2

) 2
3

.

The resulting connections between the cell decomposition method and analytic
techniques employed in this article will be systematically studied in a sequel.

Remark 5.1.11 When k ≈ n
1
d , Theorem 5.1.9 is implicit in the main result in [10],

but the key feature here is the dependence on k with the resulting improvement
when k = o(n

1
d ). Also, we shall prove below that in the case k ≈ n

1
d , the estimate

provided by Theorem 5.1.9 is sharp. See also [13] where the continuous–discrete
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correspondence is used in reverse in order to obtain sharpness examples for Falconer-
type estimates.

Remark 5.1.12 Note that the left-hand side of (5.1.1) is trivially bounded by Cn ·
kd−1. Therefore, the estimate in Theorem 5.1.9 is only interesting when k >>

n
1

d−1− 4
(d−1)(d+1) + 1

d(d−1) . For example, in dimension two this threshold is n
1
6 .

5.1.1 Sharpness of Results

The results associated with the lattice point counting problems provide a useful tool
for testing sharpness of Theorem 5.1.9. Let n ≈ qd and P = Z

d ∩ B(0, 10q), the
ball of radius 10q centered at the origin. Let Nd(R) denote the number of elements
of Zd inside the ball of radius R centered at the origin. It is known (see, e.g., [7]) that

Nd(R) = ωd R
d + Dd(R),

whereωd is the volume of the unit ball, |D2(R)| ≤ CεR
131
208+ε [8], |D3(R)| ≤ CεR

21
16+ε

[5], and |Dd(R)| ≤ CεRd−2+ε for d ≥ 4 [4].
Then

#
{
(p, p′) ∈ P × P : q ≤ |p − p′| ≤ q + q− d−1

d+1

}
≥ Cqd ·

(
Nd

(
q + q− d−1

d+1

)
− Nd (q)

)
.

We have

Nd

(
q + q− d−1

d+1

)
− Nd(q) = ωd

((
q + q− d−1

d+1

)d − qd

)
+ D

(
q + q− d−1

d+1

)
− D(q).

Using the bounds on |D(R)| described above, we see that

Nd

(
q + q− d−1

d+1

)
− Nd(q) ≥ cqd−1− d−1

d+1 ,

which implies that

#{(p, p′) ∈ P × P : q ≤ |p − p′| ≤ q + q− d−1
d+1 } ≥ Cq2d−1− d−1

d+1 ≈ n2−
2

d+1 ,

proving that Theorem 5.1.9 is sharp when k ≈ n
1
d .

When k << q, we can conclude that

Nd

(
k + q− d−1

d+1

)
− Nd(k) ≥ ckd−1q− d−1

d+1

if the right-hand side is larger than the error term measured in terms of the bounds
on |Dd(R)| described above. This happens for a range of k’s. In this range,
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5 On the Approximate Unit Distance Problem 125

#{(p, p′) ∈ P × P : q ≤ |p − p′| ≤ k + q− d−1
d+1 } ≥ Ckd−1qdq− d−1

d+1 .

The right-hand side is smaller than the bound obtained by Theorem 5.1.9 when
k = o(n

1
d ). This may indicate that Theorem 5.1.9 is not sharp in this range, but it is

also possible that a more sophisticated sharpness example may be found.

5.2 Proof of Theorem 5.1.2

Define
μn,δ(x) = n−1δ−d

∑

p∈P

φ(δ−1(x − p)),

where φ is a smooth cutoff function supported in the ball of radius 2 and identically
equal to 1 in the ball of radius 1.

This is a natural measure on the δ-neighborhood of P . Our goal is to bound the
expression ∫ ∫

{(x,y):r≤||x−y||B≤r+h}
dμn,δ(x)dμn,δ(y), (5.2.1)

where || · ||B is the norm induced by a bounded symmetric convex set B with a
smooth boundary and everywhere nonvanishing curvature, and then relate it to the
count for the number of pairs separated by a given distance.

Using a Fourier inversion-type argument (see, e.g., [15] or [18]), the expression
(5.2.1) equals a constant multiple of

∫
|μ̂n,δ(ξ)|2χ̂Ar,h (ξ)dξ, (5.2.2)

where
Ar,h = {x ∈ R

d : r ≤ ||x ||B ≤ r + h},

χ denotes its indicator function, and

f̂ (ξ) =
∫

e−2π i x ·ξ f (x)dx,

defined for functions in L2(Rd).
This argument is also carried out explicitly on pp. 59–60 in [15], but the argument

is a bit simpler in this case because μn,δ is a actually a smooth function. We have

∫ ∫

{(x,y):r≤||x−y||B≤r+h}
dμn,δ(x)dμn,δ(y)

umolter@dm.uba.ar



126 A. Iosevich

=
∫ ∫

χAr,h (x − y)dμn,δ(x)dμn,δ(y)

=
∫ ∫ ∫

χ̂Ar,h (ξ)e2π i(x−y)·ξdμn,δ(x)dμn,δ(y)

=
∫

χ̂Ar,h (ξ)|μ̂n,δ(ξ)|2dξ

by Fourier inversion and the definition of the Fourier transform, this recovering
(5.2.2).

Lemma 5.2.1 ([3])With the notation above,

∣∣χ̂Ar,h (ξ)
∣∣ ≤ Cr

d−1
2 |ξ |− d−1

2 min
{
h, |ξ |−1

}
, (5.2.3)

where C is a universal constant independent of t or q.

Falconer proved this result in [3] in the case when B is the unit ball. The proof of
the general case is similar.

Theorem 5.2.2 (Theorem 3.10 in [15]) Let μ be a compactly supported Borel mea-
sure on Rd and 0 < s < d. Then

∫ ∫
|x − y|−sdμ(x)dμ(y) = cd,s

∫
|μ̂(ξ)|2|ξ |−d+sdξ.

With Lemma 5.2.1 in tow, we see that
∫

|μ̂n,δ(ξ)|2χ̂Ar,h (ξ)dξ ≤ Cr
d−1
2 · h

∫
|μ̂n,δ(ξ)|2|ξ |− d−1

2 dξ (5.2.4)

≤ C ′r d−1
2 h

∫
|μ̂n,δ(ξ)|2|ξ |−d+ d+1

2 dξ = C ′′r d−1
2 h

∫ ∫
|x − y|− d+1

2 dμn,δ(x)dμn,δ(y),

where the last step follows by Theorem 5.2.2. We have

∫ ∫
|x − y|− d+1

2 dμn,δ(x)dμn,δ(y)

= n−2δ−2d
∑

p,p′∈P

∫ ∫
φ(δ−1(x − p))φ(δ−1(y − p′))|x − y|− d+1

2 dxdy

= n−2δ−2d
∑

p∈P

∫ ∫
φ(δ−1(x − p))φ(δ−1(y − p))|x − y|− d+1

2 dxdy

+n−2δ−2d
∑

p �=p′

∫ ∫
φ(δ−1(x − p))φ(δ−1(y − p′))|x − y|− d+1

2 dxdy = I + I I.
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By a direct calculation,
I ≤ Cn−1h− d+1

2 ≤ C ′ (5.2.5)

since δ ≥ n− 2
d+1 by assumption.

Since p �= p′,

I I ≤ Cn−2
∑

p �=p′
|p − p′|− d+1

2 = CI d+1
2

(P). (5.2.6)

We are now ready for the combinatorial conclusion. See [6, 9, 11, 12] where
various forms of the continuous-to-discrete conversion mechanisms are developed
and applied. Observe that

#{(p, p′) ∈ P × P : r ≤ ||x − y||B ≤ r + h}

≤ Cn2 ·
∫ ∫

{(x,y):r≤||x−y||B≤r+h}
dμn,δ(x)dμn,δ(y).

By (5.2.4), (5.2.5), and (5.2.6), this expression is bounded by

Cr
d−1
2 n2h

(
C ′ + I d+1

2
(P)

)
,

as claimed.

5.2.1 Proof of Lemma 5.1.6

We have

Is(P) = n−2
∑

p �=p′∈P

|p − p′|−s = n−2
N∑

k=0

∑

2−k≤|p−p′ |<2−k+1

|p − p′|−s
,

where N ≈ log(n). The right-hand side is bounded by

Cn−2
N∑

k=0

2ks
∑

2−k≤|p−p′ |<2−k+1

1. (5.2.7)

By assumption, for any fixed p′,

#{p : 2−k ≤ |p − p′| < 2−k+1} ≤ C2−kdn.

It follows that the expression in (5.2.7) is bounded by
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128 A. Iosevich

Cn−2
N∑

k=0

2ks2−kdn2 = C
N∑

k=0

2k(s−d)

and the series converges with bounds independent of n if s < d, as desired. This
completes the proof of Lemma 5.1.6.

Acknowledgements The author wishes to thank Adam Sheffer, Josef Solymosi, Josh Zahl, and
the anonymous referee for some helpful remarks and suggestions.
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Chapter 6
Hausdorff Dimension, Projections,
Intersections, and Besicovitch Sets

Pertti Mattila

Abstract This is a survey on recent developments on the Hausdorff dimension of
projections and intersections for general subsets of Euclidean spaces, with an empha-
sis on estimates of the Hausdorff dimension of exceptional sets and on restricted pro-
jection families. We shall also discuss relations between projections and Hausdorff
dimension of Besicovitch sets.

Subject Classification: 28A75

6.1 Introduction

In this survey, I shall discuss some recent results on integral-geometric properties of
Hausdorff dimension and their relations to Kakeya-type problems. More precisely,
by integral-geometric properties, I mean properties related to affine subspaces of
Euclidean spaces and to rigid motions; orthogonal projections into planes, intersec-
tions with planes, and intersections of two sets after a generic rigid motion is applied
to one of them. Such questions have been studied for more than 60 years, and there
have been a lot of recent activities on them. In particular, I shall discuss estimates
on the Hausdorff dimension of exceptional sets of planes and rigid motions, and
projections on restricted families of planes. Besicovitch sets are sets of Lebesgue
measure zero containing a unit line segment in every direction. They are expected
to have full Hausdorff dimension. This problem is related to many topics in modern
Fourier analysis, e.g., restriction of the Fourier transform to surfaces, Bochner–Riesz
multipliers, local smoothing for PDEs, and L2-estimates for Dirichlet sums, see Sect.
22.5 of [55]. It is also related to projection theorems, as we shall see at the end of this
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survey. In the last section, I shall also discuss (n, k) Besicovitch sets, lines replaced
with k-planes, and their relations to projections.

Other recent surveys partially overlapping with this are [21, 45, 54, 78].
Most of the background material can be found, for example, in the books

[53, 55].
This survey is partially based on the lectures I gave in the CIMPA2017 conference

in Buenos Aires in August 2017. I would like to thankUrsulaMolter, Carlos Cabrelli,
and the other organizers for that very pleasant and successful event. I am grateful to
Tuomas Orponen for many useful comments.

6.2 Hausdorff Dimension, Energy Integrals, and the
Fourier Transform

I give here a quick review of the Hausdorff dimension and its relations to energy
integrals and the Fourier transform. The details can be found in [53, 55].

The s-dimensional Hausdorff measure Hs, s ≥ 0, is defined for A ⊂ R
n by

Hs(A) = lim
δ→0

Hs
δ(A),

where, for 0 < δ ≤ ∞,

Hs
δ(A) = inf{

∞∑

j=1

d(E j )
s : A ⊂

∞⋃

j=1

E j , d(E j ) < δ}.

Here d(E) denotes the diameter of the set E .
Then Hn is a constant multiple of the Lebesgue measure Ln and the restriction

of Hn−1 to the unit sphere Sn−1 = {x ∈ R
n : |x | = 1} is a constant multiple of the

surface measure.
The Hausdorff dimension of A is

dim A = inf{s : Hs(A) = 0} = sup{s : Hs(A) = ∞}.

For A ⊂ R
n , letM(A) be the set of Borel measures μ such that 0 < μ(A) < ∞

and μ has compact support sptμ ⊂ A. We denote by B(x, r) the closed ball with
center x and radius r . The following is a useful tool for proving lower bounds for
the Hausdorff dimension.

Theorem 6.2.1 (Frostman’s lemma) Let 0 ≤ s ≤ n. For a Borel set A ⊂ R
n,Hs(A)

> 0 if and only there is μ ∈ M(A) such that

μ(B(x, r)) ≤ r s for all x ∈ R
n, r > 0. (6.2.1)
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6 Hausdorff Dimension, Projections, Intersections, and Besicovitch Sets 131

In particular,

dim A = sup{s : thereis μ ∈ M(A) such that (6.2.1) holds}.

Such measures μ are often called Frostman measures.
The s-energy, s > 0, of a Borel measure μ is

Is(μ) =
∫∫

|x − y|−s dμx dμy =
∫

ks ∗ μ dμ,

where ks is the Riesz kernel:

ks(x) = |x |−s, x ∈ R
n.

Integration of Frostman’s lemma gives the following theorem.

Theorem 6.2.2 For a Borel set A ⊂ R
n,

dim A = sup{s : there is μ ∈ M(A) such that Is(μ) < ∞}.

The Fourier transform of μ ∈ M(Rn) is

μ̂(ξ) =
∫

e−2π iξ ·x dμx, ξ ∈ R
n.

The s-energy of μ ∈ M(Rn) can be written in terms of the Fourier transform:

Is(μ) = c(n, s)
∫

|μ̂(x)|2|x |s−n dx .

This comes from Plancherel’s theorem and the fact that the Fourier transform, in the
distributional sense, of ks is a constant multiple of kn−s . Thus we have

dim A = sup{s < n : ∃μ ∈ M(A) such that
∫

|μ̂(x)|2|x |s−n dx < ∞}. (6.2.2)

Notice that if Is(μ) < ∞, then |μ̂(x)|2 < |x |−s for most x with large norm. How-
ever, this need not hold for all x with large norm.

The upper Minkowski dimension is defined by

dimM A = inf{s ≥ 0 : lim
δ→0

δs−nLn({x : dist (x, A) < δ}) = 0}.

The packing dimension dimP can be defined as a modification of this:

dimP A = inf{sup
i
dimM Ai : A =

∞⋃

i=1

Ai }.
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Then dim A ≤ dimP A ≤ dimM A. We have the following product inequalities:

dim A × B ≥ dim A + dim B. (6.2.3)

dimM A × B ≤ dimM A + dimM B. (6.2.4)

dimP A × B ≤ dimP A + dimP B. (6.2.5)

There is no Fubini theorem for Hausdorff measures, but we have the following
inequality, see [26], 2.10.25. Federer proves this in rather general metric spaces. An
easy argument in the Euclidean spaces in the case where s = m, and so Hm = Lm ,
is given in [53], 7.7.

Proposition 6.2.3 Let A ⊂ R
m+n and set Ax = {y ∈ R

n : (x, y) ∈ A} for x ∈ R
m.

Then for any nonnegative numbers s and t (
∫ ∗ is the upper integral)

∫ ∗
Ht (Ax ) dHs x ≤ C(m, n, s, t)Hs+t (A).

In particular, if dim{x ∈ R
m : dim Ax ≥ t} ≥ s, then dim A ≥ s + t .

The latter statement was proved by Marstrand [48].

6.3 Hausdorff Dimension and Exceptional Projections

We shall now discuss the question: how do orthogonal projections affect the Haus-
dorff dimension? Let 0 < m < n be integers and let G(n,m) be the space of all
linear m-dimensional subspaces of Rn and let γn,m be the Borel probability measure
on it which is invariant under the orthogonal group O(n) of Rn . For V ∈ G(n,m)

let PV : Rn → V be the orthogonal projection.
The case m = 1 and the lines through the origin are simpler and more concrete,

and perhaps good to keep in mind. We can parametrize G(n, 1) and the projections
onto lines by the unit sphere:

Pe(x) = e · x, x ∈ R
n, e ∈ Sn−1.

Here is the basic projection theorem for the Hausdorff dimension. The first two
items of it were proved by Marstrand [47] in 1954 and the third by Falconer and
O’Neil [23] in 1999 and by Peres and Schlag [76] in 2000.

Theorem 6.3.1 Let A ⊂ R
n be a Borel set.

(1) If dim A ≤ m, then

dim PV (A) = dim A for γn,m almost all V ∈ G(n,m).
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(2) If dim A > m, then

Lm(PV (A)) > 0 for γn,m almost all V ∈ G(n,m).

(3) If dim A > 2m, then PV (A) has non-empty interior for γn,m almost all V ∈
G(n,m).

Proof We only prove this for m = 1, the general case can be found in [55]. For
μ ∈ M(A), let μe ∈ M(Pe(A)) be the push-forward of μ under Pe: μe(B) =
μ(P−1

e (B)).
To prove (1) let 0 < s < dim A and choose by Theorem 6.2.2 a measure μ ∈

M(A) such that Is(μ) < ∞. Then

∫

Sn−1
Is(μe) de =

∫

Sn−1

∫∫
|Pe(x − y)|−s dμx dμy de

=
∫∫∫

Sn−1
|Pe( x−y

|x−y| )|−s de|x − y|−s dμx dμy = c(s)Is(μ) < ∞,

where for v ∈ Sn−1, c(s) = ∫
Sn−1 |Pe(v)|−s de < ∞ as s < 1. The finiteness of this

integral follows from the simple inequality

Hn−1({e ∈ Sn−1 : |Pe(x)| ≤ δ}) � δ/|x | for x ∈ R
n \ {0}, δ > 0. (6.3.1)

Referring again to Theorem 6.2.2, we see that dim Pe(A) ≥ s for almost all e ∈ Sn−1.
By the arbitrariness of s, 0 < s < dim A, we obtain dim Pe(A) ≥ dim A for almost
all e ∈ Sn−1. The opposite inequality follows from the fact that the projections are
Lipschitz mappings.

To prove (2) choose by (6.2.2) a measureμ ∈ M(A) such that
∫ |x |1−n|μ̂(x)|2 dx

< ∞.Directly from the definition of the Fourier transform,we see that μ̂e(t) = μ̂(te)
for t ∈ R, e ∈ Sn−1. Integrating in polar coordinates, we obtain

∫

Sn−1

∫ ∞
−∞

|μ̂e(t)|2 dt de = 2
∫

Sn−1

∫ ∞
0

|μ̂(te)|2 dt de = 2
∫

|x |1−n |μ̂(x)|2 dx < ∞.

Thus for almost all e ∈ Sn−1, μ̂e ∈ L2(R) which means that μe is absolutely con-
tinuous with L2 density and hence L1(pe(A)) > 0.

For the proof of (3), one takes 2 < s < dim A and μ ∈ M(A) such that Is(μ) <

∞, whence
∫ |x |s−n|μ̂(x)|2 dx < ∞. Then as above and by the Schwartz inequality

∫

Sn−1

∫

|t |≥1
|μ̂e(t)| dt de = 2

∫

|x |≥1
|x |1−n|μ̂(x)| dx

≤ 2

(∫

|x |≥1
|x |2−s−n dx

∫

|x |≥1
|x |s−n|μ̂(x)|2 dx

)1/2

< ∞
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since 2 − s − n < −n. Thus for almost all e ∈ Sn−1, μ̂e ∈ L1(R)which implies that
μe is absolutely continuous with continuous density. Hence, Pe(A) has non-empty
interior.

Part (2) can rather easily be proven also without the Fourier transform using again
inequalities like (6.3.1), see the proof of Theorem 9.7 in [53]. Parts (1) and (2) of
Theorem 6.3.1 hold with γn,m replaced with any Borel measure γ on G(n,m) which
satisfies

γ ({V ∈ G(n,m) : |PV (x)| ≤ δ}) � (δ/|x |)m for x ∈ R
n \ {0}, δ > 0.

We shall discuss this a bit more later. I do not know any proof for (3) without the
Fourier transform.

The conditions dim A ≤ m and dim A > m in (1) and (2) are of course necessary.
The condition dim A > 2m in (3) is necessary ifm = 1. I do not know if it is necessary
when m > 1. In the case m = 1, the example in the plane can be obtained with
Besicovitch sets, first in the plane, showing that there is no theorem in the plane,
and then taking Cartesian products. More precisely, let B ⊂ R

2 be a Borel set of
measure zero which contains a line in every direction. We shall construct such sets
in Sect. 6.7. Let A = R

2 \ ∪q∈Q2(B + q), where Q2 is the countable dense set with
rational coordinates. Then A has full Lebesgue measure and none of its projections
has interior points.

In this section, we shall discuss how much more one can say about the size of the
sets of exceptional planes.Kaufman [41] proved in 1968 the first itemof the following
theorem in the plane (generalized in [50]), Falconer [17] in 1982 the second, and
Peres and Schlag [76] in 2000 the third. Recall that the dimension of G(n,m) is
m(n − m). To get a better feeling of this, notice that in the case m = 1 the three
upper bounds are n − 2 + dim A, n − dim A and n + 1 − dim A.

Theorem 6.3.2 Let A ⊂ R
n be a Borel set.

(1) If dim A ≤ m, then

dim{V ∈ G(n,m) : dim PV (A) < dim A} ≤ m(n − m) − m + dim A.

(2) If dim A > m, then

dim{V ∈ G(n,m) : Lm(PV (A)) = 0} ≤ m(n − m) + m − dim A.

(3) If dim A > 2m, then

dim{V ∈ G(n,m) : I nt (PV (A)) = ∅} ≤ m(n − m) + 2m − dim A.

The proof of (1) is a rather simple modification of the proof of the corresponding
part in Theorem 6.3.1; essentially, one just replaces themeasure γn.m with a Frostman
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measure ν on the exceptional set. The key observation is that instead of (6.3.1) we
now have

ν({V ∈ G(n,m) : |PV (x)| ≤ δ}) � (δ/|x |)s−m(n−m−1) (6.3.2)

which easily follows from the Frostman condition ν(B(V, r)) ≤ r s , cf. [55], (5.10)
and (5.12). The proofs of (2) and (3) are trickier and require the use of the Fourier
transform. They can be found in [55].

Theorem 6.3.2 and much more, for instance, exceptional set estimates for
Bernoulli convolutions, is included in the setting of generalized projections devel-
oped by Peres and Schlag [76]. Later, these general estimates have been improved
in many special cases.

The bounds in (1) and (2) are sharp by the examples which Kaufman and I con-
structed in 1975 in [42]. I do not know if the bound in (3) is sharp. Another, seemingly
very difficult, problem is estimating the dimension of the set in (1) when dim A is
replaced by some u < dim A. We still have by the same proof

dim{V ∈ G(n,m) : dim PV (A) < u} ≤ m(n − m) − m + u,

but this probably is not sharp when u < dim A. In any case, it is far from sharp in
the plane when u = dim A/2:

Theorem 6.3.3 Let A ⊂ R
2 be a Borel set. Then

dim{e ∈ S1 : dim Pe(A) ≤ dim A/2} = 0. (6.3.3)

To get some idea where dim A/2 comes from, notice that the inequality dimM

Pe(A) < dimM A/2 is very easy for the upper Minkowski dimension (and also for
the packing dimension), and even more is true: there can be at most one direction e
for which dimM Pe(A) < dimM A/2. That there cannot be two orthogonal directions
follows immediately from the product inequalities (6.2.4) and (6.2.5), and the general
case is also easy. However, for the Hausdorff dimension, the exceptional set can
always be uncountable, even more: Orponen constructed in [69], Theorem 1.5, a
compact set A ⊂ R

2 such that H1(A) > 0 and dim{e ∈ S1 : dim Pe(A) = 0} is a
dense Gδ subset of S1. That paper also contains many exceptional set estimates for
projections and packing dimension.

Theorem 6.3.3 is due to Bourgain [9, 10]. Bourgain’s result is more general
and it includes a deep discretized version. The proof uses methods of additive
combinatorics. D. M. Oberlin gave a simpler Fourier-analytic proof in [62], but
with dim Pe(A) ≤ dim A/2 replaced by dim Pe(A) < dim A/2. Using combinato-
rial methods, He [28] proved analogous higher dimensional results.

More generally, it might be true and has been conjectured by Oberlin [62] that
Kaufman’s estimate

dim{e ∈ S1 : dim Pe(A) < u} ≤ u (6.3.4)

could be extended for dim A/2 ≤ u ≤ dim A to
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dim{e ∈ S1 : dim Pe(A) < u} ≤ 2u − dim A. (6.3.5)

This would be sharp, as the constructions in [42] show. Theorem 6.3.3 is the
only case where this is known. However, Orponen improved in the plane theorem in
6.3.2 in [73] for sets A with dim A = 1 but with dim Pe(A) replaced by the packing
dimension of Pe(A): for 0 < t < 1, there is ε(t) > 0 such that

dim{e ∈ S1 : dimP Pe(A) < t} ≤ t − ε(t). (6.3.6)

The following generalization of parts (1) and (2) of Theorem 6.3.1 tells us that a
null set of projections can be found first and then the statements hold outside these
exceptions for all subsets of positive measure. Statement (2) is due toMarstrand [47].
It means that the push-forward under PV of the restriction of Hs to A is absolutely
continuous for almost all V ∈ G(n,m), recall the proof of Theorem 6.3.1(2). Part
(1) was proved by Falconer and the author in [22].

Theorem 6.3.4 Let A ⊂ R
n be anHs -measurable set with 0 < Hs(A) < ∞. Then

there exists a Borel set E ⊂ G(n,m) with γn,m(E) = 0 such that for all V ∈
G(n,m) \ E and allHs -measurable sets B ⊂ A withHs(B) > 0,

(1) if s ≤ m then dim PV (B) = s,
(2) if s > m then Lm(PV (B)) > 0.

The sharper version in the spirit of Theorem 6.3.2 is also valid, see [22].
In the next section, the following theorem will give us information about excep-

tional plane slices. It was proved by Orponen and the author in [57].

Theorem 6.3.5 Let A and B be Borel subsets of Rn.

(1) If dim A > m and dim B > m, then

γn,m
({V ∈ G(n,m) : Lm(PV (A) ∩ PV (B)) > 0}) > 0.

(2) If dim A > 2m and dim B > 2m, then

γn,m ({V ∈ G(n,m) : I nt (PV (A) ∩ PV (B)) 
= ∅}) > 0.

(3) If dim A > m, dim B ≤ m, and dim A + dim B > 2m, then for every ε > 0,

γn,m ({V ∈ G(n,m) : dim(PV (A) ∩ PV (B)) > dim B − ε}) > 0.

Proof I only prove (1) when m = 1. Choose by (6.2.2) μ ∈ M(A) and ν ∈ M(B)

such that
∫ |x |1−n|μ̂(x)|2 dx < ∞ and

∫ |x |1−n |̂ν(x)|2 dx < ∞. Let again μe ∈
M(Pe(A)) and νe ∈ M(Pe(B)) be the push-forwards of μ and ν under Pe. We
know from the proof of Theorem 6.3.1 that for almost all e ∈ Sn−1, μe and νe are
absolutely continuous with L2 densities. Thus as in the proof of Theorem 6.3.1 and
by Plancherel’s theorem,
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∫∫
μe(t)νe(t) dt de =

∫∫
μ̂e(t)ν̂e(t) dt de =

∫∫
μ̂(te)̂ν(te) dt de

= c(n)

∫

Rn

|x |1−nμ̂(x )̂ν(x) dx = c(n,m)

∫∫
|x − y|−1 dμx dνx > 0.

Hence
∫

μe(t)νe(t) dt > 0 for positively many e. As μeνe has support in Pe(A) ∩
Pe(B), the claim follows.

For other recent projection results, see [3–5, 11, 12].
There are many recent results on projections of various special, for example, self-

similar, classes of sets and measures. I shall not discuss them here but [21, 78] give
good overviews.

6.4 Restricted Families of Projections

Here we discuss the question: what kind of projection theorems can we get if
the whole Grassmannian G(n,m) is replaced by some lower dimensional subset
G? A very simple example is the one where G ⊂ G(3, 1) corresponds to a circle
in a two-dimensional plane in R

3. For example, we can consider the projections
πθ onto the lines {t (cos θ, sin θ, 0) : t ∈ R}, θ ∈ [0, π ]. Since πθ(A) = πθ((π(A))

where π(x, y, z) = (x, y), and dim A ≤ dim π(A) + 1, it is easy to conclude using
Marstrand’s projection Theorem 6.3.1 that for any Borel set A ⊂ R

3, for almost all
θ ∈ [0, π ],

dim πθ(A) ≥ dim A − 1 if dim A ≤ 2,

L1(πθ (A)) > 0 if dim A > 2.

This is sharp by trivial examples; consider product sets A = B × C, B ⊂ R
2,C ⊂

R. So we only have an essentially trivial result. The situation changes dramatically
if we consider the projections pθ onto the lines {t (cos θ, sin θ, 1) : t ∈ R}. Then the
trivial counterexamples do not work anymore and one can now improve the above
estimates. Themethod used for the proof of Theorem6.3.1 easily gives that if A ⊂ R

3

is a Borel set with dim A ≤ 1/2, then

dim pθ (A) ≥ dim A for almost all θ ∈ [0, π ].

The restriction 1/2 comes from the fact that instead of (6.3.1) we now have only

L1({θ : |pθ (x)| ≤ δ}) �
√

δ/|x |. (6.4.1)

For dim A > 1/2 this becomes much more difficult. Anyway, we have the fol-
lowing theorem.

umolter@dm.uba.ar



138 P. Mattila

Theorem 6.4.1 Let pθ and qθ be the orthogonal projections onto the line {t (cos θ,

sin θ, 1) : t ∈ R}, θ ∈ [0, π ], and its orthogonal complement. Let A ⊂ R
3 be a Borel

set.

(1) If dim A ≤ 1, then dim pθ (A) = dim A for almost all θ ∈ [0, π ].
(2) If dim A ≤ 3/2, then dim qθ (A) = dim A for almost all θ ∈ [0, π ].

Käenmäki, Orponen and Venieri proved (1) in [36] and Orponen and Venieri (2)
in [75]. They related this problem to circle packing problems and methods of Wolff
from [84].

So (1) is the sharp analogue of the corresponding part of Marstrand’s projection
theorem for these projections. Perhaps, (2) is not sharp in the sense that it might hold
with 2 in place of 3/2.

One reason for the possibility of such improvements over the first family of projec-
tions considered above, the πθ , is that the second family, the pθ , is more curved than
the first one. That is, the set of the unit vectors generating the first family is the planar
curve {(cos θ, sin θ, 0) : θ ∈ [0, π ]}, while for the second it spans the whole space
R

3. More precisely, the curve γ (θ) = (cos θ, sin θ, 1)/
√
2 ∈ S2, θ ∈ [0, π ], of the

corresponding unit vectors satisfies the curvature condition that for every θ ∈ [0, π ]
the vectors γ (θ), γ ′(θ), γ ′′(θ) span the whole space R3. Partial results were proven
earlier by Fässler and Orponen [25, 68] and Oberlin and Oberlin [65] for general C2

curves on S2 satisfying this curvature condition. Fässler and Orponen conjectured
that the full Marstrand theorem as in Theorem 6.4.1 (with 3/2 replaced by 2) should
hold for them.

As we have seen above, if ρe : R3 → R, e ∈ S2, is a family of linear mappings
and σ is a Borel measure on S2 satisfying

σ({e : |ρe(x)| ≤ δ}) � δ/|x |,

then the Marstrand statement dim ρθ (A) = min{dim A, 1} holds for σ almost all e ∈
S2. However, such inequality is usually false for less than two-dimensional measures
σ . Nevertheless Chen constructed in [12] for all 1 < s < 2 s-dimensional Ahlfors–
David regular random measures for which it holds, and hence also the Marstrand
theorem. He had also many other related results in that paper.

Next,we consider projection families in higher dimensions. I state a more general
result below but let us start with

πt : R4 → R
2, πt (x, y) = x + t y, x, y ∈ R

2, t ∈ R.

This family is closely connected with Besicovitch sets and the Kakeya conjecture
in R

3, as we shall later see. The following theorem is due to Oberlin [63]. It is not
explicitly stated there but follows from the proof of Theorem 1.3.

Theorem 6.4.2 Let A ⊂ R
4 be a Borel set.

(1) If dim A ≤ 3, then dim πt (A) ≥ dim A − 1 for almost all t ∈ R.
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(2) If dim A > 3, then L2(πt (A)) > 0 for almost all t ∈ R.

The bounds here are sharp when dim A ≥ 2. To see this let 0 ≤ s ≤ 1,Cs ⊂ R

with dimCs = s, and As = {(x, y) ∈ R
2 × R

2 : x1 ∈ Cs, y1 = 0}. Then dim As =
2 + s, πt (As) = Cs × R and dim πt (As) = 1 + s. This shows that (1) is sharp. For
(2) we can choose C1 with L1(C1) = 0, then L2(πt (A)) = 0. These bounds are not
sharp for all A since we have dim πt (A) = dim A for almost all t ∈ R if dim A ≤ 1.
Restricting t to some interval [c,C], 0 < c < C < ∞, this follows as before from
the inequality

L1({t ∈ [c,C] : |πt (x, y)| ≤ δ}) � δ/|(x, y)|,

which is easy to check. If 1 ≤ dim A ≤ 2 we can only say that dim πt (A) ≥ 1 for
almost all t ∈ R since πt (R × {0} × R × {0}) = R.

I give a sketch of the proof of Theorem 6.4.2. Let μ ∈ M(A) with

μ(B(x, r)) ≤ r s for x ∈ R
4, r > 0, (6.4.2)

for some 0 < s < 4. Let μt ∈ M(πt (A)) be the push-forward of μ under πt . Then
for ξ ∈ R

n ,

μ̂t (ξ) =
∫

e−2π iξ ·πt (x,y) dμ(x, y) =
∫

e−2π i(ξ,tξ)·(x,y) dμ(x, y) = μ̂(ξ, tξ).

It is enough to consider t in some fixed bounded interval J . Oberlin proved that
for R > 0, ∫

J

∫

R≤|ξ |≤2R
|μ̂(ξ, tξ)|2 dξ dt � R4−s−1. (6.4.3)

This is applied to the dyadic annuli, R = 2k, k = 1, 2, . . . . The sum converges if
s > 3, and we can chooseμwith such s if dim A > 3. This gives

∫
J

∫ |μ̂t (ξ)|2 dξ dt
< ∞ and yields part (2). To prove part (1) let 0 < u < s < dim A and μ as above.
Then (6.4.3) yields ∫

J

∫
|μ̂t (ξ)|2|ξ |u−1−2 dξ dt < ∞,

so dim πt (A) ≥ u − 1 for almost all t ∈ J and thus dim πt (A) ≥ dim A − 1 for
almost all t ∈ R by the arbitrariness of J and u.

Let us formulate (6.4.3) as a more general lemma (a special case of Lemma 3.1
in [63]).

Lemma 6.4.3 Let k and m be positive integers and N = (k + 1)m and let Q be a
cube in Rk . Define

Ttξ = (t1ξ, . . . , tkξ) ∈ R
km for ξ ∈ R

m, t ∈ R
k .

Ifμ ∈ M(RN )withμ(B(x, r)) ≤ r s for x ∈ R
N , r > 0 for some 0 < s < n, then
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∫

Q

∫

R≤|ξ |≤2R
|μ̂(ξ, Ttξ)|2 dξ dt � RN−s−k . (6.4.4)

We obtain (6.4.3) from this with k = 1,m = 2.
In Lemma 3.1 of [63], there is an additional assumption (3.1). This is now trivial:

it is applied with λ equal to the Lebesgue measure on Q. See the proof of Theorem
1.3 in [63] for the identification of our Lemma 6.4.3 as a special case of Lemma 3.1
of [63].

To prove Lemma 6.4.3, choose a smooth function g with compact support which
equals 1 on the support of μ. Then ĝμ = ĝ ∗ μ̂ and the integral in (6.4.4) equals

∫

Q

∫

R≤|ξ |≤2R
|ĝμ(ξ, Tt ξ)|2 dξ dt =

∫

Q

∫

R≤|ξ |≤2R

∣∣∣∣
∫

ĝ((ξ, Tt ξ) − y)μ̂(y) dy

∣∣∣∣
2
dξ dt.

This can be estimated by standard arguments. When |y| is large as compared to R,
|̂g((ξ, Ttξ) − y)| is small by the fast decay ĝ. For |y| � R one uses

∫

|y|≤CR
|μ̂(y)|2 dy � Rs−N ,

which follows from the assumption μ(B(x, r)) ≤ r s , cf. also [55], Sect. 3.8. Of
course, I am skipping several technical details here, see [63].

We now formulate a more general version of the above projection theorem. Let k
and m be positive integers and N = (k + 1)m. Above we had k = 1,m = 2. Write

x = (x10 , . . . , x
m
0 , x11 , . . . , x

m
1 , . . . , x1k , . . . , x

m
k ) ∈ R

N , t = (t1, . . . , tk) ∈ R
k .

Consider the linear mappings

πt : RN → R
m, πt (x) = (x10 +

k∑

j=1

t j x
1
j , . . . , x

m
0 +

k∑

j=1

t j x
m
j )

= (x10 + t · x1, . . . , xm0 + t · xm) = x0 + t · x̃,

where x0 = (x10 , . . . , x
m
0 ), xl = (xl1, . . . , x

l
k) and t · x̃ = (t · x1, . . . , t · xm) ∈ R

m .
Then for μ ∈ M(RN ) the push-forward μt of μ under πt has the Fourier transform
for ξ ∈ R

m ,

μ̂t (ξ) =
∫

e−2π iξ ·πt (x) dμx =
∫

e−2π i(ξ ·x0+ξ ·(t ·x̃)) dμx = μ̂(ξ, Ttξ),

where again Ttξ = (t1ξ, . . . , tkξ) ∈ R
km . Lemma 6.4.3 now yields

∫

Q

∫

R≤|ξ |≤2R
|μ̂t (ξ)|2 dξ dt � RN−s−k, (6.4.5)
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where μ ∈ M(RN ) with μ(B(x, r)) ≤ r s for x ∈ R
N , r > 0, for some 0 < s < n.

By a similar argument as for Theorem 6.4.2, this leads to the following theorem.

Theorem 6.4.4 Let A ⊂ R
N be a Borel set.

(1) If dim A ≤ N − k, then dim πt (A) ≥ dim A − k(m − 1) for almost all t ∈ R
k .

(2) If dim A > N − k, then Lm(πt (A)) > 0 for almost all t ∈ R
k .

Part (2) is again sharp. To see this, let A consist of the points (x10 , . . . , x
m
0 , x11 , . . . ,

xm1 , . . . , x1k , . . . , x
m
k ) ∈ R

N for which x10 ∈ C , whereC has dimension 1 andmeasure
zero, and x11 = · · · = x1k = 0. Part (1) is sharp whenm = 1, but then k = N − 1 and
the standardMarstrand’s projection theoremalso applies. It also is sharp, for example,
when m = 2 for any k with a similar example as in the case k = 1,m = 2.

The study of restricted families of projections was started by Järvenpää et al.
[35]. This work was continued and generalized by the Järvenpääs and Keleti [34],
where they proved sharp inequalities for general smooth nondegenerate families
of orthogonal projections onto m-planes in R

n . Now the trivial examples such as
{t (cos θ, sin θ, 0) : t ∈ R}, θ ∈ [0, π ], are also included, so the bounds are necessar-
ily weaker than in the above special cases. Restricted families appear quite naturally
in Heisenberg groups, see [1, 2, 24]. Another motivation for studying them comes
from the work of E. Järvenpää, M. Järvenpää, and Ledrappier and their co-workers
on measures invariant under geodesic flows on manifolds, see [30, 31].

6.5 Plane Sections and Radial Projections

What can we say about the dimensions if we intersect a subset A ofRn, dim A > m,

with (n − m)-dimensional planes? Using Proposition 6.2.3 we have for any V ∈
G(n, n − m),

dim(A ∩ (V + x)) ≤ dim A − m for Hm almost all x ∈ V⊥,

and for any x ∈ R
n (see [50] or [57]),

dim(A ∩ (V + x)) ≤ dim A − m for γn,n−m almost all V ∈ G(n, n − m).

The lower bounds are not as obvious, but we have the following result, originally
proved by Marstrand in the plane in [47] and then in general dimensions in [50].

Theorem 6.5.1 Let m < s ≤ n and let A ⊂ R
n beHs measurable with 0 < Hs(A)

< ∞. Then

(1) ForHs almost all x ∈ A, dim(A ∩ (V + x)) = s − m for γn,n−m almost all V ∈
G(n, n − m),
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(2) for γn,n−m almost all V ∈ G(n, n − m),

Hm({x ∈ V⊥ : dim(A ∩ (V + x)) = s − m}) > 0.

These statements are essentially equivalent. Clearly, this generalizes part (2) of
Theorem 6.3.1. Now we give exceptional set estimates related to both statements.
The first of these is due to Orponen [67].

Theorem 6.5.2 Let m < s ≤ n and let A ⊂ R
n beHs measurable with 0 < Hs(A)

< ∞. Then there is a Borel set E ⊂ G(n, n − m) such that dim E ≤ m(n − m) +
m − s and for V ∈ G(n, n − m) \ E,

Hm({x ∈ V⊥ : dim(A ∩ (V + x)) = s − m}) > 0.

The bound m(n − m) + m − s = dimG(n, n − m) + m − s is the same as in
Theorem 6.3.2(2). Since it is sharp there, it also is sharp here.

The second estimate is due to Orponen and the author [57]:

Theorem 6.5.3 Let m < s ≤ n and let A ⊂ R
n beHs measurable with 0 < Hs(A)

< ∞. Then there is a Borel set B ⊂ R
n such that dim B ≤ m and for x ∈ R

n \ B,

γn,n−m({V ∈ G(n, n − m) : dim A ∩ (V + x) = s − m}) > 0.

This probably is not sharp. I expect that the sharp bound for dim B in the case
m = n − 1 would again be 2(n − 1) − s, as for the orthogonal projections and as
in Orponen’s radial projection Theorem 6.5.4. Moreover, one could hope for an
exceptional set estimate including both cases, that is, estimate on the dimension of
the exceptional pairs (x, V ).

I give a sketch of the proof of Theorem 6.5.3 in the plane. Suppose that it is
not true and that there is a set B with dim B > 1 such that through the points of B
almost all lines meet A in a set of dimension less than s − 1. On the other hand, by
Theorem 6.5.1 typical lines through the points of A meet A in a set of dimension
s − 1. By Fubini-type arguments and using Theorem 6.3.5, we can find such typical
lines meeting both A and B leading to a contradiction.

Here, we investigated the dimensions of the intersections of our set with lines
through a point. But if we only want to know whether these lines meet the set, we
are studying radial projections. For these more can be said. For x ∈ R

n define

πx : Rn \ {x} → Sn−1, πx (y) = y − x

|y − x | .

Then by the standard proofs the statements of Marstrand’s projection theorem are
valid for almost all x ∈ R

n . Orponen proved in [72, 74] the following sharp estimate
for the exceptional set of x ∈ R

n .
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Theorem 6.5.4 Let A ⊂ R
n be a Borel set with dim A > n − 1. Then there is a

Borel set B ⊂ R
n with dim B ≤ 2(n − 1) − dim A such that for every x ∈ R

n \
B, Hn−1(πx (A)) > 0. Moreover, if μ ∈ M(Rn) and Is(μ) < ∞ for some n − 1 <

s < n, then the push-forward of μ under πx is absolutely continuous with respect to
Hn−1|Sn−1 for x outside a set of Hausdorff dimension 2(n − 1) − s.

Orponen proved in [74] also the following rather surprising result. The proof is
tricky and technical with a flavor of combinatorial geometry.

Theorem 6.5.5 Let A ⊂ R
2 be a Borel set with dim A > 0. Then the set

{x ∈ R
2 : dim πx (A) < dim A/2}

has Hausdorff dimension 0 or it is contained in a line.

Obviously, the second alternative is needed, since if A is contained in a line, the
above set is the same line.

6.6 General Intersections

The following theorem was proved in [52].

Theorem 6.6.1 Let s and t be positive numbers with s + t > n and t > (n + 1)/2.
Let A and B be Borel subsets ofRn withHs(A) > 0 andHt (B) > 0. Then for almost
all g ∈ O(n),

Ln({z ∈ R
n : dim A ∩ (g(B) + z) ≥ s + t − n}) > 0. (6.6.1)

The condition t > (n + 1)/2 comes from some Fourier transform estimates.
Probably, it is not needed.

This was preceded by the papers of Kahane [37] and the author [51] in which
it was shown that the above theorem is valid for any s + t > n provided larger
transformation groups are used. For example, it suffices to add also typical dilations
x �→ r x, r > 0.

Here we really need the inequality dim A ∩ (g(B) + z) ≥ s + t − n, the opposite
inequality can fail very badly: for any 0 ≤ s ≤ n there exists a Borel set A ⊂ R

n such
that dim A ∩ f (A) = s for all similarity maps f of Rn . This follows from [19]. The
reverse inequality holds if dim A × B = dim A + dim B, see [53], Theorem 13.12.
This latter condition is valid if, for example, one of the sets is Ahlfors–David reg-
ular, see [53], 8.12. For such reverse inequalities, no rotations g are needed (or,
equivalently, they hold for every g).

The following two exceptional set estimates were proven in [56].
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Theorem 6.6.2 Let s and t be positive numbers with s + t > n + 1. Let A and B
be Borel subsets of Rn with Hs(A) > 0 and Ht (B) > 0. Then there is a Borel set
E ⊂ O(n) such that

dim E ≤ 2n − s − t + (n − 1)(n − 2)/2 = n(n − 1)/2 − (s + t − (n + 1))

and for g ∈ O(n) \ E,

Ln({z ∈ R
n : dim A ∩ (g(B) + z) ≥ s + t − n}) > 0. (6.6.2)

Notice that n(n − 1)/2 is the dimension of O(n). The condition s + t > n + 1 is
not needed in the case where one of the sets has small dimension and in this case
we have a better upper bound for dim E , although we then need a slight technical
reformulation.

Theorem 6.6.3 Let A and B be Borel subsets of Rn with dim A = s, dim B = t
and suppose that s ≤ (n − 1)/2. If 0 < u < s + t − n, then there is a Borel set
E ⊂ O(n) with

dim E ≤ n(n − 1)/2 − (s + t − n)

such that for g ∈ O(n) \ E,

Ln({z ∈ R
n : dim A ∩ (g(B) + z) ≥ u}) > 0. (6.6.3)

The formulation in [56] is slightly weaker, but it easily implies the above. What
helps here is the following sharp decay estimate for quadratic spherical averages for
Fourier transforms of measures with finite energy:

∫

|v|=1
|μ̂(rv)|2 dv ≤ C(n, s)Is(μ)r−s, r > 0, 0 < s ≤ (n − 1)/2.

Such an estimate is false for s > (n − 1)/2. There are sharp estimates in the plane
by Wolff [85], and good, but perhaps not sharp, estimates in higher dimensions by
Erdoğan [15]. More precisely, for s ≥ n/2 and ε > 0,

∫

|v|=1
|μ̂(rv)|2 dv ≤ C(n, s)Is(μ)r ε−(n+2s−2)/4, r > 0. (6.6.4)

This is very useful for distance sets, as discussed below, but gives very little for
the intersections. The proof uses restriction and Kakeya methods and results. In
particular, the case n ≥ 3 relies on Tao’s bilinear restriction theorem. These are
discussed in [55].

Let us speculate about the possible sharp estimates in the plane. In Theorem 6.6.2,
we have the upper bound 4 − (s + t) and in Theorem 6.6.3 we have 3 − (s + t).
Could the second estimate be valid whenever s + t > 2? This would mean that the
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dimension is 0 when s + t > 3. Could the exceptional set even be countable then? I
do not think so, but I do not have a counterexample. Anyway, it need not be empty
whatever the dimensions are. That is, using only translations we cannot say much
for general sets. The following example follows from [51], or see [43] for having
A = B: there are compact subsets A and B of Rn such that dim A = dim B = n and
A ∩ (B + z) contains at most one point for every z ∈ R

n .
A problem related to both projections and intersections is the distance set problem.

For A ⊂ R
n , define the distance set

D(A) = {|x − y| : x, y ∈ A} ⊂ [0,∞).

The following Falconer’s conjecture seems plausible.

Conjecture 6.6.4 If n ≥ 2 and A ⊂ R
n is a Borel set with dim A > n/2, then

L1(D(A)) > 0, or even Int(D(A)) 
= ∅.
Falconer [20] proved in 1985 that dim A > (n + 1)/2 implies L1(D(A)) > 0, and
we also have then Int(D(A)) 
= ∅ by Sjölin and myself [58]. Here appears the same
bound (n + 1)/2 as for the intersections, and for the same reason. In both cases for
a measure μ with finite s-energy estimates for the measures of the narrow annuli,
μ({y : r < |x − y| < r + δ}), for μ typical centers x are useful. They are rather
easily derived with the help of the Fourier transform if s ≥ (n + 1)/2.

The best known result is due to Wolff [85] for n = 2 and to Erdoğan [15] for
n ≥ 3.

Theorem 6.6.5 If n ≥ 2 and A ⊂ R
n is a Borel set with dim A > n/2 + 1/3, then

L1(D(A)) > 0.

The proof is based on the estimate (6.6.4).
The relation to projections appears when we look at the pinned distance sets:

Dx (A) = {|x − y| : y ∈ A} ⊂ [0,∞), x ∈ R
n.

Peres and Schlag proved in [76] that these too have positive Lebesgue measure for
many x provided dim A > (n + 1)/2. We can think of Dx (A) as the image of A
under the projection-type mapping y �→ |x − y|.

Various partial results on distance sets have recently been proved, among others,
by Iosevich and Liu [32, 33], Lucá and Rogers [46], Orponen [71] and Shmerkin
[80, 81].

6.7 Besicovitch and Furstenberg Sets

We say that a set in R
n, n ≥ 2, is a Besicovitch set, or a Kakeya set, if it has zero

Lebesguemeasure and it contains a line segment of unit length in every direction. This
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means that for every e ∈ Sn−1 there is b ∈ R
n such that {te + b : 0 < t < 1} ⊂ B.

It is not obvious that Besicovitch sets exist but they do in every R
n, n ≥ 2.

Theorem 6.7.1 For any n ≥ 2 there exists a Borel set B ⊂ R
n such that Ln(B) =

0 and B contains a whole line in every direction. Moreover, there exist compact
Besicovitch sets in R

n.

Proof It is enough to prove this in the plane, then B × R
n−2 is fine in R

n . We shall
use projections and duality between points and lines. More precisely, parametrize
the lines, except those parallel to the y-axis, by (a, b) ∈ R

2:

l(a, b) = {(x, a + bx) : x ∈ R}.

Then if C ⊂ R
2 is some parameter set and B = ∪(a,b)∈Cl(a, b), one checks that

B ∩ {(t, y) : y ∈ R} = {t} × πt (C)

where
πt : R2 → R

2, πt (a, b) = a + tb,

is essentially an orthogonal projection. Suppose that we can findC such that π(C) =
[0, 1], where π(a, b) = b, and L1(πt (C)) = 0 for almost all t . Then L2(B) = 0 by
Fubini’s theorem and taking the union of four rotated copies of B gives the desired
set. It is not trivial that such sets C exist but they do. For example, a suitably rotated
copy of the product of a standard Cantor set with dissection ratio 1/4 with itself is
such, cf., for example, [55], Chap. 10. Restricting x above to a compact subinterval
of R yields a compact Besicovitch set.

The idea to construct Besicovitch sets using duality between lines and points is
due to Besicovitch from 1964 in [6], although he gave a geometric construction
already in 1919. It was further developed by Falconer [18]. We shall see more of this
below.

Conjecture 6.7.2 (Kakeya conjecture) All Besicovitch sets in R
n have Hausdorff

dimension n.

The Kakeya conjecture is open for n ≥ 3. I shall discuss partial results later, but
let us first see how it follows in the plane and how it is related to projection theorems.
The following theorem was proved by Davies [13].

Theorem 6.7.3 For every Besicovitch set B ⊂ R
n, dim B ≥ 2. In particular, the

Kakeya conjecture is true in the plane.

The proof of this is, up to some technicalities, reversing the above argument for
the proof of Theorem 6.7.1 and using Marstrand’s projection Theorem 6.3.1(1), see
the proof of Theorem 6.7.4. But let us now look more generally relations between
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projection theorems and lower bounds for the Hausdorff dimension of Besicovitch
sets.

We can parametrize the lines in R
n , except those orthogonal to the x1-axis, by

(a, b) ∈ R
n−1 × R

n−1:

l(a, b) = {(x, a + bx) : x ∈ R}.

Then again if C ⊂ R
2(n−1) is parameter set and B = ∪(a,b)∈Cl(a, b) we have for

t ∈ R,
B ∩ {(t, y) : y ∈ R

n−1} = {t} × πt (C)

where
πt : R2(n−1) → R

n−1, πt (a, b) = a + tb, t ∈ R.

These are projections of Chap. 4 with k = 1,m = n − 1. Suppose now that π(C) =
[0, 1]n−1, where π(a, b) = b. Then in particular, dimC ≥ n − 1. The projection the-
orem we would need to solve the Kakeya conjecture should tell us that dim πt (C) =
n − 1 for almost all t ∈ R. Then we could conclude by Proposition 6.2.3 that
dim B = n. In the plane such projection theorem is true; it is just Marstrand’s projec-
tion theorem. However, in higher dimensions we do not know of any such projection
theorem sincewe now only have a one-dimensional family of projections. Notice that
the space of all orthogonal projections fromR

2(n−1) onto (n − 1)-planes is (n − 1)2-
dimensional. More precisely, we can state the following theorem.

Theorem 6.7.4 Let 0 < s ≤ n − 1 and π(x, y) = y for x, y ∈ R
n−1. Suppose that

the following projection theorem holds: For every Borel set C ⊂ R
2(n−1) with

Hn−1(π(C)) > 0, we have dim πt (C) ≥ s for almost all t ∈ R. Then for every Besi-
covitch set B ⊂ R

n, we have dim B ≥ s + 1. In particular, if this projection theorem
holds for s = n − 1, the Kakeya conjecture is true.

Proof We may assume that B is a Gδ-set, since any set in R
n−1 is contained in a

Gδ-set with the same dimension. For a ∈ R
n−1, b ∈ [0, 1]n−1 and q ∈ Q denote by

I (a, b, q) the line segment {(q + t, a + bt) : 0 ≤ t ≤ 1/2} of length less than 1. Let
Cq be the set of (a, b) such that I (a, b, q) ⊂ B. Then each Cq is a Gδ-set, because
for any open set G the set of (a, b) such that I (a, b, q) ⊂ G is open. Since for
every b ∈ [0, 1]n−1 some I (a, b, q) ⊂ B, we have π(∪q∈QCq) = [0, 1]n−1, so there
is q ∈ Q for whichHn−1(π(Cq)) > 0. Then by our assumption, for almost all t ∈ R,
dim πt (Cq) ≥ s. We now have for 0 ≤ t ≤ 1/2,

{q + t} × πt (Cq) = {(q + t, a + bt) : (a, b) ∈ Cq} ⊂ B ∩ {(x, y) : x = q + t}.

Hence, for a positive measure set of t , vertical t-sections of B have dimension at
least s. By Proposition 6.2.3 we obtain that dim B ≥ s + 1.

Let us try to apply Oberlin’s projection Theorem 6.4.4 together with Theorem
6.7.4.Wehave to apply it inR2(n−1) with k = 1,m = n − 1.Wehave dimC ≥ n − 1,
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so we get dim πt (C) ≥ n − 1 − (n − 2) = 1, thus yielding the lower bound 2 for the
Hausdorff dimension of Besicovitch sets. But this also follows by Theorem 6.7.3,
and by other methods, see [55]. Unfortunately, no known method seems to give
any better projection theorem for the family πt . From Hn−1(C) > 0, we could only
hope to get dim πt (C) ≥ (n − 1)/2, at least when n is odd. To see this let p =
(n − 1)/2 and C = {(a, b) ∈ R

n−1 × R
n−1 : a1 = · · · = ap = b1 = · · · = bp = 0}.

ThenHn−1(C) = ∞ andπt (C) = {x ∈ R
n−1 : x1 = · · · = xp = 0}, so dim πt (C) =

(n − 1)/2. Even if this estimate were true it would only give the lower bound (n +
1)/2 for the dimension of Besicovitch sets. This has been known since the 1980s
by different methods, see [55], Sect. 23.4. The only hope for better estimates via
projections would seem to be that instead of only using the informationHn−1(C) >

0 we should use that C has positive measure projection on the second factor of
R

n−1 × R
n−1 Often having one big projection does not help much. However, Fässler

and Orponen were able to make use of that in [25], and since we are dealing with
a very special family of mappings maybe it could help here too. Moreover, in the
known cases the generic dimension of the projections agrees with the largest one.

Yu proved in [88] that the Kakeya conjecture is equivalent to the following: for
any Besicovitch set B ⊂ R

n and for any 0 < m < n, dim PV (B) is constant for
V ∈ G(n,m). The idea is simple but clever: lift your Besicovitch set B from R

n to
R

2n−1 in the way it projects back to R
n as B and it projects to some n-dimensional

subspace of R2n−1 as a Besicovitch set where all the defining lines go through the
origin. Then this latter projection has positive n-dimensional measure.

So the Kakeya conjecture is true in the plane and open in higher dimensions. The
following results give the best known lower bounds for the Hausdorff dimension of
Besicovitch sets.

Wolff, based on some earlier work of Bourgain, proved in [83].

Theorem 6.7.5 The Hausdorff dimension of every Besicovitch set in R
n is at least

(n + 2)/2.

Wolff’s method is geometric. He proved the following Kakeya maximal function
inequality which yields Theorem 6.7.5 rather easily:

‖Kδ f ‖L
n+2
2 (Sn−1)

≤ C(n, ε)δ
2−n
2+n −ε‖ f ‖

L
n+2
2 (Rn)

(6.7.1)

for all δ, ε > 0. Here

Kδ f (e) = sup
a∈Rn

1

Ln(T δ
e (a))

∫

T δ
e (a)

| f | dLn,

where T δ
e (a) is the tube with center a ∈ R

n , direction e ∈ Sn−1, width δ and length 1.
Wolff’s estimate dim B ≥ 3 is still the best known in R

4.
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Bourgain introduced in [8] a combinatorial method, further developed by Katz
and Tao [38] in [39], which led to the following.

Theorem 6.7.6 For any Besicovitch set B in R
n, dim B ≥ (2 − √

2)(n − 4) + 3.

This is the best known lower bound for n ≥ 5 . Quite recently, Katz and Zahl [40]
were able to establish an epsilon improvement on Wolff’s bound 5/2 in R3. Thus in
R

3 the best known estimate is the following.

Theorem 6.7.7 For any Besicovitch set B in R
3, dim B ≥ 5/2 + ε where ε is a

small constant.

The arguments of Katz and Zahl are very involved and complicated combining
many earlier ideas. A new feature is the algebraic polynomial method, first used by
Dvir [14] to solve the Kakeya conjecture in finite fields. The polynomial methods
have recently been used in many connections, and an excellent treatise on these is
Guth’s book [27]. Orponen applied them to projections in [70].

Let us now look at some relations between unions of lines and line segments.
Keleti made the following conjecture in [44].

Conjecture 6.7.8 If A is the union of a family of line segments in R
n and B is the

union of the corresponding lines, then dim A = dim B.

This is true in the plane, as proved by Keleti.

Theorem 6.7.9 Conjecture 6.7.8 is true in R
2.

If Keleti’s conjecture is true in Rn for all n ≥ 3, it gives a lot of new information
on the dimension of Besicovitch sets.

Theorem 6.7.10 (Keleti [44]) (1) If Conjecture 6.7.8 is true for some n, then, for
this n, every Besicovitch set in Rn has Hausdorff dimension at least n − 1.

(2) If Conjecture 6.7.8 is true for all n, then every Besicovitch set inRn has upper
Minkowski and packing dimension n for all n.

Proof Let F be the projective transformation

F(x̃, xn) = 1

xn
(x̃, 1), (x̃, xn) ∈ R

n−1 × R, xn 
= 0.

Then for e ∈ Sn−1, en 
= 0, a ∈ R
n−1, F maps the punctured line l(e, a) = {te +

(a, 0) : t 
= 0} onto the punctured line {u(a, 1) + 1
en

(ẽ, 0) : u 
= 0}. If B contains a
line segment on l(e, ae), e ∈ Sn−1, then F(B) contains a line segment on F(l(e, ae)),
e ∈ Sn−1. The line extensions of these latter punctured lines cover {x : xn = 0} so
dim F(B) ≥ n − 1 provided Conjecture 6.7.8 is true. Clearly, F does not change
Hausdorff dimension, whence dim B ≥ n − 1 and (1) holds.

(2) follows by the well-known trick of taking products and by the product inequal-
ities (6.2.4) and (6.2.5). Suppose that Conjecture 6.7.8 is true for all n and there exists
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a Besicovitch set B inRn with dimP B < n for some n. Then Bk ⊂ R
kn would satisfy

by (6.2.5)
dim Bk ≤ dimP Bk ≤ k dimP B < kn − 1

for large k. This contradicts part (1) since Bk is a Besicovitch set in Rkn .

Using Theorem 6.3.4, Falconer and I proved in [22] that in Theorem 6.7.9 line
segments can be replaced by sets of positive one-dimensional measure. Later, Héra,
Keleti and Máthé [29] proved that sets of dimension one are enough. These methods
and results extend to subsets of hyperplanes in R

n , but they do not extend to lower
dimensional planes. In particular, they do not apply to Besicovitch sets in higher
dimensions.

More generally, we can investigate the following question: suppose E is a Borel
family of affine k-planes inRn . Howdoes theHausdorff dimension of E (with respect
to a natural metric) affect the Lebesgue measure and the Hausdorff dimension of the
union L(E) of these planes, or of B ∩ L(E) if we know that B intersects every V ∈ E
in a positive measure or in dimension u? Oberlin used in [63] the projection theorems
of Sect. 4 to prove that dim E > (k + 1)(n − k) − k impliesLn(L(E)) > 0, and this
is sharp. He also proved some lower bounds for the dimension, which are sharp when
k = n − 1 and 0 < s ≤ 1, and then the lower bound is n − 1 + s, but they probably
are not always sharp.

Héra et al. studied in [29] questions of the above type and provedmany interesting
generalizations of the above results. For example, they proved the following.

Theorem 6.7.11 Let 1 ≤ k < n be integers and 0 ≤ s ≤ 1. If E is a non-empty
family of affine k-planes inRn withdim E = s and B ⊂ L(E) such thatdim B ∩ V =
k for every V ∈ E, then

dim B = dim L(E) = s + k.

Again, the right-hand equality can fail if s > 1; consider for example more than
one-dimensional families of lines in a plane. But the left-hand inequality might hold
always. However, it is unknown for s > 1.

Furstenberg sets are kind of fractal versions of Besicovitch sets. We consider
them only in the plane. For Besicovitch sets, we had a line segment in each direction.
We would still have dimension 2 if we would replace line segments with sets of
dimension 1. But things get much more difficult if we replace them with lower
dimensional sets. We say that F ⊂ R

2 is a Furstenberg s-set, 0 < s ≤ 1, if for every
e ∈ S1 there is a line Le in direction e such that dim F ∩ Le ≥ s. What can be said
about the dimension of F? Wolff [86], Sect. 11.1, showed that

dim F ≥ max{2s, s + 1/2} (6.7.2)

and that there is such an F with dim F = 3s/2 + 1/2. He conjectured that dim F ≥
3s/2 + 1/2 would hold for all Furstenberg s-sets. When s = 1/2, Bourgain [9]
improved the lower bound 1 to dim F ≥ 1 + c for some absolute constant c > 0.
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Oberlin [64] observed a connection to projections, and in particular to dimension
estimates for exceptional projections andConjecture (6.3.5). In thisway, he improved
Wolff’s estimates for some particular Furstenberg sets. Let us see how this goes.

Let E ⊂ R be a Borel set with dim E = s and C ⊂ R
2 a parameter set for our

lines such that π(C) = R, π(x, y) = y, whence dimC ≥ 1. Set

F = {(x, a + bx) : x ∈ E, (a, b) ∈ C}.

Then F is (essentially; line in y-direction is missing) a Furstenberg s-set. As before
for t ∈ E ,

F ∩ {(t, y) : y ∈ R} = {t} × πt (C)

where
πt : R2 → R

2, πt (a, b) = a + tb.

Let 0 < u < (s + 1)/2. If Conjecture (6.3.5) holds, we obtain

dim{t : πt (C) < u} ≤ 2u − 1 < s = dim E .

Hence, there is E1 ⊂ E such that dim E1 = s and dim πt (C) ≥ u for t ∈ E1. It
follows by Proposition 6.2.3 that dim F ≥ s + u. Letting u → (s + 1)/2, we get
dim F ≥ 3s/2 + 1/2.

Thus the projection conjecture (6.3.5) impliesWolff’s conjecture for these special
Furstenberg sets. Even for these no better dimension estimate is known than (6.7.2).
Oberlin proved a better estimate, but weaker than the conjectured one, in the case
where C = C1 × C1 and C1 ⊂ R is the standard symmetric Cantor set of dimension
1/2. He did this by improving Kaufman’s estimate dim{t : πt (C) < u} ≤ u in this
case.

Orponen has proved (unpublished) that if we have the lower bound t + (2 − t)s
for some t ∈ [0, 1/2] for the Hausdorff dimension of all Furstenberg s-sets F ⊂ R

2,
then

dim{e ∈ S1 : dimM Pe(F) ≤ u} ≤ max

{
u − t

1 − t
, 0

}
for 0 ≤ u ≤ 1.

Orponen improved in [73] Wolff’s bound for the packing dimension.

Theorem 6.7.12 For 1/2 < s < 1 there exists a positive constant ε(s) such that for
any Furstenberg s-set F ⊂ R

2 we have dimP F > 2s + ε(s).

Recall Orponen’s packing dimension estimate for projections (6.3.6). Proofs for
these two results are rather similar, and based on combinatorial arguments.
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This dimensionproblem is related toFurstenberg’s questionon sets invariant under
x �→ px(mod1), x ∈ R, p ∈ Z. This problem was recently solved, independently
and by different methods, by Shmerkin [79] and by Wu [87].

Other recent results on Furstenberg sets are due to Molter and Rela [59–61], and
Venieri [82]. Rela has a survey in [77].

One reason for the great interest in Besicovitch sets and Kakeya conjecture is that
the restriction conjecture

‖ f̂ ‖Lq (Rn) ≤ C(n, q)‖ f ‖L∞(Sn−1) for q > 2n/(n − 1),

implies the Kakeya conjecture. For more on this, see for example [55, 86].

6.8 (n, k) Besicovitch Sets

We obtain other interesting Besicovitch set problems by replacing lines with higher
dimensional planes.

Definition 6.8.1 A set B ⊂ R
n is said to be an (n, k) Besicovitch set if Ln(B) = 0

and there is a non-empty open set G ⊂ G(n,m) such that for every V ∈ G there is
a ∈ R

n such that B(a, 1) ∩ (V + a) ⊂ B.

We say that a set B ⊂ R
n is a full (n, k) Besicovitch set if Ln(B) = 0 and there is

a non-empty open set G ⊂ G(n,m) such that for every V ∈ G there is a ∈ R
n such

that V + a ⊂ B.

We have used the open set G in this definition for later convenience. Our main
interest is for what pairs (n, k) such sets exist and for this it is equivalent to use
G = G(n, k).

Extending earlier results of Marstrand [49] (n = 3, k = 2), Falconer [16] (k >

n/2), and Bourgain [7] (2k−1 + k ≥ n), Oberlin [66] proved that there exist no (n, k)
Besicovitch sets if (1 + √

2)k−1 + k > n. For other values of k ≥ 2, their existence
is unknown. Let us now see how this relates to projections.

Mimicking the arguments from the previous section, we only consider affine k-
planes in R

n which are graphs over Rk identified with the coordinate plane xk+1 =
· · · = xn = 0. They can be parametrized as

L(l, c) = {(x, lx + c) : x ∈ R
k}, l ∈ L(Rk,Rn−k), c ∈ R

n−k,

where L(Rk,Rn−k) is the space of linear maps from R
k into R

n−k , identified with
R

k(n−k). Let π : Rk(n−k) × R
k → R

k(n−k) with π(l, c) = l. Suppose we could find
a Borel set C ⊂ R

k(n−k) × R
n−k for which the interior of π(C) is non-empty and

Ln(B) = 0 where
B =

⋃

(l,c)∈C
L(l, c).
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Then B would be a full (n, k) Besicovitch set. Define

πt : L(Rk ,Rn−k ) × R
n−k → R

n−k , πt (l, c) = lt + c, (l, c) ∈ L(Rk ,Rn−k ) × R
n−k , t ∈ R

k .

For t ∈ R
k we now have

B ∩ {(x, y) ∈ R
k × R

n−k : x = t} = {t} × πt (C).

So by Fubini’s theorem Ln(B) > 0 if and only if Ln−k(πt (C)) > 0 for t in a set of
positive k-dimensional Lebesgue measure.

Hence, the question for which values of n and k the projection properties (P1) and
(P2) below are valid is very close to the question of the existence of (n, k)Besicovitch
sets:

(P1) If C ⊂ R
k(n−k) × R

n−k is a Borel set for which the interior of π(C) is non-
empty, then Ln−k(πt (C)) > 0 for positively many t ∈ R

k .
(P2) If C ⊂ R

k(n−k) × R
n−k is a Borel set with Lk(n−k)(π(C)) > 0, then Ln−k

(πt (C)) > 0 for almost all t ∈ R
k .

(P3) If C ⊂ R
k(n−k) × R

n−k is a Borel set with Hk(n−k)(C) > 0, then Ln−k

(πt (C)) > 0 for almost all t ∈ R
k .

Clearly, (P3) implies (P2) implies (P1). Probably, (P1) and (P2) are equivalent
but it may be difficult to show this without really verifying their validity. Notice
that (P3) is almost the same as statement (2) in Oberlin’s Theorem 6.4.4 in the case
m = n − k, N = (k + 1)(n − k). We shall come back to that, and we shall see that
(P1) does not always imply (P3).

If k = n − 1, then the πt form an (n − 1)-dimensional family of linear maps
R

n → R, which is essentially the same as the full family of orthogonal projections.
Thus these statements are true by standard Marstrand’s projection theorem and we
regain by Proposition 6.8.2 the nonexistence of (n, n − 1)Besicovitch sets. This was
proved by Marstrand by a simple geometric method for n = 3 and that proof easily
generalizes. For other pairs (n, k), the validity of (P1) and (P2) does not seem to have
an obvious answer. But we can easily state some connections.

Proposition 6.8.2 (1) Full (n, k) Besicovitch sets do not exist if and only if (P1)
holds.

(2) (n, k) Besicovitch sets do not exist if (P2) holds.

So if we would know that (P1) and (P2) are equivalent, we would know that the
existence of full (n, k) Besicovitch sets and of (n, k) Besicovitch sets is equivalent.

Proof Part (1) was already stated above.
(2) can be proven with an easy modification of the argument that we gave for

Theorem 6.7.4. Let B ⊂ R
n be a Gδ-set which contains a unit k-ball in every direc-

tion. We need to show that Ln(B) > 0. For q ∈ Q
k , let Cq be the set of (l, c) such

that l belongs to the closed unit ball BL of L(Rk,Rn−k) and (q + t, lt + c) ∈ B for
t ∈ B(0, 1/2)}. Then |lt | ≤ |t | for t ∈ R

k . Again eachCq is aGδ-set andπ(∪q∈QkCq)

umolter@dm.uba.ar



154 P. Mattila

= BL , so there isq ∈ Q
k forwhichHk(n−k)(π(Cq)) > 0.Thusby (P2)Ln−k(πt (C)) >

0 for almost all t ∈ R
k . Since for t ∈ B(0, 1/2),

{q + t} × πt (Cq) = {(q + t, lt + c) : (l, c) ∈ Cq} ⊂ B ∩ {(x, y) : x = q + t}.

we conclude that Ln(B) > 0.

Let us go back to the statement (2) in Oberlin’s Theorem 6.4.4 in the case m =
n − k and N = (k + 1)(n − k). If C is as in (P2), then dimC ≥ k(n − k). If k(n −
k) > (k + 1)(n − k) − k, that is, k > n/2, then by Theorem 6.4.4 (P2) holds and
we obtain by Proposition 6.8.2 that (n, k) Besicovitch sets do not exist. This was
proved by Falconer [16] with a different Fourier-analytic method. Asmentioned after
Theorem 6.4.4, (P3) fails if k(n − k) < (k + 1)(n − k) − k. Suppose now that (1 +√
2)k−1 + k ≥ n. Then by the abovementioned results of Bourgain and Oberlin and

by Proposition 6.8.2(1), (P1) holds. In particular, we obtain in a rather indirect way a
projection theorem from the results of Bourgain and Oberlin. Perhaps, their methods
could be used more directly to prove also other interesting projection theorems. We
also see now that for pairs (n, k) for which both k < n/2 and (1 + √

2)k−1 + k ≥ n,
(P3) fails but (P1) holds. It would be interesting to see why this is so just using
arguments with projections.
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Chapter 7
Dyadic Harmonic Analysis and Weighted
Inequalities: The Sparse Revolution

María Cristina Pereyra

Abstract We will introduce the basics of dyadic harmonic analysis and how it can
be used to obtain weighted estimates for classical Calderón–Zygmund singular inte-
gral operators and their commutators. Harmonic analysts have used dyadic models
for many years as a first step toward the understanding of more complex continu-
ous operators. In 2000, Stefanie Petermichl discovered a representation formula for
the venerable Hilbert transform as an average (over grids) of dyadic shift opera-
tors, allowing her to reduce arguments to finding estimates for these simpler dyadic
models. For the next decade, the technique used to get sharp weighted inequalities
was the Bellman function method introduced by Nazarov, Treil, and Volberg, paired
with sharp extrapolation by Dragičević et al. Other methods where introduced by
Hytönen, Lerner, Cruz-Uribe, Martell, Pérez, Lacey, Reguera, Sawyer, and Uriarte-
Tuero, involving stopping time and median oscillation arguments, precursors of the
very successful domination by positive sparse operators methodology. The culmi-
nation of this work was Tuomas Hytönen’s 2012 proof of the A2 conjecture based
on a representation formula for any Calderón–Zygmund operator as an average of
appropriate dyadic operators. Since then domination by sparse dyadic operators has
taken central stage and has found applications well beyond Hytönen’s Ap theorem.
We will survey this remarkable progression and more in these lecture notes.

7.1 Introduction

These notes are based on lectures delivered by the author on August 7–9, 2017 at the
CIMPA 2017 Research School—IX Escuela Santaló: Harmonic Analysis, Geometric
Measure Theory and Applications, held in Buenos Aires, Argentina. The course was
titled “Dyadic Harmonic Analysis and Weighted Inequalities”.
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Themain question of interest in these notes is to decide for a given operator or class
of operators and a pair of weights (u, v), if there is a positive constant, C p(u, v, T ),
such that

‖T f ‖L p(v) ≤ C p(u, v, T ) ‖ f ‖L p(u) for all functions f ∈ L p(u).

The main goals in these lectures are twofold. First, given an operator T (or fam-
ily of operators), identify and classify pairs of weights (u, v) for which the oper-
ator(s) T is(are) bounded on weighted Lebesgue spaces, more specifically from
L p(u) to L p(v)—qualitative bounds. Second, understand the nature of the constant
C p(u, v, T )—quantitative bounds.

We concentrate on one-weight L p inequalities for 1 < p < ∞, that is, the case
when u = v = w, for the prototypical operators, dyadic models, and their commu-
tators, although we will state some of the known two-weight results. The operators
we will focus on are the Hardy–Littlewood maximal function; Calderón–Zygmund
operators T , such as theHilbert transform H ; and their dyadic analogues, specifically
the dyadic maximal function, the martingale transform, the dyadic square function,
the Haar shift multipliers, the dyadic paraproducts, and the sparse dyadic operators.

The question now reduces to the following: Given weight w and 1 < p < ∞, is
there a constant C p(w, T ) > 0 such that for all functions f ∈ L p(w)

‖T f ‖L p(w) ≤ C p(w, T ) ‖ f ‖L p(w) ?

We have known since the 70s that themaximal function is bounded on L p(w) if an
only if the weightw is in theMuckenhoupt Ap class [141]; similar result holds for the
Hilbert transform [88]. General Calderón–Zygmund operators and dyadic analogues
are bounded on L p(w) [39] when the weight w ∈ Ap and the same holds for their
commutators with functions in the space of bounded mean oscillation (BMO) [8,
25]. The quantitative versions of these results were obtained several decades later,
in 1993 for the maximal function [27], in 2007 for the Hilbert transform [162],
and in 2012 for Calderón–Zygmund singular integral operators [90] and for their
commutators [37]. We will say more about Ap weights and the quantitative versions
of these classical results in the following pages.

We will show or at least describe, for the model operators T , the validity of a
weighted L2 inequality that is linear on [w]A2 , the A2 characteristic of the weight,
namely, there is a constantC > 0 such that for allweightsw ∈ A2 and for all functions
f ∈ L2(w)

‖T f ‖L2(w) ≤ C[w]A2‖ f ‖L2(w).

That this holds for all Calderón–Zygmund singular integrals operators was the A2

conjecture. We will also describe several approaches for the corresponding quadratic
estimate for the commutator [b, T ] = bT − T b where b is a function in BMO,
namely,

‖[b, T ] f ‖L2(w) ≤ C[w]2A2
‖b‖BMO‖ f ‖L2(w).
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Dyadic models have been used in harmonic analysis and other areas of mathe-
matics for a long time; Terry Tao has an interesting post on his blog1 regarding the
ubiquitous “dyadic model.” For a presentation suitable for beginners, see the lecture
notes by the author [154], which describe the status quo of dyadic harmonic analysis
and weighted inequalities as of 2000. This millennium has seen new dyadic tech-
niques evolve, become mainstream, and help settle old problems; these lecture notes
try to illustrate some of this progress. In particular, averaging and sparse domination
techniques with and by dyadic operators have allowed researchers to transfer results
from the dyadic world to the continuous world. No longer the dyadic models are just
toy models in harmonic analysis, they can truly inform the continuous models. Here
are some examples where this dyadic paradigm has been useful.

The dyadic maximal function controls the maximal function (the converse is
immediate) by means of the one-third trick. Estimates for the dyadic maximal func-
tion are easier to obtain and transfer to the maximal function painlessly.

The Walsh model is the dyadic counterpart to Fourier analysis. The first real
progress toward proving boundedness of the bilinear Hilbert transform [125], result
that earned Christoph Thiele and Michael Lacey the 1996 Salem Prize,2 was made
by Thiele in his 1995 Ph.D. thesis proving the Walsh model version of such result
[172].

Stefanie Petermichl showed in 2000 that one can write the Hilbert transform as
an “average of dyadic shift operators” over random dyadic grids [161]. She achieved
this using the well-known symmetry properties that characterize the Hilbert trans-
form. Namely, the Hilbert transform commutes with translations and dilations, and
anticommutes with reflections. A linear and bounded operator on L2(R) with those
properties must be a constant multiple of the Hilbert transform. Similarly, the Riesz
transforms [163] can be written as averages of suitable dyadic operators. Petermichl
proved the A2 conjecture for these dyadic operators using Bellman function tech-
niques [162, 163]. These results added a very precise new dyadic perspective to such
classic and well-studied operators in harmonic analysis and earned Petermichl the
2006 Salem Prize; first time this prize was awarded to a female mathematician.

The Martingale transform was considered the dyadic toy model “par excellence”
for Calderón–Zygmund singular integral operators. For many years, one would test
the martingale transform first and, if successful, then worry about the continuous
versions. In 2000, Janine Wittwer proved the A2 conjecture for the martingale trans-
form using Bellman functions [186]. The Beurling transform can be written as an
average of martingale transforms in the complex plane, and this allowed Stefanie
Petermichl and Sasha Volberg [165] to prove in 2002 linear weighted inequalities
on L p(w) for p ≥ 2, and as a consequence deduce an important end point result in

1https://terrytao.wordpress.com/2007/07/27/dyadic-models/.
2The Salem Prize, founded by the widow of Raphael Salem, is awarded every year to a young
mathematician judged to have done outstanding work in Salem’s field of interest, primarily the
theory of Fourier series. The prize is considered highly prestigious and many Fields Medalists
previously received Salem prize (Wikipedia).
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the theory of quasiconformal mappings that had been conjectured by Kari Astala,
Tadeusz Iwaniec, and Eero Saksman [9].

Surprisingly, all Calderón–Zygmund singular integral operators can be written as
averages of Haar shift dyadic operators of arbitrary complexity and dyadic paraprod-
ucts as proven by Tuomas Hytönen [90]. In 2008, Oleksandra Beznosova proved the
A2 conjecture for the dyadic paraproduct [21] and, together with Hytönen’s dyadic
representation theorem, this lead to Hytönen’s proof of the full A2 conjecture [90].

Leading toward Hytönen’s result, there were a number of breakthroughs that have
recently coalesced under the umbrella of “domination byfinitelymany sparse positive
dyadic operators.” Andrei Lerner’s early results [130] played a central role in this
development. It is usually straightforward to verify that these sparse operators have
desired (quantitative) estimates; it is harder to prove appropriate domination results
for each particular operator and function it acts on. This methodology has seen an
explosion of applications well beyond the original A2 conjecture where it originated.
Identifying the sparse collections associated to a given operator and function is the
most difficult part of the argument and it involves using weak-type inequalities,
stopping time techniques, and adjacent dyadic grids.

We will explore some of these examples in the lecture notes with emphasis on
quantitative weighted estimates. We will illustrate in a few case studies different
techniques that have evolved as a result of these investigations such as Bellman
functions, quantitative extrapolation and transference theorems, and reduction to
studying dyadic operators either by averaging or by sparse domination.

The structure of the lecture notes remains faithful to the lectures delivered by
the author in Buenos Aires except for some minor reorganization. Some themes
are touched at the beginning, to wet the appetite of the audience, and are expanded
on later sections. Most objects are defined as they make their first appearance in
the story. Naturally, more details are provided than in the actual lectures, and some
details were in the original slides but had to be skipped or fast-forwarded; those
topics are included in these lecture notes. The sections are peppered with historical
remarks and references, but inevitably some will be missing or could be inaccurate
despite the time and effort spent by the author on them. Thus, the author apologizes
in advance for any inaccuracy or omission, and gratefully would like to hear about
any corrections for future reference.

In Sect. 7.2, we introduce the basic model operators: the Hilbert transform and the
maximal function, and we discuss their classical L p and weighted L p boundedness
properties. We show that Ap is a necessary condition for the boundedness of the
maximal function on weighted Lebesgue spaces L p. We describe why are we inter-
ested in weighted estimates, and more recently on quantitative weighted estimates.
In particular, we describe the linear weighted L2 estimates saga leading toward the
resolution of the A2 conjecture and how to derive quantitative weighted L p esti-
mates using sharp extrapolation. We finalize the section with a brief summary of the
two-weight results known for the Hilbert transform and the maximal function.

In Sect. 7.3, we introduce the elements of dyadic harmonic analysis and the basic
dyadic maximal function. More precisely, we discuss dyadic grids (regular, ran-
dom, adjacent) and Haar functions (on the line, on R

d , on spaces of homogeneous
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type). As a first example, illustrating the power of the dyadic techniques, we present
Lerner’s proof of Buckley’s quantitative L p estimates for the maximal function,
which reduces, using the one-third trick, to estimates for the dyadic maximal func-
tion. We also describe, given dyadic cubes on spaces of homogeneous type, how
to construct corresponding Haar bases and briefly describe the Auscher–Hytönen
“wavelets” in this setting.

In Sect. 7.4, we discuss the basic dyadic operators: the martingale transform,
the dyadic square function, the Haar shifts multipliers (Petermichl’s and those of
arbitrary complexity), and the dyadic paraproducts. These are the ingredients needed
to state Petermichl’s andHytönen’s representation theorems for theHilbert transform
and Calderón–Zygmund operators, respectively. For each of these dyadic model
operators, we describe the known L p and weighted L p theory and we state both
Petermichl’s and Hytönen’s representation theorems.

In Sect. 7.5, we sketch Beznosova’s proof of the A2 conjecture for the dyadic
paraproduct; this is a Bellman function argument. As a first approach, we get a 3/2
estimate, and with a refinement the linear estimate for the dyadic paraproduct is
obtained. Along the way, we introduce weighted Carleson sequences, a weighted
Carleson embedding lemma, some Bellman function lemmas: the Little lemma and
the α-Lemma, and weighted Haar functions needed in the argument; we also sketch
the proofs of these auxiliary results.

In Sect. 7.6, we discuss weighted inequalities in a case study: the commutator of
the Hilbert transform H with a function b in BMO. We summarize chronologically
the weighted norm inequalities known for the commutator. We sketch the dyadic
proof of the quantitative weighted L2 estimate for the commutator [b, H ] due to
Daewon Chung, yielding the optimal quadratic dependence on the A2 characteristic
of the weight. We discuss a very useful transference theorem of Daewon Chung,
Carlos Pérez, and the author, and present its proof based on the celebrated Coifman–
Rochberg–Weiss argument. The transference theorem allows to deduce quantitative
weighted L p estimates for the commutator of a linear operator with a BMO function,
from given weighted L p estimates for the operator.

In Sect. 7.7, we introduce the sparse domination by positive dyadic operators
paradigm that has emerged and proven to be very powerful with applications in many
areas not only weighted inequalities. We discuss a characterization of sparse families
of cubes via Carleson families of dyadic cubes due to Andrei Lerner and Fedja
Nazarov. We present the beautiful proof of the A2 conjecture for sparse operators
due toDavidCruz-Uribe, ChemaMartell, andCarlos Pérez.We illustratewith one toy
model example, the martingale transform, how to achieve the pointwise domination
by sparse operators following an argument by Michael Lacey. Finally, we briefly
discuss a sparse domination theorem for commutators valid for (rough) Calderón–
Zygmund singular integral operators due to Andrei Lerner, Sheldon Ombrosi, and
Israel Rivera-Ríos that yields a new quantitative two-weight estimates of Bloom type,
and recovers all known weighted results for the commutators.

Finally, in Sect. 7.8, we present a summary and briefly discuss some very recent
progress.
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Throughout the lecture notes, a constant C > 0 might change from line to line.
The notation A := B or B =: A means that A is defined to be B. The notation A � B
means that there is a constant C > 0 such that A ≤ C B. The notation A ∼ B means
that A � B and B � A. The notation A �r,s B means that the constant C > 0 in the
implied inequality depends only on the parameters r, s.

7.2 Weighted Norm Inequalities

In this section, we introduce some basic notation and themodel operators: the Hilbert
transform and the maximal function and we discuss their classical L p and weighted
L p boundedness properties. We show that Ap is a necessary condition for the bound-
edness of themaximal function onweighted L p .We describewhy arewe interested in
weighted estimates, and more recently on quantitative weighted estimates. In partic-
ular, we describe the linear weighted L2 estimates saga leading toward the resolution
of the A2 conjecture and how to derive quantitative weighted L p estimates using
sharp extrapolation. We finalize the section with a brief summary of the two-weight
results known for the Hilbert transform and the maximal function.

7.2.1 Some Basic Notation and Prototypical Operators

We introduce some basic notation used throughout the lecture notes. We remind the
reader the basic spaces (weighted L p and bounded mean oscillation, BMO), and
the prototypical continuous operators to be studied, namely, the maximal function,
the Hilbert transform, and its commutator with functions in BMO. We briefly recall
some of the settings where these operators appear.

The weights u and v are locally integrable functions on R
d , namely, u, v ∈

L1
loc(R

d), that are almost everywhere positive functions.
Given a weight u, a measurable function f is in L p(u) if and only if

‖ f ‖L p(u) :=
(∫

Rd

| f (x)|p u(x) dx

)1/p

< ∞.

When u ≡ 1, we denote L p(Rd) = L p(u) and ‖ f ‖L p := ‖ f ‖L p(Rd ).
Given f, g ∈ L1(Rd) their convolution is given by

f ∗ g(x) =
∫

Rd

f (x − y) g(y) dy. (7.2.1)

A locally integrable functionb is in the space ofbounded mean oscillation, namely,
b ∈ BMO, if and only if
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‖b‖BMO := sup
Q

1

|Q|
∫

Q
|b(x) − 〈b〉Q | dx < ∞, where 〈b〉Q = 1

|Q|
∫

Q
b(t) dt,

(7.2.2)
where Q ⊂ R

d are cubes with sides parallel to the axes, |Q| denotes the volume of
the cube Q, and more generally, |E | denotes the Lebesgue measure of a measurable
set E in Rd . Note that L∞(Rd), the space of essentially bounded functions on Rd , is
a proper subset of BMO (e.g., log |x | is a function in BMO but not in L∞(R)).

We will consider linear or sublinear operators T : L p(u) → L p(v). Among the
linear operators, the Calderón–Zygmund singular integral operators and their dyadic
analogues will be most important for us.

The prototypical Calderón–Zygmund singular integral operator is the Hilbert
transform onR, given by convolution with the distributionalHilbert kernel kH (x) :=
p.v.
(
1/(πx)

)

H f (x) := kH ∗ f (x) = p.v.
1

π

∫
f (y)

x − y
dy := lim

ε→0

1

π

∫
|x−y|>ε

f (y)

x − y
dy. (7.2.3)

The Hilbert transform and its periodic analogue naturally appear in complex analysis
and in the study of convergence on L p of partial Fourier sums/integrals. The Hilbert
transform siblings, the Riesz transforms on R

d and the Beurling transform on C,
are intimately connected to partial differential equations and to quasiconformal the-
ory, respectively. Its cousin, the Cauchy integral on curves and higher dimensional
analogues, is connected to rectifiability and geometric measure theory.

A prototypical sublinear operator is the Hardy–Littlewood maximal function

M f (x) := sup
Q:x∈Q

1

|Q|
∫

Q
| f (y)| dy, (7.2.4)

where the supremum is taken over all cubes Q ⊂ R
d containing x and with sides

parallel to the axes. The maximal function naturally controls many singular integral
operators and approximations of the identity; its weak-boundedness properties on
L1(Rd) imply the Lebesgue differentiation theorem. Another sublinear operator that
we will encounter in these lectures is the dyadic square function, see Sect. 7.4.2.

Given T a linear or sublinear operator, its commutator with a function b is given
by

[b, T ]( f ) := b T ( f ) − T (b f ).

The commutators are important in the study of factorization for Hardy spaces and to
characterize the space of bounded mean oscillation (BMO). They also play a central
role in the theory of partial differential equations (PDEs).

We refer the reader to [80, 81, 171] for encyclopedic presentations of classical
harmonic analysis, [68] for a more succinct yet deep presentation, and [156] for an
elementary presentation emphasizing the dyadic point of view.
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7.2.2 Hilbert Transform

We now recall familiar facts about the Hilbert transform, including its L p and one-
weight (quantitative) L p boundedness properties.

The Hilbert transform is defined by (7.2.3) on the underlying space and on fre-
quency space the following representation as aFourier multiplier withFourier symbol
m H , holds:

Ĥ f (ξ) = m H (ξ) f̂ (ξ), where m H (ξ) := −i sgn(ξ). (7.2.5)

To connect the two representations for the Hilbert transform, on the underlying
space and on the frequency space, remember that multiplication on the Fourier side
corresponds to convolutionon theunderlying space.Therefore, kH , theHilbert kernel,
is given by the inverse Fourier transform of the Fourier symbol m H ,

H f (x) = kH ∗ f (x), where kH (x) := (m H )∨(x) = p.v.
1

πx
,

which is precisely the content of (7.2.3). Here, the Fourier transform and inverse
Fourier transform of a Schwartz function f on R are defined by

f̂ (ξ) :=
∫

R

f (x) e−2πiξx dx, ( f )∨(x) :=
∫

R

f (ξ) e2πiξx dξ.

The Fourier transform is a bijection and an L2 isometry on the Schwartz class that can
be extended to be an isometry on L2(R), that is, ‖ f̂ ‖L2(R) = ‖ f ‖L2(R) (Plancherel’s
identity), and it can also be extended to be a bijection on the space of tempered
distributions. The convolution f ∗ g is a well-defined function on Lr (R) when f ∈
L p(R) and g ∈ L p(R), provided 1

p + 1
q = 1

r + 1 and p, q, r ∈ [1,∞]. Moreover, on
the same range, Young’s inequality holds:

‖g ∗ f ‖Lr ≤ ‖g‖Lq ‖ f ‖L p . (7.2.6)

In these lecture notes, we will explore, in Sect. 7.4.3, a third representation for the
Hilbert transform in terms of dyadic shift operators discovered byStefanie Petermichl
[161] in 2000.

7.2.2.1 L p Boundedness Properties of H

Fourier theory ensures boundedness on L2(R) for the Hilbert transform H . In fact,
applying Plancherel’s identity twice and using the fact that |m H (ξ)| = 1 a.e., one
immediately verifies that H is an isometry on L2(R), namely,

‖H f ‖L2 = ‖Ĥ f ‖L2 = ‖ f̂ ‖L2 = ‖ f ‖L2 .
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Young’s inequality (7.2.6) for p ≥ 1, q = 1 (hence, r = p), implies that if g ∈ L1(R)

and f ∈ L p(R) then g ∗ f ∈ L p(R); moreover,

‖g ∗ f ‖L p ≤ ‖g‖L1‖ f ‖L p .

This would imply boundedness on L p(R) for the Hilbert transform if the Hilbert
kernel, kH , were integrable, but is not. Despite this fact, the following boundedness
properties for the Hilbert transform hold (shared by all Calderón–Zygmund singular
integral operators).

The Hilbert transform is not bounded on L1(R); it is of weak-type (1,1) (Kol-
mogorov 1927), that is, there is a constant C > 0 such that for all λ > 0 and for all
f ∈ L1(R)

|{x ∈ R : |H f (x)| > λ}| ≤ C

λ
‖ f ‖L1 .

The Hilbert transform is bounded on L p(R) for all 1 < p < ∞ (M. Riesz 1927),
namely, there is a constant C p > 0 such that for all f ∈ L p(R)

‖H f ‖L p ≤ C p‖ f ‖L p (best constant was found by Pichorides in 1972).

Note that for 1 < p < 2 the L p boundedness can be obtained by Marcinkiewicz
interpolation theorem, from the weak-type (1,1) and the L2 boundedness. Then, for
2 < p < ∞, the boundedness on L p(R) can be obtained by a duality argument,
suffices to observe that the adjoint of H is −H , that is, the Hilbert transform is
almost self-adjoint. However, the Marcinkiewicz interpolation did not exist in 1927.
Riesz proved instead that boundedness on L p(R) implied boundedness on L2p(R),
and hence boundedness on L2(R) implied boundedness on L4(R), then on L8(R)

and by induction on L2n
(R). Strong interpolation, which already existed, then gave

boundedness on L p(R) for 2n ≤ p ≤ 2n+1 and for all n ≥ 1, that Is, for all 2 ≤ p <

∞. Finally, a duality argument took care of 1 < p < 2. In Sect. 7.4.3, we will deduce
the L p boundedness of the Hilbert transform from the L p boundedness of dyadic
shift operators, see Sect. 7.2.6.

Interpolation is an extremely powerful tool in analysis that allows to deduce
intermediate norm inequalities given two end point (weak)norm inequalities.Wewill
not discuss interpolation further in these notes; instead,wewill focus on extrapolation
that allows us to deduce weighted L p norm inequalities for all 1 < p < ∞ given
weighted Lr norm inequalities for one index r > 1.

Finally, it is important to note that the Hilbert transform is not bounded on L∞(R);
however, it is bounded on the larger space BMO of functions of bounded mean
oscillation (C. Fefferman 1971).

To illustrate the lack of boundedness on L∞(R) and on L1(R), it is helpful to
calculate the Hilbert transform for some simple functions, showing in fact that the
Hilbert transform does not map either L1(R) or L∞(R) into themselves. This imme-
diately eliminates the possibility for the Hilbert transform being bounded on either
space.
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Example 1 (Hilbert transform of an indicator function)

H1[a,b](x) = (1/π) log
(|x − a|/|x − b|),

where the indicator1[a,b](x) := 1when x ∈ [a, b] and zero otherwise, a bounded and
integrable function, that is, 1[a,b] ∈ L1(R) ∩ L∞(R). However, log |x | is neither in
L∞(R) nor in L1(R), but it is a function of boundedmean oscillation. The functions f
in L1(R) whose Hilbert transforms H f are also in L1(R) constitute the Hardy space
H 1(R); such functions need to have some cancellation (

∫
R

f (x) dx = 0), clearly not
shared by the indicator function 1[a,b].

7.2.2.2 One-Weight Inequalities for H

Theone-weight theory à laMuckenhoupt for theHilbert transform iswell understood,
the qualitative theory has been known since 1973 [88], and the quantitative estimates
were settled by Stefanie Petermichl in 2007 [162]. The two-weight problem, on the
other hand, was studied for a long time but the necessary and sufficient conditions
à la Muckenhoupt for pairs of weights (u, v) that ensure boundedness of the Hilbert
transform from L p(u) into L p(v)were only settled in 2014 byMichael Lacey, Chun-
Yen Shen, Eric Sawyer, and Ignacio Uriarte-Tuero [113, 123].

Theorem 1 (Hunt,Muckenhoupt,Wheeden1973)The Hilbert transform is bounded
on L p(w) for 1 < p < ∞ if and only if the weight w ∈ Ap. In either case, there is
a constant C p(w) > 0 depending on p and on the weight w such that

‖H f ‖L p(w) ≤ C p(w)‖ f ‖L p(w) for all f ∈ L p(w).

At this point, we remind the reader that a weight w is in the Muckenhoupt Ap class
if and only if [w]Ap < ∞, where the Ap characteristic of the weight w is defined to
be

[w]Ap := sup
Q

(
1

|Q|
∫

Q
w(x) dx

)(
1

|Q|
∫

Q
w

−1
p−1 (x) dx

)p−1

for 1 < p < ∞ ,

the supremum is taken over all cubes Q in R
d with sides parallel to the axes. We

will denote integral averages with respect to Lebesgue measure on cubes or on
measurable sets E by 〈 f 〉E := 1

|E |
∫

E f (x) dx . Also given w, a weight, w(E) will
denote the w-mass of the measurable set E , that is, w(E) = ∫E w(x) dx . With this
notation

[w]A2 := sup
Q

〈w〉Q〈w−1〉Q .

Note that w ∈ A2 if and only if w−1 ∈ A2.
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Example 2 Power weights offer examples of Ap weights on R
d , w(x) = |x |α is in

Ap if and only if −d ≤ α ≤ d(p − 1) for 1 < p < ∞.

In Theorem 1, the optimal dependence of the constant C p(w) on the Ap charac-
teristic [w]Ap of the weight w was found more than 30 years later.

Theorem 2 (Petermichl 2007) Given 1 < p < ∞, for all w ∈ Ap and for all f ∈
L p(w), we have that

‖H f ‖L p(w) �p [w]max {1, 1
p−1 }

Ap
‖ f ‖L p(w).

Note that the estimate is linear on [w]Ap for p ≥ 2, and of power 1
p−1 for 1 <

p < 2.

Proof (Cartoon of the proof) The following is a very brief sketch of Petermichl’s
argument. First, write H as an average over dyadic grids of dyadic shift operators
[161]. Second, find linear estimates, uniform (on the dyadic grids), for the dyadic
shift operators on L2(w) [162]. Deduce from the first two steps linear estimates on
L2(w) for the Hilbert transform, namely, estimates valid for all w ∈ A2 and for all
f ∈ L2(w) of the form

‖H f ‖L2(w) � [w]A2‖ f ‖L2(w).

Third, use a sharp extrapolation theorem [67] to get estimates for p �= 2 from the
linear L2(w) estimate.

Same estimates hold for allCalderón–Zygmund singular integral operators, solving
the famous A2 conjecture, which was proven by Tuomas Hytönen in 2012, see [90].
Wewill saymore about Petermichl’s andHytönen’s landmark results as well as about
sharp extrapolation later in Sect. 7.2.6 and in Sect. 7.4.

7.2.3 Maximal Function

We summarize the L p and one-weight (quantitative) L p boundedness properties for
the maximal function. We also show that the Ap condition on the weight w is a
necessary condition for boundedness of the maximal function on L p(w).

7.2.3.1 L p Boundedness Properties of M

From its definition (7.2.4), it is clear that themaximal function is bounded on L∞(Rd)

with norm one. The maximal function is not bounded on L1(Rd); however, it is of
weak-type (1,1) (Hardy, Littlewood 1930). The next example shows that themaximal
function does not map L1(R) onto itself.
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Example 3 The characteristic function1[0,1] is integrable; However, its image, under
themaximal function, M1[0,1], is not. Thediligent reader canverify that M1[0,1](x) =
1/(1 − x) if x < 0, M1[0,1](x) = 1 if 0 ≤ x ≤ 1, and M1[0,1](x) = 1/x if x > 1.

Marcinkiewicz interpolation gives boundedness of the maximal function on
L p(Rd) for 1 < p < ∞ from the strong L∞ and the weak-type (1, 1) bounded-
ness results. We will present an alternate argument in Sect. 7.3.2.2 that will cover
the weighted L p estimates as well without reference to neither interpolation nor
extrapolation.

7.2.3.2 One-Weight L p Inequalities for M

The maximal function is of weak L p(w) type if and only if w ∈ Ap; moreover, the
following quantitative result was proven in 1972 by Benjamin Muckenhoupt [141],
for p ≥ 1 and for all w ∈ Ap,

‖M‖L p(w)→L p,∞(w) �p [w]1/p
Ap

, (7.2.7)

where the quantity on the left-hand side, ‖M‖L p(w)→L p,∞(w), denotes the smallest
constant C > 0 such that for all λ > 0 and for all f ∈ L p(w)

w
({x ∈ R

d : M f (x) > λ}) ≤
(

C

λ
‖ f ‖L p(w)

)p

.

We say a weight w is in the Muckenhoupt A1 class if and only if there is a constant
C > 0 such that

Mw(x) ≤ Cw(x) for a.e. x ∈ R
d .

The infimum over all possible such constants C is denoted [w]A1 . The A1 class of
weights is contained in all Ap classes of weights for p > 1.

Themaximal function is bounded on L p(w); moreover, the following quantitative
result was proven in 1993 byStephenBuckley [27] valid for p > 1 and for allw ∈ Ap

and f ∈ L p(w),
‖M f ‖L p(w) �p [w]1/(p−1)

Ap
‖ f ‖L p(w). (7.2.8)

Buckley deduced these estimates from quantitative self-improvement integrability
results known for Ap weights, the weak L p±ε(w) boundedness of the maximal func-
tion, and Marcinkiewicz interpolation. More precisely, w ∈ Ap implies w ∈ Ap−ε

with ε ∼ [w]1−p′
Ap

and [w]Ap−ε
≤ 2[w]Ap , on the other hand, Hölder’s inequality

implies Ap ⊂ Ap+ε and [w]Ap+ε
≤ [w]Ap . Interpolating between weak L p−ε(w) and

weak L p+ε(w) estimates and keeping track of the constants, one gets Buckley’s
quantitative estimate (7.2.8).

In particular, when p = 2 the maximal function obeys a linear estimate on L2(w)

with respect to the A2 characteristic of the weight, namely, for all w ∈ A2 and f ∈
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L2(w)

‖M f ‖L2(w) � [w]A2‖ f ‖L2(w).

A beautiful proof of Buckley’s quantitative estimate for the maximal function
was presented in 2008 by Andrei Lerner [126], mixed Ap-A∞ estimates in 2011 by
Tuomas Hytönen and Carlos Pérez [98], and extensions to spaces of homogeneous
type in 2012 by Tuomas Hytönen and Anna Kairema [94]. We will present Lerner’s
proof of Buckley’s inequality (7.2.8) in Sect. 7.3.2.2.

7.2.3.3 Ap is a Necessary Condition for L p(w) Boundedness of M

Wewould like to demystify the appearance of the Ap weights in the theory by showing
that w ∈ Ap is a necessary condition for the maximal function to be bounded on
L p(w) when p > 1.

We will show that if the maximal function is bounded on L p(w) then the weight
w must be in the Muckenhoupt Ap class.

Proof By hypothesis, there is a constant C > 0 such that for all f ∈ L p(w),

‖M f ‖L p(w) ≤ C‖ f ‖L p(w).

For all λ > 0, let E M f
λ be the λ-level set for the maximal function M f , that is,

E M f
λ := {x ∈ R

d : M f (x) ≥ λ},

then, by Chebychev’s inequality,3 and using the hypothesis we conclude that

w(E M f
λ ) =

∫
E M f

λ

w(x) dx ≤ 1

λp

∫
Rd

|M f (x)|pw(x) dx ≤ C p

λp
‖ f ‖p

L p(w).

Fix a cube Q ⊂ R
d , for any integrable function f ≥ 0, supported on the cube Q, let

λ := 1
|Q|
∫

Q f (y) dy. Then M f (x) ≥ λ for all x ∈ Q, hence, Q ⊂ E M f
λ ; moreover,

( 1

|Q|
∫

Q
f (x) dx

)p
w(Q) ≤ λp w(E M f

λ ) ≤ C p
∫

Q
f p(x) w(x) dx . (7.2.9)

Consider the specific function f = w
−1
p−1 1Q supported on Q and chosen so that

both integrands coincide, namely, f = f pw. Substitute this specific function f
into (7.2.9) to obtain the following inequality only pertaining the weight w and the
cube Q,

3Namely, for g ∈ L1(μ) it holds that μ{x ∈ R : |g(x)| > λ}| ≤ 1
λ‖g‖L1(μ) for all λ > 0, in other

words ifg ∈ L1(μ) theng ∈ L1,∞(μ),whereg ∈ L p,∞(μ)means‖g‖L p,∞(μ) := supλ>0 λμ1/p{x ∈
R

d : |g(x)| > λ} < ∞.
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1

|Q|p

( ∫
Q

w
−1
p−1 (x) dx

)p−1
w(Q) ≤ C p.

Distribute |Q| and take the supremum over all cubes Q to conclude that [w]Ap ≤
C p, and hence w ∈ Ap. There is one technicality; the chosen function may not be

integrable; choose instead fε = 1Q(w + ε)
−1
p−1 , run the argument for each ε > 0 then

let ε go to zero.

We just showed that if the maximal function M is bounded on L p(w) then it
is of weak L p(w) type. Moreover, [w]1/p

Ap
≤ ‖M‖L p(w)→L p,∞(w); therefore, Mucken-

houpt’s weak L p(w) bound (7.2.7) is optimal.

7.2.4 Why Are We Interested in These Estimates?

We record a few instances where L p and weighted L p estimates are of importance
in analysis.

– Fourier Analysis: Boundedness of the periodic Hilbert transform on L p(T)

implies convergence on L p(T) of the partial Fourier sums.
– Complex Analysis: H f is the boundary value of the harmonic conjugate of the
Poisson extension to the upper half-plane of a function f ∈ L p(R).

– Factorization: Theory of (holomorphic) Hardy spaces H p. Elements of H p can
be defined as those distributions whose image under properly defined maximal
functions (or other suitable singular operators or square functions) are in L p.

– Approximation Theory: Boundedness properties of the martingale transform
(a dyadic analogue of the Hilbert transform) show that Haar functions and other
wavelet families are unconditional bases of several functional spaces.

– PDEs: Boundedness of theRiesz transforms (analogues of theHilbert transform on
R

d ) and their commutators have deep connections to partial differential equations.
– Quasiconformal Theory: Boundedness of the Beurling transform (singular
integral operator on C) on L p(w) for p > 2 and with linear estimates on [w]Ap

implies borderline regularity result.
– Operator Theory:Weighted inequalities appear naturally in the theory of Han-

kel and Toeplitz operators, perturbation theory, etc.

We expand on the weighted estimate needed in quasiconformal theory which pro-
pelled the interest in quantitativeweighted estimates. ThiswasworkedbyKariAstala,
Tadeusz Iwaniec, and Eero Saksman in 2001; we refer to their paper [9] for appro-
priate definitions. They showed that for 1 < K < ∞ every weakly K -quasi-regular
mapping, contained in a Sobolev space W 1,q

loc (Ω) with 2K/(K + 1) < q ≤ 2, is
quasi-regular onΩ , that is to say, it belongs to W 1,2

loc (Ω). For each q < 2K/(K + 1),
there are weakly K -quasi-regular mappings f ∈ W 1,q

loc (C) which are not quasi-
regular. The only value of q that remained unresolved was the end point; they con-
jectured that all weakly K -quasi-regular mappings f ∈ W 1,q

loc with q = 2K/(K + 1)
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are in fact quasi-regular. They reduced the conjecture to showing [9, Proposition 22]
that the Beurling transform T satisfies linear bounds in L p(w) for “p > 1”, namely,

‖T g‖L p(w) �p [w]Ap‖g‖L p(w), for allw ∈ Ap and g ∈ L p(w).

Fortunately, the values of interest for q are 1 < q < 2 and p = q ′ > 2. Linear bounds
for the Beurling transform and p ≥ 2 were proven in 2002 by Stefanie Petermichl
and Sasha Volberg [165]. As a consequence, the regularity at the borderline case q =
2K/(K + 1) was established. For 1 < p < 2, the correct estimate for the Beurling
transform is of the form

‖T g‖L p(w) �p [w]1/(p−1)
Ap

‖g‖L p(w), for all w ∈ Ap and g ∈ L p(w),

as shown in [67].

7.2.5 First Linear Estimates

Interest in quantitativeweighted estimates exploded in thismillennium.Achronology
of the early linear estimates on L2(w) for the weightw in theMuckenhoupt A2 class,
namely, ‖T f ‖L2(w) ≤ C[w]A2‖ f ‖L2(w), is as follows:

– Maximal function (Buckley ‘93 [27]).
– Martingale transform (Wittwer ‘00 [186]).
– (Dyadic) square function (Hukovic, Treil, Volberg ‘00 [87] ; Wittwer ‘02 [187]).
– Beurling transform (Petermichl, Volberg ‘02 [165]).
– Hilbert transform (Petermichl ‘07 [162]).
– Riesz transforms (Petermichl ‘08 [163]).
– Dyadic paraproduct (Beznosova ‘08 [21]).

Except for the maximal function, all these linear estimates were obtained using
Bellman functions and (bilinear) Carleson estimates for certain dyadic opera-
tors (Petermichl dyadic shift operators, martingale transform, dyadic paraproducts,
dyadic square function), and then either the operator under study was one of them or
had enough symmetries that it could be represented as a suitable average of dyadic
operators (Beurling, Hilbert, and Riesz transforms). The Bellman function method
was introduced in the 90s to the harmonic analysis by FedjaNazarov, Sergei Treil, and
Sasha Volberg [145, 147], although they credit Donald Burkholder in his celebrated
work finding the exact L p norm for themartingale transform [30].With their students
and collaborators, they have been able to use the Bellman function method to obtain
a number of astonishing results not only in this area, see Volberg’s INRIA lecture
notes [178] and references. In Volberg’s own words4 “the Bellman function method
makes apparent the hidden multiscale properties of Harmonic Analysis problems.”

4http://www-sop.inria.fr/apics/ahpi/summerschool11/bellman_lectures_volberg-1.pdf.
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A flurry of work ensued and other techniques were brought into play includ-
ing stopping time techniques (corona decompositions) and median oscillation tech-
niques. These techniques became the precursors of what is now known as the method
of domination by dyadic sparse operators, with important contributions from David
Cruz-Uribe, ChemaMartell, Carlos Pérez, Andrei Lerner, TuomasHytönen,Michael
Lacey, Mari Carmen Reguera, Stefanie Petermichl, Fedja Nazarov, Sergei Treil,
Sasha Volberg, and others. We will say more about sparse domination in Sect. 7.7.

The culmination of this work was the celebrated resolution of the A2 conjec-
ture by Tuomas Hytönen [90] in 2012 where he showed that first every Calderón–
Zygmund operator could be written as an average of dyadic shift operators of arbi-
trary complexity, dyadic paraproducts, and their adjoints; second the weighted L2

norm of the dyadic shifts depended linearly on the A2 characteristic of the weight
and polynomially on the complexity; and third these ingredients implied that the
Calderón–Zygmund operator obeyed linear bounds on L2(w). How about weighted
L p estimates for 1 < p < ∞?

7.2.6 Extrapolation and Hytönen’s Ap Theorem

There is a, by now, classical technique to obtainweighted L p estimates fromweighted
L2 estimates or more generally from weighted Lr estimates, called extrapolation.
In this section, we recall the classical Rubio de Francia extrapolation theorem, a
quantitative version, due to Oliver Dragičević et al, called “sharp extrapolation,” and
deduce from the later Hytönen’s Ap theorem.

7.2.6.1 Rubio de Francia Extrapolation Theorem

José Luis Rubio de Francia introduced in the 80s his celebrated extrapolation result,
a theorem that allowed to transfer estimates from weighted Lr (provided it held for
all Ar weights) to weighted L p for all 1 < p < ∞ and all Ap weights.

Theorem 3 (Rubio de Francia 1981) Given T a sublinear operator and r ∈ R with
1 < r < ∞. If for all w ∈ Ar , there is a constant CT,r,d,w > 0 such that

‖T f ‖Lr (w) ≤ CT,r,d,w‖ f ‖Lr (w) for all f ∈ Lr (w).

Then for each 1 < p < ∞ and for all w ∈ Ap, there is a constant CT,p,r,d,w > 0
such that

‖T f ‖L p(w) ≤ CT,p,r,d,w‖ f ‖L p(w) for all f ∈ L p(w).

If we choose r = 2, paraphrasing Antonio Córdoba5 we will conclude that

5See page 8 in José García-Cuerva’s eulogy for José Luis Rubio de Francia (1949–1988) [75].
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There is no L pjust weighted L2.

(Since w ≡ 1 ∈ Ap for all p.)
There are books dedicated to the subject that cover this andmany useful variants of

this theorem; the classical reference is the out-of-print 1985 book by García-Cuerva
and Rubio de Francia [76]. A modern presentation, including quantitative versions
of this theorem, is the 2011 book by David Cruz-Uribe, Chema Martell, and Carlos
Pérez [52].

7.2.6.2 Sharp Extrapolation

In the 80s and 90s, the interest was on qualitative weighted estimates. Once the
interest on quantitative weighted estimates was sparked, it was natural to consider
quantitative extrapolation theorems, what we call “sharp extrapolation theorems.”
This is precisely what Stefanie Petermichl and Sasha Volberg did [165] to obtain
linear estimates for the Beurling transform and p ≥ 2; they missed the range 1 <

p < 2 because it was of no interest, and their calculation was very specific to the
martingale transforms that properly averaged yielded the Beurling transform. It was
soon realized that a general principle was at work [67]. We state a simplified version
of what a quantitative extrapolation theorem says, useful for the purposes of this
survey.

Theorem 4 (Dragičević et al. 2005) Let T be a sublinear operator, r ∈ R with
1 < r < ∞. If for all w ∈ Ar there are constants α, CT,r,d > 0 such that

‖T f ‖Lr (w) ≤ CT,r,d [w]αAr
‖ f ‖Lr (w) for all f ∈ Lr (w).

Then for each 1 < p < ∞ and for all w ∈ Ap, there is a constant CT,p,r,d > 0 such
that

‖T f ‖L p(w) ≤ CT,p,r,d [w]αmax {1, r−1
p−1 }

Ap
‖ f ‖L p(w) for all f ∈ L p(w).

The proof follows by now standard arguments involving the celebrated Rubio de
Francia algorithm, and inserting whenever possible Buckley’s quantitative bounds
(7.2.8) for the maximal function [27].

An alternative, streamlined proof of the sharp extrapolation theorem, was pre-
sented by Javier Duoandikoetxea in [69], extending the result to more general set-
tings including off-diagonal and partial range extrapolation. It was observed [52] that
one can replace the pair (T f, f ) by a pair of functions (g, f ) in the extrapolation
theorem, in particular, one could consider the pair ( f, T f ) instead, as long as one has
the corresponding initial weighted inequalities required to jump-start the theorem.

Sharp extrapolation is sharp in the sense that no better power for [w]Ap can appear
in the conclusion that will work for all operators. For some operators, it is known
that the extrapolated L p(w) bounds from the known optimal Lr (w) estimates are
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themselves optimal for all 1 < p < ∞. However, it is not necessarily optimal for a
particular given operator. Here are some examples illustrating this phenomenon.

Example 4 Start with Buckley’s sharp estimate on Lr (w),α = 1
r−1 ; for the maximal

function, extrapolation will give sharp bounds only for 1 < p ≤ r .

Example 5 Sharp extrapolation from r = 2,α = 1, is sharp for theHilbert, Beurling,
andRiesz transforms for all 1 < p < ∞ (for p > 2 [162, 163, 165]; 1 < p < 2 [67]).

Example 6 Extrapolation from linear bound on L2(w) is sharp for the dyadic square
function only when 1 < p ≤ 2 (“sharp” [67], “only” [127]). However, extrapolation
from square root bound on L3(w) is sharp for all p > 1 [53].

7.2.6.3 Hytönen’s Ap Theorem

Sharp extrapolation was used by Tuomas Hytönen to prove the celebrated Ap theo-
rem, the quantitative weighted L p estimates for Calderón–Zygmund operators [90].

Theorem 5 (Hytönen 2012) Let 1 < p < ∞ and let T be any Calderón–Zygmund
singular integral operator on R

d , then for all w ∈ Ap and f ∈ L p(w)

‖T f ‖L p(w) �T,d,p [w]max{1, 1
p−1 }

Ap
‖ f ‖L p(w).

Proof (Cartoon of the proof) Enough to prove the p = 2 case, thanks to sharp extrap-
olation. To prove the linear weighted L2 estimate, two important steps were required.

First, prove a representation theorem in terms of Haar shift operators of arbitrary
complexity, dyadic paraproducts, and their adjoints on random dyadic grids intro-
duced in [148]. This representation hinges on certain reductions obtained in [160].

Second, prove linear estimates on L2(w) with respect to the A2 characteristic for
paraproducts [21] and Haar shift operators [122] but with polynomial dependence
on the complexity (independent of the dyadic grid) [90].

We will say more about random dyadic grids, Haar shift operators, and paraproducts,
the ingredients in Hytönen’s theorem, in Sects. 7.3 and 7.4. It is now well understood
that the L2(w) bounds for the Haar shift operators not only depend linearly on the
A2 characteristic of w but also depend linearly on the complexity [174].

Sharp extrapolation has also been used to obtain quantitative estimates in other
settings. For example, Sandra Pott and Mari Carmen Reguera used sharp extrapola-
tion when studying the Bergman projection on weighted Bergman spaces in terms of
theBékollé constant [167]. They proved the base estimate on L2(w) for certain sparse
dyadic operators and then showed that the Bergman projection could be dominated
with these sparse dyadic operators.
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7.2.7 Two-Weight Problem for the Hilbert Transform
and the Maximal Function

We briefly state a necessarily incomplete chronological list of two-weight results for
the Hilbert transform, the maximal function, and allied dyadic operators.

7.2.7.1 Two-Weight Problem for H and Its Dyadic Model the
Martingale Transform

In the ‘80s, Mischa Cotlar and Cora Sadosky found necessary and sufficient condi-
tions à la Helson–Szegö solving the two-weight problem for the Hilbert transform.
The methods used involved complex analysis and had applications to operator the-
ory [48, 49]. Afterward, various sets of sufficient conditions à la Muckenhoupt were
found to be valid also in the matrix-valued context; one of the earliest such sets
appeared in 1997 in joint work with Nets Katz [107], see also the 2005 unpublished
manuscript [150]. Necessary and sufficient conditions for (uniform and individual)
martingale transform and well-localized dyadic operators were found in 1999 and
2008, respectively, by Fedja Nazarov, Sergei Treil, Sasha Volberg [146, 149]; using
Bellman function techniques, we will say more about this in Sect. 7.4.1. Long-time
sought necessary and sufficient conditions for two-weight boundedness of theHilbert
transform were found in 2014 by Michael Lacey, Eric Sawyer, Chun-Yen Shen, and
Ignacio Uriarte-Tuero [113, 123] for pairs of weights that do not share a common
point mass. Corresponding quantitative estimates were obtained using very delicate
stopping time arguments. See also [114]. Improvements have since been obtained,
relaxing the conditions on the weights, by the same authors and Tuomas Hytönen
[92].

7.2.7.2 Two-Weight Estimates for the Maximal Function

In 1982, Eric Sawyer showed in [168] that the maximal function M is bounded from
L2(u) into L2(v) if and only if the following testing conditions6 hold for the weights
u and v: there is a constant Cu,v > 0 such that for all cubes Q

∫
Q

(
M(1Qu−1)(x)

)2
v(x) dx ≤ Cu,vu−1(Q) and

∫
Q

(
M(1Qv)(x)

)2u−1(x) dx ≤ Cu,vv(Q).

Sawyer also identified necessary and sufficient conditions for two-weight inequal-
ities for certain positive operators, the fractional and Poisson integrals [169]; these
results were of qualitative type. In 2009, Kabe Moen presented the first quantitative
result [139]; he proved that the two-weight operator norm of M is comparable to the
constants Cu,v in Sawyer’s result. Note that Sawyer’s testing conditions imply the

6Nowadays called “Sawyer’s testing conditions”.
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following joint A2 condition:

[u, v]A2 := sup
Q

〈u−1〉Q〈v〉Q < ∞, where 〈v〉Q := v(Q)/|Q|

In 2015, Carlos Pérez and Ezequiel Rela [159] considered a particular case when
(u, v) ∈ A2 and u−1 ∈ A∞ and showed the following so-called mixed-type estimate

‖M‖L2(u)→L2(v) � [u, v] 1
2
A2

[u−1] 1
2
A∞ .

In the one-weight setting, when u = v = w, one gets the following improved mixed-
type estimate:

‖M‖L2(w)→L2(w) � [w] 1
2
A2

[w−1] 1
2
A∞ ≤ [w]A2 .

The A∞ class of weights is defined to be the union of all the Ap classes of weights
for p > 1; the classical A∞ characteristic is given by

[w]Acl∞ := sup
Q

〈w〉Q exp(−〈logw〉Q).

A weight w is in A∞ if and only if [w]Acl∞ < ∞. An equivalent characterization is
obtained using instead the Fujii–Wilson characteristic, defined by

[w]A∞ := sup
Q

1

w(Q)

∫
Q

M(wχQ)(x) dx .

The Fujii–Wilson A∞ characteristic is smaller than the classical one [23]. For mixed-
type estimates of similar nature for Calderón–Zygmund singular integral operators,
see [98].

For sharp weighted inequalities for fractional integral operators, see [121].

7.3 Dyadic Harmonic Analysis

In this section, we introduce the elements of dyadic harmonic analysis and the basic
dyadic maximal function. More precisely, we discuss dyadic grids (regular, random,
adjacent) and Haar functions on the line, on R

d , and on spaces of homogeneous
type. As a first example, illustrating the power of the dyadic techniques, we present
Lerner’s proof of Buckley’s quantitative L p estimates for the maximal function,
which reduces, using the one-third trick, to estimates for the dyadic maximal func-
tion. We also describe, given dyadic cubes on spaces of homogeneous type, how
to construct corresponding Haar bases, and briefly describe the Auscher–Hytönen
“wavelets” in this setting.
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7.3.1 Dyadic Intervals, Dyadic Maximal Functions

In this section, we recall the dyadic intervals and the weighted dyadic maximal
function on the line, as well as basic L p estimates for the dyadic maximal function.

7.3.1.1 Dyadic Intervals

The standard dyadic grid D onR is the collection of intervals of the form [k2− j , (k +
1)2− j ), for all integers k, j ∈ Z. The dyadic intervals are organized by generations:
D = ∪ j∈ZD j , where I ∈ D j if and only if |I | = 2− j . Note that the Larger the j is,
the smaller the intervals are. For each interval J ∈ D denote by D(J ) the collection
of dyadic intervals I contained in J .

The standard dyadic intervals satisfy the following properties,

– (Partition Property) Each generation D j is a partition of R.
– (Nested property) If I, J ∈ D then I ∩ J = ∅, I ⊆ J , or J ⊂ I.
– (One parent property) If I ∈ D j then there is a unique interval Ĩ ∈ D j−1, called
the parent of I , such that I ⊂ Ĩ . The parent is twice as long as the child, that is,
| Ĩ | = 2|I |.

– (Twochildrenproperty)Given I ∈ D j , there are twodisjoint intervals Ir , Il ∈ D j+1

(the right and left children), such that I = Il ∪ Ir .
– (Tower of dyadic intervals) Each point x ∈ R belongs to exactly one dyadic interval

I j (x) ∈ D j . The family {I j (x)} j∈Z forms a “tower” or “cone” over x . The union
of the intervals in a “tower”, ∪ j∈Z I j (x), is a “quadrant”.

– (Two-quadrant property) The origin, 0, separates the positive and the negative
dyadic interval, creating two “quadrants”.

More generally, a dyadic grid onR is a collection of intervals organized in gener-
ations with the partition, nested, and two children properties. In this subsection, we
reserve the name D for the standard dyadic grid; however, later on we will use D to
denote a general dyadic grid.

The partition and nested properties are common to all dyadic grids; the one parent
property is a consequence of these properties. The two children property is respon-
sible for the name “dyadic”, the equal-length property is a consequence of choosing
to subdivide into halves, and is in general not so important; one could subdivide
into two children of different lengths; if the ratio is uniformly bounded, we have a
homogeneous or doubling dyadic grid. One can manufacture dyadic grids on the line
where each interval has two equal-length children but there is no distinguished point
and only one quadrant. This is because given an interval in the grid, its descendants
are completely determined; however, we have two choices for the parent, and hence
four choices for the grandparent, etc. In [133], dyadic grids are defined to have one
quadrant; such grids have the additional useful property that given any compact set
there will be a dyadic interval containing it.

There are many variants, for example, we could subdivide each interval into a
uniformly bounded number of children or into arbitrarily finitely many children.
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In fact, there are regular dyadic structures on R
d where the role of the intervals is

played by cubes with sides parallel to the axes. In this case, each cube in the dyadic
grid is subdivided into 2d congruent children, see Sect. 7.3.4.2. We will also see that
there are dyadic structures in spaces of homogeneous type, where each “cube” may
have no more than a fixed number of children, but sometimes it will only have one
child (itself) for several generations, see Sect. 7.3.5.2. In all cases, the dyadic grids
provide a hierarchical structure that allows for simplified arguments in this setting,
the so-called “induction on scale arguments.”

7.3.1.2 Dyadic Maximal Function

Given a dyadic gridD onRd and a weight u, the (weighted) dyadic maximal function
MD

u is defined as themaximal function M except that instead of taking the supremum
over all cubes in R

d with sides parallel to the axes we restrict to the dyadic cubes.
This is often how one transitions from continuous to dyadic models.

More precisely, the weighted dyadic maximal function with respect to a weight u
and a dyadic grid D on Rd is defined by

MD
u f (x) := sup

Q∈D,Q�x

1

u(Q)

∫
Q

| f (y)| u(y) dy.

Here u(Q) := ∫Q u(x) dx . When u = 1 a.e. then MD
1 =: MD.

The dyadic maximal function inherits boundedness properties from the regular
maximal function. This is clear once one notices that the dyadic maximal function
is trivially pointwise dominated by the maximal function. However, these properties
are much easier to verify for the dyadic maximal function. We now list three basic
boundedness properties of the dyadic maximal function, with a word or two as to
how one can verify each one of them.

First, the dyadic maximal function, MD
u , is of weak L1(u) type, with constant

one (independent of dimension). This is an immediate corollary of the Calderón–
Zygmund lemma (a stopping time); no covering lemmas are required unlike the usual
arguments for M .

Second, clearly MD
u is bounded on L∞(u) with constant one. Interpolation

between the weak L1(u) and the L∞(u) estimates shows that MD
u is bounded on

L p(u) for all p > 1. Moreover, the following estimate holds with a constant inde-
pendent of the weight v and the dimension d,

‖MD
u f ‖L p(u) � p′‖ f ‖L p(u) where

1

p
+ 1

p′ = 1 and p > 1. (7.3.1)

Third, the dyadic maximal function is pointwise comparable to the maximal func-
tion. We explain in Sect. 7.3.2.1 why this domination holds in the one-dimensional
case (d = 1).
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7.3.2 One-Third Trick and Lerner’s Proof of Buckley’s Result

We present the one-third trick on R and how it can be used to dominate the maximal
function by a sum of dyadic maximal functions. The one-third trick appeared in print
in 1991 in Kate Okikiolu characterization of subsets of rectifiable curves inRd [152,
Lemma 1(b)], see [50, Footnote p.32] for fascinating historical remarks on the one-
third trick. Thiswas probablywell known among the JohnGarnett’s school of thought
see, for example, [78], and also by the Polish school specifically by Tadeusz Figiel
[74]. We illustrate how this principle can be used to recover Buckley’s quantitative
weighted L p estimate for the maximal function.

7.3.2.1 One-Third Trick

The families of intervals Di := ∪ j∈ZDi
j , for i = 0, 1, 2, where

Di
j := {2− j

([0, 1) + m + (−1) j i

3

) : m ∈ Z},

are dyadic grids satisfying partition, nested, and two equal children properties. We
make four observations. First, when i = 0 we recover the standard dyadic grid,
D0 = D. Second, the grids D1 and D2 are nested but there is only one quadrant
(the line R). Third, the grids, Di , for i = 0, 1, 2 are as “far away” as possible from
each other, to be made more precise in Example 8. Fourth, given any finite interval
I ⊂ R, for at least two values of i = 0, 1, 2, there are J i ∈ Di such that I ⊂ J i ,
3|I | ≤ |J i | ≤ 6|I |. In particular, this implies that given i �= k, i, k = 0, 1, 2, there
is at least one interval J ∈ Di ∪ Dk such that I ⊂ J and 3|I | ≤ |J | ≤ 6|I |, and
furthermore

1

|I |
∫

I
| f (y)| dy ≤ 6

|J |
∫

J
| f (y)| dy.

This last observation allows us to dominate the maximal function M by its dyadic
counterpart. In fact, the following estimate holds,

M f (x) ≤ 6
(
MD f (x) + MD1

f (x)
)
. (7.3.2)

More precisely, for i �= k

M f (x) = sup
I�x

1

|I |
∫

I
| f (y)| dy ≤ 6 sup

J∈Di ∪Dk :J�x

1

|J |
∫

J
| f (y)| dy

≤ 6max{MDi
f (x), MDk

f (x)} ≤ 6
[

MDi
f (x) + MDk

f (x)
]
.

In particular, setting i = 0 and k = 1, we obtain (7.3.2).
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There is an analogue of the one-third trick in higher dimensions. In R
d , one can

get by with 3d grids as is very well explained in [133, Sect. 3], with 2d grids [98],
or, with d + 1 grids and this is optimal, by cleverly choosing the grids, for R and for
the d-torus see [138], for Rd and d > 1 see [43].

7.3.2.2 Buckley’s Ap Estimate for the Maximal Function

We illustrate the use of dyadic techniques paired with domination to recover Stephen
Buckley’s quantitative weighted L p estimate for the maximal function [27]. Namely,
for all w ∈ Ap and f ∈ L p(w)

‖M f ‖L p(w) � [w]
1

p−1

Ap
‖ f ‖L p(w).

The beautiful argument we present is due to Andrei Lerner [126].

Proof (Lerner’s Proof) By the one-third trick suffices to check that for 1 < p < ∞
there is a constant C p > 0 such that for all w ∈ Ap and for all f ∈ L p(w) then

‖MD f ‖L p(w) ≤ C p[w]
1

p−1

Ap
‖ f ‖L p(w),

independently of the dyadic grid D chosen on R
d .

For any dyadic cube Q ∈ D, let Ap(Q) = w(Q)
(
σ(Q)

)p−1
/|Q|p, where we

denote by σ := w
−1
p−1 the dual weight of w, then

1

|Q|
∫

Q
| f (x)| dx = Ap(Q)

1
p−1

[ |Q|
w(Q)

( 1

σ(Q)

∫
Q

| f (x)| σ−1(x)σ(x) dx
)p−1

] 1
p−1

≤ [w]
1

p−1

Ap

[
1

w(Q)

∫
Q

(
MD

σ ( f σ−1)(x) w−1(x) w(x) dx
)p−1

] 1
p−1

.

Taking the supremum over Q ∈ D, we obtain

MD f (x) ≤ [w]
1

p−1

Ap

[
MD

w (MD
σ ( f σ−1)p−1w−1)(x)

] 1
p−1

.

Computing the L p(w) norm on both sides, recalling that (p − 1)p′ = p where 1
p +

1
p′ = 1 and carefully peeling off the maximal functions, we get
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‖MD f ‖L p(w) ≤ [w]
1

p−1

Ap
‖MD

w (MD
σ ( f σ−1)p−1w−1)‖

1
p−1

L p′
(w)

≤ [w]
1

p−1

Ap
‖MD

w ‖
1

p−1

L p′
(w)

‖MD
σ ( f σ−1)‖L p(σ)

≤ [w]
1

p−1

Ap
‖MD

w ‖
1

p−1

L p′
(w)

‖MD
σ ‖L p(σ)‖ f σ−1‖L p(σ)

≤ p
1

p−1 p′ [w]
1

p−1

Ap
‖ f ‖L p(w),

where we used in the last line the uniform bounds (7.3.1) of MD
w on L p′

(w) and MD
σ

on L p(σ).

Notice that in this argument neither extrapolation nor interpolation is used. For
extensions to two-weight inequalities and to the fractional maximal function, see
[139].

7.3.3 Random Dyadic Grids on R

For the purpose of this section, a dyadic grid on R is a collection of intervals that are
organized in generations; each generation provides a partition of R and the family
has the nested, one parent, and two equal-length children per interval properties.
Shifted and scaled regular dyadic grid are dyadic grids. These are not the only ones;
there are other dyadic grids, such as the ones defined for the one-third trick: D1 and
D2. The following parametrization will capture all dyadic grids in R [89].

Lemma 1 (Hytönen 2008) For each scaling parameter r with 1 ≤ r < 2, and
shift parameter β ∈ {0, 1}Z, meaning β = {βi }i∈Z with βi = 0 or 1, then Dr,β :=
∪ j∈ZDr,β

j is a dyadic grid, where

Dr,β
j := rDβ

j , and Dβ
j := x j + D j , with x j =

∑
i> j

βi2
−i .

We shift by a different parameter x j at each level j , in a way that is consistent and
preserves the nested property of the grid. Moreover, the shift parameter β j = 0, 1
for j ∈ Z encodes the information whether a base interval at level j will be the right
or the left half of its parent.

Example 7 Shifted and scaled regular grids correspond to the shift parameter βi = 0
for all i < N (or βi = 1 for all i < N ) for some integer N . These are the grids with
two quadrants. Comparatively speaking, this set of dyadic grids is negligible, since
it corresponds to a set of measure zero in parameter space described below.

Example 8 The 1/3-shifted dyadic grids introduced in the previous section corre-
spond to Hytönen’s dyadic grids for r = 1. More precisely,
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Di = D1,βi
for i ∈ {0, 1, 2},

where for all j ∈ Z, β0
j ≡ 0 (or ≡ 1), β1

j = 12Z( j), and β2
j = 12Z+1( j).

We call these grids random dyadic grids because we view the parameters β j and
r as independent identically distributed random variables. There is a very natural
probability space, say (Ω,P) associated to the parameters, Ω = [1, 2) × {0, 1}Z.

Averaging in this context means calculating the expectation in this probability space,
that is,

EΩ f =
∫

Ω

f (ω) dP(ω) =
∫ 2

1

∫
{0,1}Z

f (r,β) dμ(β)
dr

r
,

where μ stands for the canonical probability measure on {0, 1}Z which makes the
coordinate functions β j independent with μ(β j = 0) = μ(β j = 1) = 1/2.

Random dyadic grids have been used, for example, in the study of T (b) theorems
on metric spaces with non-doubling measures [97, 148] and of BMO from dyadic
BMO on the bidisc and product spaces of spaces of homogeneous type [32, 166],
inspired by celebrated work of John Garnett and Peter Jones from the 80s [78]. They
have also been used in Hytönen’s representation theorem [90] and in the resolution
of the two-weight problem for the Hilbert transform [113, 123].

7.3.4 Haar Bases

Associated to dyadic intervals (or dyadic cubes), there is a very important collection
of step functions, the Haar functions. In this section, we recall the Haar bases on R

and on R
d , and some of their well-known properties.

7.3.4.1 Haar Basis on R

The Haar function associated to an interval I ⊂ R is defined to be

hI (x) := |I |−1/2
(
1Ir (x) − 1Il (x)

)
,

where Ir and Il are the right and left halves, respectively, of I , and the characteristic
function 1I (x) = 1 if x ∈ I , zero otherwise. Haar functions have mean zero, that is,∫

R
hI = 0, and they are normalized on L2(R).
The Haar functions indexed on any dyadic grid D, {hI }I∈D, form a complete

orthonormal system of L2(R) (Haar 1910). In particular for all f ∈ L2(R), with
〈 f, g〉 := ∫

R
f (x) g(x) dx ,

f =
∑
I∈D

〈 f, hI 〉 hI .

umolter@dm.uba.ar



7 Dyadic Harmonic Analysis and Weighted Inequalities: The Sparse Revolution 185

You can find a complete proof of this statement in [156, Chap. 9].
The Haar basis is an unconditional basis of L p(R) and of L p(w) if w ∈ Ap for

1 < p < ∞ [175]. This is deduced from the boundedness properties of themartingale
transform; we will say more about this dyadic operator in Sect. 7.4.1.

TheHaar basis constitutes the first example of a wavelet basis7 and its correspond-
ingHaarmultiresolution analysis provides the canonical example of amultiresolution
analysis [156, Chaps. 9–11].

7.3.4.2 Dyadic Cubes and Haar Basis on R
d

In d-dimensional Euclidean space, the regular dyadic cubes are Cartesian products
of regular dyadic intervals of the same generation. More precisely, a cube Q ∈
D j (R

d) if and only if Q = I1 × · · · × Id , where In ∈ D j (R) for n = 1, 2, . . . , d.
Each generation D j (R

d) is a partition of Rd and they form a nested grid; each cube
has one parent and 2d congruent children, and there are 2d quadrants. If we had used
dyadic intervals with just one quadrant, then the corresponding dyadic cubes in R

d

will also have only one quadrant. We denoteD(Rd) the collection of all dyadic cubes
in all generations, that is,D(Rd) = ∪ j∈ZD j (R

d). For Q ∈ D(Rd), we denoteD(Q)

the set of dyadic cubes contained in Q.
For each dyadic cube Q inRd , we can associate 2d step functions, constant on each

children of Q by taking appropriate tensor products. More precisely, for Q ∈ D(Rd)

and ε = (ε1, . . . , εd), with εn = 0 or 1, let

hε
Q(x1, . . . , xd) := hε1

I1
(x1) × · · · × hεd

Id
(xd),

where for each dyadic interval I we denote h0
I := hI and h1

I = |I |−1/21I . Note that
h1

Q = |Q|−1/21Q , where 1 = (1, 1, . . . , 1). The remaining (2d − 1) functions are
the Haar functions associated to the cube Q. The tensor product Haar functions
hε

Q , for ε �= 1, are supported on the corresponding dyadic cube Q, they have mean
zero, L2 norm one, and they are constant on Q’s children. The collection {hε

Q : ε �=
1, Q ∈ D(Rd)} is an orthonormal basis of L2(Rd), and an unconditional basis of
L p(Rd), 1 < p < ∞ (theHaar basis). Figures7.1 and7.2 illustrate theHaar functions
associated to a square in R2 and to a cube in R3, respectively.

The tensor product construction just described seems very rigid, and it is very
dependent on the geometry of the cubes and on the group structure of the Euclidean
space Rd . Can we do dyadic analysis on other settings? The answer is a resounding
yes!!!! One such setting is on spaces of homogeneous type introduced by Coifman
and Weiss in the early 70s. In Sect. 7.3.5, we will describe how to construct Haar
basis on spaces of homogeneous type given suitable collections of “dyadic cubes”

7An orthonormal wavelet basis of L2(R) is an orthonormal basis where all its elements are transla-
tions and dilations of a fixed functionψ, called the wavelet. More precisely, a functionψ ∈ L2(R) is
a wavelet if and only if the functions ψ j,k(x) = 2 j/2ψ(2 j x − k) for j, k ∈ Z form an orthonormal
basis of L2(R).
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Fig. 7.1 The three Haar functions associated to the unit square in R
2. Figure kindly provided by

David Weirich [182]
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Fig. 7.2 The seven Haar functions associated to a cube in R
3. Figure kindly provided by David

Weirich [182]

and argüe why they constitute an orthonormal basis. This argument can be used to
show that the Haar functions introduced in this section constitute an orthonormal
basis of L2(Rd).

7.3.5 Dyadic Analysis on Spaces of Homogeneous Type

In this section, wewill define spaces of homogeneous type.Wewill present a general-
ization of the dyadic cubes adapted to this setting. Given dyadic cubes, we will show
how to construct corresponding Haar functions, and briefly discuss the Auscher–
Hytönen wavelets on spaces of homogeneous type.

Before we start, we would like to quote Yves Meyer.
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One is amazed by the dramatic changes that occurred in analysis during the twentieth cen-
tury. In the 1930s complex methods and Fourier series played a seminal role. After many
improvements, mostly achieved by the Calderón–Zygmund school, the action takes place
today on spaces of homogeneous type. No group structure is available, the Fourier trans-
form is missing, but a version of harmonic analysis is still present. Indeed the geometry is
conducting the analysis.

Yves Meyer8 in his preface to [66].

7.3.5.1 Spaces of Homogeneous Type (SHT)

Let us first define what is a space of homogeneous type in the sense of Coifman and
Weiss [42].

Definition 1 (Coifman, Weiss 1971) For a set X , a triple (X, ρ,μ) is a space of
homogeneous type (SHT) in Coifman–Weiss’s sense if

(i) ρ : X × X −→ [0,∞) is a quasi-metric on X , more precisely the following
hold:

(a) (positive definite) ρ(x, y) = 0 if and only if x = y;
(b) (symmetry) ρ(x, y) = ρ(y, x) ≥ 0 for all x , y ∈ X ;
(c) (quasi-triangle inequality) there exists constant A0 ≥ 1 such that

ρ(x, y) ≤ A0
(
ρ(x, z) + ρ(z, y)

)
for all x, y, z ∈ X.

(ii) μ is a nonzero Borel regular9 measure with respect to the topology induced by
the quasi-metric.10

(iii) Quasi-metric balls are μ-measurable. A quasi-metric ball is the set B(x, r) :=
{y ∈ X : ρ(x, y) < r}, where x ∈ X and r > 0.

(iv) μ is a doubling measure, namely, there exists a constant Dμ ≥ 1 (the doubling
constant of the measure μ) such that for each quasi-metric ball B(x, r)

0 < μ(B(x, 2r)) ≤ Dμ μ(B(x, r)) < ∞ for all x ∈ X, r > 0.

Notice that Condition (4) implies that there are constants ω > 0 (known as an
upper dimension of μ) and C ≥ 1 such that for all x ∈ X , λ ≥ 1 and r > 0

μ(B(x,λr)) ≤ Cλωμ(B(x, r)).

8Recipient of the 2017 Abel Prize.
9A measurable set E of finite measure is Borel regular if there is a Borel set B such that E ⊂ B
and μ(E) = μ(B).
10The topology induced by a quasi-metric is the largest topology T such that for each x ∈ X the
quasi-metric balls centered at x form a fundamental system of neighborhoods of x . Equivalently,
a set Ω is open, Ω ∈ T , if for each x ∈ Ω there exists r > 0 such that the quasi-metric ball
B(x, r) ⊂ Ω . A set in X is closed if it is the complement of an open set.
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In fact, we can choose C = Dμ ≥ 1 and ω = log2 Dμ.
The quasi-metric balls may not be open in the topology induced by the quasi-

metric, as Example 9 shows. Therefore, the assumption that the quasi-metric balls are
μ-measurable is not redundant. The following example illustrates this phenomenon
[94].

Example 9 Consider the set X = {−1} ∪ [0,∞), the map ρ : X × X → [0,∞)

given byρ(−1, 0) = ρ(0,−1) = 1/2 andρ(x, y) = |x − y|; otherwise, and themea-
sure μ(E) = δ−1(E) + m

(
E ∩ [0,∞)

)
, where m is the Lebesgue measure and δ−1

the point mass at x = −1, that is, δ−1(E) = 0 if−1 /∈ E and δ−1(E) = 1 if−1 ∈ E .
Then ρ is not a metric since ρ(1,−1) = 2 > 3/2 = 1 + 1/2 = ρ(1, 0) + ρ(0,−1);
however, ρ is a quasi-metric and the measure μ is doubling. It is a good exercise
to compute both the quasi-triangle constant of ρ and the doubling constant of μ.
Finally, the ball B(−1, 1) = {−1, 0} is not open because it does not contain any ball
centered at 0 with positive radius r , since [0, r) ⊂ B(0, r) and the interval [0, r) is
not contained in B(−1, 1).

A couple of further remarks are in order.
First, a given quasi-metric ρ may not be Hölder regular. Recall that ρ is a Hölder

regular quasi-metric if there are constants 0 < θ < 1 and C0 > 0 such that

|ρ(x, y) − ρ(x ′, y)| ≤ C0ρ(x, x ′)θ
[
ρ(x, y) + ρ(x, y′)

]1−θ ∀x, x ′, y ∈ X.

Metrics areHölder regular for any 0 < θ ≤ 1,C0 = 1. The quasi-metric in Example 9
is not continuous let alone Hölder regular. Quasi-metric balls for Hölder regular
quasi-metrics are always open.

Second, Roberto Macías and Carlos Segovia showed in 1979 [137] that given a
space of homogeneous type (X, ρ,μ) there is an equivalent Hölder regular quasi-
metric ρ′ on X and some θ ∈ (0, 1), and for which themeasureμ is 1-Ahlfors regular,
more precisely,

μ
(
Bρ′(x, r)

) ∼ r1.

Here are some examples of spaces of homogeneous type.

– R
n , with the Euclidean metric and the Lebesgue measure.

– R
n with the Euclidean metric and an absolutely continuous measure with respect

to the Lebesgue measure dμ = w dx where w is a doubling weight (for example,
w could be an A∞ weight).

– Quasi-metric spaces with d-Ahlfors regular measure: μ(B(x, r)) ∼ rd (e.g., Lip-
schitz surfaces, fractal sets, n-thick subsets of Rn). More concretely, consider, for
example, X the four-corner Cantor set with the Euclidean metric and the one-
dimensional Hausdorff measure, or consider X the graph of a Lipschitz function
F : Rn → R with the induced Euclidean metric and measure the volume of the
set’s “shadow”, μ(E) = m

(
{x ∈ R

n : (x, F(x)
) ⊂ E}

)
wherem is the Lebesgue

measure on Rn .
– C∞ manifolds with doubling volume measure for geodesic balls.
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– Nilpotent Lie groups G with the left-invariant Riemannian metric and the induced
measure (e.g., Heisenberg group where X is the boundary of the unit ball in C

n ,
ρ(z, w) = 1 − z · w and with surface measure).

The 2015 book by Ryan Alvarado and Marius Mitrea [7] discusses in more detail
many of these examples and relies heavily on theMacías-Segovia philosophy, mean-
ing they consider equivalent classes of quasi-metrics knowing that among them they
can choose a representative that is Hölder regular and for which the measure is
Ahlfors regular.

7.3.5.2 Dyadic Cubes in SHT

Systems of “dyadic cubes” were built by Hugo Aimar and Roberto Macías, Eric
Sawyer and Richard Wheeden, and Guy David in the 80s [6, 60, 170], and by
Michael Christ in the 90s [33] on spaces of homogeneous type, and by Tuomas
Hytönen and Anna Kairema in 2012 on geometrically doubling quasi-metric spaces
[94] without reference to a measure.

A geometrically doubling quasi-metric space (X, d) is one such that every quasi-
metric ball of radius r can be covered with at most N quasi-metric balls of radius
r/2 for some natural number N .

Example 10 Spaces of homogeneous type in the Coifman–Weiss’s sense are geo-
metrically doubling [42].

Systems D of dyadic cubes in spaces of homogeneous type or, more generally,
on geometrically doubling spaces, are organized in disjoint generations Dk , k ∈ Z,
such that D = ∪k∈ZDk and the following qualitative properties hold.

(a) Each generationDk is a partition of X , so the cubes in a generation are pairwise
disjoint and form a covering of X .

(b) The generations are nested, that is, there is no partial overlap across generations.
(c) As a consequence, each cube has unique ancestors in earlier generations.
(d) Dyadic cubes have at most M children for some positive natural number M (this

is a consequence of the geometric doubling property).
(e) There exists a constant δ ∈ (0, 1) such that for every dyadic cube inDk there are

inner and outer balls of radius roughly δk (the “sidelength” of the cube).
(f) The outer ball corresponding to a dyadic cube’s child is inside its parent’s outer

ball.

Note that since δ ∈ (0, 1) the larger k is the smaller in diameter the cubes are. If
Q ∈ Dk then its parent will be the unique cube Q̃ ∈ Dk−1 such that Q ⊂ Q̃.

Furthermore, cubes can be constructed to have a “small boundary property” [33,
94] which is very useful in applications.

A quantitative and more precise statement of the defining properties for a dyadic
system of cubes on geometric doublingmetric spaces is encapsulated in the following
construction that appeared in [94, Theorem 2.2].
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Fig. 7.3 The four Haar functions for a cube with five children in SHT. Figures kindly provided by
David Weirich [182]

Theorem 6 (Hytönen,Kairema 2012)Given (X, d) a geometrically doubling quasi-
metric space. Suppose the constants C0 ≥ c0 > 1 and δ ∈ (0, 1) satisfy 12A3

0C0δ ≤
c0. Given a set of points {zk

α : α ∈ Ak}, where Ak is a countable set of indexes, with
the properties that

d(zk
α, zk

β) ≥ c0δk (α �= β), min
α∈Ak

d(x, zk
α) < C0δk for all x ∈ X.

For each k ∈ Z and α ∈ Ak , there exist sets Qk,◦
α ⊆ Qk

α ⊆ Q
k
α—called open, half-

open, and closed dyadic cubes—such that

(i) Qk,◦
α and Q

k
α are the interior and closure of Qk

α, respectively;
(ii) (nested) if � ≥ k, then either Q�

β ⊆ Qk
α or Qk

α ∩ Q�
β = ∅;

(iii) (partition) X =⋃α∈Ak
Qk

α for all k ∈ Z;
(iv) (inner/outer balls) B(zk

α, c1δk) ⊆ Qk
α ⊆ B(zk

α, C1δ
k) where c1 := (3A2

0)
−1c0

and C1 := 2A0C0;
(v) if � ≥ k and Q�

β ⊆ Qk
α, then B(z�

β, C1δ
�) ⊆ B(zk

α, C1δ
k).

The open and closed cubes Qk,◦
α and Q

k
α depend only on the points z�

β for � ≥ k.

The half-open cubes Qk
α depend on z�

β for � ≥ min(k, k0), where k0 ∈ Z is a pre-
assigned number entering the construction.

The geometrically doubling condition implies that sets of points {xk
α : k ∈ Z,α ∈

Ak} with the required separation properties exist and that the set Ak is a countable
set of indices for each k ∈ Z. The cubes in this construction are built as countable
unions of quasi-metric balls; hence, once a space of homogeneous type is given, the
cubes will be measurable sets.
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7.3.5.3 Haar Basis on SHT

Given a space of homogeneous type (X, ρ,μ) with a dyadic structure D given by
Theorem 6, we can construct a system of Haar functions that will be an orthonormal
basis of L2(X,μ).

Given a cube Q ∈ D, denote by ch(Q) the collection of dyadic children of Q,
and by N (Q) its cardinality, that is, Q has N (Q) children. Let SQ be the subspace
of L2(X,μ) spanned by those square integrable functions that are supported on Q
and are constant on the children of Q. The subspace SQ has dimension N (Q) as
the characteristic functions of the children cubes normalized with respect to the
L2 norm, namely, {1Q′/

√
μ(Q′) : Q′ ∈ ch(Q)}, form an orthonormal basis for SQ .

The subspace S0
Q of SQ consisting of those functions that have mean zero, that is,∫

Q f (x) dx = 0, will have one fewer dimension, namely, dim(S0
Q) = N (Q) − 1.

Given an enumeration of the children of Q, that is, a bijection uQ : {1, 2, . . . ,
N (Q)} → ch(Q), we will define recursively subsets of Q that are unions of chil-
dren of Q. More precisely at each stage, we will remove one child according to
the given enumeration, let E1

Q := Q, given Ek
Q ⊂ Q, let Ek+1

Q = Ek
Q \ uQ(k) for

k = 1, 2, . . . , N (Q) − 1. We can split each of these sets into two disjoint pieces,
Ei

Q := Ei,+
Q ∪ Ei,−

Q where Ei,+
Q = uQ(i), the child removed (light grey in Fig. 7.3)

and Ei,−
Q = Ei+1

Q (dark grey in Fig. 7.3). With this notation, the Haar functions asso-
ciated to the cube Q and the enumeration uQ as illustrated in Fig. 7.3, are supported
on Q and are constant on the shaded regions: positive on the light grey regions,
negative on the dark grey regions, and zero on the grey regions, and thus they are
given by

hi
Q(x) = a1Ei,+

Q
(x) − b1Ei,−

Q
(x), 1 ≤ i ≤ N (Q) − 1,

where the positive constants a and b, dependent on the base cube Q and the label i ,
are chosen to enforce L2 normalization andmean zero.More precisely, the unknowns
a, b must satisfy the system of two equations:

∫
Q

|hi
Q(x)|2 dμ = a2μ(Ei,+

Q ) + b2μ(Ei,−
Q ) = 1

∫
Q

hi
Q(x) dμ = a μ(Ei,+

Q ) − b μ(Ei,−
Q ) = 0.

Solving the system of equations, we get the positive solutions

a =
√

μ(Ei,−
Q )/

(
μ(Ei

Q)μ(Ei,+
Q )
)
, b =

√
μ(Ei,+

Q )/
(
μ(Ei

Q)μ(Ei,−
Q )
)
.

Note that the doubling condition on the measure μ ensures μ(Q) > 0 for all Q ∈ D,
and hence also μ(Ei

Q) > 0 for all labels i .
The Haar basis consists of all functions hi

Q where Q ∈ D and i = 1, 2, . . . ,
N (Q) − 1. Note that a cube may not subdivide for a while, meaning that it could
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have just one child, itself, for several generations or forever. In the former case, we
wait until we subdivide to define the subspace S0

Q ; in the latter case, we let S0
Q be the

trivial subspace.
By construction for each Q ∈ D, the collection {hi

Q : i = 1, . . . , N (Q) − 1} is
normalized on L2(X,μ); each Haar function has mean zero, and by the nested prop-
erty of the dyadic cubes it is easy to verify this is an orthonormal family. No matter
what enumeration for ch(Q) we use we will get each time an orthonormal basis of
S0

Q . The orthogonal projection onto S0
Q of a square integrable function f is indepen-

dent of the orthonormal basis chosen on S0
Q . Given x ∈ Q, choose an enumeration

so that x ∈ uQ(1) =: R ∈ ch(Q) then

ProjSQ
f (x) = 〈 f, h1

Q〉μ h1
Q(x) = 〈 f 〉μR − 〈 f 〉μQ,

where 〈 f, g〉μ denotes the inner product in L2(X,μ) and 〈 f 〉μQ denotes the μ-average
of f . The first equality holds by support considerations, since hi (x) = 0 for all i > 1
by the choice of the enumeration; the second equality is now a simple calculation by
substitution.

Using a telescoping sum argument, one can verify that completeness of the Haar
basis on L2(μ) hinges on the following limits holding in the L2(μ) sense:

lim
j→∞ Eμ

j f = f,

lim
j→∞ Eμ

j f = 0,

where E j f := 〈 f 〉μQ , with x ∈ Q ∈ D j , or E j f =∑Q∈D j
〈 f 〉μQ 1Q . That the limits

do hold can be justified by martingale theory [91, 142]; in fact, they do hold in
L p(X,μ) for 1 < p < ∞. The pointwise convergence a.e. of the averages to f as
j goes to infinity is a consequence of the Lebesgue differentiation theorem which
holds because the measure is assumed to be Borel regular, see [7, Sect. 3.3].

Haar-type bases for L2(X,μ) have been constructed in general metric spaces, and
the construction, along the lines described here, is well known to experts. Haar-type
wavelets associated to nested partitions in abstract measure spaces were constructed
in 1997 by Girardi and Sweldens [79]. For the case of spaces of homogeneous type,
there is a lot of work related to Haar bases done in Argentina this millennium,
specifically by Hugo Aimar and collaborators Osvaldo Gorosito, Ana Bernardis,
Bibiana Iaffei, and Luis Nowak [1–5], all descendants of Eleonor Harboure. Haar
functions have been used in geometrically doubling metric spaces [144]. For the case
of a geometrically doubling quasi-metric space (X, ρ), with a positive Borel regular
measure μ, see [105].
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7.3.5.4 Random Dyadic Grids, Adjacent Dyadic Grids, and Wavelets
on SHT

The counterparts of the random dyadic grids and the one-third trick have been identi-
fied in the general setting of geometrically doubling quasi-metric spaces by Tuomas
Hytönen and his students and collaborators. Using them, Pascal Auscher and Tuomas
Hytönen constructed in 2013 a remarkable orthonormal basis of L2(X,μ) [10, 11].

A notion of random dyadic grids can be introduced on geometrically doubling
quasi-metric spaces (X, d) by randomizing the order relations in the construction of
the Hytönen–Kairema cubes [94, 97]. In 2014, Tuomas Hytönen and Olli Tapiola
modified the randomization to improve upon Auscher–Hytönen wavelets in metric
spaces [101]. A different randomization can be found in [144].

One can find finitely many adjacent families of Hytönen–Kairema dyadic cubes,
Dt for t = 1, . . . , T , with the same parameters, that play the role of the 1/3-shifted
dyadic grids in R. The main property the adjacent families of dyadic cubes have
is that given any ball B(x, r) ∈ X , with r ∼ δk , then there is t ∈ {1, 2, . . . , T } and
a cube in the t-grid and in the kth generation, Q ∈ Dt

k , such that B(x, r) ⊂ Q ⊂
B(x, Cr), where C > 0 is a geometric constant only dependent on the quasi-metric
and geometric doubling parameters of X [94]. Furthermore, given a σ-finite measure
μ on X , the adjacent dyadic systems can be chosen so that all cubes have small
boundaries: μ(∂Q) = 0 for all Q ∈ ∪T

t=1Dt [94].
Given nested maximal sets X k of δk-separated points in X for k ∈ Z, let Yk :=

X k+1 \ X k and relabel points in Yk by yk
α. To each point yk

α, Auscher and Hytönen
associate a wavelet function ψk

α (a linear spline) of regularity 0 < η < 1 that is
morally supported near yk

α at scale δk , with mean zero and some smoothness. More
precisely, these functions are not compactly supported but have exponential decay
away from the base cube Qk

α, and they have Hölder regularity exponent η > 0, where
η depends only on δ and on some finite quantities needed for extra labeling of the
random dyadic grids used in the construction of the wavelets. The number of indexes
α so that yk

α ∈ Yk for each Qk
α is exactly N (Qk

α) − 1, where recall that N (Qk
α)

denotes the number of children of Qk
α. This is the right number of wavelets per cube

Qk
α if our intuition is to be guided by the constructions of the Haar functions. The

precise nature of these wavelets is detailed in [10, Theorem 7.1].
Furthermore, the functions {ψk

α}k∈Z,α∈Yk form an unconditional basis on L p(X)

for all 1 < p < ∞ and the following wavelet expansion is valid in L p(X),

f (x) =
∑
k∈Z

∑
yk
α∈Yk

〈 f,ψk
α〉ψk

α(x).

Hytönen and Tapiola were able to build suchwavelets for all 0 < η < 1 in the con-
text of metric spaces [101]. It is still an open problem to construct smooth wavelets
that are compactly supported. These wavelets have been used to study Hardy and
BMO spaces on product spaces of homogeneous type, as well as their dyadic coun-
terparts [105].
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7.4 Dyadic Operators, Weighted Inequalities, and
Hytönen’s Representation Theorem

In this section, we introduce the model dyadic operators: the martingale transform,
the dyadic square function, the dyadic paraproduct, Petermichl’s Haar shift operator,
and Haar shift operators of arbitrary complexity, all ingredients in Hytönen’s proof
of the A2 conjecture [90]. We will state the known quantitative one- and two-weight
inequalities for these dyadic operators. We end the section with Hytönen’s repre-
sentation theorem in terms of Haar shift operators of arbitrary complexity, dyadic
paraproducts, and adjoints of dyadic paraproducts over random dyadic grids, valid
for all Calderón–Zygmund operators and key to the resolution of the A2 conjecture.

7.4.1 Martingale Transform

Let D denote a dyadic grid on R, the Martingale transform is the linear operator
formally defined as

Tσ f (x) :=
∑
I∈D

σI 〈 f, hI 〉 hI (x), where σI = ±1.

This is a constant Haar multiplier in analogy to Fourier multipliers, where here the
Haar coefficients aremodifiedmultiplying them by uniformly bounded constants, the
Haar symbol {σI : I ∈ D} (in this case, arbitrary changes of sign). The martingale
transform is bounded on L2(R); in fact, it is an isometry on L2(R) by Plancherel’s
identity, that is, ‖Tσ f ‖L2 = ‖ f ‖L2 .

The martingale transform is a good toy model for Calderón–Zygmund singular
integral operators such as the Hilbert transform. Suffices to recall that on Fourier side
theHilbert transform is a Fouriermultiplierwith Fourier symbolm H (ξ) = −i sgn(ξ).
Compare the Fourier transform of the Hilbert transform and the “Haar transform” of
the martingale transform, namely,

Ĥ f (ξ) = −i sgn(ξ) f̂ (ξ) and 〈Tσ f, hI 〉 = σI 〈 f, hI 〉.

Unconditionality of the Haar basis on L p(R) follows from uniform (on the choice
of signs σ) boundedness of the martingale transform Tσ on L p(R). More precisely
for all f ∈ L p(R)

sup
σ

‖Tσ f ‖L p �p ‖ f ‖L p .

This was proven by Donald Burkholder in 1984; he also found the optimal constant
C p in work that can be described as the precursor of the (exact) Bellman function
method [30].
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Unconditionality of the Haar basis on L p(w) when w ∈ Ap follows from the
uniform boundedness of Tσ on L p(w), this was proven in 1996 by Sergei Treil and
Sasha Volberg [175].

7.4.1.1 Quantitative Weighted Inequalities for the Martingale
Transform

Quantitative one- and two-weight inequalities are known for the martingale trans-
form. In fact, the A2 conjecture (linear bound) was proven by JanineWittwer in 2000
and necessary and sufficient conditions for two-weight uniform (on the symbol σ)
L2 boundedness were identified by Fedja Nazarov, Sergei Treil, and Sasha Volberg
in 1999. We present now the precise statements.

Sharp linear bounds on L2(w) when w is an A2 weight are known [186]. More
precisely, for all σ, there is C > 0 such that for all w ∈ A2 and all f ∈ L2(w)

‖Tσ f ‖L2(w) ≤ C[w]A2‖ f ‖L2(w).

Sharp extrapolation gives optimal bounds on L p(w)whenw is an Ap weight [67].
More precisely, for all σ there is a constant C p > 0 such that for all w ∈ Ap and
f ∈ L p(w)

‖Tσ f ‖L p(w) ≤ C p[w]max{1, 1
p−1 }

Ap
‖ f ‖L p(w).

Necessary and sufficient conditions on pairs of weights (u, v) are known ensuring
two-weight boundedness [146].

Theorem 7 (Nazarov, Treil, Volberg 1999) The martingale transforms Tσ are uni-
formly (on σ) bounded from L2(u) to L2(v) if and only if the following conditions
hold simultaneously:

(i) (u, v) is in joint dyadic A2. Namely, [u, v]A2 := supI∈D〈u−1〉I 〈v〉I < ∞.
(ii) {|I | |ΔI (u−1)|2〈v〉I }I∈D is a u−1-Carleson sequence.

(iii) {|I | |ΔI v|2〈u−1〉I }I∈D is a v-Carleson sequence (dual condition).
(iv) The positive dyadic operator T0 is bounded from L2(u) into L2(v) . Where

T0 f (x) :=
∑
I∈D

αI

|I | 〈 f 〉I 1I (x) ,

with αI := (|ΔI v|/〈v〉I
)(|ΔI (u−1)|/〈u−1〉I

)|I | , and ΔI v := 〈v〉I+ − 〈v〉I− .

A sequence {λI }I∈D is v-Carleson if and only if there is constant B > 0 such that∑
I∈D(J ) λI ≤ Bv(J ) for all J ∈ D. The smallest constant B is called the intensity

of the sequence. When u = v = w ∈ A2 then (i)–(iii) hold, and by Example 15 the
sequence {αI }I∈D is a 1-Carleson sequence implying (iv).
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In 2008, Nazarov, Treil, and Volberg found necessary and sufficient conditions
for two-weight boundedness of individual martingale transforms and other well-
localized operators [149], see also [180].

7.4.2 Dyadic Square Function

The dyadic square function is the sublinear operator formally defined as

(SD f )(x) :=
(∑

I∈D

|〈 f, hI 〉|2
|I | 1I (x)

)1/2

.

The dyadic square function is an isometry on L2(R), as a calculation quickly reveals,
namely, ‖SD f ‖L2 = ‖ f ‖L2 . It is also bounded on L p(R) for 1 < p < ∞; further-
more,

‖SD f ‖L p ∼ ‖ f ‖L p .

This result plays the role of Plancherel on L p (Littlewood–Paley theory). It readily
implies boundedness of Tσ on L p(R) since SD(Tσ f ) = SD f , as follows:

‖Tσ f ‖L p ∼ ‖SD(Tσ f )‖L p = ‖SD f ‖L p ∼ ‖ f ‖L p .

A somewhat convoluted argument can be done to prove the L p boundedness of
the dyadic square function. First prove L2(w) estimates for A2 weights w, second
extrapolate to get L p(w) estimates for Ap weights w, and third set w ≡ 1 ∈ Ap.
Stephen Buckley has a very nice and elementary argument showing boundedness
of the dyadic square function on L2(w) when w is an A2 weight [28] or see [154,
Sect. 2.5.1]. One can track the dependence on the weight and get a 3/2 power on the
A2 characteristic of the weight [22, Sect. 5], far from the optimal linear dependence
discussed in Sect. 7.4.2.1.

A seminal paper on weighted inequalities for the dyadic square function is [184],
see also the book [185], both authored by Mike Wilson.

7.4.2.1 One-Weight Estimates for SD

Quantitative one-weight inequalities are known for the dyadic square function. The
A2 conjecture (linear bound) was proven by Sanja Hukovic, Sergei Treil, and Sasha
Volberg in 2000 [87] and the reverse estimate was proven by Stefanie Petermichl and
Sandra Pott in 2002 [164].

We present now the precise statements. For all weights w ∈ A2 and functions
f ∈ L2(w)

[w]− 1
2

A2
‖ f ‖L2(w) � ‖SD f ‖L2(w) � [w]A2‖ f ‖L2(w)
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The direct and reverse estimates on L2(w) for the dyadic square function play the
role of Plancherel on L2(w). We can use these inequalities to obtain L2(w) bounds
for the martingale transform Tσ of the form [w]3/2A2

. However, the optimal bound is
linear [186], as we already mentioned in Sect. 7.4.1.1.

Boundedness on L2(w) for all weights w ∈ A2 implies by extrapolation bound-
edness on L p(R) (and on L p(w) for all w ∈ Ap). However, sharp extrapolation will
only yield the optimal power for 1 < p ≤ 2, if one startswith the optimal linear bound
on L2(w). Not only SD is bounded on L p(w) if w ∈ Ap, moreover, for 1 < p < ∞
and for all w ∈ Ap and f ∈ L p(w)

‖SD f ‖L p(w) �p [w]max{ 1
2 , 1

p−1 }
Ap

‖ f ‖L p(w).

The power max{1/2, 1/(p − 1)} is optimal. It corresponds to sharp extrapolation
starting at r = 3 with square root power [53]. More precisely, for all w ∈ A3 and
f ∈ L3(w),

‖SD f ‖L3(w) � [w] 1
2
A3

‖ f ‖L3(w).

This estimate is valid more generally for Wilson’s intrinsic square function [127,
185].

Sharp extrapolation from the reverse estimate on L2(w) also yields the following
reverse estimate on L p(w) for all w ∈ Ap and f ∈ L p(w),

‖ f ‖L p(w) �p [w]
1
2 max{1, 1

p−1 }
Ap

‖SD f ‖L p(w).

This estimate can be improved, using deep estimates of Chang, Wilson, and Wolff
[31] for all p > 1 to the following 1/2 power of the smaller Fujii–Wilson A∞ char-
acteristic,

‖ f ‖L p(w) �p [w] 1
2
A∞‖SD f ‖L p(w).

This estimate is better in the range 1 < p < 2 where the power is 1/2 instead of
1/2(p − 1).

For future reference, we can compute precisely the weighted L2 norm of SD f as
follows:

‖SD f ‖2L2(w) =
∑
I∈D

|〈 f, hI 〉|2〈w〉I .

7.4.2.2 Two-Weight Estimates for SD

Two-weight inequalities are understood for the dyadic square function. The necessary
and sufficient conditions for two-weight L2 boundedness are known [146]. Quali-
tative (mixed) estimates have been found by different authors, and these estimates

umolter@dm.uba.ar



198 M. C. Pereyra

reduce to the linear estimate in the one-weight case. We present now the precise
statements.

Theorem 8 (Nazarov, Treil, Volberg 1999) The dyadic square function SD is
bounded from L2(u) into L2(v) if and only if the following conditions hold simulta-
neously:

(i) (u, v) ∈ A2 (joint dyadic A2).
(ii) {|I | |ΔI u−1|2〈v〉I }I∈D is a u−1-Carleson sequence with intensity Cu,v .

Notice (ii) is a localized “testing condition” on test functions u−11J . Also, note
that the necessary and sufficient conditions (i)-(iii) in Theorem 7 for the martingale
transform can be now replaced by

(i) SD is bounded from L2(u) into L2(v).
(ii) SD is bounded from L2(v−1) into L2(u−1).

This is because (u, v) ∈ A2 if and only if (v−1, u−1) ∈ A2.
A quantitative version of the boundedness estimate in terms of the constants

appearing in the necessary and sufficient conditions is the following:

‖SD‖L2(u)→L2(v) � ([u, v]Ad
2
+ Cu,v)

1/2.

There are similar two-weight L p estimates for continuous square function [117, 118],
see also [22, Theorem 6.2].

If the weights (u, v) ∈ A2 and u−1 ∈ A∞, then they satisfy the necessary and
sufficient conditions in Theorem 8 and the following estimate holds [22]:

‖SD‖L2(u)→L2(v) � ([u, v]A2 + [u, v]A2 [u−1]A∞)1/2.

Setting u = v = w ∈ A2, this improves the known linear bound to a mixed-type
bound

‖SD‖L2(w) � ([w]A2 [w−1]A∞)1/2 � [w]A2 .

For mixed L p − L∞ or mixed L p − Lr estimates for the square function and
general Calderón-Zygmund operators see [95, 96, 128, 132].

Same one-weight estimate have been shown to hold for the dyadic square function
and for matrix-valued weights [99]. Quantitative weighted estimates from L p(u) into
Lq(v) in terms of quadratic testing condition are known [181].

7.4.3 Petermichl’s Dyadic Shift Operator

Given parameters (r,β) ∈ Ω = [1, 2) × {0, 1}Z, the Petermichl’s dyadic shift oper-
ator Xr,β (pronounced “Sha”) associated to the random dyadic grid Dr,β is defined
for functions f ∈ L2(R) by
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Xr,β f (x) :=
∑

I∈Dr,β

〈 f, hI 〉 HI (x) =
∑

I∈Dr,β

2−1/2σ(I ) 〈 f, h Ĩ 〉 hI (x),

where HI = 2−1/2(hIr − hIl ) and σ(I ) is ±1 depending whether I is the right or
left child of I ’s parent Ĩ . More precisely, σ(I ) = 1 if I = ( Ĩ )r and σ(I ) = −1 if
I = ( Ĩ )l .

When r = 1 and β j = 0 for all j ∈ Z, the corresponding grid is the regular dyadic
grid and we denote the associated daydic shift operator simplyX.

Petermichl’s dyadic shift operators are isometries on L2(R), that is, for all r,β ∈
Ω , ‖Xr,β f ‖L2 = ‖ f ‖L2 , and they are bounded operators on L p(R), as can be readily
seen using Plancherel’s identity and dyadic square function estimates.

Each operator Xr,β is a good dyadic model for the Hilbert transform H . The
images underXr,β of the Haar functions are the normalized differences of the Haar
functions on its children, namely, Xr,βh J (x) = HJ (x). The functions h J and HJ

can be viewed as localized sines and cosines, in the sense that if we were to extend
them periodically, with period the length of the support, wewill see two square waves
shifted by half the length of the period.More evidence comes from theway the family
{Xr,β}(r,β)∈Ω interacts with translations, dilations, and reflections. Each dyadic shift
operator does not have symmetries that characterize the Hilbert transform,11 but an
average over all random dyadic gridsDr,β does. It is a good exercise to figure out how
each individual shift interacts with these rigid motions; they almost commute except
that the dyadic grid changes. For example, regarding reflections, it can be seen that if
we denote by R(x) = −x then RXr,β = −Xr,−β R, where −β = {1 − βi }i∈Z. The
corresponding rules for translations and dilations are slightly more complicated, but
what matters is that there is a one-to-one correspondence between the dyadic grids so
that when averaging over all dyadic grids the averagewill have the desired properties,
and hence it will be a constant multiple of the Hilbert transform. This is precisely
what Stefanie Petermichl proved in 2000, a groundbreaking and unexpected new
result for the Hilbert transform [161]. More precisely, she showed that

H = − 8

π
EΩXr,β = − 8

π

∫
Ω

Xr,βdP(r,β).

The result follows after verifying that the averages have the invariance properties
that characterize theHilbert transform [89, 161]. Because the shift operatorsXr,β are
uniformly bounded on L p(R) for 1 < p < ∞, this representation will immediately
imply that the Hilbert transform H is bounded on L p(R) in the same range, a result
first proved by Marcel Riesz in 1928. Similarly, once uniform (on the dyadic grids
Dr,β) weighted inequalities are verified for Xr,β , the inequalities will be inherited
by the Hilbert transform. Petermichl proved the linear bounds on L2(w) for the shift
operators using Bellman function methods, and hence she proved the A2 conjecture
for the Hilbert transform [162].

11Recall that any bounded linear operator on L2(R) that commutes with dilations and translations
and anticommutes with reflexions must be a constant multiple of the Hilbert transform.
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These results added a very precise new dyadic perspective to such a classic and
well-studied operator as the Hilbert transform. Similar representations hold for the
Beurling and the Riesz transforms [163, 165], these operators have many invariance
properties as the Hilbert transform does. For a while, it was believed that such invari-
ances were responsible for these representation formulas. It came as a surprise when
Tuomas Hytönen proved in 2012 that there is a representation formula valid for all
Calderón–Zygmund singular integral operators [90]. To state Hytönen’s result, we
need to introduce Haar shift operators of arbitrary complexity and paraproducts.

7.4.4 Haar Shift Operators of Arbitrary Complexity

The Haar shift operators of complexity (m, n) associated to a dyadic grid D were
introduced byMichael Lacey, Stefanie Petermichl, andMari Carmen Reguera [122];
they are defined on L2(R) as follows:

Xm,n f (x) :=
∑
L∈D

∑
I∈Dm (L),J∈Dn(L)

cL
I,J 〈 f, hI 〉 h J (x),

where the coefficients |cL
I,J | ≤

√|I | |J |
|L| , and Dm(L) denotes the dyadic subintervals

of L with length 2−m |L|.
The cancellation property of the Haar functions and the normalization of the

coefficients ensures that ‖Xm,n f ‖L2 ≤ ‖ f ‖L2 , and square function estimates ensure
boundedness on L p(R) for all 1 < p < ∞. The martingale transform, Tσ, is a Haar
shift operator of complexity (0, 0). Petermichl’sXr,β operators are Haar shift opera-
tors of complexity (0, 1). The dyadic paraproduct, πb, to be introduced in Sect. 7.4.5,
is not one of these and nor is its adjoint π∗

b .
The following estimates are known for dyadic shift operators of arbitrary com-

plexity. First, Michael Lacey, Stefanie Petermichl, andMari Carmen Reguera proved
the A2 conjecture for the Haar shift operators of arbitrary complexity with constant
depending exponentially on the complexity [122]. Unlike their predecessors, they did
not use Bellman functions; instead, they used stopping time techniques and a two-
weight theorem for “well-localized operators” of [149]. Second, David Cruz-Uribe,
ChemaMartell, andCarlos Pérez [53] used a localmedian oscillation technique intro-
duced by Andrei Lerner [126, 127]. The local median oscillation method was quite
flexible; they obtained new results such as the sharp bounds for the square function
for p > 2, for the dyadic paraproduct, also for vector-valued maximal operators, as
well as two-weight results; however, for the dyadic shift operators the weighted esti-
mates still depended exponentially on the complexity. Third, Tuomas Hytönen [90]
obtained the linear estimates with polynomial dependence on the complexity, needed
to prove the A2 conjecture for Calderón–Zygmund singular integral operators.
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7.4.5 Dyadic Paraproduct

Quoting from an article on “What is....a Paraproduct?” for the broader public by
Arpad Bényi, Diego Maldonado, and Virginia Naibo [17]:

The term paraproduct is nowadays used rather loosely in the literature to indicate a bilinear
operator that, although noncommutative, is somehow better behaved than the usual product
of functions. Paraproducts emerged in J.-M. Bony’s theory of paradifferential operators [26],
which stands as a milestone on the road beyond pseudodifferential operators pioneered by
R. R. Coifman and Y. Meyer in [40]. Incidentally, the Greek word παρα (para) translates as
beyond in English and au délà de in French, just as in the title of [40]. The defining properties
of a paraproduct should therefore go beyond the desirable properties of the product.

The dyadic paraproduct associated to a dyadic grid D and to b ∈ BMOD is an
operator acting on square integrable functions f as follows:

πb f (x) :=
∑
I∈D

〈 f 〉I 〈b, hI 〉 hI (x),

where 〈 f 〉I = 1
|I |
∫

I f (x) dx = 〈 f,1I /|I |〉. A function b is in the space of dyadic

bounded mean oscillation, BMOD if and only if

‖b‖BMOD := sup
J∈D

(
1

|J |
∫

J
|b(x) − 〈b〉J |2dx

)1/2

< ∞.

Notice that we are using an L2 mean oscillation instead of the L1 mean oscillation
used in (7.2.2) in the definition of BMO, and of course, we are restricting to dyadic
intervals. As it turns out, one could use an L p mean oscillation for any 1 ≤ p and
obtain equivalent norms in BMO, thanks to the celebrated John–Nirenberg lemma
[104].

Formally, expanding f and b in the Haar basis, multiplying and separating the
terms into upper triangular, diagonal, and lower triangular parts, one gets that

b f = πb f + π∗
b f + π f b,

in doing so is important to note that
∑

I∈D:I⊃J 〈 f, hI 〉 hI = 〈 f 〉J . It is well known
that multiplication by a function b is a bounded operator on L p(R) if and only if
the function is essentially bounded, that is, b ∈ L∞(R). However, the paraproduct
is a bounded operator on L p(R) if and only if b ∈ BMOD, which is a space strictly
larger than L∞(R). The L2 estimate can be obtained using, for example, the Carleson
embedding lemma, see Sect. 7.5.1.

Using a weighted Carleson embedding lemma, one can check that the paraproduct
is bounded on L2(w) for all w ∈ A2 [154]. Furthermore, Beznosova proved the A2

conjecture for paraproducts [21], namely,

‖πb f ‖L2(w) ≤ C[w]A2‖b‖BMOD‖ f ‖L2(w).
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By extrapolation, one concludes that the paraproduct is bounded on L p(w) for all
w ∈ Ap and 1 < p < ∞, in particular, it is bounded on L p(R). In Sect. 7.5, we will
present Beznosova’s Bellman function argument proving the A2 conjecture for the
dyadic paraproduct. This argument was generalized to R

d in [36] and to spaces of
homogeneous type in [182]. It was pointed out to us recently [183] that the para-
product is a well-localized operator (for trivial reasons) in the sense of [149], and
therefore it falls under their theory.

To finish this brief introduction to the paraproduct, we would like to mention its
intimate connection to the T (1) and T (b) theorems of Guy David, Jean-Lin Journé,
and Stephen Semmes [61, 62]. These theorems give (necessary and sufficient) con-
ditions to verify boundedness on L2(R) for singular integral operators T with a
Calderón–Zygmund kernel when Fourier analysis, almost-orthogonality (Cotlar’s
lemma), or other more standard techniques fail. In the T (1) theorem, the conditions
amount to checking some weak-boundedness property which is a necessary condi-
tion, and checking that the function 1 is “mapped” under the operator and its adjoint,
T (1) and T ∗(1), into BMO. Once this is verified, the operator can be decomposed
into a “simpler” operator S with the property that S(1) = S∗(1) = 0, a paraproduct,
πT (1), and the adjoint of a paraproduct, π∗

T ∗(1). The paraproduct terms are bounded on
L2(R), the operator S can be verified to be bounded on L2(R), and as a consequence
so will be the operator T .

We have defined all these model operators in the one-dimensional Case; there are
corresponding Haar shift operators and dyadic paraproducts defined on R

d as well
as T (1) and T (b) theorems.

7.4.6 Hytönen’s Representation Theorem

Let us remind the reader that a bounded operator on L2(Rd) is a Calderón–Zygmund
singular integral operator with smoothness parameter α > 0 if it has an integral
representation

T f (x) =
∫

Rd

K (x, y) f (y) dy, x /∈ supp f,

for a kernel K (x, y) defined for all (x, y) ∈ R
d × R

d such that x �= y, and verifying
the standard size and smoothness estimates, respectively, |K (x, y)| ≤ C/|x − y|d
and

|K (x + h, y) − K (x, y)| + |K (x, y + h) − K (x, y)| ≤ C |h|α/|x − y|d+α,

for all |x − y| > 2|h| > 0 and some fixed α ∈ [0, 1].
It is worth remembering that such Calderón–Zygmund singular integral operators

are bounded on L p(Rd) for all 1 < p < ∞, they are of weak-type (1, 1), and they
map BMO into itself.
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We now have all the ingredients to state the celebrated Hytönen’s representation
theorem [90] at least in the one-dimensional case.

Theorem 9 (Hytönen’s 2012)Let T be a Calderón–Zygmund singular integral oper-
ator with smoothness parameter α > 0, then

T ( f ) = EΩ

⎛
⎝ ∑

(m,n)∈N2

e−(m+n)α/2Xr,β
m,n( f ) + π

r,β
T (1)( f ) + (π

r,β
T ∗(1))

∗( f )

⎞
⎠ .

Where for each pair of random parameters (r,β) ∈ Ω , the operator Xr,β
m,n is a Haar

shift operators of complexity (m, n), the operator π
r,β
T (1) is a dyadic paraproduct, and

the operator (πr,β
T ∗(1))

∗ is the adjoint of a dyadic paraproduct, all defined on the random
dyadic grid Dr,β . The paraproducts and their adjoints in the decomposition depend
on the operator T via T (1) and T ∗(1). The Haar shift operators in the decomposition
also depend on T although it is not obvious in the notation we used. Indeed, the
coefficients cL

I,J , in the definition of the Haar shift multiplier of complexity (m, n)

(see Sect. 7.4.4), will depend on the given operator T for each L ∈ Dr,β , I ∈ Dr,β
m (L),

and J ∈ Dr,β
n (L). Notice that the exponential nature of the coefficients in the expan-

sion explains why the Haar shift multipliers of arbitrary complexity will need to be
bounded with a bound depending at most polynomially on the complexity.

To the author, this is a remarkable result providing a dyadic decomposition the-
orem for a large class of operators. Once you have such decomposition and L2(w)

estimates for each of the components (Haar shift operators, paraproducts, and their
adjoints) that are linear on [w]A2 and that are uniform on the dyadic grids, then the
A2 conjecture is resolved in the positive, as Tuomas Hytönen did in his celebrated
paper [90].

7.5 A2 Theorem for the Dyadic Paraproduct: A Bellman
Function Proof

As a model example, we will present in this section Beznosova’s argument proving
the A2 conjecture for the dyadic paraproduct [21]. The goal is to show that for
all weights w ∈ A2, functions b ∈ BMOD, and functions f ∈ L2(w) the following
estimate holds:

‖πb f ‖L2(w) � [w]A2‖b‖B M OD‖ f ‖L2(w).

We remind the reader that the dyadic paraproduct associated to b ∈ BMOD is
defined by πb f (x) :=∑I∈D〈 f 〉I bI h I (x), where bI = 〈b, hI 〉 and 〈 f 〉I = (1/|I |)∫

I f (y) dy.
To achieve a preliminary estimate, where instead of the linear bound on [w]A2 we

get a 3/2 bound, namely, [w]3/2A2
, we need to introduce a few ingredients: (weighted)
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Carleson sequences, Beznosova’s Little lemma, and the weighted Carleson lemma.
Afterward, in Sect. 7.5.4, we will refine the argument to get the desired linear bound.
To achieve the linear bound, we will need a few additional ingredients, including the
α-Lemma, introduced by Oleksandra Beznosova in her original proof [20]. Both the
Little lemma and the α-Lemma are proved using Bellman functions, and we sketch
their proofs, as well as the proof of the weighted Carleson lemma.

7.5.1 Weighted Carleson Sequences, Weighted Carleson
Lemma, and Little Lemma

In this section, we introduce weighted an unweighted Carleson sequences and the
weighted Carleson embedding lemma. We also present Bezonosova’s Little lemma
that enables us to ensure that given a weightw and a Carleson sequence {λI }I∈D, we
can create a w-weighted Carleson sequence by multiplying each term of the given
sequence by the reciprocal of w−1(I ).

7.5.1.1 Weighted Carleson Sequences and Lemma

Given a weight w, a positive sequence {λI }I∈D is w-Carleson if there is a constant
A > 0 such that ∑

I∈D(J )

λI ≤ Aw(J ) for all J ∈ D,

wherew(J ) = ∫J w(x) dx . The smallest constant A > 0 is called the intensity of the
sequence. When w = 1 a.e., we say that the sequence is Carleson (not 1-Carleson).

Example 11 If b ∈ BMOD, then the sequence {b2
I }I∈D is Carleson with intensity

‖b‖2
BMOD . Indeed, for any J ∈ D, the collection of Haar functions corresponding to

dyadic intervals I ⊂ J , {hI }I∈D(J ), forms an orthonormal basis on L2
0(J ) = { f ∈

L2(J ) : ∫J f (x) dx = 0}. The function (b − 〈b〉J )
∣∣

J belongs to L2
0(J ), therefore by

Plancherel’s inequality,

∑
I∈D(J )

b2
I =

∑
I∈D(J )

|〈b, hI 〉|2 =
∫

J
|b(x) − 〈b〉J |2 dx ≤ ‖b‖2BMOD |J |.

The following weighted Carleson lemma that appeared in [146] will be extremely
useful in our estimates; you canfind aproof in [140] thatwe reproduce inSect. 7.5.5.3.

Lemma 2 (Weighted Carleson Lemma) Given a weight v, then {λI }I∈D is a v-
Carleson sequence with intensity A if and only if for all nonnegative F ∈ L1(v), we
have
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∑
I∈D

λI inf
x∈I

F(x) ≤ A
∫

R

F(x) v(x) dx .

The following particular instance of the weighted Carleson lemma will be useful.

Example 12 Let {λI }I∈D be a v-Carleson sequence with intensity A, let f ∈ L2(v)

and set F(x) = (MD
v f (x))2 where MD

v is the weighted dyadic maximal function,
namely,

MD
v f (x) := sup

I∈D:x∈I
〈| f |〉vI where 〈| f |〉vI := 〈| f |v〉I /〈v〉I .

By definition of the dyadic maximal function, 〈| f |〉vI ≤ inf x∈I MD
v f (x). Then by the

weighted Carleson lemma (Lemma 2) and the boundedness of MD
v on L2(v) with

operator bound independent of the weight, we conclude that

∑
I∈D

λI (〈| f |〉vI )2 ≤ A‖MD
v f ‖2L2(v) � A‖ f ‖2L2(v).

Specializing even further we get another useful result that establishes the bound-
edness of the dyadic paraproduct on L2(R) when b ∈ BMOD.

Example 13 In particular, if v ≡ 1 and b ∈ BMOD, then λI := b2
I for I ∈ D defines

a Carleson sequence with intensity ‖b‖2
BMOD ; hence,

‖πb f ‖2L2 =
∑
I∈D

|〈πb f, hI 〉|2 ≤
∑
I∈D

b2
I 〈| f |〉2I � ‖b‖2BMOD‖ f ‖2L2 .

7.5.1.2 Beznosova’s Little Lemma

We will need to create w-Carleson sequences from given Carleson sequences. The
following lemma will come in handy [21].

Lemma 3 (Little Lemma) Let w be a weight, such that w−1 is also a weight. Let
{λI }I∈D be a Carleson sequence with intensity A, the sequence {λI /〈w−1〉I }I∈D is
w-Carleson with intensity 4A. In other words, for all J ∈ D

∑
I∈D(J )

λI

〈w−1〉I
≤ 4A w(J ). (7.5.1)

The proof uses a Bellman function argument that we will present in Sect. 7.5.5.
Note that the weight w in the Little lemma is not required to be in the Muckenhoupt
A2 class. It does require that the reciprocalw−1 is a weight, of course ifw ∈ A2 then
w−1 is a weight in A2.
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Example 14 Let b ∈ BMOD and w ∈ A2.The sequence {b2
I /〈w〉I }I∈D is a w−1-

Carleson, with intensity 4‖b‖2
BMOD . By Example 11, the sequence {b2

I }I∈D is a Car-
leson sequence with intensity ‖b‖2

BMOD , and then applying Lemma 3 with the roles
of w and w−1 interchanged, we get the stated result.

7.5.2 The 3/2 Bound for the Paraproduct on Weighted L2

We now show that the paraproduct πb is bounded on L2(w) when w ∈ A2 and
b ∈ BMOD, with bound [w]3/2A2

‖b‖BMOD , not yet the optimal linear bound.

Proof By duality suffices to show that for all f ∈ L2(w) and g ∈ L2(w−1),

|〈πb f, g〉| � [w]3/2A2
‖b‖BMOD‖ f ‖L2(w)‖g‖L2(w−1).

By definition of the dyadic paraproduct and the triangle inequality,

|〈πb f, g〉| ≤
∑
I∈D

〈| f |〉I |bI | |〈g, hI 〉|.

First, using the Cauchy–Schwarz inequality, we can estimate as follows:

|〈πb f, g〉| ≤
(∑

I∈D

〈| f |〉2I b2
I

〈w−1〉I

)1/2 (∑
I∈D

|〈g, hI 〉|2〈w−1〉I

)1/2

.

Second, using the fact that ‖SDg‖2L2(w−1)
=∑I∈D |〈g, hI 〉|2〈w−1〉I and the linear

bound on L2(v) for the square function for v = w−1 ∈ A2 with [w−1]A2 = [w]A2 ,
we further estimate by

|〈πb f, g〉| ≤
(∑

I∈D

( 〈| f |ww−1〉I

〈w−1〉I

)2
b2

I

〈w〉I
〈w〉I 〈w−1〉I

)1/2

‖SDg‖L2(w−1)

� [w]1/2A2

(∑
I∈D

(〈| f |w〉w−1

I

)2 b2
I

〈w〉I

)1/2

[w]A2‖g‖L2(w−1).

Third, using theweightedCarleson lemma (Lemma2) for thew−1-Carleson sequence
{b2

I /〈w〉I }I∈D with intensity 4‖b‖2
BMOD (see Example 14), together with the fact that

‖ f ‖L2(w) = ‖ f w‖L2(w−1), we get that

|〈πb f, g〉| � [w]3/2A2
2‖b‖BMOD‖MD

w−1( f w)‖L2(w−1)‖g‖L2(w−1)

� [w]3/2A2
‖b‖BMOD‖ f ‖L2(w)‖g‖L2(w−1),
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where in the last line we used the boundedness of the dyadic weighted maximal
function MD

v on L2(v) with an operator norm independent of the weight v. This
implies that

‖πb f ‖L2(w) � [w]3/2A2
‖b‖BMOD‖ f ‖L2(w).

This is precisely what we set out to prove.

7.5.3 Algebra of Carleson Sequences, α-Lemma,
and Weighted Haar Bases

To get a linear bound instead of the 3/2 power bound, we just obtained, we will need
a couple more ingredients, some algebra with Carleson sequences, the α-Lemma,
and weighted Haar bases.

7.5.3.1 Algebra of Carleson Sequences

GivenweightedCarleson sequences,we can create newweightedCarleson sequences
by linear operations or by taking geometric means.

Lemma 4 (Algebra of Carleson sequences) Given a weight v, let {λI }I∈D and
{γI }I∈D be two v-Carleson sequences with intensities A and B, respectively, then
for any c, d > 0,

(i) The sequence {cλI + dγI }I∈D is a v-Carleson sequence with intensity at most
cA + d B.

(ii) The sequence {√λI γI }I∈D is a v-Carleson sequence with intensity at most
√

AB.

The proof is a simple exercise which we leave to the interested reader. We do need
some specific Carleson sequences, and we record them in the next example.

Example 15 Let u, v ∈ A∞ and ΔI v := 〈v〉I+ − 〈v〉I− . Then,

(i) The sequence
{ |ΔI v|/〈v〉I |2 |I |}I∈D is a Carleson sequence, with intensity

C log[w]A∞ .
(ii) Let αI = (|ΔI v|/〈v〉I )(|ΔI u|/〈u〉I )|I |. The sequence {αI }I∈D is a Carleson

sequence.
(iii) When v ∈ A2, u = v−1 (also in A2), the sequence {αI }I∈D defined in item (ii)

has intensity at most log[v]A2 .
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Example 15(i)was discoveredbyRobert Fefferman,CarlosKenig,12 and Jill Pipher,13

in 1991, see [72]. The sharp constant C = 8 was obtained by Vasily Vasyunin using
the Bellman function method [176]. In fact, this example provides a characterization
of A∞ by summation conditions; for many more such characterizations for other
weight classes, see [23, 28]. Examples 15(ii)–(iii) follow from Example 15(i) and
from Lemma 4(ii).

7.5.3.2 The α-Lemma

The key to dropping from power 3/2 to linear power in the weighted L2 estimate
for the paraproduct is the following lemma, discovered by Beznosova, like the Little
lemma, in the course of writing her Ph.D. Dissertation [20], see also [21, 140]. Both
lemmas were proved using Bellman functions, and we will sketch the arguments in
Sect. 7.5.5.

Lemma 5 (α-Lemma) If w ∈ A2 and α > 0, then the sequence

μI := 〈w〉αI 〈w−1〉αI |I |
( |ΔI w|2

〈w〉2I
+ |ΔI w

−1|2
〈w−1〉2I

)
I ∈ D

is a Carleson sequence with intensity at most Cα[w]αA2
, and Cα = max{72/(α −

2α2), 576}.
Notice that the algebra of Carleson sequences encoded in Lemma 4 together
with the R. Fefferman–Kenig–Pipher Example 15(iii) give, for μI , an intensity of
[w]αA2

log[w]A2 , which is larger by a logarithmic factor than the one claimed in the
α-Lemma. This lesser estimate will improve the 3/2 estimate to a linear times loga-
rithmic estimate [20], the stronger α-Lemma will yield the desired linear estimate.

Example 16 Let w ∈ A2 and b ∈ BMOD. By the α-Lemma and the algebra of Car-
leson sequences, we conclude that

(i) {νI := |ΔI w|2〈w−1〉2I |I |}I∈D is Carleson with intensity C1/4[w]2A2
, C1/4 = 576.

(ii) {bI
√

νI }I∈D is Carleson with intensity 24[w]A2‖b‖BMOD .

7.5.3.3 Weighted Haar Basis

The last ingredient before we present the proof of the A2 conjecture for the dyadic
paraproduct is the weighted Haar basis.

12Carlos Kenig, an Argentinian mathematician, was elected President of the International Mathe-
matical Union in July 2018 in the International Congress of Mathematicians (ICM) held in Brazil
and for the first time in the Southern hemisphere.
13Jill Pipher is the president-elect of the American Mathematical Society (AMS), and will begin a
2-year term in 2019.
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Given a doubling weight w and an interval I , the weighted Haar function hw
I is

given by

hw
I (x) := √w(I−)/

√
w(I )w(I+)1I+(x) −√w(I+)/

√
w(I )w(I−)1I−(x).

The collection {hw
I }I∈D, of weighted Haar functions indexed on D—a system of

dyadic intervals—is an orthonormal system of L2(w). In fact, the weighted Haar
functions are the Haar functions corresponding to the space of homogeneous type
X = Rwith the Euclidean metric, the doubling measure dμ = w dx , and the dyadic
structure D, defined in Sect. 7.3.5.3.

There is a very simple formula relating the weighted Haar function and the regular
Haar function. More precisely, given I ∈ D there exist numbers αw

I , β
w
I such that

hI (x) = αw
I hw

I (x) + βw
I 1I (x)/

√|I |.

The coefficients can be calculated precisely, and they have the following upper
bounds:

(i) |αw
I | ≤ √〈w〉I , (ii) |βw

I | ≤ |ΔI w|/〈w〉I where ΔI w := 〈w〉I+ − 〈w〉I− .

7.5.4 A2 Conjecture for the Dyadic Paraproduct

We present a proof of Beznosova’s theorem, namely, for all b ∈ BMOD, w ∈ A2,
and f ∈ L2(w)

‖πb f ‖L2(w) � ‖b‖BMOD [w]A2‖ f ‖L2(w).

The proof uses the same ingredients introduced by Oleksandra Beznosova [21],
and a beautiful argument by Fedja Nazarov, Sasha Reznikov, and Sasha Volberg that
yields polynomial in the complexity bounds for Haar shift operators on geometric
doubling metric spaces [144]. An extension of their result to paraproducts with
arbitrary complexity can be found in joint work with Jean Moraes [140].

Proof Suffices by duality to prove that

|〈πb f, g〉| ≤ C‖b‖BMOD [w]A2‖ f ‖L2(w)‖g‖L2(w−1).

We introduce weighted Haar functions to obtain two terms to be estimated sepa-
rately,

|〈πb f, g〉| ≤
∑
I∈D

|bI | 〈| f |ww−1〉I |〈gw−1w, hI 〉| ≤ Σ1 + Σ2.

Explicitly, the sums Σ1 and Σ2 are obtained replacing hI = αw
I hw

I + βw
I 1I /

√|I |,
and using the estimates on the coefficients αI , βI , to get
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Σ1 :=
∑
I∈D

|bI | 〈| f |ww−1〉I |〈gw−1w, hw
I 〉|√〈w〉I ,

Σ2 :=
∑
I∈D

|bI | 〈| f |ww−1〉I 〈|g|w−1w〉I
|ΔI w|
〈w〉I

√|I |.

7.5.4.1 First Sum Σ1

Denote the L2(w) pairing 〈h, k〉L2(w) := 〈hw, k〉. To estimate the first sum, we
observe that the weighted average (with respect to the weight w−1) of the function
| f |w over a dyadic interval is bounded by the corresponding dyadic weighted max-
imal function evaluated at any point on the interval, hence by the infimum over the
interval, more precisely, 〈| f |ww−1〉I /〈w−1〉I ≤ inf x∈I MD

w−1( f w)(x). Then using
the definition of A2 and the Cauchy–Schwarz inequality, we get

Σ1 =
∑
I∈D

|bI |√〈w〉I

〈| f |ww−1〉I

〈w−1〉I
|〈gw−1, hw

I 〉L2(w)| 〈w〉I 〈w−1〉I

≤ [w]A2

∑
I∈D

|bI |√〈w〉I
inf
x∈I

MD
w−1 ( f w)(x) |〈gw−1, hw

I 〉L2(w)|

≤ [w]A2

(∑
I∈D

|bI |2
〈w〉I

inf
x∈I

|MD
w−1 ( f w)(x)|2

) 1
2
(∑

I∈D

∣∣〈gw−1, hw
I 〉L2(w)

∣∣2)
1
2

.

Using theweightedCarleson lemma (Lemma 2)with F(x) = |MD
w−1( f w)(x)|2, with

weight v = w−1 ∈ A2 recalling [w]A2 = [w−1]A2 , and with w−1-Carleson sequence
{b2

I /〈w〉I }I∈D with intensity 4‖b‖2
BMOD by the Little lemma (Lemma 7.5.1), we get

that

Σ1 ≤ 2[w]A2‖b‖BMOD

(∫
R

|MD
w−1 ( f w)(x)|2 w−1(x) dx

) 1
2 ‖gw−1‖L2(w)

≤ 4[w]A2‖b‖BMOD‖ f ‖L2(w)‖g‖L2(w−1).

where we used in the last inequality the estimate (7.3.1) for the weighted dyadic
maximal function, andnoting that h ∈ L2(w) if andonly if hw ∈ L2(w−1),moreover,
‖hw‖L2(w−1) = ‖h‖L2(w) (we used this twice, for h = f and for h = gw−1).

7.5.4.2 Second Sum Σ2

Using similar arguments to those used for Σ1, we get

Σ2 ≤
∑
I∈D

|bI | 〈| f |ww−1〉)
〈w−1〉I

〈|g|w−1w〉I

〈w〉I

√
|ΔI w|2〈w−1〉2I ‖I |

≤
∑
I∈D

|bI | √νI inf
x∈I

MD
w−1( f w)(x) MD

w (gw−1)(x),
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where |bI |2 and νI := |ΔI w|2〈w−1〉2I |I | are Carleson sequences with intensities
‖b‖2

BMOD and [w]2A2
, respectively, by Example 11 and Example 16(i). Then by

the algebra of Carleson Sequences, the sequence |bI |√νI is a Carleson sequence
with intensity ‖b‖BMOD [w]A2 . Using the weighted Carleson lemma (Lemma 2) with
F(x) = MD

w−1( f w)(x) MD
w (gw−1)(x) and with v = 1, we conclude that

Σ2 ≤ [w]A2‖b‖BMOD

∫
R

MD
w−1( f w)(x) MD

w (gw−1)(x) dx .

To finish, we use the Cauchy–Schwarz inequality, the fact that w
1
2 (x) w− 1

2 (x) = 1,
and estimate (7.3.1) for the weighted dyadic maximal functions, to get that

Σ2 ≤ [w]A2‖b‖BMOD
[∫

R

(
MD

w−1 ( f w)(x)
)2

w−1(x) dx

] 1
2
[∫

R

(
MD

w (gw−1)(x)
)2

w(x) dx

] 1
2

= [w]A2‖b‖BMOD‖MD
w−1 ( f w)‖L2(w−1)‖MD

w (gw−1)‖L2(w)

≤ 4[w]A2‖b‖BMOD ‖ f ‖L2(w)‖g‖L2(w−1).

All together, this implies that ‖πb f ‖L2(w) ≤ 8[w]A2‖b‖BMOD‖ f ‖L2(w), proving the
A2 conjecture for the dyadic paraproduct.

7.5.5 Auxiliary Lemmas

We now present the Bellman function proofs (or at least the main ideas) for the Little
lemma (Lemma 3) and the α-Lemma (Lemma 5), to illustrate the method in a very
simple setting. For completeness, we also present the proof of the weighted Carleson
lemma (Lemma 2). The lemmas in this section hold onRd and also on geometrically
doubling metric spaces [36, 144].

7.5.5.1 Proof of Beznosova’s Little Lemma

We wish to prove Lemma 3. The proof uses a Bellman function argument, which we
now describe. As usual, the argument proceeds in two steps. First, Lemma 6 encodes
what now is called an induction on scales argument. If we can find aBellman function
with certain properties, then we will solve our problem by induction on scales. This
type of arguments shows that if we can find a function with certain size, domain, and
dyadic convexity properties tailored to the inequality of interest, we will be able to
induct on scales and obtain the desired inequality. Second, Lemma 7 will show that
such Bellman function exists.
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Lemma 6 (Beznosova 2008) Suppose there exists a real-valued function of three
variables B(x) = B(u, v, l), whose domain D contains points x = (u, v, l)

D := {(u, v, l) ∈ R
3 : u, v > 0, uv ≥ 1 and 0 ≤ l ≤ 1},

whose range is given by 0 ≤ B(x) ≤ u, and such that the following convexity prop-
erty holds:

B(x) − (B(x+) + B(x−))/2 ≥ α/4v, for all x, x± ∈ D with x − x+ + x−
2

= (0, 0, α).

(7.5.2)
Then Lemma 3 will be proven; more precisely, (7.5.1) holds.

Proof Without loss of generality, wemay assume that the intensity A of the Carleson
sequence {λI }I∈D in Lemma 3 is one, A = 1.

Fix a dyadic interval J . Let u J := 〈w〉J , vJ := 〈w−1〉J and �J := 1
|J |
∑

I∈D(J ) λI ,
then xJ := (u J , vJ , �J ) ∈ D. Recall thatD(J ) denotes the intervals I ∈ D such that
I ⊂ J .

Let x± := xJ± ∈ D, then

xJ − xJ+ + xJ−

2
= (0, 0,αJ ), where αJ := λJ

|J | .

Hence, by the size and convexity property (7.5.2), and |J+| = |J−| = |J |/2,

|J | 〈w〉J ≥ |J | B(xJ ) ≥ |J+|B(xJ+) + |J−|B(xJ−) + λJ /4〈w−1〉J .

Repeat the argument this time for |J+|B(xJ+) and |J−|B(xJ−), use that B ≥ 0 on
D, and keep repeating to get, after dividing by |J |, that

〈w〉J ≥ 1

4|J |
∑

I∈D(J )

λI

〈w−1〉I

which implies (7.5.1) after multiplying through by 4|J |. The lemma is proved.

The previous induction on scales argument is conditioned on the existence of a
function with certain properties, a Bellman function. We now establish the existence
of such function. Both lemmas appeared in [21].

Lemma 7 (Beznosova 2008) The function B(u, v, l) := u − 1
v(1+l) is (i) defined on

the domain D introduced in Lemma 6, (ii) 0 ≤ B(x) ≤ u for all x = (u, v, l) ∈ D,
and (iii) obeys the following differential estimates on D:

(∂B/∂l)(u, v, l) ≥ 1/(4v) and − (du, dv, dl) d2B(u, v, l) (du, dv, dl)t ≥ 0,
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where d2B(u, v, l) denotes the Hessian matrix of the function B evaluated at
(u, v, l). Moreover, these imply the dyadic convexity condition B(x) − (B(x+) +
B(x−))/2 ≥ α/(4v).

Proof Differential conditions can be checked by a direct calculation that we leave
as an exercise for the reader. By the mean value theorem and some calculus,

B(x) − B(x+) + B(x−)

2
= ∂B

∂l
(u, v, l ′)α − 1

2

∫ 1

−1
(1 − |t |)b′′(t)dt ≥ α

4v
,

where b(t) := B(x(t)) and x(t) := 1+t
2 x+ + 1−t

2 x− for −1 ≤ t ≤ 1.
Note that x(t) ∈ D whenever x+ and x− are in the domain, since D is a convex

domain and x(t) is a point on the line segment between x+ and x−, and l ′ is a point
between l and l++l−

2 . This proves the lemma.

These two lemmas prove Beznosova’s Little lemma (Lemma 3).

7.5.5.2 α-Lemma

We present a very brief sketch of the argument leading to the proof of the α-Lemma
(Lemma 5), see [21] for 0 < α < 1/2, and [140] for α ≥ 1/2. Recall that we wish
to show that if w ∈ A2 and 0 < α, then the sequence

μI := 〈w〉αI 〈w−1〉αI |I |
( |ΔI w|2

〈w〉2I
+ |ΔI w

−1|2
〈w−1〉2I

)
for I ∈ D

is a Carleson sequence with intensity at most Cα[w]αA2
, and Cα = max{72/(α −

2α2), 576}.
Proof (Sketch of the Proof) Use theBellman functionmethod. Figure out the domain,
range, and dyadic convexity conditions needed to run an induction on scale argument
that will yield the inequality. Verify that the Bellman function B(u, v) = (uv)α sat-
isfies those conditions (or at least a differential version that can then be seen implies
the dyadic convexity) for 0 < α < 1/2. Forα ≥ 1/2, just observe that one can factor
out 〈w〉α−1/4

I 〈w−1〉α−1/4
I ≤ [w]α−1/4

A2
and then use the already proven lemma when

α = 1/4 < 1/2.

7.5.5.3 Weighted Carleson Lemma

Finally, we present a proof of the weighted Carleson lemma (Lemma 2), which states
that if v is aweight, {αL}L∈D a v-Carleson sequencewith intensity A, and F a positive
measurable function on R, then
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∑
L∈D

αL inf
x∈L

F(x) ≤ A
∫

R

F(x) v(x) dx .

The weighted Carleson lemma we present here is a variation in the spirit of other
weighted Carleson embedding theorems that appeared before in the literature [146].
The converse is immediately true by choosing F(x) = 1J (x).

Proof Assume that F ∈ L1(v); otherwise, the first statement is automatically true.
Setting γL = inf

x∈L
F(x), we can write

∑
L∈D

αLγL =
∑
L∈D

αL

∫ ∞

0
χ(L , t) dt =

∫ ∞

0

(∑
L∈D

χ(L , t)αL

)
dt, (7.5.3)

where χ(L , t) = 1 for t < γL and zero otherwise, and where we used the monotone
convergence theorem in the last equality. Define the level set Et = {x ∈ R : F(x) >

t}. Since F ∈ L1(v) then Et is a v-measurable set for every t and we have, by
Chebychev’s inequality, that the v-measure of Et is finite for all t > 0. Moreover,
there is a collection of maximal disjoint dyadic intervals Pt that will cover Et except
for at most a set of v-measure zero. Finally, observe that L ⊂ Et if and only if
χ(L , t) = 1. All together we can rewrite the integrand in the right-hand side of
(7.5.3) as

∑
L∈D

χ(L , t)αL =
∑
L⊂Et

αL ≤
∑
L∈Pt

∑
I∈D(L)

αI ≤ A
∑
L∈Pt

v(L) = A v(Et ),

wherewe used in the second inequality the fact that {αJ }I∈D is a v-Carleson sequence
with intensity A. Thus, we can estimate

∑
L∈D

αL inf
x∈L

F(x) =
∑
L∈D

αLγL ≤ A
∫ ∞

0
v(Et ) dt = A

∫
R

F(x) v(x) dx,

where the last equality follows from the layer cake representation.

7.6 Case Study: Commutator of Hilbert Transform
and Function in BMO

In this section, we summarize chronologically the weighted norm inequalities known
for the commutator [b, T ] where T is a linear operator and b a function in BMO. In
particular, we will consider T = H the Hilbert transform. We sketch a dyadic proof
of the first quantitative weighted estimate for the commutator [b, H ] due to Daewon
Chung [35], yielding the optimal quadratic dependence on the A2 characteristic of
the weight. We discuss a very useful transference theorem of Chung, Pérez and
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the author [37], and present its proof based on the celebrated Coifman–Rochberg–
Weiss argument. The transference theorem allows to deduce quantitative weighted
L p estimates for the commutator of a linear operator with a BMO function, from
given quantitative weighted L p estimates for the operator.

7.6.1 L p Theory for [b, H]

Recall that the commutator of a function b ∈ BMO and H the Hilbert Transform is
defined to be

[b, H ]( f ) := b (H f ) − H(b f ).

The commutator [b, H ] is bounded on L p(R) for 1 < p < ∞ if and only if b ∈
BMO [41]. Moreover, the following estimate is known to hold for all b ∈ BMO and
f ∈ L p(R)

‖[b, H ]( f )‖L p �p ‖b‖BMO‖ f ‖L p .

In fact, the operator norm ‖[b, H ]‖L2→L2 ∼ ‖b‖BMO. Observe that bH and Hb are
NOT necessarily bounded on L p(R) when b ∈ BMO. The commutator introduces
some key cancellation. This is very much connected to the celebrated H 1-BMO
duality theorem by Fefferman and Stein [73], where the Hardy space H 1 can be
defined as those functions f in L1(R) such that their maximal function M f is also
in L1(R).

The commutator [b, H ] is more singular than H , as evidenced by the fact that,
unlike the Hilbert transform, the commutator is not of weak-type (1, 1) [157]. In
particular, the commutator is not a Calderón–Zygmund operator, if it were it would
be of weak-type (1, 1), and is not.

7.6.2 Weighted Inequalities

The first two-weight results for the commutator that we present are of a qualitative
nature. The first one is a two-weight result due to Steven Bloom for the commutator
of the Hilbert transform with a function in weighted BMO when both weights are in
Ap [25].

Theorem 10 (Bloom 1985) If u, v ∈ Ap, then [b, H ] : L p(u) → L p(v) is bounded
if and only if b ∈ BMOμ where μ = u−1/pv1/p. Where b ∈ BMOμ if and only if

‖b‖BMOμ
:= sup

I∈R

1

μ(I )

∫
I
|b(x) − 〈b〉I | dx < ∞. (7.6.1)
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What is important in this setting is that the hypothesis u, v ∈ Ap implies that μ ∈ A2

as can be seen by a direct calculation using Hölder’s inequality. The weighted BMO
space defined by (7.6.1) was first introduced by Eric Sawyer and Richard Wheeden
[170], and it has been called in the literature, somewhat misleadingly, Bloom BMO.
For a “modern” dyadic proof of Bloom’s result, see [84, 85].

The second result is a one-weight result for very general linear operators T
obtained by Josefina Álvarez, Richard Bagby, Doug Kurtz, and Carlos Pérez [8];
they also prove two-weight estimates.

Theorem 11 (Álvarez, Bagby, Kurtz, Pérez 1993) Let T be a linear operator on the
set of real-valued Lebesgue measurable functions defined on R

d , with a domain of
definition which contains every compactly supported function in a fixed L p space.
If w ∈ Ap and b ∈ BMO, then there is a constant C p(w) > 0 such that for all
f ∈ L p(w) the following inequality holds:

‖[b, T ]( f )‖L p(w) ≤ C p(w)‖b‖BMO‖ f ‖L p(w).

The proof uses a classical argument by Raphy Coifman,14 Richard Rochberg, and
Guido Weiss [41]. In Sect. 7.6.4.2, we will present a quantitative version of this
argument [37]. For a proof of Bloom’s result using this type of argument, see [93].

The next result is a quantitative weighted inequality obtained by Daewon Chung
in his Ph.D. Dissertation [34, 35].

Theorem 12 (Chung 2010) For all b ∈ BMO, w ∈ A2 and f ∈ L2(w), the follow-
ing holds:

‖[b, H ]( f )‖L2(w) � ‖b‖BMO[w]2A2
‖ f ‖L2(w).

The quadratic power on the A2 characteristic and the linear bound on the BMO norm
are both optimal powers. The quadratic dependence on the A2 characteristic is another
indication that this operator is more singular than the Calderón–Zygmund singular
integral operators for whom the dependence is linear [90], as we have emphasized
throughout these lectures.

7.6.3 Dyadic Proof of Chung’s Theorem

We now sketch Chung’s dyadic proof of the quadratic estimate for the commutator
[35].

Proof (Sketch of proof)Chung’s “dyadic” proof is basedonusingPetermichl’s dyadic
shift operators Xr,β instead of H [161] and proving uniform (on the dyadic grids
Dr,β) quadratic estimates for the corresponding commutators [Xr,β, b]. To ease

14As I am writing these notes, it has been announced that Coifman won the 2018 Schock Prize in
Mathematics for his “fundamental contributions to pure and applied harmonic analysis.”
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notation,wedrop the superscripts r,β and simplywriteX forXr,β , and the estimates
will be independent of the parameters r and β.

To achieve this, we first recall the decomposition of a product b f in terms of
paraproducts and their adjoints,

b f = πb f + π∗
b f + π f b,

notice that the first two terms are bounded on L p(w) when b ∈ BMO and w ∈ Ap;
the enemy is the third term. Decomposing the commutator accordingly, we get

[b,X]( f ) = [πb,X]( f ) + [π∗
b ,X]( f ) + (πX f (b) − X(π f b)

)
. (7.6.2)

Known linear bounds on L2(w) for the dyadic paraproduct πb, its adjoint π∗
b , and for

Petermichl’s dyadic shift operatorX, see [21, 162], immediately given by iteration,
quadratic bounds for the first two terms on the right-hand side of (7.6.2). Surprisingly,
the third term is better; it obeys a linear bound, and so do halves of the first two
commutators, as shown in [35] using Bellman function techniques, namely,

‖πX f (b) − X (π f b)‖L2(w) + ‖Xπb( f )‖L2(w) + ‖π∗
bX( f )‖L2(w) ≤ C‖b‖BMO[w]A2‖ f ‖L2(w).

All together providing uniform (on the random dyadic gridsDr,β) quadratic bounds
for the commutators [b,Xr,β], and hence, averaging over the random grids, we get
the desired quadratic estimate for [b, H ].

The quadratic estimate and the corresponding extrapolated estimates, namely, for
all b ∈ BMO, w ∈ Ap, and f ∈ L p(w)

‖[b, H ]( f )‖L p(w) �p [w]2max{1, 1
p−1 }

Ap
‖b‖BMO‖ f ‖L p(w), (7.6.3)

are optimal for all 1 < p < ∞, as can be seen considering appropriate power func-
tions and power weights [37].

The “bad guys” are the nonlocal terms πbX,Xπ∗
b . A posteriori one realizes the

pieces that obey linear bounds are generalized Haar Shift operators, and hence their
linear bounds can be deduced from general results for those operators.

As a byproduct of Chung’s dyadic proof, we get that the extrapolated bounds for
the dyadic paraproduct are optimal [155], namely, for all b ∈ BMO, w ∈ Ap, and
f ∈ L p(w)

‖πb f ‖L p(w) �p [w]max{1, 1
p−1 }

Ap
‖b‖BMO‖ f ‖L p(w).

Proof By contradiction, if not for some p then [b, H ] will have a better bound in
L p(w) than the known optimal bound given by (7.6.3) for that p.
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7.6.4 A Quantitative Transference Theorem

The following theorem provides a mechanism for transferring known quantitative
weighted estimates for linear operators to their commutators with BMO functions
[37, 155].

Theorem 13 (Chung, Pereyra, Pérez 2012) Given linear operator T and 1 < r <

∞, such that for all w ∈ Ar and f ∈ Lr (w), the following estimate holds

‖T f ‖Lr (w) �T,d [w]αAr
‖ f ‖Lr (w),

then the commutator of T with b ∈ BMO is such that for all w ∈ Ar and f ∈ Lr (w)

‖[b, T ]( f )‖Lr (w) �r,T,d [w]α+max{1, 1
r−1 }

Ar
‖b‖BMO‖ f ‖Lr (w).

The proof follows the classical Coifman–Rochberg–Weiss argument using (i) the
Cauchy integral formula; (ii) the following quantitative Coifman–Fefferman result:
w ∈ Ar implies w ∈ RHq with q = 1 + cd/[w]Ar and [w]RHq ≤ 2; and (iii) a quan-
titative version of the estimate: b ∈ BMO implies eαb ∈ Ar for α small enough
with control on [eαb]Ar . We will present the whole argument in the case r = 2 in
Sect. 7.6.4.2. Here, the Reverse Hölder-q weight class (RHq ) for 1 < q < ∞ is
defined to be all those weights w such that

[w]RHq := sup
Q

〈wq〉1/q
Q 〈w〉−1

Q < ∞,

where the supremum is taken over all cubes in Rd with sides parallel to the axes.
A variation on the argument yields corresponding estimates for the higher order

commutators T k
b := [b, T k−1

b ] for k ≥ 1 and T 0
b := T . More precisely, given the

initial estimate‖T 0
b f ‖Lr (w) � [w]αAr

, valid for allw ∈ Ar , then the following estimate
holds for all k ≥ 1, b ∈ BMO, w ∈ Ar , and f ∈ Lr (w)

‖T k
b f ‖Lr (w) �r,T,d [w]α+k max{1, 1

r−1 }
Ar

‖b‖k
BMO‖ f ‖Lr (w).

Transference theorems for commutators are useless unless there are operators
known to obey an initial Lr (w) bound valid for all w ∈ Ar . We have already men-
tioned that the class of Calderón–Zygmund singular integral operators obey linear
bounds on L2(w), thanks to Hytönen’s A2 theorem [90]. We conclude that for all
Calderón–Zygmund singular integral operators T their commutators obey a quadratic
bound on L2(w), more precisely,

‖[b, T ] f ‖L2(w) �T,d [w]2A2
‖b‖BMO ‖ f ‖L2(w).

With a slight modification of the argument, one can see [37] that the correct estimate
for the iterated commutators of Calderón–Zygmund singular integral operators and
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function b ∈ BMO is

‖[T k
b f ‖L2(w) �T,d [w]1+k

A2
‖b‖k

BMO ‖ f ‖L2(w).

There are operators (for example, the Hilbert, Riesz, and Beurling transforms) for
whom these estimates are optimal in terms of the powers for both the A2 characteristic
and the B M O norm. This can be seen testing power functions and weights [37].

7.6.4.1 Some Generalizations

There are extensions to commutators with fractional integral operators, two-weight
problem, and more [50, 51]. There are mixed A2-A∞ estimates, where recall that
A∞ = ∪p>1 Ap and [w]A∞ ≤ [w]A2 [98, 153], more precisely estimates of the form,

‖[b, T ]‖L2(w) � [w] 1
2
A2

([w]A∞ + [w−1]A∞
) 3

2 ‖b‖BMO.

There are generalizations to commutators of matrix-valued operators and BMO
[103] as well as to the two-weight setting (both weights in Ap, à la Bloom) [84, 85],
and also for biparameter Journé operators [86]. See also the comprehensive paper [18]
where a systematic use of the Coifman–Rochberg–Weiss trick recovers all known
results and some new ones such as boundedness of the commutator of the bilinear
Hilbert transform and a function in BMO. Pointwise control by sparse operators
adapted to the commutator, improving weak-type, Orlicz bounds, and quantitative
two-weight Bloom bounds was recently obtained [134, 135].Wewill saymore about
this generalization in Sect. 7.7.

7.6.4.2 Proof of the Transference Theorem

We now present the proof of the quantitative transference theorem when r = 2, fol-
lowing the lines of the Coifman–Rochberg–Weiss argument [41] with a few quanti-
tative ingredients. For r �= 2, see [155].

Proof (Proof in [37]) “Conjugate” the operator as follows: for any z ∈ C, define

Tz( f ) = ezb T (e−zb f ).

A computation together with the Cauchy integral theorem give (for “nice” functions)

[b, T ]( f ) = d

dz
Tz( f )|z=0 = 1

2πi

∫
|z|=ε

Tz( f )

z2
dz, ε > 0.

Now, by Minkowski’s integral inequality
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‖[b, T ]( f )‖L2(w) ≤ 1

2π ε2

∫
|z|=ε

‖Tz( f )‖L2(w)|dz|, ε > 0.

The key point is to find an appropriate radius ε > 0. To that effect, we look at the
inner norm and try to find bounds depending on z. More precisely,

‖Tz( f )‖L2(w) = ‖T (e−zb f )‖L2(w e2Rez b).

We use the main hypothesis, namely, that T is bounded on L2(v) if v ∈ A2 with
‖T ‖L2(v) ≤ C[v]A2 , for v = w e2Rez b. We must check that if w ∈ A2 then v ∈ A2 for
|z| small enough. Indeed,

[v]A2 = sup
Q

(
1

|Q|
∫

Q
w(x) e2Rez b(x) dx

)(
1

|Q|
∫

Q
w−1(x) e−2Rez b(x) dx

)
.

It is well known that if w ∈ A2 then w ∈ RHq for some q > 1 [39]. There is a
quantitative version of this result [158], namely, if q = 1 + 1

2d+5[w]A2
then

(
1

|Q|
∫

Q
wq(x) dx

) 1
q

≤ 2

|Q|
∫

Q
w(x) dx,

similarly for w−1 ∈ A2 and for the same q, since [w]A2 = [w−1]A2 , we have that

(
1

|Q|
∫

Q
w−q(x) dx

) 1
q

≤ 2

|Q|
∫

Q
w−1(x) dx .

In what follows q = 1 + 1/(2d+5[w]A2). Using these estimates and Holder’s
inequality, we have for an arbitrary cube Q

(
1

|Q|
∫

Q
w(x)e2Rez b(x) dx

)(
1

|Q|
∫

Q
w(x)−1e−2Rez b(x) dx

)

≤
(

1

|Q|
∫

Q
wq (x) dx

) 1
q
(

1

|Q|
∫

Q
e2Rezq′b(x) dx

) 1
q′ ( 1

|Q|
∫

Q
w−q (x) dx

) 1
q
(

1

|Q|
∫

Q
e−2Rezq′b(x) dx

) 1
q′

≤ 4

(
1

|Q|
∫

Q
w(x) dx

)(
1

|Q|
∫

Q
w−1(x) dx

)(
1

|Q|
∫

Q
e2Rez q′ b(x) dx

) 1
q′ ( 1

|Q|
∫

Q
e−2Rez q′ b(x) dx

) 1
q′

≤ 4 [w]A2 [e2Rez q′ b ]
1
q′
A2

.

Taking the supremum over all cubes, we conclude that

[v]A2 = [w e2Rez b]A2 ≤ 4 [w]A2 [e2Rez q ′ b]
1
q′
A2

.

Now, since b ∈ BMO there are 0 < αd < 1 and βd > 1 such that if |2Rez q ′| ≤
αd/‖b‖BMO then [e2Rez q ′ b]A2 ≤ βd , see [37, Lemma 2.2]. Hence, for these z,
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[v]A2 ≤ 4 [w]A2 β
1
q′
d ≤ 4 [w]A2 βd .

We have shown that if |z| ≤ αd/(2q ′‖b‖BMO) then [v]A2 ≤ 4[w]A2 βd and

‖Tz( f )‖L2(w) = ‖T (e−zb f )‖L2(v) � [v]A2‖ f ‖L2(w) ≤ 4[w]A2 βd ‖ f ‖L2(w).

Here, the first inequality holds since ‖e−zb f ‖L2(v) = ‖e−zb f ‖L2(we2Rez b) =
‖ f ‖L2(w).

Thus choose the radius ε := αd/(2q ′‖b‖BMO), and get

‖[b, T ]( f )‖L2(w) ≤ 1

2π ε2

∫
|z|=ε

‖Tz( f )‖L2(w)|dz|

≤ 1

2π ε2

∫
|z|=ε

4[w]A2 βd ‖ f ‖L2(w)|dz| = 1

ε
4[w]A2 βd ‖ f ‖L2(w).

Note that ε−1 ≈ [w]A2‖b‖BMO, because q ′ = 1 + 2d+5[w]A2 ≈ 2d [w]A2 ,

‖[b, T ]( f )‖L2(w) ≤ Cd [w]2A2
‖b‖BMO,

which is exactly what we wanted to prove.

7.7 Sparse Operators and Sparse Families of Dyadic Cubes

In this section, we discuss the sparse domination by finitely many positive dyadic
operators’ paradigm that has recently emerged as a byproduct of the study ofweighted
inequalities. This sparse domination paradigm has proven to be very powerful with
applications in areas other than weighted norm inequalities. In this section, we intro-
duce the sparse operators and the sparse families of cubes. We discuss a charac-
terization of sparse families of cubes via Carleson families of dyadic cubes due to
Andrei Lerner and Fedja Nazarov; however, this was well known 20 years earlier
by Igor Verbitsky [177, Corollary 2, p. 23], see also [82]. We present the beautiful
proof of the A2 conjecture for sparse operators due to David Cruz-Uribe, Chema
Martell, and Carlos Pérez. We record the sparse domination results for the opera-
tors discussed in these notes. We present how to dominate pointwise the martingale
transform by a sparse operator following Michael Lacey’s argument, illustrating the
technique in a toy model. Finally, we briefly discuss a sparse domination theorem for
commutators valid for (rough) Calderón–Zygmund singular integral operators due to
Andrei Lerner, Sheldy Ombrosi, and Israel Rivera-Ríos that yields new quantitative
two-weight estimates of Bloom type and recovers all known weighted results for the
commutators.
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7.7.1 Sparse Operators

DavidCruz-Uribe,ChemaMartell, andCarlos Pérez showed in [53] the A2 conjecture
in a few lines for sparse operators AS defined as follows

AS f (x) =
∑
Q∈S

〈 f 〉Q 1Q(x).

Here, S is a sparse collection of dyadic cubes. A collection of dyadic cubes S in
R

d is η-sparse, 0 < η < 1 if there are pairwise disjoint measurable sets EQ for each
Q ∈ S such that

EQ ⊂ Q with |EQ | ≥ η|Q| for all Q ∈ S.

A primary example for us are the Calderón–Zygmund singular integral operators;
they and the “rough” Calderón–Zygmund operators have been shown to be pointwise
dominated by a finite number of sparse operators [47, 115, 129, 133]. A quantitative
form of these estimates can be found in [100, 131]. More recently, see sparse domi-
nation principles for rough Calderón–Zygmund singular integral operators [44, 55,
65, 100].

7.7.2 Sparse Versus Carleson Families of Dyadic Cubes

We have seen in Sect. 7.4 how Carleson sequences and Carleson embedding lemmas
come handy when proving weighted inequalities. There is an intimate connection
between Carleson families of cubes and sparse families of cubes. A family of dyadic
cubes S in Rd is called Λ-Carleson for Λ > 1 if

∑
P∈S,P⊂Q

|P| ≤ Λ|Q| ∀Q ∈ D.

Notice that a family of cubes being Λ-Carleson is equivalent to the sequence
{|P|1S(P)}P∈D being Carleson with intensity Λ. Furthermore, the notion is equiv-
alent to the family of cubes being 1/Λ-sparse. These types of conditions are also
called Carleson packing conditions.

Lemma 8 (Verbitsky 1996, Lerner, Nazarov 2014) Let Λ > 1. The family of dyadic
cubes S in R

d is Λ-Carleson if and only if S is 1/Λ-sparse.

Proof We sketch the beautiful argument in [133].
(⇐) The family of cubes S being 1/Λ-sparse means that for all cubes P ∈ S there
are pairwise disjoint subsets EP ⊂ P that have a considerable portion of the total
mass of the cube, more precisely Λ|EP | ≥ |P|. Hence,
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∑
P∈S,P⊂Q

|P| ≤ Λ
∑

P∈S,P⊂Q

|EP | ≤ Λ|Q|.

Here, the last inequality holds because the sets EP ⊂ Q and are pairwise disjoint.
Therefore, the family of cubes S is Λ-Carleson.
(⇒) Assume now that S is aΛ-Carleson family. We say that a family S has a bottom
layer DK if for all Q ∈ S we have Q ∈ Dk for some k ≤ K . Assume S has a
bottom layer DK . Then consider all cubes in the bottom layer, Q ∈ S ∩ DK ,
and choose any sets EQ ⊂ Q with |EQ | = 1

Λ
|Q|. This choice is always possible,

because of the nature of the Lebesgue measure, and the sets will automatically be
pairwise disjoint because the cubes in a fixed generation DK are pairwise disjoint.
Then, go up layer by layer, meaning we have already selected sets ER ⊂ R for all
R ∈ S ∩ D j and k < j ≤ K with the property that |ER| = 1

Λ
|R|, then for each Q ∈

Dk , k < K , choose any EQ ⊂ Q \ ∪R∈S,R�Q ER with |EQ | = 1
Λ

|Q|. Such choice is
always possible because for every Q ∈ S we have

∣∣∣ ∪R∈S,R�Q ER

∣∣∣ ≤ 1

Λ

∑
R∈S,R�Q

|R| ≤ Λ − 1

Λ
|Q| =

(
1 − 1

Λ

)
|Q|,

where we used in the inequality the hypothesis that S is a Λ-Carleson family. There-
fore,

|Q \ ∪R∈S,R�Q ER| ≥ 1

Λ
|Q|,

Hence, there is enough mass left in Q, after removing the sets ER corresponding to
R in S and proper subcubes of Q, to select a subset EQ of Q with the aformentioned
property. Moreover, by construction the sets EQ are pairwise disjoint, and we are
done.

But, what if there is no bottom layer? The idea is to run the construc-
tion for each K ≥ 0 and pass to the limit! One has to be a bit careful! As Lerner and
Nazarov put it: “All we have to do is replace ‘free choice’ with ‘canonical choice’.”
The diligent reader can find the details of the argument, including a very illuminating
picture, in [133, Lemma 6.3 and Fig. 8].

7.7.3 A2 Theorem for Sparse Operators

We now present David Cruz-Uribe, Chema Martell, and Carlos Pérez’s beautiful
proof of the A2 conjecture for sparse operators [53].

Theorem 14 (Cruz-Uribe, Martell, Pérez 2012) Let S be an η-sparse family of
cubes, then For all w ∈ A2 and f ∈ L2(w) the following inequality holds

: ‖AS f ‖L2(w) � [w]A2‖ f ‖L2(w). (7.7.1)
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Proof For w ∈ A2, S and η-sparse family with η ∈ (0, 1), showing (7.7.1) is equiv-
alent by duality to showing that for all f ∈ L2(w), g ∈ L2(w−1)

|〈AS f, g〉| � [w]A2‖ f ‖L2(w)‖g‖L2(w−1).

By the Cauchy–Schwarz inequality |EQ | = ∫EQ
w

1
2 w− 1

2 ≤ (w(EQ))
1
2 (w−1(EQ))

1
2 .

Using the definition of the sparse operator, some algebra and the definition of an
η-sparse family of cubes, namely, |Q| ≤ (1/η)|EQ | we get that

|〈AS f, g〉| ≤
∑
Q∈S

〈| f |〉Q 〈|g|〉Q |Q|

≤ 1

η

∑
Q∈S

〈| f |ww−1〉Q

〈w−1〉Q

〈|g|w−1w〉Q

〈w〉Q
〈w〉Q 〈w−1〉Q |EQ |

≤ [w]A2

η

∑
Q∈S

〈| f |ww−1〉Q

〈w−1〉Q
(w−1(EQ))

1
2

〈|g|w−1w〉Q

〈w〉Q
(w(EQ))

1
2 .

Using once more the Cauchy–Schwarz inequality and the fact that for all x ∈
EQ ⊂ Q it holds that 〈|h|v〉Q/〈v〉Q ≤ MD

v h(x), therefore |〈|h|v〉Q/〈v〉Q |2v(EQ) ≤∫
EQ

|MD
v h(x)|2 v(x) dx , we conclude that

|〈AS f, g〉| ≤ [w]A2

η

[ ∑
Q∈S

〈| f |ww−1〉2Q
〈w−1〉2Q

w−1(EQ)

] 1
2
[ ∑

Q∈S

〈|g|w−1w〉2Q
〈w〉2Q

w(EQ)

] 1
2

≤ [w]A2

η

[ ∑
Q∈S

∫
EQ

|MD
w−1 ( f w)(x)|2w−1(x) dx

] 1
2
[ ∑

Q∈S

∫
EQ

|MD
w (gw−1)(x)|2w(x) dx

] 1
2

≤ [w]A2

η
‖MD

w−1 ( f w)‖L2(w−1) ‖MD
w (gw−1)‖L2(w)

� [w]A2‖ f w‖L2(w−1) ‖gw−1‖L2(w) = [w]A2‖ f ‖L2(w) ‖g‖L2(w−1).

where, in the line before the last, we used the fact that the sets EQ for Q ∈ S are
pairwise disjoint and, in the last line, we used estimate (7.3.1) for theweighted dyadic
maximal functions.

Similar argument yields linear bounds on L p(w) for p > 2 and by duality (sparse
operators are self-adjoint) we get bounds like [w]1/(p−1)

Ap
= [w−1/(p−1)]Ap′ when 1 <

p < 2, see [139]. In other words, we can get directly the same L p(w) bounds that
sharp extrapolation will give if we were to extrapolate from the linear L2(w) bounds,
namely, for all w ∈ Ap and f ∈ L p(w)

‖AS f ‖L p(w) � [w]max{1, 1
p−1 }

Ap
‖ f ‖L p(w). (7.7.2)
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7.7.4 Domination by Sparse Operators

Many operators can be dominated by finitely many sparse operators, pointwise, in
norm, or by forms. The collections S, Si are sparse families tailored to the operator
and the particular function f the operator is acting on. Identifying these sparse
families is where most of the work lies, usually done using some sort of weak-
(1, 1) inequality that is available a priori, or a specific stopping time designed for
the problem at hand. We will illustrate this process for the martingale transform
in Sect. 7.7.5. Here is the status, in terms of sparse domination, of the operators
we have been discussing in these lecture notes. In particular, quantitative weighted
estimates for corresponding sparse operators, such as (7.7.2), immediately transfer
to the dominated operators, providing new and streamlined proofs of the quantitative
weighted inequalities we have been focusing on previous sections.

The martingale transforms and the dyadic paraproduct are locally pointwise dom-
inated by sparse operators [115]. More precisely, given a cube Q0 and f ∈ L1(R)

there are sparse families S,S ′ such that

|1Q0 Tσ( f 1Q0)| � AS | f |, |1Q0πb( f 1Q0)| � AS ′ | f |.

We will say more about the martingale transform in Sect. 7.7.5.
Calderón–Zygmund operators are pointwise dominated by finitely many sparse

operators [47, 131, 133]. More precisely, given T and f there are finitely many
sparse families Si , for i = 1, . . . , Nd , such that

|T f | ≤
Nd∑

i=1

ASi f.

The dyadic square function is pointwise dominated by finitely many sparse-like
operators [118]. More precisely, given f there are finitely many sparse families Si ,
for i = 1, . . . , Nd , such that

|SD f |2 ≤
Nd∑

i=1

∑
Q∈Si

〈| f |〉2Q1Q .

Notice that the sparse-like operators have been adapted to the square function.
Commutator [b, T ] for T an ω-Calderón–Zygmund operator with ω satisfying a

Dini condition, b ∈ L1
loc(R), can be pointwise dominated by finitelymany sparse-like

operators and their adjoints [134, 135]. We will say more about this in Sect. 7.7.6.
The finitely many sparse families come from the analogue of the one-third trick

for the dyadic grids; usually, Nd = 3d will suffice.
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7.7.5 Domination of Martingale Transform D’après Lacey

We would like to illustrate how to achieve domination by sparse operators for a toy
model operator, the martingale transform Tσ on L2(R), following an argument of
Michael Lacey [115, Sect. 3].

Given interval I0 ∈ D and function f ∈ L1(R) supported on I0, we need to find
a 1/2-sparse family S ⊂ D, such that for all choices of signs σ, there is a constant
C > 0 such that

|1I0Tσ f | ≤ CAS | f |.

Proof Without loss of generality, we can assume that f ∈ L1(R) is not only sup-
ported on I0 but also

∫
I0

| f (x)|dx > 0. We will need the following well-known
weak-type estimates.

First, the sharp truncation T �
σ is of weak-type (1, 1) [29], with a constant inde-

pendent of the choice of signs σ, thus

sup
λ>0

λ
∣∣{x ∈ R : T �

σ f (x) > λ}∣∣ ≤ C‖ f ‖L1(R),

where T �
σ f = supI ′∈D

∣∣∑
I∈D,I⊃I ′ σI 〈 f, hI 〉hI

∣∣.
Second, the maximal function M is also of weak-type (1, 1), therefore

sup
λ>0

λ
∣∣{x ∈ R : M f (x) > λ}∣∣ ≤ C‖ f ‖L1(R),

As a consequence, there exists a constantC0 > 0 such that the subset of I0 defined
by

FI0 := {x ∈ I0 : max{M f (x), T �
σ f (x)} >

1

2
C0〈| f |〉I0}

has no more than half the mass of I0, that is, |FI0 | ≤ 1
2 |I0|. In fact, suppose no such

constant would exist, then for all C0 > 0 it would hold that

|FI0 | =
∣∣∣{x ∈ I0 : max{M f (x), T �

σ f (x)} >
1

2
C0〈| f |〉I0}

∣∣∣ > 1

2
|I0|,

therefore for each C0 > 0, it must be that either |{x ∈ I0 : M f (x) > 1
2C0〈| f |〉I0}| >

1
4 |I0| or |{x ∈ I0 : T �

σ f (x) > 1
2C0〈| f |〉I0}| > 1

4 |I0|. But either of these sets has mea-
sure bounded above by 2C‖ f ‖L1(R)/(C0〈| f |〉I0), choosing C0 large enough, so that
2C‖ f ‖L1(R)/(C0

∫
I0

| f (y)|dy) < 1/4, a contradiction will be reached. It sems as if
the constant C0 depends on the interval I0; however, once we recall that the function
f is supported on I0, then all is required is that 2C/C0 < 1/4.
Let EI0 be the collection of maximal dyadic intervals I ∈ D contained in the set

FI0 , then we claim that
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|Tσ f (x)|1I0(x) ≤ C0〈| f |〉I0 +
∑
I∈EI0

|T I
σ f (x)| (7.7.3)

where T I
σ f := σ Ĩ 〈 f 〉I1I +∑J :J⊂I σJ 〈 f, h J 〉h J , and Ĩ is the parent of I .

Repeat for each I ∈ EI0 and the function T I
σ f which is supported on I , then repeat

for each I ′ ∈ EI , etc. Let S0 = {I0}, and S j := ∪I∈S j−1EI . Finally, let S := ∪∞
j=0S j .

For each I ∈ S, let EI = I \ FI , by construction the sets EI ⊂ I are pairwise disjoint
and |EI | ≥ 1

2 |I |, and therefore S is a 1
2 -sparse family. Moreover,

|1I0 Tσ f | ≤ C0AS | f |,

which is what we set out to prove.We are donemodulo verifying the claimed inequal-
ity (7.7.3),whichwenowprove.Note that |Tσ f (x)| ≤ 2T �

σ f (x). Thus, if x ∈ I0 \ FI0
then |Tσ f (x)| ≤ C0〈| f |〉I0 , and (7.7.3) is satisfied.

If x ∈ FI0 , then there is unique I ∈ S1 = EI0 with x ∈ I , and recalling that
〈 f, h Ĩ 〉h Ĩ (x) = 〈 f 〉I − 〈 f 〉 Ĩ , we conclude that

Tσ f (x) =
∑
J� Ĩ

σJ 〈 f, h J 〉h J (x) +
∑
J⊂ Ĩ

σJ 〈 f, h J 〉h J (x)

=
∑
J� Ĩ

σJ 〈 f, h J 〉h J (x) − σ Ĩ 〈 f 〉 Ĩ + T I
σ f (x).

Therefore, we find that when x ∈ FI0 and for all y ∈ Ĩ the following inequality holds:

|Tσ f (x)| ≤ T �
σ f (y) + M f (y) +

∑
I∈EI0

T I
σ f (x). (7.7.4)

In particular, because I is a maximal dyadic interval in FI0 , there must be y0 ∈ Ĩ \ I
such that y0 /∈ FI0 and therefore T �

σ f (y0) + M f (y0) ≤ 1
2C0〈| f |〉I0 . Substituting y =

y0 in (7.7.4), and using this estimate proves the claimed inequality (7.7.3), and
therefore the pointwise localized domination by sparse operators for the martingale
transform is proven.

7.7.6 Case Study: Sparse Operators Versus Commutators

Carlos Pérez and Israel Rivera-Ríos proposed the following L log L-sparse operator
as a candidate for sparse domination of the commutator.

BS f (x) =
∑
Q∈S

‖ f ‖L log L ,Q1Q(x).
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The reason for this choice is that M2 ∼ ML log L is the correct maximal function for
the commutator. However, they showed that these operators cannot bound pointwise
the commutator [b, T ] in [159].

Andrei Lerner, Sheldy Ombrosi, and Israel Rivera-Ríos proposed the following
sparse-like operator and its adjoint adapted to the commutator with locally integrable
function b,

TS,b f (x) :=
∑
Q∈S

|b(x) − 〈b〉Q | 〈| f |〉Q 1Q(x),

T ∗
S,b f (x) :=

∑
Q∈S

〈|b − 〈b〉Q | | f |〉Q 1Q(x).

They showed, in [134], that finitely many of these operators will provide pointwise
domination for the commutator, [b, T ], where T is a rough Calderón–Zygmund
operator and b a locally integrable function.

Theorem 15 (Lerner, Ombrosi, Rivera-Ríos 2017) Let T be an ω-Calderón–
Zygmund singular integral operator with ω satisfying a Dini condition, b ∈ L1

loc(R
d).

For every compactly supported f ∈ L∞(Rd), there are 3n dyadic lattices D(k) and
1

2·9n -sparse families Sk ⊂ D(k) such that for a.e. x ∈ R
d

|[b, T ]( f )(x)| �d,T

3n∑
k=1

(TSk ,b| f |(x) + T ∗
Sk ,b| f |(x)

)
.

Quadratic bounds on L2(w) for the commutator [b, T ]will follow from quadratic
bounds for these adapted sparse operators [134]. The following quadratic bounds on
L2(w) for TS,b , T ∗

S,b hold:

‖TS,b f ‖L2(w) + ‖T ∗
S,b f ‖L2(w) � [w]2A2

‖b‖BMO‖ f ‖L2(w).

These quadratic bounds, the corresponding extrapolated bounds on L p(w)

‖TS,b f ‖L p(w) + ‖T ∗
S,b f ‖L p(w) �p [w]2max{1, 1

p−1 }
Ap

‖b‖BMO‖ f ‖L p(w),

and much more follow from a key lemma that we now state.

Lemma 9 (Lerner, Ombrosi, Rivera-Ríos 2017) Given S an η-sparse family in D,
b ∈ L1

loc(R
d) then there is a larger collection S̃ ∈ D which is an η

2(1+η)
-sparse family,

S ⊂ S̃ , such that for all Q ∈ S̃, the following estimate holds:

|b(x) − 〈b〉Q | ≤ 2d+2
∑

R∈S̃,R⊂Q

Ω(b; R)1R(x), a.e. x ∈ Q,
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where Ω(b; R) := 1
|R|
∫

R |b(x) − 〈b〉R| dx, the mean oscillation of b on the dyadic
cube R.

From this lemma, we immediately deduce quantitative Bloom bounds for the
sparse-like adjoint operator associated to the commutator [134]. A similar result
holds for TS,b.

Corollary 1 (Quantitative Bloom) Let u, v ∈ Ap, μ = u1/pv−1/p and b ∈ BMOμ,
then there is a constant cd,p > 0 such that for all f ∈ L p(u) the following inequality
holds:

‖T ∗
S,b| f |‖L p(v) ≤ cd,p‖b‖BMOμ

([v]Ap [u]Ap

)max{1, 1
p−1 }‖ f ‖L p(u).

Similarly, for TS,b.

Proof First notice that since ‖b‖BMOμ
= supQ |Q| Ω(b; Q)/μ(Q),

T ∗̃
S,b

| f |(x) ≤ cd‖b‖BMOμ
AS̃
(AS̃(| f |)μ)(x),

where S̃ is the larger sparse family given by Lemma 9.
Taking L p(v) norm on both sides, and unfolding we conclude that

‖T ∗̃
S,b

| f |‖L p(v) ≤ cd,p‖b‖BMOμ
‖AS̃‖L p(v)‖AS̃‖L p(u)‖ f ‖L p(u)

≤ cd,p‖b‖BMOμ

([v]Ap [u]Ap

)max{1, 1
p−1 }‖ f ‖L p(u),

where in the last line we used the one-weight estimates on both L p(u) and L p(v) for
the sparse operatorAS̃ given that u and v are Ap weights by assumption. Observing
that T ∗

S,b| f |(x) ≤ T ∗̃
S,b

| f |(x), we get the desired estimate.

Setting u = v = w ∈ Ap, then μ ≡ 1, b ∈ BMO, and we recover the expected
one-weight quantitative L p estimates for the sparse-like operators dominating the
commutator, and hence for the commutator itself, without using extrapolation,

‖TS,b| f |‖L p(w) + ‖T ∗
S,b| f |‖L p(w) ≤ cn,p‖b‖BMO[w]2max{1, 1

p−1 }
Ap

‖ f ‖L p(w).

7.8 Summary and Recent Progress

In these lecture notes, we have studiedweighted norm inequalities through the dyadic
harmonic analysis lens. We focused on classical operators such as the Hilbert trans-
form and the maximal function, and dyadic operators such as the dyadic maximal
function, themartingale transform, the dyadic square function, Haar shift multipliers,
the dyadic paraproduct, and the latest “kid in the block” the dyadic sparse operator.
To carry on our program, we discussed dyadic tools such as dyadic cubes (regular,
random, adjacent) and Haar functions on R, Rd , and more generally on spaces of
homogenenous type.
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In this millennium, the interest shifted from qualitative weighted norm inequal-
ities to quantitative weighted norm inequalities. New techniques were developed
to obtain quantitative estimates, including Bellman function and median oscillation
techniques, quantitative extrapolation and transference theorems, corona decompo-
sitions and stopping times, representation of operators as averages of dyadic oper-
ators, and, most recently, domination by dyadic sparse operators. One important
landmark in this quest was the proof of the A2 conjecture. Some of these techniques
are amenable to generalizations to other settings that support dyadic structures such
as spaces of homogeneous type.

We tried to illustrate the power of the dyadic methods studying in detail the
maximal function and the commutator of the Hilbert transform with a function in
BMO via their dyadic counterparts, in both cases obtaining the optimal estimates on
weighted Lebesgue spaces. We presented a self-contained Bellman function proof of
the A2 conjecture for the dyadic paraproduct, in order to illustrate these techniques.
We showed how to pointwise dominate the martingale transform by sparse operators,
and we presented the beautiful and simple proof of the A2 conjecture for sparse
operators. We illustrated the power of pointwise domination techniques by sparse-
like operators through a case study: the commutator of Calderón–Zygmund singular
integral operators and locally integrable functions, recovering all the quantitative
weighted norm inequalities discussed in the notes, and some new ones.

Themethods developed in thismillennium, initially to study quantitativeweighted
inequalities for operators defined on R

d , have proven to be quite flexible and far-
reaching. There are extensions to metric spaces with geometrically doubling condi-
tion, spaces of homogeneous type, and beyond doubling even in a noncommutative
setting of operator-valued dyadic harmonic analysis [45, 70, 92, 105, 136, 144,
173]. There are off-diagonal sharp two-weight estimates for sparse operators [71].
There are generalizations to matrix-valued operators [103], so far the best weighted
L2 estimates in this setting are 3/2 powers for the matrix-valued paraproducts, shift
operators, and Calderón–Zygmund operators satisfying a Dini condition [143], and
linear for the square function [99]. The validity of the A2 conjecture in the matrix
setting is unknown. Two-weight estimates have been obtained for well-localized
operators with matrix weights [24], and a weighted Carleson embedding theorem
with matrix weights is known and proved using a “Bellman function with a param-
eter” [59] . Researchers are busy working toward increasing our knowledge on this
setting, see, for example, [58] where a bilinear Carleson embedding theorem with
matrix weight and scalar measure is proved using Bellman function techniques.

More importantly, out of these investigations a domination paradigm by sparse
positive dyadic operators has emerged and proven to be very powerful with appli-
cations in many areas not only weighted inequalities. The following is a partial and
ever-growing list of such applications to (maximal) rough singular integrals [44,
55, 65, 100]; singular nonintegral operators [19]; multilinear maximal and singular
integral operators [15, 56, 133, 188]; nonhomogeneous spaces and operator-valued
singular integral operators [46, 179]; uncentered variational operators [63]; varia-
tional Carleson operators [64]; Walsh–Fourier multipliers [54]; Bochner–Riesz mul-
tipliers [14, 108, 120]; oscillatory and random singular operators [110, 112, 124];
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spherical maximal function [116]; Radon transform [151]; Hilbert transform along
curves [38]; pseudodifferential operators [13]; the lattice Hardy–Littlewood maxi-
mal operator [83]; fractional operator with Lα,r ′

-Hörmander conditions [102]; and
Rubio de Francia’s Littlewood–Paley square function [77]. Sparse T (1) theorems
[119] and applications in the discrete setting [57, 109, 111] have been found as well
as logarithmic bounds for maximal sparse operators [106].

We are starting to understand why in certain settings this philosophy does not
work. For example, very recently it was shown that dominating the dyadic strong
maximal function by (1,1)-type sparse forms based on rectangles with sides parallel
to the axes is impossible [12]; this is in the realm of multiparameter analysis where
many questions still need to be answered. Perhaps, a new type of sparse domination
in this setting will have to be dreamed.

Not only the methodology is tried on each author’s favorite operator, far-reaching
extensions and broader understanding are being gained. For example, the convex
body domination paradigm [143] shows that if a scalar operator can be dominated by
a sparse operator, then its vector version can be dominated by a convex body-valued
sparse operator, a transference theorem. Similarly, multiple vector-valued extensions
of operators and more can be explained through the very general helicoidal method
[16], yet another far-reaching transference methodology.

This is a very active area of research and we hope these lecture notes have helped
to impress on the reader its vitality.

Acknowledgements I would like to thank Ursula Molter, Carlos Cabrelli, and all the organizers of
the CIMPA 2017 Research School—IX Escuela Santaló: Harmonic Analysis, Geometric Measure
Theory and Applications, held in Buenos Aires, Argentina from July 31 to August 11, 2017, for
the invitation to give the course on which these lecture notes are based. It meant a lot to me to
teach in the “Pabellón 1 de la Facultad de Ciencias Exactas”, having grown up hearing stories
about the mythical Universidad de Buenos Aires (UBA) from my parents, Concepción Ballester
and Victor Pereyra, and dear friends (such as Julián and Amanda Araoz, Manolo Bemporad,Mischa
and Yanny Cotlar, Rebeca Guber, Mauricio and Gloria Milchberg, Cora Ratto andManuel Sadosky,
Cora Sadosky and Daniel Goldstein, and Cristina Zoltan, some sadly no longer with us.) who, like
us, were welcomed in Venezuela in the late 60s and 70s, and to whom I would like to dedicate these
lecture notes. Unfortunately, the flow is now being reversed as many Venezuelans of all walks of
life are fleeing their country and many, among them mathematicians and scientists, are finding a
home in other South American countries, in particular in Argentina. I would also like to thank the
enthusiastic students and other attendants, as always; there is no course without an audience; you
are always an inspiration for us. I thank the kind referee, who made many comments that greatly
improved the presentation, and my former Ph.D. student David Weirich, who kindly provided the
figures. Last but not least, I would like to thank my husband, who looked after our boys while I was
traveling, and my family in Buenos Aires who lodged and fed me.

References

1. H. Aimar, Construction of Haar type bases on quasi-metric spaces with finite Assouad dimen-
sion. Anal. Acad. Nac. Cs. Ex., F. y Nat., Buenos Aires 54 (2002)

umolter@dm.uba.ar



232 M. C. Pereyra

2. H. Aimar, A. Bernardis, B. Iaffei, Multiresolution approximations and unconditional bases on
weighted Lebesgue spaces on spaces of homogeneous type. J. Approx. Theory 148(1), 12–34
(2007)

3. H. Aimar, A. Bernardis, L. Nowak, Dyadic Fefferman-Stein inequalities and the equivalence
of Haar bases on weighted Lebesgue spaces. Proc. R. Soc. Edinburgh Sect. A 141(1), 1–21
(2011)

4. H. Aimar, A. Bernardis, L. Nowak, Equivalence of Haar bases associatedwith different dyadic
systems. J. Geom. Anal. 21(2), 288–304 (2011)

5. H. Aimar, O. Gorosito, Unconditional Haar bases for Lebesgue spaces on spaces of homoge-
neous type, inProceedings of the SPIEE, Wavelet Applications in Signal and Image Processing
VIII, vol. 4119 (2000), pp. 556–563

6. H. Aimar, R.A. Macías, Weighted norm inequalities for the Hardy-Littlewood maximal oper-
ator on spaces of homogeneous type. Proc. Am. Math. Soc. 91(2), 213–216 (1984)

7. R. Alvarado, M. Mitrea, Hardy Spaces on Ahlfors-Regular Quasi Metric Spaces. A Sharp
Theory. Springer Lecture Notes in Mathematics, vol. 2142 (2015)

8. J. Álvarez, R.J. Bagby, D.S. Kurtz, C. Pérez, Weighted estimates for commutators of linear
operators. Studia Math. 104(2), 195–209 (1993)

9. K. Astala, T. Iwaniec, E. Saksman, Beltrami operators in the plane. Duke Math. J. 107(1),
27–56 (2001)

10. P. Auscher, T. Hytönen, Orthonormal bases of regular wavelets in spaces of homogeneous
type. Appl. Comput. Harmon. Anal. 34(2), 266–296 (2013)

11. P. Auscher, T. Hytönen, Addendum to Orthonormal bases of regular wavelets in spaces of
homogeneous type. Appl. Comput. Harmon. Anal. 39(3), 568–569 (2015)

12. A. Barron, J. Conde-Alonso, Y. Ou, G. Rey, Sparse domination and the strong maximal
function. arXiv:1811.01243

13. D. Beltran, L. Cladek, Sparse bounds for pseudodifferential operators. J. Anal. Math.
arXiv:1711.02339

14. C. Benea, F. Bernicot, T. Luque, Sparse bilinear forms for Bochner Riesz multipliers and
applications. arXiv:1605.06401

15. C. Benea, C. Muscalu, Multiple vector-valued inequalities via the helicoidal method. Anal.
PDE 9(8), 1931–1988 (2016)

16. C. Benea, C. Muscalu, Sparse domination via the helicoidal method. arXiv:1707.05484
17. A. Bényi, D. Maldonado, V. Naibo, What is... a Paraproduct?. Not. Am. Math. Soc. 57(7),

858–860 (2010)
18. A.Bényi, J.M.Martell, K.Moen, E. Stachura, R. Torres, Boundedness results for commutators

with BMO functions via weighted estimates: a comprehensive approach. arXiv:1710.08515
19. F. Bernicot, D. Frey, S. Petermichl, Sharp weighted norm estimates beyond Calderón-

Zygmund theory. Anal. PDE 9, 1079–1113 (2016)
20. O. Beznosova, Bellman functions, paraproducts, Haar multipliers, and weighted inequalities.

Ph.D. Dissertation, University of New Mexico, 2008
21. O. Beznosova, Linear bound for the dyadic paraproduct on weighted Lebesgue space L2(w).

J. Func. Anal. 255, 994–1007 (2008)
22. O. Beznosova, D. Chung, J. Moraes, M. C. Pereyra, On two weight estimates for dyadic

operators, in Harmonic Analysis, Partial Differential Equations, Complex Analysis, Banach
Spaces, and Operator Theory, vol. 2, Association for Women in Mathematics Series, vol. 5.
(Springer, Cham, 2017), pp. 135–169

23. O. Beznosova, A. Reznikov, Equivalent definitions of dyadic Muckenhoupt and Reverse
Holder classes in terms of Carleson sequences, weak classes, and comparability of dyadic
L log L and A∞ constants. Rev. Mat. Iberoam. 30(4), 1190–1191 (2014)

24. K. Bickel, A. Culiuc, S. Treil, B. Wick, Two weight estimates for well localized operators
with matrix weights. Trans. Am. Math. Soc. 371, 6213–6240 (2019)

25. S. Bloom, A commutator theorem and weighted BMO. Trans. Am. Math. Soc. 292(1), 103–
122 (1985)

umolter@dm.uba.ar

http://arxiv.org/abs/1811.01243
http://arxiv.org/abs/1711.02339
http://arxiv.org/abs/1605.06401
http://arxiv.org/abs/1707.05484
http://arxiv.org/abs/1710.08515


7 Dyadic Harmonic Analysis and Weighted Inequalities: The Sparse Revolution 233

26. J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées
partielles non linéaires. Ann. Sci. École Norm. Sup. 14, 209–246 (1981)

27. S.M. Buckley, Estimates for operator norms on weighted spaces and reverse Jensen inequal-
ities. Trans. Am. Math. Soc. 340(1), 253–272 (1993)

28. S.M. Buckley, Summation condition on weights. Mich. Math. J. 40, 153–170 (1993)
29. D.L. Burkholder, Martingale transforms. Ann. Math. Stat. 37(6), 1494–1504 (1966)
30. D.L. Burkholder, Boundary value problems and sharp inequalities for martingale transforms.

Ann. Probab. 12, 647–702 (1984)
31. S.-Y.A. Chang, J.M. Wilson, T.H. Wolff, Some weighted norm inequalities concerning the

Schrödinger operators. Comment. Math. Helv. 60(2), 217–246 (1985)
32. P. Chen, J. Li, L.A. Ward, BMO from dyadic BMO via expectations on product spaces of

homogeneous type. J. Func. Anal. 265(10), 2420–2451 (2013)
33. M. Christ, A T (b) theoremwith remarks on analytic capacity and the Cauchy integral. Colloq.

Math. 60/61(2), 601–628 (1990)
34. D. Chung, Commutators and dyadic paraproducts on weighted Lebesgue spaces. Ph.D. Dis-

sertation, University of New Mexico, 2010
35. D. Chung, Sharp estimates for the commutators of the Hilbert, Riesz and Beurling transforms

on weighted Lebesgue spaces. Indiana U. Math. J. 60(5), 1543–1588 (2011)
36. D. Chung, Weighted inequalities for multivariable dyadic paraproducts. Publ. Mat. 55(2),

475–499 (2011)
37. D. Chung, M.C. Pereyra, C. Pérez, Sharp bounds for general commutators on weighted

Lebesgue spaces. Trans. Am. Math. Soc. 364, 1163–1177 (2012)
38. L. Cladek, Y. Ou, Sparse domination of Hilbert transforms along curves. Math. Res. Lett.

25(2), 415–436 (2018)
39. R. Coifman, C. Fefferman, Weighted norm inequalities for maximal functions and singular

integrals. Studia Math. 51, 241–250 (1974)
40. R.R. Coifman, Y. Meyer, Au délà des opérateurs pseudo-différentiels. Astérisque 57 (1979)
41. R.R. Coifman, R. Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several

variables. Ann. Math. 103, 611–635 (1976)
42. R.R. Coifman, G. Weiss, Analyse harmonique non-commutative sur certains espaces

homogènes. Etude de certaines intégrales singulières. Lecture Notes in Mathematics, vol.
242 (Springer, Berlin, 1971)

43. J.M. Conde, A note on dyadic coverings and nondoubling Calderón-Zygmund theory. J.Math.
Anal. Appl. 397(2), 785–790 (2013)

44. J.M. Conde-Alonso, A. Culiuc, F. Di Plinio, Y. Ou, A sparse domination principle for rough
singular integrals. Anal. PDE 10(5), 1255–1284 (2017)

45. J.M. Conde-Alonso, L.D. López-Sánchez, Operator-valued dyadic harmonic analysis beyond
doubling measures. Proc. Am. Math. Soc. 144(9), 3869–3885 (2016)

46. J. M. Conde-Alonso, J. Parcet, Nondoubling Calderón-Zygmund theory -a dyadic approach-.
J. Fourier Anal. Appl. arXiv:1604.03711

47. J.M. Conde-Alonso, G. Rey, A pointwise estimate for positive dyadic shifts and some appli-
cations. Math. Ann. 365(3–4), 1111–1135 (2016)

48. M. Cotlar, C. Sadosky, On the Helson-Szegö theorem and a related class of modified Toeplitz
kernels, in Harmonic Analysis in Euclidean spaces, ed. by G.Weiss, S. Wainger, Proceed-
ings of Symposia in Pure Mathematics, vol. 35 (Providence, R.I. 1979), 383–407. American
Mathematical Society

49. M. Cotlar, C. Sadosky, On some L p versions of the Helson-Szegö theorem, in Conference
on Harmonic Analysis in honor of Antoni Zygmund, vol. I, II (Chicago, Ill., 1981), 306–317.
Wadsworth Mathematics Series, Wadsworth, Belmont, CA (1983)

50. D. Cruz-Uribe, Two weight norm inequalities for fractional integral operators and commuta-
tors. Advanced Courses of Mathematical Analysis V I, 25–85 (2017)

51. D. Cruz-Uribe, K. Moen, Sharp norm inequalities for commutators of classical operators.
Publ. Mat. 56, 147–190 (2012)

umolter@dm.uba.ar

http://arxiv.org/abs/1604.03711


234 M. C. Pereyra

52. D. Cruz-Uribe, J.M. Martell, C. Peréz, Weights, Extrapolation and the Theory of Rubio the
Francia (Birkhäuser, 2011)

53. D. Cruz-Uribe, J.M. Martell, C. Pérez, Sharp weighted estimates for classical operators. Adv.
Math. 229, 408–441 (2012)

54. A. Culiuc, F. Di Plinio, M.T. Lacey, Y. Ou, Endpoint sparse bound for Walsh-Fourier multi-
pliers of Marcinkiewicz type. Rev. Mat. Iberoam. arXiv:1805.06060

55. A. Culiuc, F. Di Plinio, Y. Ou, Uniform sparse domination of singular integrals via dyadic
shifts. Math. Res. Lett. 25(1), 21–42 (2018)

56. A. Culiuc, F. Di Plinio, Y. Ou, Domination of multilinear singular integrals by positive sparse
forms. J. Lond. Math. Soc. 98(2), 369–392 (2018)

57. A. Culiuc, R. Kesler, M.T. Lacey, Sparse Bounds for the discrete cubic Hilbert transform.
Anal. PDE. arXiv:1612:08881

58. A. Culiuc, S. Petermichl, S. Pott, A matrix weighted bilinear Carleson lemma and maximal
function. arXiv:1811.05838

59. A. Culiuc, S. Treil, The Carleson Embedding Theorem with matrix weights. Int. Math. Res.
Not. https://doi.org/10.1093/imrn/rnx222, arXiv:1508.01716

60. G. David, Morceaux de graphes lipschitziens et intégrales singulières sur une surface. Rev.
Mat. Iberoam. 4(1), 73–114 (1988)

61. G. David, S. Semmes, A boundedness criterion for generalized Calderón-Zygmund operators.
Ann. Math. 20, 371–397 (1984)

62. G. David, J.-L. Journé, S. Semmes, Opérateurs de Calderón-Zygmund, fonctions paraaccré-
tives et interpolation. Rev. Mat. Iberoam. 1(4), 1–56 (1985)

63. F.C. de França Silva, P. Zorin-Kranich, Sparse domination of sharp variational truncations.
arXiv:1604.05506

64. F. Di Plinio, Y. Do, G. Uraltsev, Positive sparse domination of variational Carleson operators.
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 18(4), 1443–1458 (2018)

65. F. Di Plinio, T. Hytönen, K. Li, Sparse bounds for maximal rough singular integrals via the
Fourier transform. Ann. Inst. Fourier. (Grenoble). arXiv:1706.07111

66. D.G. Deng, Y. Han, Harmonic analysis on spaces of homogeneous type (Springer, 2009)
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Chapter 8
Sharp Quantitative Weighted BMO
Estimates and a New Proof of the
Harboure–Macías–Segovia’s
Extrapolation Theorem

Alberto Criado, Carlos Pérez and Israel P. Rivera-Ríos

Abstract In this paper,we are concernedwith quantitativeweightedBMO-type esti-
mates. We provide a new quantitative proof for a result due to Harboure, Macías and
Segovia (Amer JMath 110 (1988), 383–397, [15]) that also allows to slightly weaken
the hypothesis. We also obtain some sharp weighted L∞

c − BMO-type estimates for
Calderón–Zygmund operators.

8.1 Introduction and Main Results

The celebrated extrapolation theoremofRubio deFrancia [27] (see also [7, 9, 10, 12])
establishes that if T is a bounded operator, not necessarily linear, on L p0(w) for some
p0 ∈ (1,∞) and for every w ∈ Ap0 , then for any p ∈ (1,∞), T is also a bounded
operator on L p(w) for every w ∈ Ap. Although in many applications the exponent
p0 = 2 is a natural initial extrapolation hypothesis, other natural assumptions are of
interest. For instance, it is well known that the same conclusion holds if we assume
that T is sublinear and it is bounded on the main natural endpoint. Indeed, if T is
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a weak type (1, 1) operator with respect to any A1 weight, namely, T : L1(w) →
L1,∞(w), is bounded for any w ∈ A1, then if p ∈ (1,∞), T is of strong type (p, p)
with respect to any Ap weight, namely, T : L p(w) → L p(w) is bounded for anyw ∈
Ap. Harboure et al. [15] obtained another highly interesting extrapolation theorem
from the other endpoint which corresponds to the classical situation of T being
bounded from L∞

c (Rn) to BMO(Rn). Being precise, they obtained the following
theorem.

Theorem A (Harboure–Macías–Segovia) Let T be a sublinear operator defined on
C∞
0 (Rn) which satisfies

−
∫
Q

∣∣T f − (T f )Q
∣∣ ≤ C

∥∥∥∥ f

w

∥∥∥∥
L∞

ess inf
Q

w (8.1.1)

for any cube Q ⊂ R
n and any weight w such that w ∈ A1 and where the constant C

depends on T and the A1 constant of w. Then, if p ∈ (1,∞),

T : L p(w) → L p(w)

is a bounded operator for any w ∈ Ap.

We are using here the standard notation fQ = −
∫
Q f for the average of the function

f over the cube Q.
Interestingly enough, estimates like (8.1.1) were considered earlier by Mucken-

houpt and Wheeden in [26].

Theorem B If w ∈ A1, then

−
∫
Q

∣∣H f − (H f )Q
∣∣ ≤ Cw

∥∥∥∥ f

w

∥∥∥∥
L∞

ess inf
Q

w (8.1.2)

for any interval Q ⊂ R and any weightw, where H stands for the Hilbert transform,
namely,

H f (x) = lim
ε→0

∫
|x−y|>ε

f (y)

x − y
dy.

Conversely, if (8.1.2) holds then w ∈ A1.

Most probably, this result was the source of inspiration for Theorem A.
Another interesting fact is that (8.1.1) is related to the “asymmetric” or mixed

weighted BMO that we will denote as BMOw, introduced in [26]. Indeed, if (8.1.1)
holds then

‖T f ‖BMOw
≤ Cw

∥∥∥∥ f

w

∥∥∥∥
L∞

(8.1.3)

where
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‖ f ‖BMOw
= sup

Q

1

w(Q)

∫
Q

∣∣ f − fQ
∣∣.

and hence (8.1.3) holds in the case of the Hilbert transform.
Later on, Bloom [2] considered a variant of this class BMOw to characterize a very

particular two-weighted estimate for the commutator of Coifman–Rochberg–Weiss
[6],

[b, H ] f = bH f − H(b f )

in terms of theweightedBMOw. See [13, 16, 24, 25] formore results in that direction.

8.2 Main Results

8.2.1 An Extrapolation Result Revisited

Now we turn our attention to our contribution. Our first result is a quantitative exten-
sion of the aforementioned extrapolation theorem of Harboure, Macías, and Segovia,
Theorem A.

Theorem 8.2.1 Let T a sublinear operator and δ ∈ (0, 1] such that, for every u ∈
A1,

inf
c∈R

(
1

|Q|
∫
Q

|T f − c|δ
) 1

δ

≤ cn,δϕ([u]A1) inf
z∈Q u(z)

∥∥∥∥ f

u

∥∥∥∥
L∞

. (8.2.1)

Then if w ∈ Ap,

‖T ‖L p(w) ≤ cnϕ(‖M‖L p(w)) ‖M‖L p′ (σ),

where σ = w
− 1

p−1 .

Since ‖M‖L p(w) ≤ cn p′ ([w]Ap [σ]A∞
) 1

p (see [18]) and [σ]Ap′ = [w]
1

p−1

Ap
the preced-

ing estimate yields that

‖T ‖L p(w) ≤ cn p ϕ
(
cn p

′ ([w]Ap [σ]A∞
) 1

p

)(
[w]

1
p−1

Ap
[w]A∞

) 1
p′

8.2.2 A Sharp Quantitative Weighted L∞ − BMO Estimate

Our next result generalizes the sufficiency in Theorem B to general Calderón–
Zygmund operators providing as well the sharp dependence on the constant of the
weight. The precise statement is the following.
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Theorem 8.2.2 Let T be a Calderón–Zygmund operator,w be a weight and f ∈ L p

for some p ∈ [1,∞) a function such that | f | � w a.e. Then for all r > 1 and any
cube Q with sides parallel to the axes, one has

−
∫
Q

∣∣T f − (T f )Q
∣∣ ≤ CT r ′

∥∥∥∥ f

w

∥∥∥∥
L∞

ess inf
Q

Mrw, (8.2.2)

where CT is a constant only depending on the kernel K and the right-hand side is
finite provided w ∈ Lr

loc. If additionally w ∈ A∞,

−
∫
Q

∣∣T f − (T f )Q
∣∣ ≤ CT [w]A∞

∥∥∥∥ f

w

∥∥∥∥
L∞

ess inf
Q

Mw. (8.2.3)

and hence, if w ∈ A1,

−
∫
Q

∣∣T f − (T f )Q
∣∣ ≤ CT [w]A∞[w]A1

∥∥∥∥ f

w

∥∥∥∥
L∞

ess inf
Q

w, (8.2.4)

Inequalities (8.2.3) and (8.2.4) are sharp in the sense that neither [w]A∞ nor [w]A1

can be replaced by φ([w]A∞) or ψ([w]A1) with φ(t),ψ(t) = o(t) as t → ∞.

Remark 1 We observe that we can restate (8.2.2), (8.2.3), and (8.2.4) as norm
inequalities as follows:

∥∥∥∥M�(T f )

Mrw

∥∥∥∥
L∞

≤ CT r ′
∥∥∥∥ f

w

∥∥∥∥
L∞

, (8.2.5)

∥∥∥∥M�(T f )

Mw

∥∥∥∥
L∞

≤ CT [w]A∞

∥∥∥∥ f

w

∥∥∥∥
L∞

, (8.2.6)

∥∥∥∥M�(T f )

w

∥∥∥∥
L∞

≤ CT [w]A1[w]A∞

∥∥∥∥ f

w

∥∥∥∥
L∞

. (8.2.7)

8.2.3 An Improved Version

In this section, we will provide a natural counterpart of Theorem 8.2.2 in terms of
slightly smaller oscillations. This idea was considered in [1] (motivated by [20])
having as a goal to provide a simpler proof of the classical Coifman–Fefferman
theorem [5] relating any Calderón–Zygmund operator and the Hardy–Littlewood
maximal function.

For 0 < ε < 1, we define the following modification of the sharp maximal oper-
ator:
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M�
ε f (x) := (

M�(| f |ε)(x) )1/ε = sup
x∈Q

(
−
∫
Q

∣∣∣| f (y)|ε − (| f |ε)Q
∣∣∣ dy

)1/ε

.

Since

−
∫
Q

∣∣ f − ( f )Q
∣∣ 	 inf

c
−
∫
Q

∣∣ f − c
∣∣

In particular we have that

(
−
∫
Q

∣∣| f |ε − (| f |ε)Q
∣∣
) 1

ε

	 inf
c

(
−
∫
Q

∣∣| f |ε − c
∣∣
) 1

ε

From that equivalence it follows that

M�
ε f (x) � sup

x∈Q

(
−
∫
Q

∣∣∣| f (y)|ε − | fQ |ε
∣∣∣ dy

)1/ε

� sup
x∈Q

(
−
∫
Q

∣∣∣ f (y) − fQ
∣∣∣ε dy

)1/ε

≤ 2
1
ε M� f (x)

by the numeric inequality ||a|ε − |b|ε| ≤ |a − b|ε and Jensen inequality. We also
note that

(
−
∫
Q

∣∣∣| f (y)|ε − (| f |ε)Q
∣∣∣ dy

)1/ε

	 inf
c

(
−
∫
Q

∣∣∣| f (y)|ε − |c|ε
∣∣∣ dy

)1/ε

� inf
c

(
−
∫
Q

∣∣∣ f (y) − c
∣∣∣ε dy

)1/ε

The key point of using the operator M�
ε is that if 0 < ε < 1 there exists a constant

c depending on T and ε such that for all f ,

M#
ε (T f )(x) ≤ c M f (x).

This result was shown in [1] and, as it was mentioned above, it allows to provide a
simpler proof of the main result in the classical and celebrated paper [5], with the
additional advantage that it can be extended to the multilinear case (see [23]). We
remit to [3] for a recent extension of this property to many other situations.

This philosophy leads to establish the following result that provides a better depen-
dence on the A∞ − A1 constant than the one obtained in Theorem 8.2.2.

Theorem 8.2.3 Let T be a Calderón–Zygmund operator,w be a weight and f ∈ L p

for some p ∈ [1,∞) a function such that | f | � w a.e. Then for any 0 < ε < 1 and
any cube Q with sides parallel to the axes, one has
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inf
c

(
−
∫
Q

∣∣∣T f (y) − c
∣∣∣ε dy

)1/ε

≤ CT,ε

∥∥∥∥ f

w

∥∥∥∥
L∞

ess inf
Q

Mw, (8.2.8)

where CT,ε is a constant depending on the (regularity of the) kernel K and on ε.
Hence ∥∥∥∥M�

ε (T f )

Mw

∥∥∥∥
L∞

≤ CT,ε

∥∥∥∥ f

w

∥∥∥∥
L∞

. (8.2.9)

As a consequence if w ∈ A1

∥∥∥∥M�
ε (T f )

w

∥∥∥∥
L∞

≤ CT,ε [w]A1

∥∥∥∥ f

w

∥∥∥∥
L∞

. (8.2.10)

Also in (8.2.10) is sharp in the sense that [w]A1 cannot be replaced by ψ([w]A1) with
ψ(t) = o(t) as t → ∞.

8.3 Some Definitions and Key Results

In this section, we gather some results and definitions that will be fundamental for
the proofs of our main results.

For 1 < p < ∞, we say that a locally integrable function w ≥ 0 belongs to the
Muckenhoupt Ap class if

[w]Ap := sup
Q

( 1

|Q|
∫
Q

w
)( 1

|Q|
∫
Q

w1−p′)p−1
< ∞,

where p′ is such that 1
p + 1

p′ = 1. We call [w]Ap the Ap constant. If p = 1 we say
that w ∈ A1 if there exists a constant κ > 0 such that

Mw(x) ≤ κw(x) a.e. x ∈ R
n. (8.3.1)

We define the A1 constant or characteristic [w]A1 as the infimum of all κ such
that (8.3.1) holds. It is also a well-known fact that the Ap classes are increasing,
namely, that p ≤ q ⇒ Ap ⊂ Aq . We can define in a natural way the A∞ class as
A∞ = ⋃

p≥1 Ap. Associated to this A∞ class, it is also possible to define an A∞
constant as

[w]A∞ := sup
Q

1

w(Q)

∫
Q
M(wχQ)dx .

This constant was essentially introduced by Fujii [11] and rediscovered by Wilson
[28].
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Another basic tool for us is the following reverse Hölder inequality with optimal
bound, as obtained in [18] (see also [19] for a different proof).

Lemma 8.3.1 Letw ∈ A∞. There exists τn > 0 such that for every δ ∈
[
0, 1

τn [w]A∞

]
and every cube Q

(
1

|Q|
∫
Q

w1+δ

) 1
1+δ

≤ 2

|Q|
∫
Q

w.

We will also use the following well-known lemma.

Lemma 8.3.2 Let w be a weight and Q a cube with center cQ, then

∫
Qc

|x − cQ |
|y − cQ |n+1

w(y) dy ≤ 2n ess inf
y∈Q Mw(y). (8.3.2)

In particular if w ∈ A1, then

∫
Qc

|x − cQ |
|y − cQ |n+1

w(y) dy ≤ 2n[w]A1 ess inf
y∈Q w(y). (8.3.3)

Proof Assume that Q has edge length R. One has

∫
Qc

|x − cQ |
|y − cQ |n+1

w(y) dy ≤
∞∑
k=0

∫
2k+1Q\2k Q

R/2

(2k R)n+1
w(y) dy

≤
∞∑
k=0

2n−1

2k
1

(2k+1R)n

∫
2k+1Q

w(y) dy

≤ 2n−1
∞∑
k=0

1

2k
ess inf
y∈2k Q

Mw(y)

≤ 2n−1
∞∑
k=0

1

2k
ess inf
y∈Q Mw(y)

= 2n ess inf
y∈Q Mw(y).

We end the proof of the lemma observing that (8.3.3) follows from (8.3.2) by the
definition of A1.

We recall that a family of cubes S is η-sparse (η ∈ (0, 1)) if for every cube Q ∈ S
there exists a measurable subset EQ ⊂ Q such that η|Q| ≤ |EQ | and the sets EQ are
pairwise disjoint.

The idea of sparse family was implicit in the literature from a long time ago.
It is implicit, for instance, in the proof of the reverse Hölder inequality (see [12]).
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However, it was not until the rise of a big interest in the area for quantitative weighted
estimates that it was deeply understood and widely developed. In modern time, the
first use of the sparsity in the context of singular integrals for “smooth” kernels can
be found in [8] where the A2 “conjecture” was proved for these operators and many
others. Another major development can be found in the paper by Lerner [21] where
he proved that Calderón–Zygmund operators can be controlled in norm by sparse
operators, namely, operators defined by

AS f (x) =
∑
Q∈S

1

|Q|
∫
Q
f (y)dyχQ(x)

Simplifying the proof of the A2 theorem that had been established by Hytönen [17]
was themotivation for Lerner. Sparse dominationwas pursued after that work leading
to the proof of the pointwise domination of Calderón–Zygmund operators by sparse
operators obtained independently byLerner andNazarov [22] andConde-Alonso and
Rey [4]. After those results, a number of authors, which would be hard to mention
here, have developed several papers to the study of problems in the theory of weights
from the point of view of sparse domination.

To end with the preliminaries, we are going to borrow from [22] the following
result that will be crucial for our purposes.

Theorem 8.3.3 Let f : Rn → R be any measurable almost everywhere finite func-
tion such that for every ε > 0,

|{x ∈ [−R, R]n : | f (x)| > ε}| = o(Rn) as R → ∞. (8.3.4)

Then for every λ ∈ (0, 2−n−2], there exists a 1
6 -sparse family S depending on f such

that

| f (x)| ≤
∑
Q∈S

wλ( f, Q)χQ(x)

where

wλ( f, Q) = inf{w( f, E) : E ⊂ Q|E | ≥ (1 − λ)|Q|}

and w( f, E) = supE f − infE f .

Remark 2 At this point wewould like to note that functions in L p(Rn), p > 1 satisfy
(8.3.4). Indeed, if f ∈ L p let R > 0 and ε > 0,
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∣∣{x ∈ [−R, R]n : | f (x)| > ε
}∣∣ ≤ 1

ε

∫
[−R,R]n

| f (x)|dx

≤ 1

ε

(∫
[−R,R]n

| f (x)|pdx
)1/p

(2R)n/p′

≤ 1

ε
‖ f ‖L p (2R)n/p′

.

This gives immediately (8.3.4).
In our case, condition (8.2.1) for an operator T yields by standard estimates that

it is bounded on L p(Rn), p > 1. Hence, this formula holds for the case T f when f
is smooth.

8.4 Proofs

Proof of Theorem8.2.1. We start building a Rubio de Francia Algorithm

Rg =
∞∑
k=0

Skσ(g)

‖Sσ‖kL p(σ)

where

Sσ(g) = M( f σ)

σ

We observe that

g ≤ Rg ‖Rg‖L p(σ) ≤ 2‖g‖L p(σ)

and also

[σRg]A1 ≤ ‖M‖L p(w).

At this point we need to borrow a result from [15, Corollary p. 395]. There exists
g ∈ L p(σ) with ‖g‖L p(σ) ≤ 2 such that

∥∥∥∥ f

σg

∥∥∥∥
L∞

≤ ‖ f ‖L p(w).

We see that the properties of the Rubio de Francia algorithm allow us to write

∥∥∥∥ f

σRg

∥∥∥∥
L∞

≤
∥∥∥∥ f

σg

∥∥∥∥
L∞

.
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Assume that f is smooth with compact support. Then T f is well defined, our
condition (8.2.1) yields by standard estimates that it is bounded on L p(Rn), p > 1,
i.e., without weights, and we can apply Remark 2 to T f . Hence, by duality there
exists ‖h‖L p′ (w) = 1 such that

(∫
Rn

|T f |pwdx

) 1
p

=
∫
Rn

T f hw.

We apply now the decomposition formula from Theorem 8.3.3 and using the well-
known fact that

ωλ( f, Q) ≤ c inf
α

(
( f − α)χQ

)∗(
λ|Q|) ≤ cλ inf

c

( 1

|Q|
∫
Q

| f − c|δdx
)1/δ

we can argue, taking into account all the estimates above and since the family of
cubes is sparse, as follows:

∫
Rn

T f hw ≤
∑
Q∈S

ωλ(T f, Q)

∫
Q
hw

�
∑
Q∈S

inf
c

(
1

|Q|
∫
Q

|T f (x) − c|δ
) 1

δ
∫
Q
hw

� ϕ([σRg]A1)
∑
Q∈S

inf
z∈Q

{σ(z)Rg(z)}
∥∥∥∥ f

σRg

∥∥∥∥
L∞

∫
Q
hw

� ϕ([σRg]A1)‖ f ‖L p(w)

∑
Q∈S

inf
z∈Q

{σ(z)Rg(z)}
∫
Q
hw

� ϕ([σRg]A1)‖ f ‖L p(w)

∑
Q∈S

1

|Q|
∫
EQ

Rg σ dx
∫
Q
hw dx

≤ ϕ([σRg]A1)‖ f ‖L p(w)

∫
Rn

M(hw) Rg σ dx

≤ ϕ(‖M‖L p(w))‖ f ‖L p(w)

(∫
Rn

M(hw)p
′
σ dx

) 1
p′

(∫
Rn

(Rg)p σ dx

) 1
p

� ϕ(‖M‖L p(w))‖ f ‖L p(w)‖M‖L p′ (σ)‖h‖L p′ (w)‖g‖L p(σ)

≤ ϕ(‖M‖L p(w))‖M‖L p′ (σ)‖ f ‖L p(w)

and we are done.

Proof of Theorem8.2.2. To simplify the presentation, we shall assume that our
Calderón–Zygmund operator satisfies a Hölder–Lipschitz condition with δ = 1. The
same argument with minor adjustments holds for any CZO satisfying any other
Hölder–Lipschitz condition or the Dini condition.

umolter@dm.uba.ar



8 Sharp Quantitative Weighted BMO Estimates … 251

By the hypothesis we have imposed on f and w, it is clear that T f is well defined
and that (T f )Q < ∞ for every cube Q. Let us call g = f χ2Q and h = f − g. Again
T g, (T g)Q , Th, and (Th)Q make sense. It will be enough to control separately the
oscillations of T g and Th in Q. We note that it is enough to deal with (8.2.2) since
just taking into account the reverse Hölder property in Lemma 8.3.1 in the case of
(8.2.3) and also from the definition of A1 in the case of (8.2.4) those estimates follow
from (8.2.2).

We begin with h. Using Lemma 8.3.2, we obtain

∫
Q

|Th − (Th)Q | ≤ 2
∫
Q

|Th| = 2
∫
Q

∣∣∣
∫
Rn\2Q

[K (x, y) − K (cQ, y)] f (y) dy
∣∣∣ dx

≤ C

∥∥∥∥ f

w

∥∥∥∥
L∞

∫
Q

∫
Rn\2Q

|x − cQ |
|y − cQ |n+1

w(y) dy dx

≤ C

∥∥∥∥ f

w

∥∥∥∥
L∞

|Q| ess inf
y∈Q Mw(y). (8.4.1)

To deal with g, we use Jensen’s inequality and that the operator norm of T on Lr

is r ′ up to constants only depending on the kernel K . We obtain

−
∫
Q

|T g − (T g)Q | = −
∫
Q

|T g − (T g)Q | ≤ 2−
∫
Q

|T g| �
(

−
∫
Q

|T g|r
)1/r

� r ′
(

−
∫
2Q

| f |r
)1/r

� r ′
∥∥∥∥ f

w

∥∥∥∥
L∞

(
−
∫
2Q

wr

)1/r

� r ′
∥∥∥∥ f

w

∥∥∥∥
L∞

ess inf
2Q

Mrw �
∥∥∥∥ f

w

∥∥∥∥
L∞

ess inf
Q

Mrw.

This proves (8.2.2).
To show the sharpness of the theorem, it is enough to consider (8.2.4). We will

consider in the real line the Hilbert transform and the following weight forα ∈ (0, 1)
(actually we will consider α close to zero):

w(y) = |y|α−1.

Observe first that [w]A∞ � [w]A1 	 1
α

Since we assume that (8.2.4) holds for any interval Q and any function f , we
consider f = wχ(−1,1) and let Q = (−1, 1). We observe that H f is odd, integrable
in Q, and hence

∫
Q
H( f )(x) = 0.

This yields
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∫
Q

|H( f )(x) − (H f )Q |dx =
∫
Q

|H( f )(x)|dx = 2
∫ 1

0
|H( f )(x)|dx ≥ −2

∫ 1

0
H( f )(x)dx

Now, taking into account results in [14, p. 315],

−
∫ 1

0
H( f )(x)dx =

∫ 1

−1
|x |α−1 H(χ(0,1))(x) dx =

∫ 1

−1
|x |α−1 log

|x − 1|
|x | dx

=
∫ 1

−1
|x |α−1 log |x − 1| dx +

∫ 1

−1
|x |α−1 log

1

|x | dx = I + I I

and we have

I I = 2
∫ 1

0
xα−1 log

1

x
dx = 2

α2

and

I > −
∫ 1

0
xα−1 log

1

1 − x
dx

but

∫ 1

0
xα−1 log

1

1 − x
dx =

∫ 1
2

0
xα−1 log

1

1 − x
dx +

∫ 1

1
2

xα−1 log
1

1 − x
dx

< log 2
∫ 1

2

0
xα−1 dx + 2α−1

∫ 1

1
2

log
1

|x − 1| dx <
log 2

α
+ c.

Combining estimates, we have for α small enough,

−
∫
Q

|H( f )(x) − (H f )(Q)|dx >
c

α2
.

This finishes the optimality of the estimate.

Proof of Theorem8.2.3. We use the same notation as in the proof of Theorem 8.2.2.
We fix a cube Q and split f = g + h. Then to prove (8.2.8) it is enough to choose
c = |(Th)Q |ε. Using again the numeric inequality ||a|ε − |b|ε| ≤ |a − b|ε
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−
∫
Q

∣∣∣|T f |ε − |(Th)Q |ε
∣∣∣ ≤ −

∫
Q

∣∣∣T f (x) − (Th)Q

∣∣∣ε dx

= −
∫
Q

∣∣∣T g(x) + Th(x) − (Th)Q

∣∣∣ε dx

≤ −
∫
Q

∣∣∣T g(x)
∣∣∣ε dx + −

∫
Q

∣∣∣Th(x) − (Th)Q

∣∣∣ε dx

≤ −
∫
Q

∣∣∣T g(x)
∣∣∣ε dx +

(
−
∫
Q

∣∣∣Th(x) − (Th)Q

∣∣∣ dx
)ε

= I + I I ε.

To estimate I I , we use (8.4.1)

I I ≤ C

∥∥∥∥ f

w

∥∥∥∥
L∞

ess inf
y∈Q Mw(y).

For I , we will be using the well-known Kolmogorov’s inequality (see [12], p. 485
for instance), if q ∈ (0, 1) and (X,μ) is a probability space

‖g‖Lq (X,μ) ≤ cq ‖g‖L1,∞(X,μ).

Now, since T is of weak type (1, 1), B := ‖T ‖L1→L1,∞ < ∞ and we have

(
−
∫
Q

|T g|ε
)1/ε

≤ 21/ε
(

1

1 − ε

)1/ε

BT

∥∥∥∥ f

w

∥∥∥∥
L∞

−
∫
2Q

w

≤ 21/ε
(

1

1 − ε

)1/ε

BT

∥∥∥∥ f

w

∥∥∥∥
L∞

ess inf
2Q

Mw.

This concludes the proof of (8.2.8). For the proof of the optimality, we remit to the
proof of Theorem 8.5.1.

8.5 Further Remarks

Some of the estimates we have obtained in Theorems 8.2.2 and 8.2.3 can be slightly
generalized. We say that (u, v) ∈ A1 if

[(u, v)]A1 =
∥∥∥∥Mu

v

∥∥∥∥
L∞

< ∞.

Relying upon that definition, we can establish the following result.

Theorem 8.5.1 Let T be a Calderón–Zygmund operator,w be a weight and f ∈ L p

for some p ∈ [1,∞) a function such that | f | � u. Then, if ε ∈ (0, 1),
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∥∥∥∥M�
ε (T f )

v

∥∥∥∥
L∞

≤ CT [(u, v)]A1

∥∥∥∥ f

u

∥∥∥∥
L∞

. (8.5.1)

If in addition u ∈ A∞, then

∥∥∥∥M�(T f )

v

∥∥∥∥
L∞

≤ CT [u]A∞[(u, v)]A1

∥∥∥∥ f

u

∥∥∥∥
L∞

. (8.5.2)

The dependence of the constant [(u, v)]A1 in (8.5.1) is sharp in the same sense as in
Theorem 8.2.3.

Proof It is straightforward to deduce (8.5.1) from (8.2.9) and (8.5.2) from (8.2.6). In
order to settle the optimality of the linear dependence of the constants on [(u, v)]A1 ,
we will show the following for H the Hilbert transform. If (u, v) are such that for
each f � u a.e. such that f ∈ L p for some p ∈ [1,∞)

inf
c

(
−
∫
I

∣∣∣|H f |ε − c
∣∣∣
)1/ε

≤ C�

∥∥∥∥ f

u

∥∥∥∥
L∞

ess inf
I

v, (8.5.3)

then (u, v) ∈ A1 and C� � [(u, v)]A1 . Let us fix an interval J . We define f = uχJ

and J i = J + i |J | for i ∈ Z. Note that for x ∈ J i i ≥ 2 we have that

|H f (x)| =
∫
J

u(y)

y − x
dy.

Then it is clear that

u(J )

3|J | ≤ |H f (x)| ≤ u(J )

|J | x ∈ J 2

u(J )

6|J | ≤ |H f (x)| ≤ u(J )

4|J | x ∈ J 5

This yields that for every x ∈ J 2

||H f (x)|ε − (|H f |ε)J 5 | 	
(
u(J )

|J |
)ε

(8.5.4)

We take I = ⋃5
i=0 J

i . We observe that in view of (8.5.4),

(
−
∫
I

∣∣∣|H f |ε − (|H f |ε)J 5
∣∣∣
)1/ε

�
(

−
∫
J 2

∣∣∣|H f |ε − (|H f |ε)J 5
∣∣∣
)1/ε

� u(J )

|J | .

So writing (8.5.3) for our choice of I and f yields
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u(J )

|J | �
(

−
∫
I

∣∣∣|H f |ε − (|H f |ε)J 5
∣∣∣
)1/ε

	 inf
c

(
−
∫
I

∣∣∣|H f |ε − c
∣∣∣
)1/ε

≤ C� ess inf
I

v ≤ C� ess inf
J

v

and we are done since the choice of J is arbitrary.

Remark 3 Combining Theorems 8.2.1 and 8.2.3, we obtain the following result for
Calderón–Zygmund operators T :

‖T ‖L p(w) ≤ cn,p,T [w]1+
1

p−1

Ap
w ∈ Ap.

The preceding estimate is not sharp. We wonder whether it would be possible to
recover the sharp result using an extrapolation argument in the spirit of Theorem
8.2.1. In view of the proof of that result, it seems clear that we could replace (8.2.1)
by the following condition. For every cube Q and some λ ∈ (0, 2−n−2],

wλ (T f, Q) ≤ cn,λϕ([u]A1) inf
z∈Q u(z)

∥∥∥∥ f

u

∥∥∥∥
L∞

.

We do not knowwhether this condition could allow to obtain more precise estimates.
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Chapter 9
Lq Dimensions of Self-similar Measures
and Applications: A Survey

Pablo Shmerkin

Abstract We present a self-contained proof of a formula for the Lq dimensions of
self-similar measures on the real line under exponential separation (up to the proof
of an inverse theorem for the Lq norm of convolutions). This is a special case of a
more general result of the author from Shmerkin (Ann Math, 2019), and one of the
goals of this survey is to present the ideas in a simpler, but important, setting.We also
review some applications of the main result to the study of Bernoulli convolutions
and intersections of self-similar Cantor sets.

Mathematical Subject Classification: Primary: 28A75 · 28A80

9.1 Introduction

9.1.1 Self-similar Measures

The purpose of this survey is to present a special, but important, case of the main
result of [19] concerning the smoothness properties of self-similar measures on the
real line. Given a finite family fi(x) = λix + ti, i ∈ I of contracting similarities (that
is, |λi| < 1) and a corresponding probability vector (pi)i∈I , there is a unique Borel
probability measure μ on R such that

μ =
∑

i∈I
pi fiμ,
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where here and throughout the paper, if ν is a Borel probability measure on a space
X and g : X → Y is a Borel map, then gν is the push-forward measure, that is,
gν(B) = ν(g−1B) for all Borel B. We call the tuple (fi, pi)i∈I a weighted iterated
function system, or WIFS, and μ the corresponding invariant self-similar measure.

Studying the properties of self-similar measures, and in particular quantifying
their smoothness, is a topic of great interest since the 1930s. Let us define the simi-
larity dimension of a self-similar measure μ (or, rather, the generating WIFS) by

dimS(μ) =
∑

i∈I pi log(1/pi)∑
i∈I pi log(1/|λi|) .

The similarity dimension is one of the simplest instances of a verywidespread expres-
sion in the dimension theory of conformal dynamical systems: it has the form

entropy

Lyapunov exponent
.

Indeed,
∑

i∈I pi log(1/pi) is the entropy of the probability vector (pi)i∈I : a quantity
that measures how uniform this vector is. For example, it attains its maximal value
log |I | exactly at the uniform probability vector (1/|I |, . . . , 1/|I |). Lyapunov expo-
nents quantify the average expansion or contraction of a dynamical system, and this
is how the denominator

∑
i∈I pi log(1/|λi|) should be interpreted.

It is well known that if dimS(μ) < 1, then μ is purely singular with respect to
Lebesgue measure. In fact, even more is true. The Hausdorff dimension of a Radon
measure ν on R is defined as

dimH (ν) = inf{dimH (A) : A is Borel, ν(R \ A) = 0}.

For self-similar measures, it always holds that dimS(μ) ≤ dimH (μ), and it is clear
from the definition that measures with Hausdorff dimension < 1 must be purely
singular. We also note that one always has dimH (μ) ≤ 1, even though it is possible
that dimS(μ) > 1.

Two major problems in fractal geometry are (a) understanding when one actually
has dimH (μ) = dimS(μ) and (b) analyzing the properties of μ when dimS(μ) > 1;
in particular, determining whether μ is absolutely continuous and, if so, character-
izing the smoothness of its density. While both problems are still wide open in this
generality, major progress has been accomplished in the last few years. The goal of
this article is to present one of the several directions in which progress was achieved,
following [19].While the results of [19] concern a wider class of measures satisfying
a generalized notion of self-similarity, here we focus on the proper self-similar case,
both because it is an important class in itself and because it allows us to present some
of the proofs of [19] in a technically simpler setting. In particular, some ergodic-
theoretic concepts and tools are not required in the self-similar case.
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9.1.2 The Overlaps Conjecture and Hochman’s Theorem on
Exponential Separation

Let A = supp(μ). The set A is self-similar: it satisfies that A = ⋃
i∈I fi(A) (here we

assume that all the pi are strictly positive; we can always remove the maps fi with
pi = 0 to achieve this). When the pieces fi(A) are separated enough one does have an
equality dimH (μ) = dimS(μ). Indeed, this holds if the sets fi(A) are pairwise disjoint
or, more generally, under the famous open set condition which allows the images
fi(A) to intersect but in a very limited way.

On the other hand, there are two known mechanisms that force an inequality
dimH (μ) < dimS(μ). The first is if dimS(μ) > 1. The second is slightly less trivial
but still quite simple. Suppose first that fi = fj for some i �= j. Then if we drop fj
from the WIFS and replace pi by pi + pj the invariant measure does not change.
However, a simple calculation reveals that the similarity dimension of the newWIFS
is strictly smaller than that of the original one, and hence the Hausdorff dimension of
μ is strictly smaller than the similarity dimension derived from the original WIFS.
Although the calculation is slightly more involved, the same argument shows that if
the maps fi do not freely generate a free semigroup or, in other words, if there exist
different finite sequences i = (i1 . . . ik), j = (j1 . . . j�) such that

fi1 ◦ · · · ◦ fik = fj1 ◦ · · · ◦ fj� ,

then one also has dimH (μ) < dimS(μ). In this case, we say that the WIFS has an
exact overlap. We note that if this happens then it also happens for sequences of the
same length, as we could replace i and j by the juxtapositions ij and ji.

A central conjecture in fractal geometry asserts that these are the onlymechanisms
by which a dimension drop dimH (μ) < dimS(μ) can occur (we note that in higher
dimensions this is not true, but there are related conjectures, see [13] for a discussion).
This can be shortly stated in the form: if dimH (μ) < min(dimS(μ), 1), then there is
an exact overlap. The conjecture has a long history. A version for sets was stated in
print in [16], where it is attributed to K. Simon. We refer to M. Hochman’s paper
[12] for further background and discussion.

While the overlaps conjecture remains open, in [12] M. Hochman accomplished a
decisive step toward it. Given a finite sequence i = (i1 . . . ik), we write fi = fi1 ◦ · · · ◦
fik for short. Roughly speaking,Hochman proved that if dimH (μ) < min(dimS(μ), 1)
then for all large k there must exist distinct pairs i, j of words of length k such that
the maps fi and fj are super-exponentially close (as opposed to being identical, as
the overlaps conjecture predicts). More precisely, given two similarity maps gj(x) =
λjx + tj, j = 1, 2 we define a distance

d(g1, g2) =
{ |t1 − t2| if λ1 = λ2

1 if λ1 �= λ2
.
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(It may seem strange to define the distance to be 1 if λ1 ≈ λ2 and t1 ≈ t2, but it turns
out that only the case in which λ1 = λ2 ends up being relevant.) Given a WIFS as
above, we define the k-separation numbers Γk as

Γk = inf{d(gi, gj) : i = (i1, . . . , ik), j = (j1, . . . , jk), i �= j}. (9.1.1)

We say that the WIFS has exponential separation if there exists δ > 0 such that

Γk > δk for infinitely many k ∈ N.

Note that this notion depends only on the similarity maps fi and not on the weights pi.
We also remark that this condition is substantiallyweaker than the open set condition.
We can now state Hochman’s theorem.

Theoremsh 1.1 If (fi, pi) is a WIFS with exponential separation and μ is the asso-
ciated invariant self-similar measure, then

dimH (μ) = min(dimS(μ), 1).

Besides conceptually getting us closer to the overlaps conjecture, this theorem has
some striking implications: it can be checked in many new explicit cases, and it can
be shown to hold outside of very small exceptional sets of parameters in parametrized
families of self-similar measures satisfying minimal regularity and non-degeneracy
assumptions. Hochman’s theorem (and its proof) has also underpinned much of the
more recent progress in the area—we will come back to all these points in Sect. 9.4.

9.1.3 Lq Dimensions

Hochman’s theorem is about the Hausdorff dimension of self-similar measures. In
fractal geometry, and in particular in multifractal analysis, there is a myriad of other
ways of quantifying the size of a (potentially fractal)measure. Of particular relevance
is a one-dimensional family of numbers known as Lq dimensions, which we now
define.

We introduce some further notation for simplicity. Let P denote the family of
boundedly supported Borel probabilitymeasures onR. The class ofμ ∈ P supported
on [0, 1) is denoted by P1. Given m ∈ N, we let Dm denote the family of half-open
dyadic intervals of side-length 2−m, that is,

Dm = {[ j2−m, ( j + 1)2−m) : j ∈ Z}.

Given μ ∈ P and q > 1, the quantity Sm(μ, q) = ∑
J∈Dm

μ(J )q measures, in an Lq-
sense, how uniformly distributed μ is at scale 2−m. Using Hölder’s inequality, one
can check that if μ ∈ P1, then
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2(1−q)m ≤ Sm(μ, q) ≤ 1, (9.1.2)

with the extremevalues attained, respectively,whenμ is uniformly distributed among
the 2m intervals J ∈ Dm contained in [0, 1), and when μ gives full mass to a single
interval inDm. This suggests that the decay rate of Sm(μ, q) asm → ∞may indicate
the smoothness of μ at arbitrarily small scales, and this is precisely how the Lq

dimensions Dμ(q) are defined:

τμ(q) = lim inf
m→∞

− log Sm(μ, q)

m
,

Dμ(q) = τμ(q)

q − 1
.

(Here and throughout the paper, the logarithms are to base 2.) We will sometimes
write τ(μ, q), D(μ, q) instead of τμ(q), Dμ(q). The function q 	→ τμ(q) is called
the Lq spectrum of μ. In light of (9.1.2), one always has 0 ≤ Dμ(q) ≤ 1 for μ ∈ P1

and, indeed, the same inequality holds for μ ∈ P . Moreover, Dμ(q) = 0 for purely
atomic measures μ and Dμ(q) = 1 if μ is Lebesgue measure on an interval or, more
generally, if μ is absolutely continuous with an Lq density. These basic properties
suggest that Dμ(q) is a reasonable notion of dimension.

We state two simple and well-known properties of Lq dimensions.

Lemmash 1 The functions q 	→ Dμ(q), q 	→ τμ(q) are, respectively, nonincreasing
and concave on (1,∞).

Proof Fix 0 < λ < 1,μ ∈ P ,m ∈ N, q1, q2 ≥ 1. It follows fromHölder’s inequality
applied with exponents 1/λ and 1/(1 − λ) that

Sm(μ, λq1 + (1 − λ)q2) ≤ Sm(μ, q1)
λ Sm(μ, q2)

1−λ.

The concavity of τ is immediate from this. For the monotonicity of Dμ(q), suppose
1 < p < q and apply the above with q1 = q, q2 = 1 and λ = (p − 1)/(q − 1).

So far we have dealt with a general measure μ ∈ P . We now turn to self-similar
measures associated to a WIFS (fi, pi). We have seen that the similarity dimension
is a “candidate” for the Hausdorff dimension of a self-similar measure μ, is always
an upper bound for dimH (μ), and is conjectured to equal dimH (μ) under the terms
of the overlaps conjecture. There is a natural Lq analog of the similarity dimension:
first, we define T (μ, q) as the only number satisfying

∑

i∈I
pqi |λi|−T (μ,q) = 1,

and then let dimS(μ, q) = T (μ, q)/(q − 1). The function T is a “symbolic” analog
of the Lq spectrum,while dimS is a version of similarity dimension for Lq dimensions.
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A simple exercise shows that limq→1+ dimS(μ, q) = dimS(μ). We also have that
q 	→ dimS(μ, q) is a real-analytic, nondecreasing function of q; it is constant if and
only if pi = |λi|s for some s independent of i (in which case dimS(μ, q) = s for all
q > 1), and otherwise it is strictly decreasing.

Just like for Hausdorff dimension, it always holds that Dμ(q) ≤
min(dimS(μ, q), 1), and the only known mechanisms for a strict inequality are
dimS(μ, q) > 1 and the presence of exact overlaps. A variant of the overlaps con-
jecture asserts that if μ is a self-similar measure then Dμ(q) = min(dimS(μ, q), 1)
unless there is an exact overlap. This conjecture is stronger than theHausdorff dimen-
sionvariant, sinceDμ(q) ≤ dimH (μ) for allq > 1 andDμ(q) → dimH (μ) asq → 1+
in the case of self-similar measures: see [20, Theorem 5.1 and Remark 5.2].

In [19], the author established the following variant of Hochman’s Theorem 1.1
for Lq dimensions.

Theoremsh 1.2 If (fi, pi) is a WIFS with exponential separation and μ is the asso-
ciated invariant self-similar measure, then

Dμ(q) = min(dimS(μ, q), 1) for all q > 1.

Again, this theorem is formally stronger than Theorem 1.1, since the latter can be
recovered by letting q → 1+. While at first it may seem that the difference between
Hausdorff and Lq dimensions is merely technical, the Lq dimension version has
several advantages in applications, especially since it applies to every q > 1. It is
useful to think of the difference between Lq and Hausdorff dimensions as being
similar to the difference between Lq and L1 functions (on bounded intervals). Both
kinds of dimensions give information about the local behavior of a measure, but the
Lq dimensions do so in a more quantitative fashion. If dimH (μ) > s, then it holds
that

μ(B(x, r)) ≤ rs (9.1.3)

for μ-almost all x and all sufficiently small r (depending on x). On the other hand, if
limq→∞ Dμ(q) > s, then (9.1.3) holds uniformly, for all x and all sufficiently small
r: see Lemma 13. For some applications of Theorem 1.2 beyond those described in
this article, see [3, 10, 17].

Theorem 1.2 was originally featured in [19, Theorem 6.6]. In this article, we will
present the proof of the special case in which the WIFS is homogeneous, that is,
all of the scaling factors λi are equal. The homogeneous case of Theorem 1.2 is a
particular case of [19, Theorem 1.1]. As indicated earlier, this particular case avoids
an ergodic-theoretic part of the argument, and so we hope it will be more accessible.
The proof borrows many ideas from Hochman’s proof of Theorem 1.1, but there are
also substantial differences.

One central element of the proof of Theorem 1.2 is an inverse theorem for the Lq

normof convolutions,whichdoes not rely on self-similarity andmayhaveother appli-
cations. This theorem is discussed and stated (without proof) in Sect. 9.2. Section9.3
contains the proof of the homogeneous version of Theorem 1.2, starting with a sketch
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and proceeding to the details. In Sect. 9.4, we introduce some applications to Frost-
man exponents, self-similar measures generated by algebraic parameters, absolute
continuity, and intersections of self-similar Cantor sets. We also briefly discuss some
old and new results by other authors on Bernoulli convolutions, how they relate to
ours, and a possible line for future research.

Although some of the applications in Sect. 9.4 have not been stated in this form in
[18], both the results and the presentation of this survey are strongly based on [18].

9.2 An Inverse Theorem for the Lq Norms of Convolutions

Let μ, ν ∈ P . The convolution μ ∗ ν is defined as the push-forward of the product
measure μ × ν under the addition map (x, y) 	→ x + y. Explicitly,

μ ∗ ν(A) = (μ × ν){(x, y) : x + y ∈ A} for all Borel A ⊂ R.

Intuitively, one expects the convolution μ ∗ ν to be at least as smooth as μ. A natural
question is then: ifμ ∗ ν is not “much smoother” thanμ, canwe deduce any structural
information about the measures μ and ν? Of course, this depends on the notion of
smoothness under consideration, and on the precise meaning of “much smoother.”

Here we will measure smoothness by the moment sums Sm(μ, q) (with q > 1
fixed, and m also fixed but very large). Nevertheless, we begin by discussing the
situation for entropy. Let μ ∈ P1. Its normalized level m entropy is

Hm(μ) = 1

m

∑

J∈Dm

−μ(J ) log(μ(J )),

with the usual convention 0 log 0 = 0. In [12, Theorem 2.7], Hochman showed that
if μ, ν ∈ P1 satisfy

Hm(ν ∗ μ) ≤ Hm(μ) + e,

where e > 0 is small, then ν and μ have a certain structure which, very roughly, is of
this form: the set of dyadic scales 0 ≤ s < m can be split into three sets A ∪ B ∪ C.
At scales in A, the measure ν looks “roughly atomic,” at scales in B the measure μ

looks “roughly uniform”, and the set C is small. This theorem was motivated in part
by its applications to the dimension theory of self-similar measures, as discussed
above.

We aim to state a result in the same spirit, but with Lq norms in place of entropy.
Given m ∈ N, we will say that μ is a 2−m-measure if μ is a probability measure
supported on 2−m

Z ∩ [0, 1). Given μ ∈ P1, we denote by μ(m) the associated 2−m-
measure, given byμ(m)(j2−m) = μ([j2−m, (j + 1)2−m)). Given a purely atomicmea-
sure ρ, we define the Lq norms
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‖ρ‖q =
(∑

ρ(y)q
)1/q

,

for q ∈ (1,∞) and also set ‖ρ‖∞ = maxy ρ(y). With these definitions, we clearly
have

Sm(μ, q) = ‖μ(m)‖qq.

By the convexity of t 	→ tq, we have that ‖μ ∗ ν‖q ≤ ‖μ‖q‖ν‖1, for any q ≥ 1
and any two finitely supported probability measures μ, ν (this is a simple instance
of Young’s convolution inequality). We aim to understand under what circumstances
‖μ ∗ ν‖q ≈ ‖μ‖q‖ν‖1, where the closeness is in a weak, exponential sense. More
precisely, we are interested in what structural properties of two 2−m-measures μ, ν

ensure an exponential flattening of the Lq norm of the form

‖μ ∗ ν‖q ≤ 2−em‖μ‖q. (9.2.1)

(Recall that, by definition, 2−m-measures are probabilitymeasures, so that ‖ν‖1 = 1.)
One particular instance of this problem has received considerable attention. Given a
finite set A, we denote 1A = ∑

x∈A δx. Then ‖1A ∗ 1A‖22 is the additive energy of A,
a quantity of great importance in combinatorics and its applications. In particular,
estimates of the form

‖1A ∗ 1A‖22 ≤ |A|−e‖1A‖22‖1A‖1 = |A|3−e

arise repeatedly in dynamics, combinatorics, and analysis: see, e.g., [1, 7] for some
recent examples.

To motivate the inverse theorem, we discuss cases in which ‖μ ∗ ν‖q ≈ ‖μ‖q for
2−m-measures μ and ν, where we are deliberately vague about the exact meaning
of ≈. If ν = δk2−m , then μ ∗ ν is just a translation of μ and so we have an exact
equality. If ν is supported on a small number of atoms (say subexponential in m),
then we still have ‖μ ∗ ν‖q ≈ ‖μ‖q. Reciprocally, if λ denotes the uniform 2−m-
measure giving mass 2−m to each atom j2−m, then we also have ‖λ ∗ ν‖q ≈ ‖λ‖q.
The same holds if λ is replaced by a suitably small perturbation.

Furthermore, if ν = 2−emδ0 + (1 − 2em)λ andμ is an arbitrary 2−m-measure, then
we still have ‖μ ∗ ν‖q ≥ 2−em‖μ‖q. This shows that a subset of measure 2−em is able
to prevent exponential smoothening, so that in order to guarantee (9.2.1) we need
to impose conditions on the structure of the measures inside sets of exponentially
small measure. This is one significant difference with the case of entropy, since sets
of exponentially small measure have negligible contribution to the entropy.

A naive conjecture might be that if (9.2.1) fails for a pair of 2−m-measures, then
either μ is close to uniform, or ν gives “large” mass to an exponentially small set of
atoms. However, there are other situations in which ‖μ ∗ ν‖q ≈ ‖μ‖q. Let D � 1
be a large integer and fix � � D. Given a subset S of {0, . . . , � − 1}, let μ̃ be the
distribution of an independent sequence of random variables (X1, . . . ,X�) such that
Xs is uniformly distributed in {0, 1, . . . , 2D − 1} if s ∈ S andXs = 0 if s /∈ S. Finally,
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let μ be the push-forward of μ̃ under the 2D-ary expansion map. In other words, μ̃
is the 2−D�-measure such that

μ

(
�∑

s=1

Xs2
−Ds

)
= μ̃(X1, . . . ,Xs).

It is convenient to think about the structure of μ in terms of trees. Given a base 2D

and a non-empty closed subset A of [0, 1), we may associate to A the family of all
intervals of the form [j2−Ds, (j + 1)2−Ds) (i.e., the 2D-ary intervals) that intersect A.
This family has a natural tree structure, where the interval [0, 1) is the root and
descendence is given by inclusion. In general, the tree associated to A is infinite, but
in the case of 2−D�-sets we can think of a finite tree with � levels. For the measure
μ just defined, its support A has the following structure: vertices of level s ∈ S have
a maximal number of offspring 2D (“full branching”), while vertices of level s /∈ S
have a single offspring (“no branching”), corresponding to the leftmost interval.
Moreover, μ is the uniform measure on A—it gives all points in A the same mass
1/|A|.

The convolution μ ∗ μ has essentially the same structure, except that vertices of
level s /∈ S such that s − 1 ∈ S have two offspring—due to the carries of the previous
level. Using this structure, it is not hard to check that ‖μ ∗ μ‖q ≈ ‖μ‖q for all q.
In similar ways, one can construct 2−m-measures μ, ν supported on sets of widely
different sizes, such that ‖μ ∗ ν‖q ≈ ‖μ‖q.

The inverse theorem asserts that if (9.2.1) fails to hold then one can find subsets
A ⊂ supp(μ) and B ⊂ supp(ν), such that A captures a “large” proportion of the Lq

norm of μ and B a “large” proportion of the mass of ν, and moreover μ|A, ν|B are
fairly regular (they are constant up to a factor of 2). The main conclusion, however, is
that A and B have a structure resembling the example above, and also the conclusion
of Hochman’s inverse theorem for entropy: if D is a large enough integer, then for
each s, either B has no branching between scales 2−sD and 2−(s+1)D (in other words,
once the first s digits in the 2D-ary expansion of y ∈ B are fixed, the next digit
is uniquely determined), or A has nearly full branching between scales 2−sD and
2−(s+1)D (whatever the first s digits of x ∈ A in the 2D-adic expansion, the next digit
can take “most” values). To formalize this, we introduce the following definition.

Definition 2 Given D ∈ N, � ∈ N and a sequence R = (R0, . . . ,R�−1) ∈ [1, 2D]�,
we say that a set A ⊂ [0, 1) is (D, �,R)-regular if it is a 2−�D-set, and for all s ∈
{0, . . . , � − 1} and for all J ∈ DsD such that A ∩ J �= ∅, it holds that

|{J ′ ∈ D(s+1)D : J ′ ⊂ J , J ′ ∩ A �= ∅}| = Rs.

In terms of the associated 2D-ary tree, A is (D, �,R)-regular if every vertex of level
s has the same number of offspring Rs.
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Before stating the theorem, we summarize our notation for dyadic intervals (some
of it has already been introduced):

• Ds is the family of dyadic intervals [j2−s, (j + 1)2−s).
• Given a set A ⊂ R, we write Ds(A) for the family of intervals in Ds that hit A.
• Given x ∈ R, we write Ds(x) for the only interval in Ds that contains x.
• We write aJ for the interval of the same center as J and length a times the length
of J .

We also write [�] = {0, 1, . . . , � − 1}.
Theoremsh 2.1 For each q > 1, δ > 0, and D0 ∈ N, there are D ≥ D0 and ε > 0,
so that the following holds for � ≥ �0(q, δ,D0).

Let m = �D and let μ and ν be 2−m-measures with

‖μ ∗ ν‖q ≥ 2−εm‖μ‖q.

Then there exist 2−m-sets A ⊂ suppμ and B ⊂ suppν, numbers kA, kB ∈ 2−m
Z, and

a set S ⊂ [�], so that
(A1) ‖μ|A‖q ≥ 2−δm‖μ‖q.
(A2) μ(x) ≤ 2μ(y) for all x, y ∈ A.
(A3) A′ = A + kA is contained in [0, 1) and is (D, �,R′) uniform for some sequence
R′.
(A4) x ∈ 1

2DsD(x) for each x ∈ A′ and s ∈ [�].
(B1) ‖ν|B‖1 = ν(B) ≥ 2−δm.
(B2) ν(x) ≤ 2ν(y) for all x, y ∈ B.
(B3) B′ = B + kB is contained in [0, 1) and is (D, �,R′′) uniform for some
sequence R′′.
(B4) y ∈ 1

2DsD(y) for each y ∈ B′ and s ∈ [�].
Moreover

(5) for each s, R′′
s = 1 if s /∈ S, and R′

s ≥ 2(1−δ)D if s ∈ S.
(6) The set S satisfies

log ‖ν‖−q′
q − mδ ≤ D|S| ≤ log ‖μ‖−q′

q + mδ.

Here, and throughout the paper, q′ = q/(q − 1) denotes the dual exponent. We
make some remarks on the statement.

(i) In the original version of the theorem in [19], both the convolution and the
translations take place on the circle [0, 1) with addition modulo 1. See [17,
Theorem 2.2 and Remark 2.3] for this formulation.

(ii) The main claim in the theorem is part (5). Obtaining sets A,B satisfying
(A1)–(A4) and (B1)–(B4) is not hard, and (6) is a straightforward calculation
using (5).
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(iii) The theorem fails for q = 1 and q = ∞. In the first case, there is an equality
‖μ ∗ ν‖1 = ‖μ‖1 for any 2−m-measures, and in the second case there is always
an equality ‖1A ∗ 1−A‖∞ = ‖1A‖∞‖1A‖1. On the other hand, the proof can
easily be reduced to the case q = 2, with the remaining cases following by
interpolation with the endpoints q = 1 and q = ∞.

The proof of Theorem 2.1 (including the proofs of the results it relies on) is
elementary and, at least in principle, it is effective, although the value of e that
emerges from the proof is extremely poor and certainly suboptimal. However, for
the purposes of proving Theorem 1.2, the existence of any e > 0 is enough.

9.3 Proof of the Main Theorem

9.3.1 Homogeneous Self-similar Measures

We restate the particular case of Theorem 1.2 that we will prove.

Theoremsh 3.1 Let (fi(x) = λx + ti)i∈I be a homogeneous IFS with exponential
separation. Then for any probability vector (pi)i∈I , if μ is the invariant self-similar
measure for the WIFS (fi, pi), then

Dμ(q) = min(dimS(μ, q), 1) = min

(
log

∑
i∈I p

q
i

(q − 1) log |λ |, 1
)

(9.3.1)

for all q > 1.

We recall that “homogeneous” here refers to the fact that all scaling factors are equal.
We may and do assume that λ > 0; if λ < 0, note that μ can also be generated by
the WIFS (fifj, pipj)i,j∈I , for which the scaling factor is λ2 > 0. This iteration of the
IFS does not change the validity of exponential separation.

It is known that for self-similarmeasures the limit in the definition ofLq dimension
always exists, see [15].

The key advantage of homogeneity is that, in this case, the self-similar measure
μ has an infinite convolution structure: if Δ = ∑

i∈I piδti , then

μ = ∗∞
n=0SλnΔ, (9.3.2)

where Sa(x) = ax rescales by a. Formally, this infinite convolution is defined as
the push-forward of the countable self-product μN under the series expansion map
(x1, x2, . . .) 	→ ∑∞

n=0 xn; this is well defined since the series always converges abso-
lutely. To verify that this is indeed the self-similar measure, one only needs to check
that it satisfies the self-similarity relation
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μ =
∑

i∈I
pi fiμ.

In more probabilistic terms, μ can also be defined as the distribution of the random
series

∑∞
n=0 λnXn, where Xn are IID random variables with distribution Δ. The well-

known fact that the distribution of a sum of independent random variables is the
convolution of the distributions (which extends to countable sums) then gives another
derivation of (9.3.2).

9.3.2 Outline of the Proof

The overall strategy of the proof of Theorem 3.1 follows the broad outline of [12].
However, while Hochman’s method is based on entropy, we need to deal with Lq

norms and, as we will see, this forces substantial changes in the implementation of
the outline.

The right-hand side in (9.3.1) is easily seen to be an upper bound for the left-hand
side, so the task is to show the reverse inequality.Write τ = τμ andD = Dμ.Wewant
to show that if D(q) < 1 (or, equivalently, τ(q) < q − 1) then D(q) = dimS(μ, q)
(under the hypothesis of exponential separation).

Recall that the Lq spectrum τ(q) is concave, so in particular it is continuous and
differentiable outside of atmost a countable set. Hence, it is enough to prove the claim
above for a fixed differentiability point q. The advantage of this assumption is that the
“multifractal structure” of a measureμ is known to behave in a regular way for points
q of differentiability of the spectrum. In particular, we will see that if α = τ ′(q) then,
for large enough m, “almost all” of the contribution to the sum

∑
J∈Dm

μ(J )q comes
from ≈ 2τ ∗(α)m intervals I such that μ(J ) ≈ 2αm; here τ ∗ is the Legendre transform
of τ (see Sect. 9.3.5 for the definition). Moreover, using the self-similarity of μ, we
establish also a multi-scale version of this fact, see Proposition 11.

The following is the key estimate in the proof; as we will see in Sect. 9.4, it has
other applications. Recall that μ(m) is given by

μ(m)(j2−m) = μ([j2−m, (j + 1)2−m)) (9.3.3)

and that, by definition, ‖μ(m)‖qq = Sm(μ, q) ≈ 2−mτ(q).

Theoremsh 3.2 Letμ be a self-similar measure associated to a homogeneousWIFS
(not necessarily with exponential separation) and let q > 1. Suppose τμ(q) < q − 1.
Then for every σ > 0 there is e = e(σ, q) > 0 such that the following holds for all
large enough m: if ρ is an arbitrary 2−m-measure such that ‖ρ‖q′

q ≤ 2−σm, then

‖ρ ∗ μ(m)‖qq ≤ 2−em‖μ(m)‖qq. (9.3.4)
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This theorem is proved by combining the inverse theorem for the Lq norm of
convolutions (Theorem 2.1), together with the study of the multifractal structure of
μ. We sketch the idea very briefly: suppose (9.3.4) fails. The inverse theorem then
asserts that there is a regular subset A of supp(μ(m)) that captures much of the Lq

norm of μ(m). By part (5) of the inverse theorem, and since ρ is assumed to have
exponentially small Lq norm, Amust have almost full branching on a positive density
set of scales in a multi-scale decomposition. But A itself does not have full branching
(this will follow from the assumption τ(q) < q − 1, which rules out μ(m) having
too small Lq norm). So there must also be a positive density set of scales on which
A has smaller than average branching. The regularity of the multifractal spectrum
discussed above rules this out, since it forces A to have an almost constant branching
on almost all scales. For a detailed proof, see Sect. 9.3.6.

The conclusion of the proof of Theorem 3.1 from (9.3.4) tracks fairly closely the
ideas of [12]. One consequence of self-similarity, as expressed by (9.3.2), is that

μ = μn ∗ Sλnμ,

where
μn = ∗n−1

j=0 SλjΔ. (9.3.5)

Note that the atoms of μn are the points of the form fi1 ◦ · · · ◦ fin(0). The exponential
separation assumption implies that there exist R ∈ N such that all these atoms are
distinct and λRn-separated. Hence, for this value of R we have

log ‖μ(Rm)
n ‖qq

(q − 1)n log(1/λ)
= log ‖μn‖qq

(q − 1)n log(1/λ)
= n log ‖Δ‖qq

(q − 1)n log(1/λ)
,

where m = m(n) is chosen so that 2−m ≤ λn and 2−m ∼ λn. It is easy to see that the
right-hand side is equal to the right-hand side of (9.3.1). Hence, it remains to show
that

lim
n→∞

log ‖μ(Rm)
n ‖qq

n log(1/λ)
= τ(q). (9.3.6)

In other words, we need to show that the Lq norm of μn at scale 2−m ≈ λn (which
is easily seen to be comparable to the Lq norm of μ at scale 2−m, and hence is
≈ Sm(μ, q)1/q) nearly exhausts the Lq norm ofμn at themuch finer scale 2−Rm which,
in turn, equals the full Lq norm of μn, by the exponential separation assumption.

To show (9.3.6), we recall that μ = μn ∗ Sλnμ, and use this to decompose

μ((R+1)m) =
∑

J∈Dm

μ(J )ρ̃J ∗ Sλnμ,

where ρ̃J is the normalized restriction of μn to J . Since the supports of ρ̃J ∗ Sλnμ

have bounded overlap, it is not hard to deduce that
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‖μ((R+1)m)‖qq ≈
∑

J∈Dm

μ(J )q‖ρJ ∗ μ(Rm)‖qq,

where ρJ = Sλ−n ρ̃J . This is the point where we apply Theorem 3.2, to conclude that
if on the right-hand side above we only add over those J such that ‖ρJ‖q ≥ 2−σq,
where σ > 0 is arbitrary, then, provided n is large enough depending on σ , we still
capture almost all of the left-hand side. This follows since (9.3.4) can be shown
to imply that the contribution of the remaining J is exponentially smaller than the
left-hand side (incidentally, this is the only step where it is crucial to use that q > 1).
A similar calculation, now with μ((R+1)m)

n in place of μ((R+1)m) in the left-hand side,
then shows that (9.3.6) holds, finishing the proof.

9.3.3 Notational Conventions

Throughout this section, μ denotes a self-similar measure associated to a homoge-
neous WIFS {λx + ti}i∈I with weights (pi)i∈I . We do not assume exponential sepa-
ration until the very end, when we finish the proof of Theorem 3.1. We continue to
denote

Δ =
∑

i∈I
pi δti .

Other measures, without any assumptions on self-similarity, will be denoted by ρ

and ν, possibly with subindices.
WeuseLandau’sO(·) and related notation: ifX ,Y are two positive quantities, then

Y = O(X ) means that Y ≤ CX for some constant C > 0, while Y = Ω(X ) means
that X = O(Y ), and Y = Θ(X ) that Y = O(X ) and X = O(Y ). If the constant C is
allowed to depend on some parameters, these are often denoted by subscripts. For
example, Y = Oq(X ) means that Y ≤ C(q)X , where C(q) is a function depending
on the parameter q.

9.3.4 Preliminary Lemmas

In this section, we collect some standard lemmas for later reference. They are all of
the form: bounded overlapping does not affect Lq norms too much. We refer to [19,
Sect. 4] for the very short proofs.

Lemmash 3 Let (Y , ν,B) be a probability space. Suppose P,Q are finite families
of measurable subsets of Y such that each element of P can be covered by at most
M elements of Q and each element of Q intersects at most M elements of P . Then,
for every q ≥ 1, ∑

P∈P
ν(P)q ≤ Mq

∑

Q∈Q
ν(Q)q
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Lemmash 4 Let ν = ∑�
i=1 νi , where νi are finitely supported measures on a space

Y , such that each point is in the support of at most M of the νi . Then

‖ν‖qq ≤ Mq−1
�∑

i=1

‖νi‖qq.

Lemmash 5 For any q ∈ (1,∞), for any ν1, ν2 ∈ P1 and any m ∈ N,

‖(ν1 ∗ ν2)
(m)‖qq = Θq(1)‖ν(m)

1 ∗ ν
(m)
2 ‖qq.

Recall the definition of μn given in (9.3.5). Let m = n�log(1/λ)�.
Lemmash 6 For any q ∈ (1,∞),

‖μ(m)‖qq = Θq(1)‖μ(m)
n ‖qq.

9.3.5 Multifractal Structure

We turn to themultifractal estimates that will be required in the proof of Theorem 3.2.
The Legendre transform plays a key role in multifractal analysis. Given a concave
function ζ : R → R, its Legendre transform ζ ∗ : R → [−∞,∞) is defined as

ζ ∗(α) = inf
q∈R

αq − ζ(q).

It is easy to check that if ζ is concave and is differentiable at q, then

ζ ∗(α) = αq − ζ(q) for α = ζ ′(q).

As indicated earlier, we will establish some regularity of the multifractal structure
for those values of q such that τ is differentiable at q.

The next lemma is well known; we include the very short proof for completeness.

Lemmash 7 If τ is differentiable at q > 1, τ(q) < q − 1, and α = τ ′(q), then
τ ∗(α) ≤ α < 1.

Proof Since τ(1) = 0 (this is immediate from the definition) and τ(q) < q − 1, we
have (τ (q) − τ(1))/(q − 1) < 1.On theother hand, as τ is concave anddifferentiable
at q, we must have α ≤ (τ (q) − τ(1))/(q − 1) < 1. Furthermore, τ ∗(α) ≤ α · 1 −
τ(1) = α, so the lemma follows.

The following lemmas illustrate the regularity of the Lq spectrum for values q
of differentiability of τ (or dually, points of strict concavity of τ ∗). The proofs are
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similar to [14,Theorem5.1]. Theheuristic to keep inmind is that,wheneverα = τ ′(q)
exists, almost all of the contribution to ‖μ(m)‖qq comes from≈ 2τ ∗(α)m intervals, each
of mass ≈ 2−αm.

Lemmash 8 Suppose that α0 = τ ′(q0) exists for some q0 ∈ (1,∞).
Given e > 0, the following holds if δ is small enough in terms of e, q0 and m is

large enough in terms of e, q0, and δ.
Suppose D′ ⊂ Dm is such that

(1) 2−αm ≤ μ(J ) ≤ 2 · 2−αm for all J ∈ D′ and some α ≥ 0.
(2)

∑
J∈D′ μ(J )q0 ≥ 2−(τ (q0)+δ)m.

Then |D′| ≤ 2m(τ ∗(α0)+e).

Proof Set η := e/(3q0), and pick δ ≤ η2/9, and also small enough that, if q1 =
q0 − δ1/2, then

τ(q0) − τ(q1) ≤ δ1/2α0 + δ1/2η. (9.3.7)

On one hand, using (1) and the definition of τ(q), we get

2−(τ (q1)−δ)m ≥ ‖μ(m)‖q1q1 ≥ |D′|2−αq1m,

if m is large enough (depending on q0, τ ). On the other hand, by the assumptions
(1)–(2),

|D′|2−αq0m ≥ 2−q02(−τ(q0)−δ)m ≥ 2(−τ(q0)−2δ)m

if m �δ,q0 1. Eliminating |D′| from the last two displayed equations yields

αq0 − τ(q0) − 2δ ≤ α(q0 − δ1/2) − τ(q0 − δ1/2) + δ,

so that, recalling (9.3.7),

δ1/2α ≤ τ(q0) − τ(q0 − δ1/2) + 3δ ≤ δ1/2α0 + δ1/2η + 3δ.

Henceα − α0 < 2η, sincewe assumed δ ≤ (η/3)2. Using this, we get that ifm �ε 1,
then

2(−τ(q0)+e/3)m ≥ ‖μ(m)‖q0q0 ≥ 2−q0αm|D′| ≥ 2−q0α0m2−(q02η)m|D′|.

The conclusion follows from the formula τ ∗(α0) = q0α0 − τ(q0) and our choice
η = e/(3q0).

Lemmash 9 Let q0 > 0 be such that α0 = τ ′(q0) exists. Given σ > 0, there is e =
e(σ, q0) > 0 such that the following holds for large enough m (in terms of σ, q0):

∑
{μ(J )q0 : J ∈ Dm, μ(J ) ≥ 2−m(α0−σ)} ≤ 2−m(τ (q0)+e). (9.3.8)
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Proof Let η ∈ (0, 1) be small enough that

τ(q0 + η) ≥ τ(q0) + ηα0 − δ, (9.3.9)

where δ = ησ/(4 + 2q0).
Let αj = α0 − δj, and write N (αj,m) for the number of intervals J in Dm such

that 2−mαj ≤ μ(J ) < 2−mαj+1 . For any fixed value of q, if m �q 1, then

N (αj,m)2−mqαj ≤ ‖μ(m)‖qq ≤ 2−m(τ (q)−δ).

Applying this to q = q0 + η, and using (9.3.9), we estimate

N (αj,m)2−mq0αj ≤ 2mηαj2−m(τ (q0+η)−δ)

≤ 22δm2−jδηm2−τ(q0)m.

Let S be the sum in the left-hand side of (9.3.8) that we want to estimate. Using that
δ = ησ/(4 + 2q0), we conclude that

S ≤
∑

j:δ(j+1)≥σ

N (αj,m)2−mq0αj+1

≤
∑

j:δ(j+1)≥σ

2δq0m22δm2−jδηm2−τ(q0)m

≤
∑

j≥0

2−jδηm2(2+q0)δm2−ησm2−τ(q0)m

≤ Oδη(1)2
(ησ/2−ησ)m2−τ(q0)m,

as claimed.

Lemmash 10 Let q0 > 1 be such that α0 = τ ′(q0) exists. Given κ > 0, there is
e = e(κ, q0) > 0 such that the following holds for large enough m (in terms of q0, e).

If D′ ⊂ Dm has ≤ 2(τ ∗(α0)−κ)m elements, then

∑

J∈D′
μ(J )q0 ≤ 2−(τ (q0)+e)m.

Proof Let σ = κ/(2q0). In light of Lemma 9, we only need to worry about those J
with μ(J ) ≤ 2−m(α0−σ). But

∑
{μ(J )q0 : J ∈ D′, μ(J ) ≤ 2−m(α0−σ)} ≤ 2(τ ∗(α0)−κ)m2−(q0α0−q0σ)m

= 2−(κ−q0σ)m2−τ(q0)m.

By our choice of σ , κ − q0σ = κ/2 > 0, so this gives the claim.
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The results in this section so far hold for general measures. The following propo-
sition, on the other hand, relies crucially on self-similarity. The second part was first
proved in [15]. Since the claim of Theorem 3.1 is not affected by rescaling and trans-
latingμ (from the point of view of the IFS, this amounts to doing these operations on
the translation parameters ti), from now on we assume that μ is supported on [0, 1).
Proposition 11 Let q > 1 be such that α = τ ′(q) exists.

(i) Given κ > 0, there is η = η(κ, q) > 0 such that the following holds for
all large enoughm: for any s ∈ N, J ∈ Ds, ifD′ is a collection of intervals
in Ds+m(J ) with |D′| ≤ 2(τ ∗(α)−κ)m, then

∑

J∈D′
μ(J )q ≤ 2−(τ (q)+η)mμ(2I)q.

(ii) Given δ > 0, the following holds for all large enough m: for any I ∈ Ds,
s ∈ N, ∑

J∈Ds+m(I)

μ(J )q ≤ 2−(τ (q)−δ)mμ(2I)q.

Proof We prove (i) first. Let n be the smallest integer such that λn < 2−s−2. Let yj
be the atoms of μn such that [yj, yj + λn] ∩ I �= ∅, let p̃j be their respective masses,
and write

μn,I =
∑

j

p̃jδyj .

Then the support of μn,I is contained in the λn-neighborhood of I . Moreover, since
δz ∗ Sλnμ is supported on [z, z + λn], as we assumed that μ is supported on [0, 1],
it follows from the self-similarity relation μ = μn ∗ Sλnμ and the definition of μn,I

that μ|I = (μn,I ∗ Sλnμ)|I . Write

p̃ = ‖μn,I‖1 =
∑

j

p̃j ≤ μ(2I),

using that the support of μn is contained in the λn-neighborhood of the support of μ,
and that 4λn ≤ 2−s.

We can then estimate

∑

J∈D′
μ(J )q =

∑

J∈D′

⎛

⎝
∑

j

p̃jδyj ∗ Sλnμ(J )

⎞

⎠
q

=
∑

J∈D′

⎛

⎝
∑

j

p̃jμ(λ−n(J − yj))

⎞

⎠
q

≤
∑

J∈D′
p̃q−1

∑

j

p̃j μ(λ−n(J − yj))
q

= p̃q−1
∑

j

p̃j
∑

J∈D′
μ(λ−n(J − yj))

q,
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where we used the convexity of tq in the third line. Now for each fixed j, each interval
λ−n(J − yj) with J ∈ D′ can be covered by Oλ(1) intervals in Dm, and reciprocally
each interval in Dm hits at most two intervals among the λ−n(J − yj). We deduce
from Lemmas 3 and 10 that, still for a fixed j,

∑

J∈D′
μ(λ−n(J − yj))

q ≤ Oλ,q(1)2
−(τ (q)+ε)m,

provided m is taken large enough, where ε = ε(κ, q) > 0 is given by Lemma 10.
Combining the last three displayed equations yields the first claim with η = ε/2.

The second claim follows in the same way, adding over Ds+m(I) instead of D′.

9.3.6 Proof of Theorem 3.2

In this section, we prove Theorem3.2. A similar result, with smoothnessmeasured by
entropy rather than Lq norms, was proved by Hochman in [12, Corollary 5.5], using
his inverse theorem for the entropy of convolutions. InHochman’s approach, a crucial
property of self-similar measures is that their entropy is roughly constant at most
scales and locations, a property that Hochman termed uniform entropy dimension,
see [12, Definition 5.1 and Proposition 5.2] for precise details. Unfortunately, there is
no useful analog of the notion of uniform entropy dimension for Lq norms. One of the
key differences is that nearly all of the Lq normmay be (and often is) captured by sets
of extremely small measure; while sets of small measure also have small entropy.
Instead, we will use the regularity of the multifractal spectrum established in the
previous section in the following manner: if the flattening claimed in Theorem 3.2
does not hold, then the inverse theorem provides a regular set Awhich captures much
of the Lq norm of μ. The upper bound on ‖ρ‖q, together with (5)–(6) in the inverse
theorem imply that A has nearly full branching for a positive proportion of 2D-scales,
so it must have substantially less than average branching also on a positive proportion
of scales. On the other hand, we will call upon the lemmas from the previous section
to show that, in fact, Amust have nearly constant branching on nearly all scales (this
is the part that uses the differentiability of τ at q), obtaining the desired contradiction.

Proof of Theorem3.2 Suppose ρ is a 2−m-measure with ‖ρ‖q′
q ≤ 2−σm. In the

course of the proof, we will choose many numbers which ultimately depend on
σ and q only. To ensure that there is no circularity in their definitions, we indicate
their dependencies: α = α(q), κ = κ(α, σ ), γ = γ (q, α, κ), δ′ = δ′(α, σ, κ), η =
η(q, κ), δ = δ(q, δ′, γ, η), ξ = ξ(q, δ′, η, γ ), D0 = D0(q, σ, δ), D = D(q, δ,D0),
ε = ε(q, δ,D0). Moreover, at different parts of the proof we will require δ′, δ, ξ
to be smaller than certain (positive) functions of the parameters they depend on; in
particular, all of the requirements can be satisfied simultaneously.

Finally, m will be taken large enough in terms of all the previous parameters
(hence ultimately in terms of q and σ ).
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Write α = τ ′(q), and define κ as

κ = (1 − τ ∗(α))σ/4. (9.3.10)

Then κ > 0, thanks to Lemma 7, and the assumption τ(q) < q − 1.
We apply Proposition 11 to obtain a sufficiently largeD0 (in terms of δ, σ, q, with

δ yet to be specified) such that:

(A) For any D′ ≥ D0 − 2, any I ∈ Ds′ , s′ ∈ N, and any subset D′ ⊂ Ds′+D′(J ) with
|D′| ≤ 2(τ ∗(α)−κ)D′

,

∑

J ′∈D′
μ(J ′)q ≤ 2−(τ (q)+η)D′

μ(2J )q,

where η depends on κ and q, hence on σ, q only.
(B) For any D′ ≥ D0 − 2 and any J ∈ Ds′ , s′ ∈ N,

∑

J ′∈Ds′+D′ (J )

μ(J ′)q ≤ 2−(τ (q)−δ)D′
μ(2J )q.

(C) 1/D0 < δ.

Let ε > 0,D ∈ N be the numbers given by Theorem 2.1 applied to δ,D0, and q.
For the sake of contradiction, suppose

‖ρ ∗ μ(m)‖q ≥ 2−εm‖μ(m)‖q.

We will derive a contradiction from this provided m = �D is large enough (if m is
not of the form �D, we apply the argument to �m/D�D instead; we omit the details).
We apply Theorem 2.1 to ρ and μ(m) to obtain (assuming m is large enough) a set
A ⊂ supp(μ(m)) as in the theorem, with corresponding branching numbers R′

s. Since
translating ρ and μ(m) does not affect their norms or the norm of their convolution,
we assume for simplicity that the numbers kA, kB are both 0.

The key to the proof is to show, using the structure of A provided by Theorem 2.1,
that

|{s ∈ [�] : R′
s ≤ 2(τ ∗(α)−κ)D}| ≥ γ �, (9.3.11)

where γ > 0 depends on q, α, and κ only (and κ is given by (9.3.10)). We first show
how to complete the proof assuming this. Consider the sequence

Ls = − log
∑

J∈DsD(A)

μ(J )q.

By (B) applied with s′ = sD + 2 and D′ = D − 2,
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Ls+1 ≥ (τ (q) − δ)(D − 2) − log
∑

J∈DsD+2(A)

μ(2J )q.

But if J ∈ DsD+2(A), then 2J is contained in a single interval inDsD(A) by property
(A4) from Theorem 2.1, and conversely J ′ ∈ DsD(A) hits at most two intervals 2J ,
J ∈ DsD+2(A). We deduce that

Ls+1 ≥ Ls + (τ (q) − δ)(D − 2) − 1

for all s ∈ [�]. Likewise, by (A),

Ls+1 ≥ Ls + (τ (q) + η)(D − 2) − 1,

whenever R′
s ≤ 2(τ ∗(α)−κ)D. Recall that η depends on q, κ . In light of (9.3.11), and

using also (C), we have

L� ≥ (τ (q) + η)γ �(D − 2) + (τ (q) − δ)(1 − γ )�(D − 2) − �

≥ (τ (q) + ηγ − δ(1 − γ ))m − 2δ(τ (q) + η)m − δm.

Hence, by choosing δ small enough in terms of τ(q), γ and η we can ensure that,
for m large enough,

L� = − log ‖μ(m)|A‖qq ≥ (τ (q) + ηγ /2)m.

On the other hand, by (A1) in Theorem 2.1, if ξ > 0 is a small number to be fixed
later, then (always assuming m is large enough)

‖μ(m)|A‖qq ≥ 2−qδm‖μ(m)‖qq ≥ 2−qδm2−(τ (q)+ξ)m.

From the last two displayed equations,

ηγ /2 ≤ qδ + ξ.

Recall that η = η(κ, q), γ = γ (q, α, κ) is yet to be specified, while δ so far was taken
small enough in terms of τ(q), γ , and η, and no conditions have been yet imposed
on ξ . By ensuring qδ < ηγ/8 and ξ ≤ ηγ /8, we reach a contradiction, as desired.

It remains to establish (9.3.11). The idea is very simple: Theorem 2.1 (together
with the assumption that ‖ρ‖q′

q ≤ 2−σm) implies that A has “nearly full branching”
on a positive proportion of scales. On the other hand, Lemma 8 says the size of A is
at most roughly 2τ ∗(α)m � 2m (by Lemma 7), so there must be a positive proportion
of scales on which the average 2D-adic branching is far smaller than 2τ ∗(α)D, which
is what (9.3.11) says.

We proceed to the details. Using (A1), (A2) in Theorem 2.1, we get that (for
m �δ 1) there is α̃ > 0 such that μ(m)(a) ∈ [2−α̃m, 21−α̃m] for all a ∈ A, and
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∑

J∈Dm(A)

μ(J )q ≥ 2−qδm
∑

J∈Dm

μ(J )q ≥ 2−(τ (q)+qδ+ξ)m.

We let δ ≤ δ′ and ξ be small enough in terms of δ′ and q that, invoking Lemma 8,

|A| ≤ 2(τ ∗(α)+δ′)m. (9.3.12)

Let S ′ = [�] \ S, where S = {s : R′
s ≥ 2(1−δ)D}. Using (A3) in Theorem 2.1, we

see that

|A| =
�−1∏

s=0

R′
s ≥ 2(1−δ)D|S| ∏

s∈S ′
R′
s. (9.3.13)

Let m1 = D|S|, m2 = D|S ′| = m − m1. Combining (9.3.12) and (9.3.13), and using
that δ ≤ δ′, we deduce

∏

s∈S ′
R′
s ≤ 2−(1−δ)m12(τ ∗(α)+δ′)m ≤ 2−(1−τ ∗(α)−2δ′)m12(τ ∗(α)+δ′)m2 . (9.3.14)

Note that 1 − τ ∗(α) > 0 by Lemma 7. At this point, we take δ′ small enough that
1 − τ ∗(α) − 2δ′ > 0. Using (6) in Theorem 2.1, and the assumption ‖ρ‖q′

q ≤ 2−σm,
we further estimate

(σ − δ)m ≤ m1 ≤ ((τ (q) + ξ)/(q − 1) + δ)m. (9.3.15)

We can plug in the left inequality (together with m2 ≤ m) into (9.3.14), to obtain the
key estimate

log
∏

s∈S ′
R′
s ≤ (

τ ∗(α) + δ′ − (1 − τ ∗(α) − 2δ′)(σ − δ)
)
m2.

Recalling (9.3.10), this shows that by making δ′ (hence also δ ≤ δ′) small enough in
terms of α, σ, κ , we have

log
∏

s∈S ′
R′
s ≤ (τ ∗(α) − 2κ)m2.

Let S1 = {s ∈ S ′ : logR′
s ≤ (τ ∗(α) − κ)D}. Recall that our goal is to show (9.3.11),

i.e., |S1| ≥ γ (q, α, κ)�. We have

D|S ′ \ S1| ≤ 1

τ ∗(α) − κ

∑

s∈S ′\S1

logR′
s ≤ τ ∗(α) − 2κ

τ ∗(α) − κ
D|S ′|,

so that, using the rightmost inequality in (9.3.15), and recalling thatD|S ′| = m − m1,
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D|S1| ≥ κ(m − m1)

τ ∗(α) − κ
≥

(
κ(1 − (τ (q) + ξ)/(q − 1) − δ)

τ ∗(α) − κ

)
m.

By ensuring that δ, ξ are small enough in terms of q, the right-hand side above can
be bounded below by (

κ(1 − τ(q)/(q − 1))/2

τ ∗(α) − κ

)
m,

confirming that (9.3.11) holds with γ = γ (q, α, κ).

9.3.7 Proof of Theorem 3.1

Theorem 3.1 will be an easy consequence of the following proposition, which relies
on Theorem 3.2. It is an analog of [12, Theorem 1.4], and we follow a similar
outline. We emphasize that exponential separation is not required for the validity of
the proposition.

Proposition 12 Let q ∈ (1,∞) be such that τ is differentiable at q and τ(q) <

q − 1. Fix R ∈ N. Then

lim
n→∞

log ‖μ(Rm(n))
n ‖qq

n log λ
= τ(q),

where m(n) is the smallest integer with 2−m(n) ≤ λn.

Proof Fix n ∈ N. We write m = m(n) for simplicity and allow all implicit constants
to depend on q only. Using the self-similarity relation μ = μn ∗ Sλnμ and Lemma 5,
we get

‖μ((R+1)m)‖qq ≤ O(1)‖μ((R+1)m)
n ∗ (Sλnμ)((R+1)m)‖qq

= O(1)
∥∥ ∑

J∈Dm

μn(J )(μn)
((R+1)m)
J ∗ (Sλnμ)((R+1)m)

∥∥q

q.

Here (μn)J = μn|J/μn(J ) is the normalized restriction of μn to J (note that we
are only summing over J such that μn(J ) > 0). Since the measures (μn)

((R+1)m)
J ∗

(Sλnμ)((R+1)m) are supported on J + [0, λn], the support of each of them hits the
supports of O(1) others. We can then apply Lemma 4 to obtain

‖μ((R+1)m)‖qq ≤ O(1)
∑

J∈Dm

μn(J )q‖(μn)
((R+1)m)
J ∗ (Sλnμ)((R+1)m)‖qq

Let ρJ = Sλ−n(μn)J (we suppress the dependence on n from the notation, but keep it
in mind). Note that Sa(η) ∗ Sa(η′) = Sa(η ∗ η′) for any a > 0 and measures η, η′. It
follows from Lemmas 3 and 5 that
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‖(μn)
((R+1)m)
J ∗ (Sλnμ)((R+1)m)‖qq ≤ O(1)‖ρ(Rm)

J ∗ μ(Rm)‖qq,

so that, combining the last two displayed formulas,

‖μ((R+1)m)‖qq ≤ O(1)
∑

J∈Dm

μn(J )q‖ρ(Rm)
J ∗ μ(Rm)‖qq. (9.3.16)

On the other hand, using Lemma 3 again,

‖μ((R+1)m)
n ‖qq =

∑

J∈Dm

μn(J )q‖(μn)
((R+1)m)
J ‖qq ≥ Ω(1)

∑

J∈Dm

μn(J )q‖ρ(Rm)
J ‖qq.

(9.3.17)
Fixσ > 0, and letD′ = {J ∈ Dm : ‖ρ(Rm)

J ‖qq ≤ 2−σm}. According to Theorem3.2,
there is e = e(σ, q) > 0 such that, if n is taken large enough, then

J ∈ D′ =⇒ ‖ρ(Rm)
J ∗ μ(Rm)‖qq ≤ 2−(τ (q)+e)Rm.

Applying this to (9.3.16), we get

‖μ((R+1)m)‖qq ≤ O(1)2−(τ (q)+e)Rm
∑

J∈D′
μn(J )q + O(1)

∑

J /∈D′
μn(J )q‖μ(Rm)‖qq

≤ O(1)2−(τ (q)+e)Rm‖μ(m)‖qq + O(1)‖μ(Rm)‖qq
∑

J /∈D′
μn(J )q

using Young’s inequality in the first line, and Lemma 6 in the second. On the other
hand,

2−(τ (q)+e)Rm‖μ(m)‖qq ≤ 2−em/2‖μ((R+1)m)‖qq
if n is large enough (depending on R). Inspecting the last two displayed equations,
we deduce that if n �σ 1, then

∑

J /∈D′
μn(J )q ≥ Ω(1)

‖μ((R+1)m)‖qq
‖μ(Rm)‖qq ≥ 2−m(τ (q)+σ).

Recalling (9.3.17), we conclude that

‖μ((R+1)m)
n ‖qq ≥ Ω(1)

∑

J /∈D′
μn(J )q‖ρ(Rm)

J ‖qq

≥ Ω(1)2−σm
∑

J /∈D′
μn(J )q ≥ Ω(1)2−2σm2−mτ(q).
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The inequality ‖μ((R+1)m)
n ‖qq ≤ ‖μ(m)

n ‖qq holds trivially, so that by Lemma 6

‖μ((R+1)m)
n ‖qq ≤ ‖μ(m)

n ‖qq ≤ 2σm2−mτ(q),

provided n �σ 1. Since σ > 0 was arbitrary and 2−m = Θ(λn), this concludes the
proof.

We can now conclude the proof of Theorem 3.1.

Proof of Theorem3.1 We continue to writem = m(n) = �n log(1/λ)�. To begin, we
note that, for any q ∈ (1,∞),

‖μ(m)
n ‖qq ≥ ‖μn‖qq ≥ ‖Δ‖qnq . (9.3.18)

(The latter inequality is an equality if and only if there are no overlaps among the
atoms of μn.) Since ‖ν(m)‖q′

q ≥ 2−m for any probability measure ν, it follows from
(9.3.18) and Lemma 6 that

D(q) ≤ min(dimS(μ, q), 1).

Hence, the proof will be completed if we can show that for each q ∈ (1,∞), either
τ(q) ≥ q − 1 (so that in fact τ(q) = q − 1) or

τ(q) = log ‖Δ‖qq. (9.3.19)

Since τ(q) is concave, it is enough to prove this for all q such that τ is differentiable
at q. Hence, we fix q such that τ(q) < q − 1 and τ is differentiable at q, and we set
out to prove (9.3.19).

By the exponential separation assumption, the atoms of μn are λRn-separated for
infinitely many n and some R ∈ N. We know from Proposition 12 that

lim
n→∞

log ‖μ(Rm(n))
n ‖qq

n log λ
= τ(q). (9.3.20)

On the other hand, if n is such that the atoms of μn are λRn-separated, then (since
λRn ≥ 2−Rm(n))

‖μ(Rm(n))
n ‖qq = ‖μn‖qq = ‖Δ‖qnq . (9.3.21)

Combining Eqs. (9.3.20) and (9.3.21), we conclude that (9.3.19) holds, finishing the
proof.
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9.3.8 About the Proof of Theorem 1.2

In the proof of Theorem 3.1, the convolution structure played a crucial role. While
a general self-similar measure does not have such a clean convolution structure, we
can proceed as follows. Let (λi)i∈I be the scaling factors of the IFS generating μ

(there may be repetitions). Given m, let

Ωm = {(j1 . . . jk) : λj1 · · · λjk ≤ 2−m < λj1 · · · λjk−1},
Λm = {λj1 · · · λjk : (j1 . . . jk) ∈ Ωm}.

One can then check, using self-similarity, that

μ =
∑

λ∈Λm

μλ,m ∗ Sλμ,

where μλ,m are certain purely atomic measures constructed from the translations of
the maps fj1 · · · fjk with λj1 · · · λjk = λ. Thanks to the fact that |Λm| is polynomial in
m (even though |Ωm| is exponential in m), the proof given in the homogeneous case
can be adapted with minor technical complications. We refer to [19, Sect. 6.4] for
the details.

9.4 Applications

In this section, we present several applications of Theorem 3.1.

9.4.1 Frostman Exponents

If μ is a finite measure on a metric space X , we say that μ has Frostman exponent
s if μ(B(x, r)) ≤ C rs for some C > 0 and all x ∈ X , r > 0. There is a very simple
relation between Lq dimensions for large q and Frostman exponents.

Lemmash 13 Let μ ∈ P . If Dμ(q) > s for some q ∈ (1,∞), then there is r0 > 0
such that

μ(B(x, r)) ≤ r(1−1/q)s for all x ∈ R, r ∈ (0, r0].

Proof If D(μ, q) > s, then there is s′ > s such that for all large enough m and each
J ′ ∈ Dm,

μ(J ′)q ≤
∑

J∈Dm

μ(J )q ≤ 2−m(q−1)s′ .
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Since any ball can be covered byO(1) dyadic intervals of size smaller than the radius,
we get that if r is sufficiently small then

μ(B(x, r)) ≤ C r(1−1/q)s′ ,

where C is independent of x and r. This gives the claim.

Theorem 3.1 together with the previous lemma immediately yields the following
corollary.

Corollarysh 14 Let μ be the self-similar measure associated to a homogeneous
IFS (λx + ti)i∈I with exponential separation and the uniform probability weights
(1/|I |, . . . , 1/|I |). Then μ has Frostman exponent s for every s < min(log |I |/ log
(1/λ), 1).

9.4.2 Algebraic Parameters

We now discuss the special case in which the IFS has algebraic parameters, that is,
both the contraction ratio λ and the translations ti are algebraic numbers. Hochman
[12, Corollary 1.5] proved that the overlaps conjecture holds in this case and, in the
same way, we extend this to the Lq-dimension version of the overlaps conjecture.
The deduction is based on the following classical lemma; see [13, Lemma 6.30] for
a proof.

Lemmash 15 Given algebraic numbers (over Q) α1, . . . , αk and a positive integer
h, there exists δ > 0 such that the following holds: if P ∈ Z[x1, . . . , xk ] is a poly-
nomial of degree n, all of whose coefficients are at most h in modulus, then either
P(α1, . . . , αk) = 0 or

|P(α1, . . . , αk)| ≥ δn.

Corollarysh 16 Let μ be the self-similar measure associated to a homogeneous
WIFS with algebraic coefficients (i.e., the contraction ratio and the translations are
algebraic). Then either there is an exact overlap or

Dq(μ) = min(dimS(μ, q), 1) for all q > 1.

Proof Note that for any pair of sequences i = (i1, . . . , in), j = (j1, . . . , jn), the dif-
ference fi(0) − fj(0) can be written as Pi,j(λ, t1, . . . , t|I |), where Pi,j ∈ Z[x1, . . . ,
x|I |+1] has degree at most n + 1 and coefficients ±1. Since we assume that there are
no exact overlaps, Pi,j(λ, t1, . . . , t|I |) �= 0 for i �= j. Lemma 15 then guarantees that
the IFS has exponential separation, so that Theorem 3.1 yields the corollary.

Even if there are exact overlaps, the proof of Theorem 3.1 yields an expression
for the Lq dimensions of μ. Recall that μn is the purely atomic measure given by
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μn = ∗n−1
j=0 SλjΔ =

∑

u∈I n
pu1 · · · pun δfu(0).

Corollarysh 17 Let μ be the self-similar measure associated to a homogeneous
WIFS with algebraic coefficients (i.e., the contraction ratio and the translations are
algebraic). Define

Tμ = lim
n→∞ −1

n
log ‖μn‖qq.

Then the limit in this definition exists, and

Dq(μ) = min

(
Tμ

(q − 1) log(1/λ)
, 1

)
.

Proof By Lemma 15, and arguing as in the proof of Corollary 16, there is R ∈ N

such that any two distinct atoms of μn are λRn-separated. Suppose Dq(μ) < 1. By
Proposition 12,

lim
n→∞

log ‖μ(Rm(n))
n ‖qq

n log λ
= τ(q).

But ‖μ(Rm(n))
n ‖qq = ‖μn‖qq since 2m(n) ≤ λn, so the claim follows.

9.4.3 Parametrized Families and Absolute Continuity

Exponential separation holds outside of a small set of exceptions in parametrized
families satisfying mild regularity and non-degeneracy assumptions.

Lemmash 18 Let J ⊂ R be a compact interval, and let λ : J → (−1, 0) ∪ (0, 1)
and t1, . . . , t� : J → R be real-analytic functions. For a pair of {1, . . . , �}-valued
sequences i, j, define

gi,j(u) =
∞∑

k=0

λ(u)k tik (u) −
n−1∑

k=0

λ(u)k tjk (u).

Assume that if i �= j then gi,j is not identically zero. Then the IFS {λ(u)x + ti(u)}�i=1
has exponential separation for all u outside of a set E ⊂ J of zero Hausdorff (and
even packing) dimension.

See [12, Theorem 1.8] for the proof and some further discussion. Now Theorem
3.1 shows that for parametrized families of WIFS satisfying the assumptions of
Lemma 18, there is a zero-dimensional exceptional set of parameters outside of
which the Lq dimensions of the self-similar measures have the value predicted by
the overlaps conjecture (note also that the exceptional set is independent of the
probability weights).
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When dimS(μ, q) > 1, the overlaps conjecture predicts that (in the absence of
exact overlaps)Dμ(q) = 1, but in fact it is plausible that under the same assumptions
the measure μ is absolutely continuous with an Lq density. While this is of course
still open and appears to be even harder than the dimension version of the overlaps
conjecture, we have the following result for parametrized families.

Theoremsh 4.1 Let J ⊂ R be an closed interval, and let λ : J → (−1, 0) ∪ (0, 1)
and t1, . . . , t� : J → R be real-analytic functions. For a pair of {1, . . . , �}-valued
sequences i, j, define

gi,j(u) =
∞∑

k=0

λ(u)k tik (u) −
∞∑

k=0

λ(u)k tjk (u).

Assume that if i �= j then gi,j is not identically zero. Then, there is a set E ⊂ J of zero
Hausdorff dimension such that the following holds for all u ∈ J \ E: if μ is a self-
similar measure associated to the IFS (λ(u)x + ti(u))�i=1 and a probability vector
(pi)�i=1, and if dimS(μ, q) > 1 for some q ∈ (1,∞), then μ is absolutely continuous
and its Radon–Nikodym density is in Lq.

This theorem provides the correct range for the possibility of having an Lq density
(up to the endpoint), since measures μ with an Lq density satisfy D(μ, q) = 1; this
follows from the inequality (

∫
J f )

q ≤ |J |q−1
∫
J f

q for all intervals J , where f is the
Lq density of μ. The proof of the theorem follows the ideas from [18, 20]; the only
new element is the stronger input provided by Theorem 3.1.

Recall that the Fourier transform of a measure ρ ∈ P is defined as

ρ̂(ξ) =
∫

exp(2π ixξ) dρ(x).

The following result asserts that convolving a measure of full Lq dimension and
another measure with power Fourier decay results in an absolutely continuous mea-
sure with an Lq density; see [20, Theorem 4.4] for the proof.

Theoremsh 4.2 Let ν, ρ ∈ P be such that Dν(q) = 1 for some q > 1 and ρ satisfies
the Fourier decay estimate

|ρ̂(ξ)| ≤ C|ξ |−δ

for some C, δ > 0. Then the convolution ν ∗ ρ is absolutely continuous and its
Radon–Nikodym density is in Lq.

The proof of this theorem shows that, additionally, ν ∗ ρ has fractional derivatives
in Lq.

Proof Proof of Theorem4.1 Fix a weight (p1, . . . , p�) for some � ≥ 2. For u ∈ J , let
μu be the self-similar measure associated with the WIFS (λ(u)x + ti(u), pi)�i=1. We
also denote
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Δ(u) =
�∑

i=1

pi δti(u).

Fix k ∈ N. Using the convolution structure of μu, we decompose

μu = (∗k�jSλ(u)jΔ(u)
) ∗ (∗k|jSλ(u)jΔ(u)

) =: ν(k)
u ∗ ρ(k)

u . (9.4.1)

We can think of ρ(k)
u and ν(k)

u as the measures obtained from the construction of
μu by “keeping only every k-th digit” and “skipping every k-th digit,” respectively.
Both ρ(k)

u and ν(k)
u are, again, self-similar measures arising from homogeneous IFSs.

Indeed, ρ(k)
u is the invariant measure for the IFS (λ(u)kx + ti(u), pi)�i=1. The WIFS

generating ν(k) is more cumbersome to write down: it consists of �k−1 maps, indexed
by sequences i ∈ {1, . . . , �}k−1. The maps and weights are given by

gu,i(x) = λ(u)k(x) +
k−2∑

j=0

tij+1λ(u)j,

pi = pi1 · · · pik−1 .

A short calculation shows that, for any q > 1,

dimS(ν
(k)
u , q) = (1 − 1/k)dimS(μu, q). (9.4.2)

On the other hand, it is easy to check that (for each k) the family of IFSs generating
ν(k)
u also satisfies the assumptions of Lemma 18. Hence, there are sets E′

k of zero
Hausdorff dimension such that the WIFS generating ν(k)

u has exponential separation
for all u ∈ J \ E′

k . Letting E
′ = ∪kE′

k and applying Theorem 3.1, we deduce that E′
has zero Hausdorff dimension, and if u ∈ J \ E then

D(ν(k)
u , q) = min((1 − 1/k)dimS(μu), q) for all k ∈ N.

Turning to the measures ρ(k)
u , we claim that there are exceptional sets E′′

k of zero
Hausdorff dimension such that if u ∈ J \ E′′

k , then ρ(k)
u has power Fourier decay, that

is, there are C(u, k), δ(u, k) > 0 such that

|ρ̂(k)
u (ξ)| ≤ C(u, k)|ξ |−δ(u,k).

This follows by variants of an argument that goes back to Erdnős [9]. If the function
λ(u) is nonconstant then, by splitting J into finitely many intervals and reparametriz-
ing,wemay assume thatλ(u) = u. This case is closer to Erdős original argument; see,
e.g., [18, Proposition 2.3] for a detailed exposition. Suppose now that λ(u) ≡ λ. In
this case, we must have � ≥ 3. Indeed, suppose � = 2. Replacing t1(u) by 0 and t2(u)
by 1 has the effect of rescaling and translating the measuresμu, which does not affect
the claim. If |λ| < 1/2, then dimS(μ, q) < 1 for any q and there is nothing to do,while
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if |λ| ≥ 1/2, there are two sequences i, j ∈ {0, 1}N such that
∑∞

k=0(ik − jk)λk = 0,
and this implies that the non-degeneracy assumption fails. Hence, we assume that
� ≥ 3 from now on. In this case, the function

h(u) = t3(u) − t1(u)

t2(u) − t1(u)

is nonconstant and real-analytic outside of afinite set ofu ∈ J (where the denominator
vanishes). Otherwise, if either the denominator or h(u) itself were constant, the non-
degeneracy conditionwould fail. As before, this shows thatwemay assume h(u) = u.
The claim now follows from [20, Proposition 3.1]. Let E′′ = ∪kE′′

k .
Set E = E′ ∪ E′′ and fix u ∈ J \ E. If dimS(μ, q) > 1, then (9.4.2) ensures that

D(ν(k)
u , q) = 1 provided k is taken large enough. Since also ρ(k)

u has power Fourier
decay by the definition of E′′ ⊂ E, the decomposition (9.4.1) together with The-
orem 4.2 shows that μu is absolutely continuous with an Lq density, finishing the
proof.

9.4.4 Bernoulli Convolutions

Given λ ∈ (0, 1), we define μλ as the distribution of the random sum
∑∞

n=0 Xnλ
n,

where the Xn are IID and take values 0 and 1 with equal probability 1/2. In other
words, μλ is the self-similar measure associated to the WIFS (λx, 1/2), (λx +
1, 1/2). The measures μλ are known as Bernoulli convolutions.

When λ ∈ (0, 1/2), the topological support of μλ is a self-similar Cantor set of
dimension log 2/ log(1/λ) < 1; in particular, μλ is purely singular (and D(μλ, q) =
log 2/ log(1/λ) for all q). For λ = 1/2, the Bernoulli convolution μλ is a multiple
of Lebesgue measure on the interval [0, 1/(1 − λ)]. Understanding the smoothness
properties of μλ for λ ∈ (1/2, 1) has been a major open problem since the 1930s.
Although the problem is still very much open, dramatic progress has been achieved
in the last few years. In this section, we briefly state the consequences of the results of
the previous sections for Bernoulli convolutions and discuss their connections with
other old and new results about them.

In two foundational papers, Erdős [8, 9] showed that μλ is singular if 1/λ is a
Pisot number (an algebraic integer >1 all of whose algebraic conjugates are <1
in modulus), and that μλ has a density in Ck for almost all λ sufficiently close to
1 (depending on k). In the 1960s, Garsia [11] exhibited an explicit infinite family
of algebraic numbers λ for which νλ is absolutely continuous. These remained the
only explicit known parameters of absolute continuity until very recently when Varju
[22], introducing several new techniques, exhibited a new large family of algebraic
numbers very close to 1 for which μλ is absolutely continuous, with a density in
L log L.

In a celebrated paper, Solomyak [21] proved thatμλ is absolutely continuous with
an L2 density for almost all λ ∈ (1/2, 1). Much more recently, in another landmark
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paper [12] that we have already encountered several times, Hochman proved that
dimH (μλ) = 1 for all λ outside of a set of λ of zero Hausdorff (and even packing)
dimension. Building on that, the author [18] proved that μλ is absolutely continu-
ous for all λ outside of a set of λ of zero Hausdorff dimension. As an immediate
application of Theorem 4.1, we have the following corollary.

Corollarysh 19 There exists a set E ⊂ (1/2, 1) of zero Hausdorff dimension such
that νλ is absolutely continuous and its density is in Lq for all q ∈ (1,∞), for all
λ ∈ (1/2, 1) \ E.
We underline that the information that the density is in Lq for q > 2 is new even for
a.e. parameter. Note that Corollary 14 shows that μλ has Frostman exponent 1 − e
for every e > 0 for every λ for which there is exponential separation. Although this
is weaker than Lq density for all q > 1, exponential separation can be checked for
some explicit parameters; in particular, it holds for all rationals in (1/2, 1).

An active area of research concerns investigating the properties ofμλ for algebraic
values of λ. We only summarize some of the recent results in this area. The entropy
of a purely atomic measure ν is defined asH (ν) = ∑

x ν(x) log(1/ν(x)). TheGarsia
entropy associated to μλ is defined as

hλ = lim
n→∞

1

n
H (μλ,n),

where μλ,n is the nth step discrete approximation to μλ, that is, the distribution of
the finite random sum

∑n−1
j=0 Xjλ

j. It is well known that the limit exists. The number
hλ can also be interpreted as the entropy of the uniform random walk generated by
the similarities λx and λx + 1.

It follows from Hochman’s work [12] (see [6, Sect. 3.4] for a detailed argument)
that if λ is algebraic, then

dimH (μλ) = min

(
hλ

log(1/λ)
, 1

)
. (9.4.3)

Breuillard and Varju [6, Theorem 5] gave bounds for hλ in terms of the Mahler
measure Mλ of λ (see, e.g., [6, Eq. (1.1)] for the definition of Mahler measure):

cmin(1, logMλ) ≤ hλ ≤ min(1, logMλ), (9.4.4)

where c > 0 is a universal constant that they numerically estimate to be at least 0.44.
Using this theorem, they uncover a connection between Bernoulli convolutions and
problems related to growth rates in linear groups. Very roughly, the idea is that the
worst possible rate occurs for the group generated by the similarities λx, λx + 1,
which can be easily realized as a linear group. An easy consequence of (9.4.3) and
(9.4.4) is that, assuming Lehmer’s conjecture that the Mahler measure Mλ is either
1 or bounded away from 1, the Hausdorff dimension of μλ is 1 for all algebraic
numbers which are close enough to 1. In [5], further progress was obtained; among
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many other results, the authors show that if dimH (μλ) < 1 for some transcendental
number λ, then λ can be approximated by algebraic numbers with the same property.
Hence, conditional on the Lehmer conjecture, dimH (μλ) = 1 for all λ close to 1. Very
recently, combining results from most of the papers mentioned in this section with
a clever new argument, Varju [23] achieved another major breakthrough by proving
that dimH (μλ) = 1 for all transcendental λ ∈ (1/2, 1).

The formula (9.4.3) makes it important to be able to compute Garsia entropy. An
algorithm for this was developed in [2]. Among other applications, this algorithm
makes it possible to check that dimH (μλ) = 1 for specific (new) algebraic values
of λ.

All of these recent advances depend on the formula (9.4.3), and hence apply only
to Hausdorff dimension and not to Lq dimensions. However, Corollary 17 shows that
the Lq version of (9.4.3) remains valid: for all algebraic λ ∈ (1/2, 1),

D(μλ, q) = min

(
Tq,λ

(q − 1) log(1/λ)
, 1

)
,

where

Tq,λ = lim
n→∞ −1

n
log ‖μλ,n‖qq

is an Lq analog of Garsia entropy. Hence, it would be interesting to know if there are
Lq versions of some of the results described above.

9.4.5 Intersections of Cantor Sets

To finish the paper, we show how Theorem 3.1 can be used to obtain strong bounds
on the dimensions of intersections of certain Cantor sets. Indeed, a conjecture of
Furstenberg about the dimensions of intersections of×2,×3-invariant closed subsets
of the circle was the main motivation for the results of [19]. While the resolution of
Furstenberg’s intersection conjecture requires amore general version of Theorem 3.1
and is therefore beyond the scope of this survey, we will still be able to derive other
intersection bounds.

In the following simple lemma, we show how Frostman exponents (and therefore,
by Lemma 13, also Lq dimensions) of projected measures give information about the
size of fibers. We recall the definition of upper box-counting (or Minkowski) dimen-
sion in a totally bounded metric space (X , d). Given A ⊂ X , let Nε(A) denote the
maximal cardinality of an ε-separated subset of A. The upper box-counting dimen-
sion of A is then defined as

dimB(A) = lim sup
ε↓0

log(Nε(A))

log(1/ε)
.
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Lemmash 20 Let X be a compact metric space, and suppose π : X → R is a Lip-
schitz map. Let μ be a probability measure on X such that μ(B(x, r)) ≥ rs for all
x ∈ X and all sufficiently small r (independent of x). If πμ has Frostman exponent
α, then there exists C > 0 such that for all balls Bε of radius ε in R, any ε-separated
subset of π−1(Bε) has size at most Cε−(s−α).

In particular, for any y ∈ R,

dimB(π
−1(y)) ≤ s − α

Proof Let (xj)Mj=1 be an ε-separated subset of π−1(Bε) with ε small. Then

μ

⎛

⎝
M⋃

j=1

B(xj, ε/2)

⎞

⎠ ≥ M (ε/2)s,

while the set in question projects onto an interval of size at most O(ε). Hence,
M = O(εα−s), giving the claim.

We give one concrete application of Theorem 3.1 in conjunction with this lemma,
and refer to [19, Sect. 6.3] for further examples. Let p ≥ 2 be an integer, and let
D ⊂ {0, 1, . . . , p − 1} be a proper subset. Let A = Ap,D be the set of [0, 1] consisting
of all points whose p-ary expansion has only digits from D. This is the self-similar
set associated to the IFS ((x + j)/p : j ∈ D). For example, the middle-thirds Cantor
set is the case p = 3, D = {0, 2}. We call such a set a p-Cantor set.

Corollarysh 21 Let A ⊂ [0, 1) be a p-Cantor set, p ≥ 2. Then for every irrational
number t ∈ R and any u ∈ R,

dimB(A ∩ (tA + u)) ≤ max(2dimH (A) − 1, 0).

Proof Let A = Ap,D, and let μ be the uniform self-similar measure on A. Since the
IFS generating A satisfies the open set condition, it is well known, and not hard to
see, that μ(B(x, r)) = Θ(rs) for all x ∈ A, with the implicit constant depending only
on p,D. Hence, the product measure μ × μ satisfies

(μ × μ)(B(z, r)) = Θ(r2s) (9.4.5)

for all z ∈ A × A = supp(μ × μ).
Let Πt(x, y) = x + ty. Then Πt(μ × μ) is the uniform self-similar measure gen-

erated by the IFS (
p−1(x + i + tj) : i, j ∈ D

)
.

We claim that this IFS has exponential separation for all irrational t. Assuming the
claim, the corollary follows by combining Corollary 14 and Lemma 20 (keeping
(9.4.5) in mind).
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The argument to establish exponential separation in this setting is due to B.
Solomyak and the author, and was originally featured in [12, Theorem 1.6]. Fix
t ∈ R \ Q. The separation number Γk associated toΠtμ has the form xk + tyk , where
xk , yk have the form

∑k−1
j=0 ajp−j with aj ∈ D − D. Moreover, xk and yk cannot be

simultaneously 0 since this would imply an exact overlap in the IFS generating A. If
either xk or yk are zero for infinitely many k, then Γk ≥ min(1, t)p−k for infinitely
many k, and hence we are done. So assume xkyk �= 0 for all k ≥ k0, and therefore

∣∣∣∣
Γk

yk
− Γk+1

yk+1

∣∣∣∣ =
∣∣∣∣
xk
yk

− xk+1

yk+1

∣∣∣∣ =
∣∣∣∣

zk
ykyk+1

∣∣∣∣ ,

where zk = xkyk+1 − xk+1yk . If zk = 0 for all k ≥ k1, then for all k ≥ k1 we have

Γk = |yk(xk1/yk1 + t)| ≥ p−k−1|xk1/yk1 + t|

so, again using the irrationality of t, there is exponential separation. It remains to
analyze the case zk �= 0 for infinitelymany k. For any such k, the quotient zk/(ykyk+1)

is a nonzero rational number of denominator at most 4p2k+1. Since |yk | ≤ 2 for all
k, we conclude that there are infinitely many k such that either Γk ≥ p−2k−1/16 or
Γk+1 ≥ p−2k−1/16. Thus exponential separation also holds in this case, finishing the
proof.

For rational t, the behavior is completely different: it follows from[4,Theorem1.2]
that if A = Ap,D is any p-Cantor set of dimension > 1/2, and p � |D|2 (in particular
this holds if p is prime), then for every rational t there are many values of u such that

dimH (A ∩ tA + u) > 2dimH (A) − 1.

More precisely, for a given t this holds for a typical u chosen according to the natural
self-similar measure on A × A.
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Chapter 10
Sample Paths Properties of the
Set-Indexed Fractional Brownian Motion

Erick Herbin and Yimin Xiao

Abstract For 0 < H ≤ 1/2, let BH = {BH (t); t ∈ R
N+} be the Gaussian random

field obtained from the set-indexed fractional Brownian motion restricted to the rect-
angles ofR

N+ .We prove thatBH is tangent to amultiparameter fBmwhich is isotropic
in the l1-norm and we determine the Hausdorff dimension of the inverse image of
BH and its hitting probabilities. By applying the Lamperti transform and a Fourier
analytic method, we show that BH has the property of strong local nondeterminism
(SLND) for N = 2. By applying SLND, we obtain the exact uniform and local mod-
uli of continuity and Chung’s law of iterated logarithm for BH = {BH (t); t ∈ R

2+}.
These results show that, away from the axes ofR

2+, the local behavior ofBH is similar
to the ordinary fractional Brownian motion of index H .

Mathematical Subject Classification: 60G60 · 60G15 · 60G17 · 60G18 · 60G22 ·
28A80 · 28A78.

10.1 Introduction

The set-indexed fractional Brownianmotionwas introduced in [12] as an extension of
fractional Brownianmotion. Let T be ametric space equipped with a Radonmeasure
m and let A be a collection of compact subsets of T , which forms an indexing
collection (see [12, 14] for the definition). Then, for any constant 0 < H ≤ 1/2,
the set-indexed fractional Brownian motion (SI-fBm) {BH

U ; U ∈ A} of index H is a
centered Gaussian process such that
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E
[
BH
UB

H
V

] = 1

2

[
m(U )2H + m(V )2H − m(U � V )2H

]
, ∀U, V ∈ A, (10.1.1)

where U � V denotes the symmetric difference between the sets U and V . For
H > 1/2, set-indexed fractional Brownian motion on a general indexing collection
does not exist because, as pointed out by Herbin and Merzbach [12, p. 345], even for
the simple case of T = R

2+ equipped with the Lebesguemeasurem, and the indexing
collection A = {[0, t]; t ∈ R

2+}, the function on the right-hand side of (10.1.1) is
not nonnegative definite if H > 1/2.

Various properties such as projections on flows, the stationarity of increments,
and self-similarity properties of SI-fBm {BH

U ; U ∈ A} have been studied in [13,
14]. The Hölder continuity and exponents, in the general framework of set-indexed
processes of Ivanoff and Merzbach [16], have been studied in [15].

By taking the indexing collection to be A = {[0, t]; t ∈ R
N+}, the set of the rect-

angles in R
N+ , and m the Lebesgue measure on R

N , we obtain a Gaussian random
fieldBH = {BH (t); t ∈ R

N+}, whereBH (t) = BH
[0,t] for all t ∈ R

N+ , and for simplicity
still call it set-indexed fractional Brownian motion (SI-fBm) of index H . The sample
function of BH is almost surely continuous. When H = 1/2, BH is the Brownian
sheet whose sample path properties have been studied extensively. We refer to [7,
18–22, 30] for further information. When N = 1, BH reduces to the one-parameter
fractional Brownian motion with index H . However, by checking the covariance
functions, one can see that for 0 < H < 1

2 and N > 1, BH is different from the
two important fractional Gaussian fields with index H in the literature. These two
fractional Gaussian fields with index H are the multiparameter fractional Brown-
ian motion (or fractional Brownian field) XH = {XH (t), t ∈ R

N } and the fractional
Brownian sheet WH = {WH (t), t ∈ R

N }, respectively. The former is a centered
Gaussian field with covariance function

E
[
XH (s)XH (t)

] = 1

2

(‖s‖2H + ‖t‖2H − ‖s − t‖2H )
,

where ‖ · ‖ is the Euclidean norm on R
N ; and the latter is a centered Gaussian field

with covariance

E
[
WH (s)WH (t)

] = 1

2N

N∏

j=1

(|s j |2H + |t j |2H − |s j − t j |2H
)
.

Note that both XH and WH are well defined for every H ∈ (0, 1). Many authors
have studied sample path properties of XH and WH . See, for example, [2–5, 23,
27–29, 32, 37, 40–43]. It is known that some fine properties of XH and WH such
as Chung’s laws of the iterated logarithm, Hölder conditions for the local times, and
exact Hausdorff measure functions for their level sets are significantly different.

In this paper, we will focus on the case 0 < H ≤ 1
2 and N > 1. In this case,

BH loses some important properties of the Brownian sheet and fractional Brownian
motion (e.g., independence of increments over disjoint intervals, or stationarity of
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increments) and there have only been a few papers that study its sample path prop-
erties. For instance, Herbin et al. [11] determined the Hausdorff dimension of the
graph of BH and Richard [33] studied recently the Chung-type law of the iterated
logarithm at the origin.

The main purpose of this paper is to further study sample path properties of SI-
fBm BH and to compare them with those of fractional Brownian field XH and the
fractional Brownian sheet WH .

The rest of paper is organized as follows. In Sect. 10.2, we apply the approach
of Falconer [8] to study the tangent structure of SI-fBm BH . Our Theorem1 shows
that the tangent field of BH at every point t0 ∈ (0,∞)N is a centered Gaussian field
Y = {Y (t); t ∈ R

N+} with covariance function

E
[
Y (s)Y (t)

] = 1

2

[‖s‖2H1 + ‖t‖2H1 − ‖s − t‖2H1
]
, ∀ s, t ∈ R

N
+ ,

where ‖.‖1 denotes the l1-norm of R
N . It is clear that the Gaussian field Y shares the

properties of stationary increments and H -self-similarity with the ordinary fractional
Brownian motion XH , but it is not isotropic in the Euclidean metric (or, in other
words, Y is not rotationally invariant). In Sect. 10.3, we determine the Hausdorff
dimensions of the inverse images and the hitting probabilities of a d-dimensional
SI-fBm BH . These results are similar to those of the d-dimensional analog of XH

and WH . In Sect. 10.4 we take advantage of the multi-self-similarity (in the sense of
[9]) of BH and consider spectral analysis of the stationary Gaussian random field Z
obtained via the Lamperti transform. In Sect. 10.5, we study the asymptotic behavior
of the spectral measure of Z at infinity for the case of N = 2. In particular, we
obtain precise asymptotic properties of the spectral density of Z at infinity. This
later result, combined with Theorem 2.1 in [45], allows us to prove that the SI-
fBm BH has the property of strong local nondeterminism (SLND); see Theorem 8
With applications of the property of SLND, we establish the exact uniform and local
modulus of continuity, Chung’s law of the iterated logarithm of BH . Finally, at the
end, Sect. 10.5, we remark that the SLND property can also be useful for determining
the Fourier dimensions of the image and level sets of the d-dimensional SI-fBm BH ,
and for studying regularity properties of the local times of BH .

We mention that, in [33, 34], Richard proposed a more general framework for
studying fractional Brownian fields including BH . He considered a fractional Brow-
nian field indexed by the Hilbert space L2(m) in [34] and proved that it has the
property of SLND. In [33], he derived a spectral representation for a large class of
L2(m)-indexed Gaussian processes and studied the small ball probability and the
Chung-type law of the iterated logarithm of BH . Our arguments in Sects. 10.4 and
10.5 extend those in [39] and are different from those in [33, 34].

We end this section with some notations. An element t ∈ R
N is written as

t = (t1, . . . , tN ), or as 〈ti 〉. For any s, t ∈ R
N , s ≺ t means such that s j < t j

( j = 1, . . . , N ). If s ≺ t , then [s, t] = ∏N
j=1 [s j , t j ] is called a closed interval (or

a rectangle).
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10.2 Tangent Structure of SI-fBm on Rectangles of R
N+

In the pioneering work [4, 31], the notion of local asymptotic self-similarity was
introduced to characterize the evolution of local regularity and scaling structure
of the multifractional Brownian motion. In [8], the more general issue of tangent
structure of random fields was extensively studied.

For the set-indexed processes including SI-fBm {BH
U ; U ∈ A}, [12, 14] intro-

duced the concept of increments over all sets in the semi-algebra

C =
{
U\

n⋃

i=1

Ui : n ≥ 1 and U,Ui ∈ A for all 1 ≤ i ≤ n
}
.

They showed in Proposition 5.2 in [14] that {BH
U ; U ∈ A} has m-stationary C0-

increments. Namely, for all integers n ≥ 1, V ∈ A, and for all increasing sequences
{Ui , 1 ≤ i ≤ n} and {Ai , 1 ≤ i ≤ n} in A that satisfy m(Ui\V ) = m(Ai ) for all
1 ≤ i ≤ n, one has

(
ΔBH

U1\V , . . . , ΔBH
Un\V

) d= (
BH

A1
, . . . ,BH

An

)
,

where ΔBH
U\V = BH

U − BH
U∩V and

d= means equality in distribution.
With our special choice of A = {[0, t]; t ∈ R

N+}, the family of increments of
{BH

U ; U ∈ A} includes all the increments of BH = {BH (t), t ∈ R
N+} over rectangles

defined as follows: For any s, t ∈ R
N such that si ≤ ti for all 1 ≤ i ≤ N ,

Δs,tBH :=
∑

r∈{0,1}N
(−1)N−∑

i riBH (〈si + ri (ti − si )〉). (10.2.1)

Hence, the aforementioned m-stationarity of C0-increments of {BH
U ; U ∈ A} in [12,

14] implies the stationarity of the increments of BH = {BH (t), t ∈ R
N+} over rectan-

gles.
In the following, we apply the approach of Falconer [8] to study the tangent

structure of BH . We consider the increments of the form BH (t) − BH (s) rather than
increments over rectangles. The following result shows that BH has a local behavior
close to a multiparameter extension of fBm using the l1-norm of R

N . The tangent
field Y in Theorem1 is not rotationally invariant, but it can be regarded as isotropic
in the l1-norm. This result reveals some subtle local properties of BH .

For simplicity of presentation of Theorem1, we only consider tangent field
indexed by [0, 1]N . There is no difficulty in replacing [0, 1]N by an arbitrary compact
subset ofR

N as in Falconer [8]. For the definition of weak convergence of probability
measures on the space of continuous functions on [0, 1]N and its criteria, we refer to
Khoshnevisan [18, pp. 193–201].
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Theorem 1 Let BH = {BH (t), t ∈ R
N+} be a real-valued set-indexed fractional

Brownian motion of index H ∈ (0, 1/2]. For any t0 ∈ (0,∞)N and ρ > 0, we define
the Gaussian random field X (ρ) = {X (ρ)(u); u ∈ [0, 1]N } by

X (ρ)(u) = BH (t0 + ρ〈(t0) j u j 〉) − BH (t0)
(
ρ

∏N
i=1(t0)i

)H ; (u ∈ [0, 1]N ).

Then, as ρ goes to 0, the random fields X (ρ) converge weakly to the centeredGaussian
random field Y = {Y (u); u ∈ [0, 1]N } with the covariance function

∀u, v ∈ [0, 1]N ; E
[
Y (u)Y (v)

] = 1

2

[‖u‖2H1 + ‖v‖2H1 − ‖u − v‖2H1
]
,

where ‖.‖1 denotes the l1-norm of R
N .

Proof Webeginby theprovingof the convergence infinite-dimensional distributions.
For this goal, we consider for any fixed u, v ∈ R

N+ the behavior of

E
[
X (ρ)(u)X (ρ)(v)

]

=
(

ρ

N∏

i=1

(t0)i

)−2H

E
[(

BH (t0 + ρ〈(t0) j u j 〉) − BH (t0))(BH (t0 + ρ〈(t0) j v j 〉) − BH (t0)
)]

,

as ρ goes to 0. Let

ν(ρ, t0) =
(

ρ

N∏

i=1

(t0)i

)2H

and φ
(ρ)
t0 (u, v) =

(
ρ

N∏

i=1

(t0)i

)2H

E
[
X (ρ)(u)X (ρ)(v)

]
.

We have

φ
(ρ)
t0 (u, v) =E

[
BH (t0 + ρ〈(t0) j u j 〉)BH (t0 + ρ〈(t0) j v j 〉)

]
+ E

[
BH (t0)

]2

− E
[
BH (t0 + ρ〈(t0) j u j 〉)BH (t0)

]
− E

[
BH (t0 + ρ〈(t0) j v j 〉)BH (t0)

]

=1

2

[
m([0, t0] � [0, t0 + ρ〈(t0) j u j 〉])2H + m([0, t0] � [0, t0 + ρ〈(t0) j v j 〉])2H

− m([0, t0 + ρ〈(t0) j u j 〉] � [0, t0 + ρ〈(t0) j v j 〉])2H
]
.

In Lemma 3.1 in [11], it is proved that for any s, t ∈ R
N+ ,

m([0, s] \ [0, t]) =
∏

i /∈I
|si |

∑

J�I

( ∏

i∈J

|ti |
∏

i∈I\J
|ti − si |

)
, (10.2.2)
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where I = {1 ≤ i ≤ N : ti < si }. In (10.2.2), the product over an empty index set,∏
i∈∅ ai , is taken to be 1, and the sum over an empty set is taken to be 0.
Assuming ρ > 0, the set I is equal to {1, . . . , N } and then

m([0, t0] � [0, t0 + ρ〈(t0) j u j 〉]) =
∑

J�{1,...,N }

( ∏

i∈J

(t0)i
∏

i∈{1,...,N }\J
ρ(t0)i ui

)

=
∏

i∈{1,...,N }
(t0)i

∑

J�{1,...,N }
ρN−#J

∏

i∈{1,...,N }\J
ui ,

using the fact that I in the formula (10.2.2) is equal to {1, . . . , N } here.
Since 0 < 2H < 1, as ρ goes to 0, we only keep the first-order terms in ρ in the

previous sum

m([0, t0] � [0, t0 + ρ〈(t0) j u j 〉])2H
ν(ρ, t0)

=
( ∑

J�{1,...,N }
#J=N−1

∏

i∈{1,...,N }\J
ui

)2H

+ O(ρ2H )

=
( ∑

i∈{1,...,N }
ui

)2H

+ O(ρ2H ). (10.2.3)

We also have

m([0, t0] � [0, t0 + ρ〈(t0) j v j 〉])2H
ν(ρ, t0)

=
( ∑

i∈{1,...,N }
vi

)2H

+ O(ρ2H ). (10.2.4)

To deal with the term inm([0, t0 + ρ〈(t0) j u j 〉] � [0, t0 + ρ〈(t0) j v j 〉]), we consider
I = {1 ≤ i ≤ N : vi > ui } and use the expression (10.2.2),

m([0, t0 + ρ〈(t0) j v j 〉] \ [0, t0 + ρ〈(t0) j u j 〉])
=

∏

i /∈I
(t0)i (1 + ρvi )

∑

J�I

( ∏

i∈J

(t0)i (1 + ρui )
∏

i∈I\J
ρ(t0)i (vi − ui )

)

=
∏

i∈{1,...,N }
(t0)i

∑

J�I
#(I\J )=1

ρ
∏

i∈I\J
(vi − ui ) + O(ρ2),

keeping only the first-order terms in ρ. This implies

m([0, t0 + ρ〈(t0) j v j 〉] \ [0, t0 + ρ〈(t0) j u j 〉])
ρ

∏
i∈{1,...,N }(t0)i

=
∑

J�I
#(I\J )=1

∏

i∈I\J
(vi − ui ) + O(ρ)

=
∑

i∈I
(vi − ui ) + O(ρ).
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We also have

m([0, t0 + ρ〈(t0) j u j 〉] \ [0, t0 + ρ〈(t0) j v j 〉])
ρ

∏
i∈{1,...,N }(t0)i

=
∑

i∈I c
(ui − vi ) + O(ρ).

Therefore, we get

m([0, t0 + ρ〈(t0) j u j 〉] � [0, t0 + ρ〈(t0) j v j 〉])2H
ν(ρ, t0)

=
( ∑

i∈{1,...,N }
|ui − vi |

)2H

+ O(ρ2H ).

(10.2.5)

The convergence in finite-dimensional distributions to the process Y follows from
(10.2.3), (10.2.4), and (10.2.5).

In order to prove the weak convergence, it remains to prove the tightness of the
family {X (ρ)(u), u ∈ [0, 1]N } (ρ > 0). Since the processes X (ρ) are Gaussian, by
Theorem 3.3.1 in [18, p. 198] and Dudley’s metric entropy bound for the uniform
modulus of continuity (cf. Theorem 1.3.5 in [1]), it suffices to prove that for some
finite constant C > 0 we have

E
[|X (ρ)(u) − X (ρ)(v)|2] ≤ C ‖u − v‖2H ∀ u, v ∈ [0, 1]N . (10.2.6)

We have just proved that E
[|X (ρ)(u) − X (ρ)(v)|2] converges to ‖u − v‖2H1 , as ρ goes

to 0. Equation (10.2.6) follows from this and the equivalence of the l1-norm and the
Euclidean norm of R

N . This completes the proof of Theorem1.

10.3 Fractal Dimension Properties of SI-fBm on Rectangles
of R

N+

It is known that the study of many sample path properties of a Gaussian random field
relies on its incremental variances; see, for example, [39, 46].

By definition, the real-valued, set-indexed fractional Brownian motion BH on
rectangles of R

N+ satisfies

∀s, t ∈ R
N
+ , E

[|BH (t) − BH (s)|2] = m([0, s] � [0, t])2H ,

where m is the Lebesgue measure on R
N .

Let us start with the following lemma, which is essentially proved in [11, Lemma
3.1].

Lemma 2 For any vectors 0 ≺ ε ≺ T ∈ R
N+ , there exist two positive constants mε,T

(depending on ε and T ) and MT (only depending on T ) such that
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∀s, t ∈ [ε, T ]; mε,T ‖t − s‖2H ≤ E
[|BH (t) − BH (s)|2] ≤ MT ‖t − s‖2H .

(10.3.1)

Proof By Lemma 3.1 of [11] there exist two positive constants m ′
ε,T and M ′

ε,T such
that

∀s, t ∈ [ε, T ]; m ′
ε,T d1(s, t) ≤ m([0, s] � [0, t]) ≤ M ′

ε,T d∞(s, t)

where d1 and d∞ are the usual distances of R
N defined by

d1 : (s, t) �→ ‖t − s‖1 =
N∑

i=1

|ti − si |,

d∞ : (s, t) �→ ‖t − s‖∞ = max
1≤i≤N

|ti − si |.

In proof of this result, it is clear that the constant M ′
ε,T can be chosen independently

of ε. Since the distances d1 and d∞ are equivalent to the Euclidean distance of R
N ,

(10.3.1) follows.

The following lemma shows that BH satisfies the property of two-point local
nondeterminism (cf. [46]).

Lemma 3 Let BH = {BH (t); t ∈ R
N+} be the set-indexed fractional Brownian

motion (0 < H ≤ 1/2) on rectangles of R
N+ .

For any ε, T ∈ R
N+ with 0 ≺ ε ≺ T there is a constant c > 0 such that

Var(BH (t) | BH (s)) ≥ c ‖t − s‖2H , ∀s, t ∈ [ε, T ]. (10.3.2)

Proof We recall the following formula for the conditional variance for a mean zero
Gaussian vector (U, V ):

Var(U | V ) = (ρ2U,V − (σU − σV )2)((σU + σV )2 − ρ2U,V )

4σ2
V

, (10.3.3)

where ρ2U,V = E[(U − V )2], σ2
U = E[U 2] and σ2

V = E[V 2].
We consider the case U = BH (t) and V = BH (s), for any s, t ∈ [ε, T ]. We pro-

ceed in two steps:

• The denominator of (10.3.3) is

4 σ2
BH (s) = 4 E

[|BH (s)|2] = 4 m([0, s])2H ,

which is bounded by m([0, ε])2H and m([0, T ])2H .
• In order to study the first factor of the numerator of (10.3.3), we consider the func-
tion Φ : [ε, T ] → R+ defined by Φ(t) = m([0, t])H . Then Φ(t) = ∏N

i=1 t
H
i , and

therefore Φ is differentiable on (ε, T ) and admits the first-order Taylor expansion
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σBH (t) − σBH (s) = Φ(t) − Φ(s) =
N∑

i=1

∂iΦ(s).(ti − si ) + o(‖t − s‖).

For all 1 ≤ i ≤ N , we evaluate the i th partial derivative of Φ

∂iΦ(s) = H sH−1
i

∏

j �=i

sHj = H

si
Φ(s).

Then,

σBH (t) − σBH (s) = H σBH (s)

N∑

i=1

ti − si
si

+ o(‖t − s‖),

and

(
σBH (t) − σBH (s)

)2 =
[

H σBH (s)

N∑

i=1

ti − si
si

]2

+ o(‖t − s‖2). (10.3.4)

But H σBH (s)/si is bounded by H m([0, T ])H/ε for all i ∈ {1, . . . , N }, so that
[

H σBH (s)

N∑

i=1

ti − si
si

]2

≤
[
H m([0, T ])H

ε
d1(s, t)

]2

. (10.3.5)

Since the distance d1 is equivalent to the Euclidean distance of R
N , we deduce

from (10.3.4) and (10.3.5) that

(
σBH (t) − σBH (s)

)2 = O(‖t − s‖2).

Since 0 < 2H ≤ 1, we get

E
[|BH (t) − BH (s)|2] − (

σBH (t) − σBH (s)

)2 � ‖t − s‖2H .

• The second factor of the numerator of (10.3.3)

(
σBH (t) + σBH (s)

)2
︸ ︷︷ ︸

≥4m([0,ε])2H
−E

[|BH (t) − BH (s)|2]
︸ ︷︷ ︸

≤MT ‖t−s‖2H

is clearly bounded from below by a positive constant.

The result follows from the two steps above.

By Lemmas 2 and 3, we can derive from [5, 46] the following results onHausdorff
dimension of the level sets and hitting probability of a d-dimensional MpfBm BH
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defined by
BH (t) = (BH

1 (t), . . . ,BH
d (t)), ∀t ∈ R

N
+ , (10.3.6)

where BH
1 , . . . ,BH

d are independent copies of BH .

Theorem 4 Let F ⊆ R
d be a Borel set such that dim F ≥ d − N

H . Then for every
rectangle I ⊆ R

N+ the following statements hold:

(i) Almost surely

dim
(
BH

)−1
(F) ∩ I ≤ N − H

(
d − dim F

)
, (10.3.7)

where dim denotes Hausdorff dimension (cf. e.g., [18]). In particular, if
dim F = d − N

H , then dim
(
BH

)−1
(F) ∩ I = 0 a.s.

(ii) If dim F > d − N
H , then for every ε > 0,

dim
(
BH

)−1
(F) ∩ I ≥ N − H

(
d − dim F

) − ε (10.3.8)

on an event of positive probability (which may depend on ε).
(iii) If N > Hd, then for every x ∈ R

d , with positive probability,

dim
(
BH

)−1
(x) = N − Hd. (10.3.9)

Now we define a metric ρ on R
N × R

d by

ρ
(
(s, x), (t, y)

) = max{‖s − t‖H , ‖x − y‖}.

For any r > 0 and (s, x) ∈ R
N × R

d , let

Bρ((s, x), r) = {(t, y) ∈ R
N × R

d : ρ((s, x), (t, y)) < r}

denote the open ball in the metric space (RN × R
d , ρ) centered at (s, x) with

radius r .
For any q > 0 and any set A ⊆ R

N × R
d , q-dimensional Hausdorff measure of

A under the metric ρ is defined by

Hρ
q(A) = lim

ε→0
inf

{ ∑

i

(2ri )
q : A ⊆

∞⋃

i=1

Bρ(ui , ri ), ri < ε
}
, (10.3.10)

where Bρ(u, r) is the open ball in the metric space (RN × R
d , ρ) centered at u with

radius r .
The Hausdorff dimension dimρA of A ⊂ R

N × R
d under the metric ρ is defined

by
dimρA = inf{q > 0 : Hρ

q(A) = 0}. (10.3.11)
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This type of Hausdorff measure and Hausdorff dimension has been applied by
Hawkes [10], Taylor and Watson [38], Wu and Xiao [41], and Xiao [46] to char-
acterize the polar sets for stochastic processes and the heat equation.

For any compact sets E ⊂ R
N and F ⊂ R

d , we let P(E × F) denote the collec-
tion of all probability measures that are supported in E × F . For any such E × F
and μ ∈ P(E × F), define the energy of μ in the metric ρ by

I ρ
d (μ)=̂

∫

RN×Rd

∫

RN×Rd

1

ρd
(
(s, x), (t, y)

)dμ(s, x)dμ(t, y). (10.3.12)

The capacity of E × F on R
N × R

d is defined by

Cρ
d (E × F) =

[
inf

μ∈P(E×F)
I ρ
d (μ)

]−1

. (10.3.13)

The following theorem is an extension of Theorem 2.1 in [5], whose proof follows
from Lemmas 3.1 and 3.2 and the proof of Theorem 2.1 in [6]. We omit the details.

Theorem 5 If E ⊆ R
N+ and F ⊆ R

d be Borel sets, then there exists a constant c > 1
such that

c−1 Cρ
d (E × F) ≤ P

{
BH (E) ∩ F �= ∅

}
≤ cHρ

d(E × F). (10.3.14)

In the above, Hρ
q(E × F) = 1 whenever q ≤ 0.

10.4 Stationary Random Field Obtained via the Lamperti
Transform

It follows fromProposition3.12of [12] that the real-valuedSI-fBmBH = {BH (t), t ∈
R

N+} and its d-dimensional analog in (10.3.6) have the followingmulti-self-similarity
in the sense of [9]: For any constants c1, . . . , cN > 0,

{BH (c1t1, . . . , cN tN ), t ∈ R
N
+} d= {(c1 · · · cN )HBH (t), t ∈ R

N
+},

where
d= means equality of all finite-dimensional distributions.

By Proposition 2.1.1 in [9], the centered Gaussian process Z = {Z(t); t ∈ R
N }

defined by

Z(t) = e−H(t1+···+tN ) BH (et1 , . . . , etN ), ∀t = (t1, . . . , tN ) ∈ R
N (10.4.1)

is stationary. By the multi-self-similarity of BH , it can be verified that the covariance
function r(t) = E

[
Z(0)Z(t)

]
is symmetric, namely, r(t) = r(−t) for all t ∈ R

N .
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The aim of this section is to study the covariance structure of Z , which will be
useful for establishing the property of strong local nondeterminism of BH . This
argument was applied for a one-parameter bi-fractional Brownian motion by Tudor
and Xiao [39]. As will be seen, the case of N > 1 is more complicated.

The stationary random field Z has the following integral representation:

{Z(t), t ∈ R
N } d=

{ ∫

RN

ei〈t,ξ〉 W(dξ), ∀t ∈ R
N
}
, (10.4.2)

where W is a complex-valued Gaussian random measure with control measure F ,
which is related to the covariance function r(t) by

r(t) =
∫

RN

ei〈t,ξ〉 F(dξ).

The measure F is a finite measure on R
N and is called the spectral measure of Z . It

is known that many local properties of Z are determined by the asymptotic behavior
of F at infinity, while long-term properties (such as long-range dependence) of Z
are determined by the behavior of F at the origin ξ = 0.

Because of (10.4.1) and (10.4.2), we see that BH has the following stochastic
integral representation:

BH (t) =
( N∏

j=1

t Hj

) ∫

RN

ei〈log t,ξ〉 W(dξ), ∀t ∈ (0,∞)N , (10.4.3)

where log t = (log t1, . . . , log tN ).

10.4.1 Expression of r(t)

For all t = (t1, . . . , tN ) in R
N , we compute

r(t) = E
[
Z(0)Z(t)

] = e−H(t1+···+tN ) E
[
BH (1, . . . , 1) BH (et1 , . . . , etN )

]

= 1

2
e−H(t1+···+tN )

[
m([0, 1])2H + m([0, et ])2H − m([0, 1] � [0, et ])2H ]

,

(10.4.4)

where m is the Lebesgue measure of R
N and we have used the notation et =

(et1 , . . . , etN ).
We havem([0, 1])2H = 1 andm([0, et ])2H = e2H(t1+···+tN ) = e2H |t | with the usual

notation |t | = ‖t‖1 = t1 + · · · + tN .
We start by considering the case t ∈ R

N such that ti ≥ 0 for all 1 ≤ i ≤ N . Then
m([0, 1] � [0, et ]) = m([0, et ] \ [0, 1]). In [11, Lemma 3.1], it is proved that for any
s, t ∈ R

N ,
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m([0, s] \ [0, t]) =
∏

i /∈I
|si |

∑

J�I

⎛

⎝
∏

i∈J

|ti |
∏

i∈I\J
|ti − si |

⎞

⎠ ,

where I = {1 ≤ i ≤ N : ti < si }. As ti ≥ 0 for all 1 ≤ i ≤ N , this formula leads to

m([0, 1] � [0, et ]) =
∑

J�{1,...,N }

⎛

⎝
∏

i∈J

1
∏

i∈{1,...,N }\J
|eti − 1|

⎞

⎠

=
∑

J�{1,...,N }

⎛

⎝
∏

i∈{1,...,N }\J
|eti − 1|

⎞

⎠ . (10.4.5)

But we can remark that

∑

J�{1,...,N }

⎛

⎝
∏

i∈{1,...,N }\J
|eti − 1|

⎞

⎠ =
∏

i∈{1,...,N }

(
1 + (eti − 1)

) − 1

=
∏

i∈{1,...,N }
eti − 1 = et1+···+tN − 1. (10.4.6)

From Eqs. (10.4.5) and (10.4.6), we deduce that

m([0, 1] � [0, et ]) = e|t | − 1,

and

r(t) = 1

2
e−H |t | [1 + e2H |t | − (e|t | − 1)2H

]
(10.4.7)

= eH |t | + e−H |t |

2
− 1

2
e−H |t |(e|t | − 1)2H

= eH |t | + e−H |t |

2
− 1

2

[
e−|t |/2(e|t | − 1)

]2H

= eH |t | + e−H |t |

2
− 1

2

(
e|t |/2 − e−|t |/2)2H .

The other cases of t ∈ R
N can be considered similarly. By using hyperbolic trigonom-

etry functions, we get

r(t) = cosh(H |t |) − 22H−1 (sinh(|t |/2))2H , ∀t ∈ R
N . (10.4.8)
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10.4.2 Behavior of 1 − r(t) as t Goes to 0

Expression (10.4.8) allows to obtain a Taylor expansion of r(t) as t goes to 0. First,
we write the expansion of the hyperbolic cosinus and sinus

cosh H |t | = 1 + H 2|t |2
2

+ o(|t |3) (10.4.9)

and

sinh
|t |
2

= |t |
2

+ |t |3
48

+ o(|t |4)

= |t |
2

(
1 + |t |2

24
+ o(|t |3)

)
. (10.4.10)

The expansion of (1 + x)α and (10.4.10) give

(
sinh

|t |
2

)2H

=
( |t |

2

)2H (
1 + |t |2

24
+ o(|t |3)

)2H

=
( |t |

2

)2H (
1 + 2H

|t |2
24

+ o(|t |2)
)

. (10.4.11)

From (10.4.8), (10.4.9), and (10.4.11), we get the expansion of r(t) in the neigh-
borhood of 0:

r(t) = 1 − 1

2
|t |2H + H 2

2
|t |2 + o(|t |2). (10.4.12)

Since 0 < 2H < 1, the expansion (10.4.12) leads to

1 − r(t) ∼ 1

2
|t |2H as t → 0. (10.4.13)

10.4.3 Integrability of t �→ R(t) on R
N

Starting from (10.4.4), we study the difference

m([0, et ])2H − m([0, 1] � [0, et ])2H .

Since 0 < 2H < 1, the study of x �→ x2H shows that x2H − y2H ≤ (x − y)2H for
all 0 ≤ y ≤ x . Then, we have

m([0, et ])2H − m([0, et ] \ [0, 1]2H ≤ m([0, 1])2H ,
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and therefore

r(t) = 1

2
e−H |t | [m([0, 1])2H + m([0, et ])2H − m([0, 1] � [0, et ])2H ]

≤ m([0, 1])2H e−H |t |

for all t ∈ R
N . This inequality proves that r ∈ L1(RN ).

10.4.4 Fourier Transform of t �→ R(t)

Since r ∈ L1(RN ), the spectral density of the stationary Gaussian field Z can be
expressed as

f (ξ) = (2π)−N
∫

RN

e−i〈t,ξ〉r(t)dt

= π−N
∫

RN

cos(〈t, ξ〉)r(t) dt
(10.4.14)

by the symmetry of the covariance function r(·). As shown in [45, 46], the asymp-
totic behavior of f (ξ) as ‖ξ‖ → ∞ carries a lot of information on the sample path
properties of the Gaussian random fields Z and BH .

10.5 Strong Local Nondeterminism and Fine Properties
of MpfBm

In this section, we study the exact uniform and local moduli of continuity of the
set-indexed fractional Brownian motion BH = {BH (t), t ∈ R

N+}. Our main technical
tool is the property of strong local nondeterminism which is established by applying
a Fourier analytic method (see [45]). For technical reasons, we only consider the
case N = 2.

10.5.1 Property of Strong Local Nondeterminism (SLND)

In order to prove SLND for BH , we first consider the stationary Gaussian random
field Z defined in (10.4.1).

Recall (10.4.7), we denote by r̃(ρ) the positive function on R+ defined by

r̃(ρ) = 1

2
eHρ

[
1 + e−2Hρ − (1 − e−ρ)2H

]
, ∀ρ ∈ R+.
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We start with some elementary properties of r̃(ρ).

r̃ ′(ρ) = 1

2
HeHρ

[
1 − e−2Hρ − (1 − e−ρ)2H−1(1 + e−ρ)

]
.

Note that r̃ ′(ρ) < 0 for all ρ > 0 and it is elementary to verify that

|r̃ ′(ρ)| ≤ c e−βρ (10.5.1)

for ρ large, where β = min{H, 1 − H} and

r̃ ′(ρ) ∼ −Hρ2H−1 as ρ → 0.

Similarly,

r̃ ′′(ρ) = 1

2
HeHρ

[
H(1+e−2Hρ) + (H + 1)(1 − e−ρ)2H−1(1 + e−ρ)

+ (1 − 2H)(1 − e−ρ)2H−2(1 + e−ρ) + (1 − e−ρ)2H−1e−ρ
]
.

(10.5.2)
Clearly r̃ ′′(ρ) > 0 for all ρ ≥ 0.

If we write r̃ ′′(ρ) = H(1 − 2H)ρ2H−2L(ρ), then we can verify that L(·) is a
slowly varying function at 0 and satisfies

lim
ρ→0+ L(ρ) = 1 and lim

ρ→0+
ρL ′(ρ)

L(ρ)
= 0. (10.5.3)

The following lemma describes the asymptotic properties of the spectral density f (ξ)
of Z as |ξ| → ∞.

Lemma 6 Let f (ξ1, ξ2) be the spectral density of Z. Then f (ξ1, ξ2) is symmetric in
ξ1 and ξ2:

f (ξ1, ξ2) = f (−ξ1, ξ2) = f (ξ1,−ξ2) = f (−ξ1,−ξ2), ∀ (ξ1, ξ2) ∈ R
2. (10.5.4)

Moreover, the following statement hold:

(i) As |ξ1| → ∞ and |ξ2| → ∞, we have

f (ξ1, ξ2) ∼ c1
|ξ21 − ξ22 |

∣∣∣∣
1

ξ2H2
− 1

ξ2H1

∣∣∣∣, (10.5.5)

where

c1 = 4H(1 − 2H)

π2

∫ ∞

0
sin(η) η2H−2 dη.

(ii) For any constant M > 0, as |ξ1| → ∞, we have
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f (ξ) ∼ 4H(1 − 2H)

π2(ξ21 − ξ22)

1

ξ2H2

∫ ∞

0
sin(η) η2H−2 L(η/ξ2) dη. (10.5.6)

uniformly for all ξ2 ∈ [−M, M]. The same conclusion holds if we switch ξ1 and
ξ2.

Consequently, there is a constant M > 0 such that

f (ξ) ≥ c

|ξ|2+2H
, ∀ ξ ∈ R

2 with |ξ| ≥ M. (10.5.7)

Proof The spectral density f (ξ) is given in (10.4.14)

f (ξ) = π−2
∫

R2
cos(〈t, ξ〉)r(t) dt, ξ ∈ R

2.

Since r(t) only depends on the l1-norm |t |. Our basic idea is to make a change of
variables using the “polar coordinates” in the l1-norm | · |. This can be done explicitly
when N = 2.

Note that the unit circle in the L1 norm is S21 = {θ ∈ R
2 : |θ| = 1} consists of

four line segments. The one in the first quadrant is θ1 + θ2 = 1 (0 ≤ θ1 ≤ 1). We
make the following change of variables:

t1 = ρθ1 and t2 = ρ(1 − θ1)

to get

∫

R
2+
cos(〈t, ξ〉)r(t) dt =

∫ 1

0
dθ1

∫ ∞

0
cos

[
ρ(θ1ξ1 + (1 − θ1)ξ2)

]
ρr̃(ρ) dρ.

Using the same argument to other three quadrants and adding them together, we
derive

f (ξ) =
( 2

π

)2 ∫ 1

0
dθ1

∫ ∞

0
cos(ρθ1ξ1) cos(ρ(1 − θ1)ξ2)ρr̃(ρ) dρ

= 2

π2

∫ ∞

0
ρr̃(ρ) dρ

∫ 1

0

[
cos(ρ(ξ1 + ξ2)θ1 − ρξ2) + cos(ρ(ξ1 − ξ2)θ1 + ρξ2)

]
dθ1.

Integrating [dθ1] first and then using integration by parts twice to integrate [dρ], we
obtain
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f (ξ) = 2

π2

∫ ∞

0

[
sin(ρξ1) + sin(ρξ2)

ξ1 + ξ2
+ sin(ρξ1) − sin(ρξ2)

ξ1 − ξ2

]
r̃(ρ) dρ

= 4

π2(ξ21 − ξ22)

∫ ∞

0

[
cos(ρξ1) − cos(ρξ2)

]
r̃ ′(ρ) dρ

= −4

π2(ξ21 − ξ22)

∫ ∞

0

[
sin(ρξ1)

ξ1
− sin(ρξ2)

ξ2

]
r̃ ′′(ρ) dρ.

(10.5.8)

It is now clear that (10.5.4) holds.
By using (10.5.1) and the facts that r̃ ′(ρ) is negative and strictly increasing, we

can see that the function

x �→ −
∫ ∞

0
cos(ρx) r̃ ′(ρ) dρ (10.5.9)

is continuous and takes positive values (write the integral as an alternative series).
This will be used to prove (ii) below.

In order to prove the rest of the lemma, it is sufficient to consider ξ ∈ R
2+ only.

Furthermore, without loss of generality, we may and will assume from now on that
0 < ξ2 < ξ1 < ∞.

Now we prove (i). To this end, we rewrite f (ξ) as

f (ξ) = −4

π2(ξ21 − ξ22)

[ ∫ ∞

0

sin(ρξ1)

ξ1
r̃ ′′(ρ) dρ −

∫ ∞

0

sin(ρξ2)

ξ2
r̃ ′′(ρ) dρ

]

= −4

π2(ξ21 − ξ22)

[ ∫ ∞

0

sin(η)

ξ21
r̃ ′′(η/ξ1) dη −

∫ ∞

0

sin(η)

ξ22
r̃ ′′(η/ξ2) dη

]

(10.5.10)
by a simple change of variables. Writing the above as

f (ξ) = 4H(1 − 2H)

π2(ξ21 − ξ22)

[
1

ξ2H2

∫ ∞

0
sin(η) η2H−2 L(η/ξ2) dη

− 1

ξ2H1

∫ ∞

0
sin(η) η2H−2 L(η/ξ1) dη

] (10.5.11)

and applying the dominated convergence theorem, we obtain that as ξ1 → ∞ and
ξ2 → ∞,

f (ξ) ∼ 4H(1 − 2H)

π2(ξ21 − ξ22)

(
1

ξ2H2
− 1

ξ2H1

) ∫ ∞

0
sin(η) η2H−2 dη.

In the above, we have used the fact that the last integral is absolutely convergent.
This proves (i).

Let M > 0 be a fixed constant. By (10.5.9), we see that the function
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ξ2 �→ ξ−2H
2

∫ ∞

0
sin(η) η2H−2 L(η/ξ2) dη

in (10.5.10) attains its minimum on [0, M] and the minimum is positive. This implies
that as ξ1 → ∞

f (ξ) ∼ 4H(1 − 2H)

π2(ξ21 − ξ22)

1

ξ2H2

∫ ∞

0
sin(η) η2H−2 L(η/ξ2) dη.

uniformly for all ξ2 ∈ [−M, M]. This proves (ii).
Finally, thanks to (i) and (ii), we take a constant M > 0 large enough such that

for all ξ ∈ R
2+ with ξ1 + ξ2 ≥ M , we have

f (ξ) ≥ c

2|ξ21 − ξ22 |
∣
∣∣∣
1

ξ2H2
− 1

ξ2H1

∣
∣∣∣ ≥ Hc

|ξ|2+2H
.

This finishes the proof of Lemma 6.

The following result states that the stationary Gaussian field Z = {Z(t), t ∈ R
2}

in (10.4.1) has the property of strong local nondeterminism.

Lemma 7 For any compact interval I ⊂ R
2, there exists a constant c2 > 0 such

that for all integers n ≥ 1 and all u, t1, . . . , tn ∈ I , we have

Var
(
Z(u) | Z(t1), . . . , Z(tn)

)
≥ c2 min

1≤k≤n

∣∣u − t k
∣∣2H . (10.5.12)

Proof This follows from (10.5.7) and the Fourier analytic argument in the proof of
Theorem 2.1 in [45] (see also [46]). We omit the details.

The main result of this section is the following theorem. We remark that in [34,
Lemma 4.5], Richard proved a similar result for BH = {BH (t), t ∈ R

N+} by using a
different method.

Theorem 8 The real-valued, set-indexed fractionalBrownianmotionBH = {BH (t),
t ∈ R

2+} has the following property of strong local nondeterminism: For any compact
interval T ⊂ (0,∞)2, there exists a constant c3 > 0 such that for all integers n ≥ 1
and all u, t1, . . . , tn ∈ T ,

Var
(
BH (u)

∣∣ BH (t1), . . . ,BH (tn)
)

≥ c3 min
1≤k≤n

∣∣u − t k
∣∣2H .

Proof Let T = [a, b], where a, b ∈ (0,∞)2. For any t ∈ T , we write t H = (t1t2)H

and log t = (log t1, log t2).
Note that, by the definition of Z in (10.4.1), for every t ∈ (0,∞)2 we have

BH (t) = t H Z(log t). (10.5.13)
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Hence, for any integer n ≥ 1 and any u, t1, . . . , tn ∈ T , we apply (10.5.13) and
Lemma 7 to derive

Var
(
BH (u)

∣∣BH (t1), . . . ,BH (tn)
)

= Var
(
uH Z(log u)

∣∣(t1)H Z(log t1), . . . , (tn)H Z(log tn)
)

= u2H Var
(
Z(log u)

∣∣Z(log t1), . . . , Z(log tn)
)

≥ c u2H min
1≤k≤n

∣∣ log u − log t k
∣∣2H

≥ c3 min
1≤k≤n

∣∣u − t k
∣∣2H .

(10.5.14)

This proves Theorem8.

10.5.2 Fine Properties of SifBm

With Theorem8 in hand, we may investigate various fine properties of set-indexed
fractional Brownian motion BH = {BH (t), t ∈ R

2+}. For example, the exact Haus-
dorff measure functions for its range, graph, and level sets can be studied using the
methods in [25, 37, 43, 44] and sharp Hölder conditions for its local times can be
derived from [43]. We will not work out the details here; just point out that we expect
these properties to be different from those for the Brownian sheet in [7] and fractional
Brownian sheets in [2, 41].

In this section, we will only consider the uniform and local moduli of continuity
of BH . We mention that many authors have investigated uniform and local moduli of
continuity ofGaussian randomfields; see [3, 4, 26, 28, 30, 40]. TheChung-type laws
of the iterated logarithm have also been proved for the Brownian sheet, fractional
Brownian motion, and other Gaussian random fields in [23, 24, 27, 29, 33, 36, 43].

The following theorem gives the exact uniform modulus of continuity for SifBm
BH , which is similar to that for ordinary fractional Brownian motion.

Theorem 9 There is a constant κ1 ∈ (0,∞) such that

lim
ε→0+ sup

s,t∈[0,1]2,|s−t |≤ε

|BH (t) − BH (s)|
|s − t |H√

log 1/|s − t | = κ1 a.s. (10.5.15)

Proof By Lemma 2 and Theorem 8, BH satisfies conditions (A1) and (A2) in [28].
Thus Theorem 4.1 in [28] implies that (10.5.15) holds a.s. provided [0, 1]2 is replaced
by [a, 1]2, where a ∈ (0, 1) is any given constant. This result, together with the 0–1
law in Lemma 7.1.1 in [26] and the following easily proven upper bound
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lim sup
ε→0+

sup
s,t∈[0,1]2,|s−t |≤ε

|BH (t) − BH (s)|
|s − t |H√

log 1/|s − t | ≤ c4 a.s.

for some finite constant c4, gives the desired result (10.5.15).

In the following, we consider Chung’s law of the iterated logarithm for SifBm
BH . Compared with the results in [23, 24, 39], the following theorem only describes
the local oscillation at a fixed point t0 ∈ (0,∞)2, which is assumed to be away from
the axes. In this case, (10.5.16) is similar to Chung’s LIL for ordinary fractional
Brownian motion [23, 29, 43]. As shown by Richard [33, Theorem 3], however, the
Chung’s LIL at the origin is different. See also [27, 36] for Chung’s LIL for fractional
Brownian sheets.

Theorem 10 For every fixed t0 ∈ (0,∞)2, there exists a positive and finite constant
κ2 = κ2(t0) such that

lim inf
ε→0

max|s|≤ε |BH (t0 + s) − BH (t0)|
εH (log log 1/ε)−H/2

= κ2, a.s. (10.5.16)

Proof Let Z = {Z(t), t ∈ R
2} be the stationary Gaussian random field defined in

(10.4.1). Consider the Gaussian field X = {X (t), t ∈ R
2} defined by X (t) = Z(t) −

Z(0). Then X has stationary increments and has the spectral density of Z as its
spectral density. Thanks to Lemma6, Chung’s laws of the iterated logarithm in [23,
24] can be applied to X = {X (t), t ∈ R

2}. In particular, there is a positive and finite
constant c5 such that for every fixed u ∈ R

2,

lim inf
ε→0

max|v|≤ε |Z(u + v) − Z(u)|
εH (log log 1/ε)−H/2

= c5, a.s.

From this and (10.5.13), we derive (10.5.16).

Finally, in this section, we consider two kinds of local moduli of continuity for
BH . Theorem11 is concerned with the local modulus of continuity measured in the
most general way. Theorem12 provides the exact local modulus of continuity in the
L1-norm | · |. It should be noticed that the logarithmic factors in these two theorems
are quite different. Note that, since their proofs do not use the property of local
nondeterminism, we will state them for general N ≥ 2.

Theorem 11 For every fixed t0 ∈ (0,∞)N , there exists a positive and finite constant
κ3, which depends on t0, such that

lim sup
‖ε‖→0+

sup
〈|s j |〉≤〈ε j 〉

|BH (t0 + s) − BH (t0)|
|s|H

√
log log(1 + ∏N

j=1 |s j |−H )

= κ3 a.s., (10.5.17)

where 〈ε j 〉 = (ε1, . . . , εN ).
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Proof As in the proof of Theorem10, we let Z = {Z(t), t ∈ R
N } be the station-

ary Gaussian random field defined in (10.4.1) and consider the Gaussian field
X = {X (t), t ∈ R

N } defined by X (t) = Z(t) − Z(0). Then X has stationary incre-
ments and, by (10.4.13), satisfies the condition of Theorem 5.1 in [28]. It follows
that there is a constant c6 ∈ (0,∞) such that for any fixed u ∈ R

N ,

lim sup
‖ε‖→0+

sup
〈|v j |〉≤〈ε j 〉

|Z(u + v) − Z(u)|
|v|H

√
log log(1 + ∏N

j=1 |s j |−H )

= c6 a.s.,

From this and (10.5.13), we can derive (10.5.17).

By the same argument, we derive from Theorem 5.6 in [28] the following law of
the iterated logarithm.

Theorem 12 For every fixed t0 ∈ (0,∞)N , there exists a positive and finite constant
κ4 = κ4(t0) such that

lim
ε→0+ sup

s:|s|≤ε

|BH (t0 + s) − BH (t0)|
|s|H√

log log(1 + |s|−1)
= κ4 a.s. (10.5.18)

Remark 13 We conclude this section with the following remark.

• Our results show that SI-fBmBH shares many properties such as fractal dimension
and hitting probability results with fractional Brownian field XH and the fractional
Brownian sheetWH . The Chung’s laws of the iterated logarithm ofBH away from
the axes (Theorem10) and at the origin (Theorem 3 in [33]) are significantly
different from those forWH proved in [27, 36]. It is interesting to notice that some
properties of BH such as Chung’s LIL away from the axes are closer to those of
fractional Brownian field XH than to those of WH . This is due to the fact that,
even if BH does not have stationary increments as XH , it shares the same property
of strong local nondeterminism (see Theorem8).

• SinceBH (t) = 0 whenever t ∈ ∂R
N+ , we expect that the local moduli of continuity

of BH (t) at the origin or t0 ∈ ∂R
N+ are different from (10.5.17) and (10.5.18). For

fractional Brownian sheets, [40] considered this problem in his Theorems 4.1 and
4.2. It would be of interest to compare the asymptotic behavior of SifBm BH on
∂R

N+ with the results in [40].
• The method for proving Theorem8 can also be extended for determining the
Fourier dimension of the image set BH (E), where E ⊂ R

2+ is a compact set,
and show that it is almost surely a Salem set when dimE ≤ Hd. We refer to [17,
22, 35] for definitions of Fourier dimension and Salem set, and their importance
in Fourier analysis and connections to Gaussian random fields.
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