
PERGAMON Computers and Mathematics with Applications 0 (2002)
www.elsevier.com/locate/camwa

Fractal Block-Coding:
A Functional Approach for

Image and Signal Processing

C. A. Cabrelli
Departamento de Matemática

FCEyN, Universidad de Buenos Aires
Cdad. Universitaria, Pab. I, (1428) Buenos Aires, Argentina

and
CONICET, Consejo Nacional de Investigaciones Cient́ıficas y Tecnológicas

cabrelli@dm.uba.ar

M. C. Falsetti
Instituto de Desarrollo Humano, Área de Matemática

Universidad Nacional de General Sarmiento
(1663) Roca 850, San Miguel, Buenos Aires, Argentina

mcfalse@dm.uba.ar

U. M. Molter
Departamento de Matemática, FCEyN, Universidad de Buenos Aires

Cdad. Universitaria, Pab. I, (1428) Buenos Aires, Argentina
and

CONICET, Consejo Nacional de Investigaciones Cient́ıficas y Tecnológicas
umolter@dm.uba.ar

(Received May 2000; revised and accepted July 2001)

Abstract—In this paper, we show how the generalized self-similarity model introduced by Cabrelli
et al. in [1] can be used for the coding and reconstruction of digital signals and images. We also
prove how the block-coding techniques introduced by Jacquin [2] for measures fit naturally into this
functional model allowing us to take advantage of local redundancy of the images, as well as to fully
automate the encoding and decoding process. c© 2002 Elsevier Science Ltd. All rights reserved.

Keywords—Functional equation, Grey-level functions, Fixed points, Fractal compression, Block-
coding, Self-similarity.

1. INTRODUCTION

In this paper, we intend to provide a mathematical setting for a method of fractal block-coding
of image functions based on the notion of generalized self-similarity introduced by Cabrelli et al.
in [1]. This method allows more flexibility in the self-similarity structure of standard block-coding
compression.

We present the theoretical framework in its most general setting. This can then easily be
adapted to fit each individual application. In particular, this general setting includes as special

Partially supported by Grants UBACyT TW84, CONICET PIP 456/98 and PICT98 03134.

0898-1221/02/$ - see front matter c© 2002 Elsevier Science Ltd. All rights reserved. Typeset by AMS-TEX
PII:00

2 C. A. Cabrelli et al.

cases all the known IFS frameworks. As an application of the theory, we describe a method of
coding and decoding images and we indicate how the well-known technique of partitioned IFS
(see, for example, [2–6]) can be incorporated just as overlapping blocks (see [7]). We show the
method for some very simple one- and two-dimensional examples that help to show some evidence
of its usefulness.

The method is related to the fractal compression method proposed originally by Barnsley et al.
in [8] and [9] in the sense that the original image will be approximated by the fixed-point attractor
of a contractive operator. This attractor can be obtained by iterating the operator starting from
an arbitrary starting point. More specifically, the theoretical setting of our method is closely
related to the generalized fractal transforms described in [10].

We will consider images represented by functions. An image can be modeled by a function
u : X → [0, 1], where X is a compact metric space (for applications, X ⊂ Rd will usually suffice)
and the value u(x), for each x ∈ X, can be interpreted as the normalized grey-scale at the point x.

In [1], Cabrelli et al. presented the notion of generalized self-similarity , by solving the following
functional equation:

u(x) = O (x, ϕ1 (x, ũ1(x)) , . . . , ϕn (x, ũn(x))) , (1.1)

where ũi essentially (except for well definition) means u ◦ w−1
i . Using the previously-mentioned

interpretation of an image as a function, one can think of the solution of this equation as a
generalization of the classical IFS, by introducing the grey-level functions, ϕi : X× [0, 1]→ [0, 1],
1 ≤ i ≤ r, which together with the maps wi : X → X, i = 1, 2, . . . , r conform a contractive
operator whose fixed point will approximate the original image.

The model allows much greater flexibility in the choice of the parameters, in particular, the
relation between the choice of the ϕi and the color seems to be more transparent than when work-
ing with measures. In addition, a wider class of images can be represented, since the attractors
need not be self-similar in the strict sense.

The function u, solution of (1.1), satisfies a generalized self-similarity relation, which colloqui-
ally could be seen as follows: at any given point x ∈ X, we look at the preimages of x through
each wi, look at the values of u at that point, transform them using the corresponding ϕi, and
then combine these values using the operator O. This new value has to coincide with the original
value of u at x.

The approximation techniques used to solve equation (1.1) take advantage of the dependence
on spatial variables of the functions ϕi. The effectiveness of this place-dependence condition was
originally treated by Monro and Dudbridge (see [6]). This condition was also incorporated in
other models as, for example, in the generalized fractal transforms (see, for example, [11]).

The purpose of this paper is twofold. On one side, we show how the generalized self-similarity
equation can be applied to signal and image processing. We want to point out that the method
presents the following important features: the dependence not only on the grey or color values,
but also on the point x ∈ X. Moreover, overlap is allowed, i.e., the domains of wi are allowed
to intersect with nonempty interior. Finally, the application of the operator O allows us to
manipulate several possible preimages of a point just by combining the terms ϕi(x, ũi(x)). This
is important in the case of overlapping range blocks. In fact, we will show some practical examples
where the usage of such an operator allows for a “smoother” combination of overlapping terms as
opposed to the “bumpiness” encountered when they are added (see, the examples in Section 4).

On the other side, the greater flexibility in the choice of the parameters allowed us to in-
corporate the so-called fractal block-coding techniques introduced by Jacquin in [2–4] into our
model. From the theoretical point of view, the maps wi, i = 1, 2, . . . , n, need not be defined on
the whole space X, but can be defined on subsets Di ⊆ X, such that

⋃n
i=1 wi(Di) = X. This

then implies that the function which satisfies equation (1.1), now satisfies an even weaker self-
similarity relation, since the preimages of the wi are the smaller sets Di which can be thought
of as windows on which the values of both sides of the equation have to coincide. In addition, as

Fractal Block-Coding 3

in other block-coding techniques used in image processing, we can also incorporate the quadtree
encoding procedure, as in [12,13], where the collection of ranges is a covering of the image but not
a partition in the strict sense because overlap is allowed. Also, the maps wi need not necessarily
be contractive as in most other fractal image coding algorithms.

This theoretical generalization turns out to be very useful for practical implementation pur-
poses. For the so-called inverse problem for fractals, i.e., given a target finding the appropriate
code, it enables us to incorporate the complete algorithm automatization (characteristic of the
block-coding technique) and to optimize the use of the redundancy, due to the fact that we
analyze sections instead of the whole target.

The layout of this paper is as follows. Section 2 provides the mathematical notions about
the method. A general application of this theory to image analysis is described in Section 3.
In Section 4, we show the direct application to one-dimensional target-functions (signals), and
finally, in Section 4.3, we briefly discuss the two-dimensional case.

2. MATHEMATICAL FORMULATION OF THE
BLOCK-CODING METHOD FOR FUNCTIONAL SPACES

2.1. B(X,E) Case

We will consider the particular case of the functional equation (1.1) introduced by Cabrelli et
al. in [1] on the functional space

B(X,E) = {u : X −→ E, u bounded},

where (X, d) is a compact metric space and (E, `) a metric space with E a closed subset of Rm
(in particular, E could be Rm), and ` a distance in E induced by some norm of Rm.

We consider the following distance on the space B(X,E):

L(u, v) = sup
x∈X

` (u(x), v(x)), ∀u, v,∈ B(X,E). (2.1)

It is well known that (B(X,E),L) is a complete metric space.
Now let R = {Ri}1≤i≤n be a class of bounded subsets of X which we will call ranges, such that

X =
⋃

1≤i≤nRi. We define W,O, and Φ as follows: W = {wi}1≤i≤n, where wi : Di ⊂ X → Ri
are bijective (Di, 1 ≤ i ≤ n will be called domains); O : X×En → E is a nonexpansive operator
for each x ∈ X, i.e.,

`
(
O
(
x,~k
)
,O
(
x,~k′

))
≤ max

1≤i≤n
` (ki, k′i) , (2.2)

and Φ = {ϕi}1≤i≤n is the set of the grey-level maps such that ϕi : X × E → E, i = 1, . . . , n,
satisfy a Lipschitz condition in the second variable

` (ϕi (x, k1) , ϕi (x, k2)) ≤ ci ` (k1, k2) ∀x ∈ X, ∀ k1, k2 ∈ E, i = 1, . . . , n, (2.3)

where ci, i = 1, . . . , n, do not depend on x.
Now let us consider a point t0 ∈ E that will remain fixed throughout the whole paper. We

define the functions

ũi(x) =
{
u
(
w−1
i (x)

)
, if x ∈ Ri,

t0, otherwise,
1 ≤ i ≤ n, (2.4)

and the operator
T (u)(x) = O (x, ϕ1 (x, ũ1(x)) , . . . , ϕn (x, ũn(x))) . (2.5)

We shall use O(x, ϕi(x, ũi(x))) for the right-hand side of equation (2.5).

4 C. A. Cabrelli et al.

In order for the operator T to be well defined, that is, T : B(X,E) → B(X,E), we need to
require a stability condition on the ϕi and the operator O. Precisely, we need to require that
bounded sets are mapped into bounded sets.

Definition. A function f : X → Y between two metric spaces is said to be stable, if for each

bounded set A ⊂ X, f(A) ⊂ Y is a bounded subset of Y .

With these conditions, we have the following theorem.

Theorem 2.1.1. Let T be defined on B(X,E) as

T (u)(x) = O (x, ϕ1 (x, ũ1(x)) , . . . , ϕn (x, ũn(x))) ,

where O is a stable operator, and let ϕi, 1 ≤ i ≤ n, be stable functions that are Lipschitz in the

second variable.

If c > 0, c = max1≤i≤n{ci}, where ci is the Lipschitz constant for ϕi, 1 ≤ i ≤ n, then

T : B(X,E)→ B(X,E)

and

L(T (u), T (v)) ≤ c L(u, v).

Proof. It is straightforward to see that if v ∈ B(X,E), T v ∈ B(X,E).
For x ∈ X and u, v ∈ B(X,E),

`((T u)(x), (T v)(x)) = `
(
O
(
x,ϕi (x, ũi(x))

)
,O
(
x, ϕi (x, ṽi(x))

))
≤ max

1≤i≤n
` (ϕi (x, ũi(x)) , ϕi (x, ṽi(x)))

≤ max
1≤i≤n

c ` (ũi(x), ṽi(x)) .

Since
⋃

1≤i≤nRi = X, there must exist j such that x lies in Rj , hence, if

Jx = {i : 1 ≤ i ≤ n and x ∈ Ri}, (2.6)

then Jx 6= ∅.
We have

`((T u)(x), (T v)(x)) ≤ max
i∈Jx

c ` (ũi(x), ṽi(x))

≤ c sup

{
`(u(y), v(y)), y ∈

⋃
i∈Jx

Di

}
≤ c sup

y∈X
`(u(y), v(y))

≤ c L(u, v),

and so
L(T (u), T (v)) ≤ cL(u, v).

From this proposition, we have the following corollary.

Corollary 2.1.1. If c < 1, there exists a unique bounded function u∗ ∈ B(X,E) such that

u∗ = O (x, ϕ1 (x, ũ∗1(x)) , . . . , ϕn (x, ũ∗n(x))) ,

where ũ∗i are defined as in equation (2.4)

Proof. The operator T is contractive on (B(X,E),L) which is a complete metric space, and
therefore, T has a fixed point u∗ ∈ B(X,E). Clearly, u∗ is the solution to the functional
equation.

Fractal Block-Coding 5

2.2. Lp Case

Now let X ⊂ Rd compact, with µ the d-dimensional Lebesgue measure and let E = Rm with
some norm ‖ · ‖. (Note: E could be chosen to be any Banach space.) We consider the functions
u : X → E such that they are Lebesgue-measurable, and, as usual, functions that are equal
almost everywhere are identified.

If 1 ≤ p <∞, let

Lp(X,E) =
{
u : X → E :

∫
X

‖u‖p < +∞
}

and

L∞(X,E) = {u : X → E : u is essentially bounded},

with ‖u‖∞ = ess.sup‖u‖.
It is well known that Lp(X,E), 1 ≤ p ≤ +∞, is a Banach space. Then, in this case, let

R = {Ri}1≤i≤n be a class of bounded and measurable subsets of X such that X =
⋃

1≤i≤nRi
and W = {wi}1≤i≤n be a class of measurable maps of X such that wi : Di ⊆ X → Ri, 1 ≤ i ≤ n,
are bijective.

For a measurable u, we define, as before, the operator T as in equation (2.5),

T (u)(x) = O (x, ϕ1 (x, ũ1(x)) , . . . , ϕn (x, ũn(x))) , (2.7)

where the ϕi, ũi, and O are as in the previous section. Note that the nonexpansivity condition
of the operator O in this case should mean

`
(
O
(
x,~k
)
,O
(
x, ~k′

))
≤

 ∑
1≤i≤n

` (ki, k′i)
p

1/p

. (2.8)

We add the following conditions.

1. The maps wi, 1 ≤ i ≤ n, satisfy a Lipschitz condition, i.e., there exist constants si ≥ 0,
such that d(wi(x), wi(y)) ≤ si d(x, y) where d is the Euclidean distance in Rd.

2. The functions ϕi, i = 1 . . . , n, and O are Borel measurable.

These additional conditions are required in order to guarantee the measurability of T u. We
then have the following proposition.

Proposition 2.2.1. Let T be defined as above, then T u : X → E is measurable for each

measurable function u : X → E. Moreover, if u, v are measurable and u = v a.e., then T u =
T v a.e.

Proof. The measurability of T u is a consequence of the stability and Borel-measurability of O,
and the functions wi, and ϕi. Now if Z = {x ∈ X : u(x) 6= v(x)}, then

{x : T u(x) 6= T v(x)} ⊂
n⋃
i=1

(Ri ∩ wi (Z ∩Di)) ⊂
n⋃
i=1

wi(Z).

The Lipschitz condition of the wi implies that µ(wi(Z)) = 0 if µ(Z) = 0, and therefore, the result
follows.

Now we consider first the space L∞ defined before. The case Lp, 1 ≤ p < ∞, will be treated
later.

Theorem 2.2.1. Let T be the operator defined in equation (2.7). Then T : L∞ → L∞ and

‖T u− T v‖∞ ≤ max
1≤i≤n

ci‖u− v‖∞, ∀u, v ∈ L∞.

6 C. A. Cabrelli et al.

Proof. If u ∈ L∞, then let Z ⊂ X, µ(Z) = 0 and u bounded in X −Z. If we define v : X → E

by v = u · IX−Z , where IA is the indicator function of A, then v = u a.e. and v is bounded,
so v ∈ B(X,E) . Then T v is bounded (by Theorem 2.1.1). Using the preceding proposition,
T u = T v a.e., and therefore, T u ∈ L∞.

From the proof of Theorem 2.1.1, we see that for u and v ∈ L∞, if c = max1≤i≤n{ci : ci
Lipschitz constant of ϕi}, we have

‖T u(x)− T v(x)‖ ≤ c ‖u− v‖, a.e. on X,

which implies that
‖T u− T v‖∞ ≤ c ‖u− v‖∞.

We can now turn our attention to Lp, 1 ≤ p <∞. We have the following theorem.

Theorem 2.2.2. Let T be operator (2.7). If u, v ∈ Lp(X,E), then (T u− T v) ∈ Lp(X,E) and

‖T u− T v‖p ≤

 ∑
1≤i≤n

si c
p
i

1/p

‖u− v‖p,

where s and c are the Lipschitz constants of wi and ϕi, respectively.

Furthermore, the finiteness of µ(X) yields

T : Lp(X,E)→ Lp(X,E).

Proof. If u, v ∈ Lp, then by Proposition 2.2.1, T u− T v is measurable and

‖T u− T v‖pp =
∫
X

‖T u(x)− T v(x)‖pdµ(x)

=
∫
X

∥∥∥O (x, ϕi (x, ũi(x))
)
−O

(
x, ϕi (x, ṽi(x))

)∥∥∥p dµ(x)

≤
∫
X

∑
1≤i≤n

‖ϕ (x, ũi(x))− ϕ (x, ṽi(x))‖p dµ(x), by equation (2.8),

≤
∑

1≤i≤n
cpi

∫
X

‖ũi(x)− ṽi(x)‖p dµ(x)

≤
∑

1≤i≤n
cpi

∫
X

‖ũi(x)− ṽi(x)‖p dµ(x)

≤
∑

1≤i≤n
cpi

∫
Ri

∥∥(u ◦ w−1
i

)
(x)−

(
v ◦ w−1

i

)
(x)
∥∥p dµ(x), by equation (2.4) ,

≤
∑

1≤i≤n
cpi si

∫
Di

‖u(t)− v(t)‖p dµ(t)

(2.9)

≤

 ∑
1≤i≤n

cpi si

 ‖u− v‖pp. (2.10)

From this inequality, we see that if u, v ∈ Lp, then

‖T v‖p ≤ ‖T u− T v‖p + ‖T u‖p ≤

 ∑
1≤i≤n

cpi si

1/p

‖u− v‖p + ‖T u‖p, (2.11)

Fractal Block-Coding 7

which says that if there exists a function u ∈ Lp such that T u ∈ Lp, then T maps Lp into Lp,
1 ≤ p < +∞. Now, since µ(X) < +∞, then L∞ ⊂ Lp, 1 ≤ p and since, by Theorem 2.2.1,
T : L∞ → L∞, we obtain the desired result.

Corollary 2.2.1. With the above notation, if (
∑

1≤i≤n c
p
i si)

1/p < 1, we have that T is a

contraction map on Lp, 1 ≤ p ≤ ∞, and the functional equation

u = O (x, ϕ1 (x, ũ1(x)) , . . . , ϕn (x, ũn(x))) (2.12)

has a unique solution in Lp.

Note that this condition is weaker than the one of Corollary 2.1.1, and therefore, can be useful
when searching for functions that are not necessarily bounded.

3. SOLUTION TO THE INVERSE PROBLEM
FOR FRACTALS AND OTHER SETS

In this section, we are going to show how we can use the previous results to attempt a solution
to the inverse problem of fractals and other sets for one-dimensional and two-dimensional cases.
For simplicity, we describe only the L∞ case. The Lp case can be implemented in a similar way.

The idea is as follows. Given v, a bounded function that is the target—signal or image, we want
to find the collections R = {Ri}1≤i≤n, W = {wi}1≤i≤n, and Φ = {ϕi}1≤i≤n and a nonexpansive
operator O, such that the resulting operator T : L∞ → L∞ is contractive and its invariant
function is “close” to the target.

Once the sets R and W are determined, we obtain another collection of sets, which are the
preimages of the Ri through the wi, D = {Di = w−1

i (Ri)}1≤i≤n.
Now let v : X → [0, 1] be the target function to encode, where X = [0, 1], if v is a one-

dimensional signal or X = [0, 1]× [0, 1] if v is two-dimensional. We need to find the following.

1. A finite class of bounded subsets of X, R = {Ri}1≤i≤n , called range sets which have to
satisfy X =

⋃
1≤i≤nRi.

For simplicity, we will consider these sets to be intervals. Note that this class does not
necessarily need to be a partition of X, overlap is allowed.

2. A finite class of injective maps W = {wi : Di ⊂ X → X}1≤i≤n such that Ri = wi(Di),
1 ≤ i ≤ n. Note that the wi can be contractive, expansive, or neither. We will call the
subsets Di, domain sets.

3. A set Φ = {ϕi}1≤i≤n, where ϕi : X × R→ R, 1 ≤ i ≤ n, are contractive functions in the
second variable. We choose, again for simplicity, ϕi to be affine functions,

ϕi(x, t) =
{

(Aix+ cit+ di) , if x ∈ Ri,
p0, if x 6∈ Ri,

∀ i 1 ≤ i ≤ n, (3.1)

where Ai is a 1 × 1 or 2 × 1 matrix (depending on the dimension of X), |ci| < 1 and
p0 ≤ 0 fixed with |p0| large enough. It is easy to verify that the ϕi defined in this way are
contractive in t. Besides they are stable.

4. A nonexpansive and stable operator O : X × Rn → R. In order to facilitate the imple-
mentation, we are going to choose O such that, for u ∈ B(X,E), if u(x) is “close” to
ϕi(x, ũi(x)), ∀x ∈ X, then u is “close” to T u too.

For example, for the one-dimensional case, we obtained good results with the following
operator:

O
(
x, ~k

)
= sup

1≤i≤n
{ki}. (3.2)

8 C. A. Cabrelli et al.

Remark 1. For simplicity, we have chosen the class Φ = {ϕi}1≤i≤n defined in (3.1), but ϕi
could be defined in a different way. It has yet to be studied how the code is modified or improved
with another selection of Φ.

Remark 2. Once we decide which kind of functions we choose for Φ and the operator O is
determined, it is clear that the operator T is now completely determined by the choice of the Ri
and wi.

Remark 3. In the particular case that R = {Ri}1≤i≤n is a partition of X, (i.e., Ri ∩ Rj = ∅,
i 6= j), the expression of the functional equation using operator (3.2) is

T (u)(x) = (Aix+ ciũi(x) + di) , if x ∈ Ri. (3.3)

Note the similitude of this case with the model proposed in [6].

Remark 4. For the two-dimensional case, the choice of the supremum operator for O was not
very efficient. We will return to this subject in Section 4.3.

3.1. Encoding Method

From the preceding discussion, it is clear that in order to encode a given target function
v : X → E , (where X stands either for the interval [0, 1] or the square [0, 1]× [0, 1] and E = R),
we need to find a collection R of intervals, called range blocks, a class W of affine functions, and
a collection Φ so that the distance between the fixed point of the associated operator T and v is
less than a prescribed value. This distance is the approximation error . In order to estimate the
approximation error, we use the collage theorem.

Theorem 3.1.1. Let v ∈ B(X,E) and T be as defined in equation (2.5) with contractivity factor

c < 1. If

L(v, T (v)) < ε,

then

L (v,u∗) <
ε

1− c
where u∗ is the invariant bounded function of T .

The proof of this theorem is analogous to the IFS case (see [14]).
We conclude that the approximation error of the procedure depends only on the encoding error

and the Lipschitz constant c. Therefore, to obtain our code, we start with the target v and we
search for parameters to define the operator T such that the result of the first transformation T v
is “close enough” to v. By the last theorem, we then know that the error between the target and
T k(u0), for any u0 ∈ B(X,E) and a large enough k, will be small, since the sequence {T k(u0)}k∈N
converges to the fixed point of T .

In order to compute the distance L, since X =
⋃

1≤i≤nRi, if u, v ∈ B(X,E), L(u, v) can be
written in terms of the distance on each block Ri, i.e.,

L(u, v) = sup
x∈X
|u(x)− v(x)|

= max
0≤i≤n

(
sup
x∈Ri

|u(x)− v(x)|
)
.

(3.4)

3.2. Partition of X and Definition of W and Φ

We describe now, in a general way, how we construct the collections R and W. (In Section 4,
using specific examples, we will give a more detailed description.) These collections will be
constructed recursively and their cardinals depend on the error that is computed at each step of
the recursion.

Fractal Block-Coding 9

Given a target function v, the method fixes a priori a threshold error ε. The encoding procedure
starts using a fixed number of blocks, R̃j , 1 ≤ j ≤ N0, N0 ∈ N, such that

⋃
j R̃j = X. For each j,

1 ≤ j ≤ N0, we construct a large enough “pool” of injective affine maps, W̃j , whose image sets
are R̃i, out of which we will choose the corresponding wj . Consistent with equation (3.4), we
choose an appropriate O which allows us to reduce our encoding procedure to determine the
parameters of ϕj so that

|v(x)− ϕj (x, ṽj(x))| < δ = δ(ε), ∀x ∈ Rj ,

where δ = δ(ε) is such that supx∈Rj |v(x)−O(x, ϕ1(x, ṽj(x)), . . . , ϕn(x, ṽj(x)))| < ε. We will
prove later, in Section 4.3, that for an appropriate selection of O, such δ exists.

For each choice of w̃i ∈ W̃j , we now need to determine the coefficients for the function ϕ̃j :
X × R → R. For this, we will begin choosing the coefficient of the “second variable”, or the
“contractivity coefficient” cj (see equation (3.1)), from a predetermined large enough set of values
V . To determine the remaining coefficients, we use any numerical approximation method.

Now we compute

δji = sup
x∈R̃j

∣∣v(x)− ϕ̃j
(
x,v

(
w̃−1
i (x)

))∣∣ . (3.5)

We do this (as said earlier) for each choice of w̃i ∈ W̃j and c ∈ V .
Observe that each of the domain sets D̃ji = w̃−1

i (R̃j) ⊆ X plays the role of a “window” that
“opens” at different places until it finds the section of the function whose transformation is the
“closest” to the target function v restricted to R̃j .

We select the pair (w̃j , ϕ̃j) that produces the smallest error. If this error is greater than δ, we
divide R̃j into children blocks (we use the same name introduced by Jacquin in [2]), {R̃jk}, two
subintervals or four rectangles depending on the case, and R̃j is discarded. If the error computed
on one of these child blocks, Rjk, is smaller than δ, this subblock is saved as a block of the final
code, Rl, together with the maps w̃j |Rjk and ϕj corresponding to the parent block, renamed now
wl and ϕl. For all other subblocks whose errors are greater than δ, the procedure is repeated
from the beginning, as for their parent block.

This encoding technique involves a recurrent algorithm that finalizes once the errors on all
subblocks are smaller than δ. Once the algorithm stops, the sets R and W as well as the
corresponding Φ are defined by R = {Ri, 1 ≤ i ≤ n} (where n depends on the steps of the
recurrence), where each Ri is a R̃j or one of its subdivisions for some, 1 ≤ j ≤ N0, W =
{wi, , 1 ≤ i ≤ n} are the bijective affinities chosen for Ri, respectively, and Φ = {ϕi, 1 ≤ i ≤ n}
with ϕi : X × R→ R.

By equation (3.4), if the partial error on each block is bounded, the global error on X is
bounded too. From Theorem 3.1.1, we have,

L(v, T (v)) < ε⇒ L(v,u∗) <
ε

1− β ,

where β = max{|ci|}, by the choice of Φ in equation (3.1). This limits (or conditions) the set V
from which we chose our coefficients c. For example, if V = {±i/10,±(i/10 + 5/100), 0 ≤ i ≤ 9},
and we want to reconstruct the target with an error smaller than γ > 0, it suffices that ε is less
than γ/20.

In order to reconstruct the target, once the conventions about w and T are established, we
only need the coding triples C = {(Ri, wi, ϕi), 1 ≤ i ≤ n}. Given C, we construct T and iterate
on any starting function u0 ∈ B(X,E).

10 C. A. Cabrelli et al.

4. EXAMPLES

4.1. Code Construction for sinx and
√
x : Method I

In this section, we apply the proposed method to some simple examples, just to illustrate the
possible implementation. We stress the visually almost perfect reconstruction obtained in these
examples.

We will show how we can already obtain very good results from our theory, even without the
incorporation of the block-coding technique: just looking at the particular case in which all wi
are defined on the whole space X = [0, 1].

We are only going to take advantage of the fact that we are allowing overlap. We will show
how this works to encode and reconstruct the functions sinπx and

√
x which are not self-similar

if only affine maps are admitted for the ϕi. We will choose the operator T as in equation (3.2).
If v is the target function to encode (i.e., v(x) = sinx or v(x) =

√
x), then the method

essentially consists of two steps.

1. We fix a natural number N and let ε > 0 be ε = 1/(10N). We take the N elementary
maps wi : [0, 1]→ [0, 1],

w1(x) =
(

1
N

+ ε

)
x,

wi(x) =
(

1
N

+ ε

)
x+

i− 1
N
− ε

2
, 1 ≤ i ≤ N − 1,

wN (x) =
(

1
N

+ ε

)
x+

N − 1
N

− ε.

2. We now construct ϕi, 1 ≤ i ≤ N , such that

T (u)(x) = sup
1≤i≤n

{ϕi (x, ũi(x))}

with ũi(x) = u(w−1
i (x)) if x ∈ wi([0, 1]) and 0 otherwise, as defined in equation (2.4). So,

if one ignores for a moment the overlap, for the target function v, one essentially wants

ϕi
(
x,v

(
w−1
i (x)

))
= v(x), ∀x ∈ wi([0, 1]), i.e.,

ϕi (wi(z),v(z)) = v (wi(z)) , ∀ z ∈ [0, 1].
(4.1)

To construct these ϕi, we consider a fixed number P of points Pj in [0,1], write equa-
tion (4.1) for them:

ϕi (wi (Pj) ,v (Pj)) = v (wi (Pj)) , 1 ≤ j ≤ P, (4.2)

and using (for example) a least square approximation algorithm, we determine the param-
eters of functions ϕi so that

ϕi(x, t) = aix+ cit+ di, 1 ≤ i ≤ N,

are affine approximations that satisfy equation (4.2).

Note that this method corresponds to the description in Section 3 for the case

R =

{[
0,

1
N

+ ε

]
∪
{[

i− 1
N
− ε

2
,
i

N
+
ε

2

]}
2≤i≤N−1

∪
[
N − 1
N

− ε, 1
]}

and W just the similarity transformations.

Fractal Block-Coding 11

We have constructed N base functions (which obviously are one-to-one) and N grey level
functions. We now take T = T (N,w, P), such that

T u(x) = sup
1≤i≤N

ϕi
(
x, u ◦ w−1

i (x)
)
.

According to Corollary 2.1.1, the existence of a fixed point u∗ of T defined above, u∗ ∈
(B([0, 1], [0, 1]),L) is guaranteed if |ci| < 1, 1 ≤ i ≤ N . If the result of the numerical method

Figure 1. Reconstruction of
√
x using Method I: first iteration.

Figure 2. Reconstruction of
√
x using Method I: 21st iteration.

12 C. A. Cabrelli et al.

Figure 3. Reconstruction of sine using Method I: 16th iteration.

employed to solve equation (4.2) does not verify this condition, i.e., ci < −1 or ci > 1, then, for
some small δ > 0, we consider c′i = −1 + δ or c′i = 1 − δ and the numerical method is repeated
to find new ai and di with this fixed value of c′i.

If Err is the error committed by taking the linear approximations

Err = max
1≤i≤N

sup
x∈[(i−1)/N, i/N]

(|v(x)− (aix+ civ(Nx− i+ 1) + di)|) , (4.3)

then u∗ satisfies
L (u∗,v) ≤ Err

1−max1≤i≤N ci
.

If this value turns out to be too large, one needs to start again, fixing a different N . It is apparent
that the algorithm described in Section 3, where the determination of N depends automatically
on the threshold error is preferable—even though the visual results for our test functions were
excellent.

For the examples (see Figures 1–3), we restricted (and normalized) the functions to the [0, 1]
interval and fixed the number of maps to be four.

4.2. Code Construction for exp and sine: Method II

In this section, we will complete the description of the block-coding algorithm, for these one-
dimensional examples. For these examples, the operator O is chosen to be the supremum operator
(see equation (3.2)). We will explain now which particular class W we use. The space X = [0, 1]
is subdivided into intervals {R̃i}1≤i≤N0 of length ρ. We allow overlap by extending ρ by γ/2 at
each extreme of the interval, for some γ > 0. As indicated in Section 3.2, for each R̃i, we work
with a large enough pool of maps W̃i, out of which wi are allowed to be chosen.

We define W̃i to be the collection of affine maps obtained in the following way. We determine
a fixed step-length 1/r and an interval D̃ of length αρ, at the origin, where α can be either
1/2, 2, or 3/2. For each k, 1 ≤ k ≤ r, D̃ is then translated inside X by (k − 1)/r yielding the
interval D̃l. The functions w̃k are then all the possible maps that bijectively take D̃k into R̃i

Fractal Block-Coding 13

and are a composition of three simple transformations, w̃k = s ◦ τ ◦ ζ, where ζ is a homothetic
transformation of ratio 1/α, τ is a translation, and s a symmetry on R̃i (i.e., sk can invert
the extremes). For the examples that we show in this section, it was not necessary to consider
symmetries in order to obtain good results.

In order to pick our wi, we will have to construct the function ϕi, and compute the error.
For this, we choose ch, such that |ch| < 1, from a fixed finite set V = {±l/10, (±l/10 + 5/100),
l ∈ N, 0 ≤ l ≤ 9}. Let m denote the cardinal of this set. For each fixed ch ∈ V , 1 ≤ h ≤ m, we
take every w̃k ∈ W̃i. We then determine aihk and dihk taking into account that we are trying to
approximate the target function v. That means that the following condition should be satisfied:

v(x) ' aihkx+ chv
(
w̃−1
k (x)

)
+ dihk, ∀x ∈ R̃i,

or its equivalent:
v(x)− chv

(
w̃−1
k (x)

)
' aihkx+ dihk ∀x ∈ R̃i.

The parameters aihk and dihk are now estimated using, for example, a least-squares approximation
method. Note that the parameter aihk appears because the ϕ and the operator O depend on the
variable x.

Once aihk and dihk are chosen, we calculate the error for this choice of ch and w̃k. It is precisely

εihk = sup
x∈R̃j

∣∣v(x)−
(
aihkx+ chv

(
w−1
k (x)

)
+ dihk

)∣∣ . (4.4)

Once εihk < ε, then the interval R̃i will be an element of the class R, say Rl, the transforma-
tion w̃k will be its corresponding element of W called wl, and the parameters aihk, ch, dihk, now
called al, cl, dl, will define the corresponding ϕl as in equation (3.1).

If for all choices of h and k, 1 ≤ h ≤ m, w̃k ∈ W̃i, εikj ≥ ε, then we divide the interval R̃j into
two subintervals. We compute the error on each subinterval as in equation (4.4). If on one of
those, the error is lower than ε, this subinterval is saved as a member of the code, call it Rl, its
corresponding element in W is wl = w̃j |Rl and the parameters of ϕl are ahkj , ch, dhkj calculated
for its parent interval, renamed now al, cl, dl. For the other subinterval, we repeat the above
steps.

If n is the cardinal of R, the code consists of the description of the division of the interval
[0, 1], R = {Ri}1≤i≤n, the bijective maps W = {wi}1≤i≤n and of Φ = {ϕi}1≤i≤n.

The following figures show the results of the described method. Figures 4 and 5 refer to the
exponential function, exp, (f(x) = e(x+1) from [−1, 1] normalized on the [−1, 1] interval). The
a priori allowed error was 0.001. After applying the algorithm, the code resulted in two code
triples

Figure 4. Reconstruction of exp using Method II:
first iteration.

Figure 5. Reconstruction of exp using Method II:
10th iteration.

14 C. A. Cabrelli et al.

Figure 6. Reconstruction of sine using Method II:
first iteration.

Figure 7. Reconstruction of sine using Method II:
10th iteration.

(see equation (3.2)) and the encoding error is lower than 0.0018. Figures 6 and 7 correspond to
the function sine (f(x) = sin(π(x+ 1)) from [−1, 1]) whose code resulted in four code triples for
the whole wave with an encoding error lower than 0.003. The figures show the reconstruction
starting from the function f(x) = χ[0,1]. In all figures, the original target function is also included,
to stress the visual similarity.

4.3. Brief Discussion About Two-Dimensional Cases

The block-coding method is of much higher complexity in the two-dimensional case. Two
blocks now touch not only at a single point (as in the one-dimensional case), but on a whole
edge. On the other hand, two-dimensional images themselves might have borders or edges which
have to be taken into account when coding them. Very often, undesirable aliasing occurs due to
the combination of the edges of the blocks and the image. The choice of the right operator O
is crucial in this case. For example, the supremum-operator, which in the one-dimensional case
leads to very good results, did not yield good results in the two-dimensional case.

In order to obtain subtle shadings and grey-scales, we need to take into account the overlap
which this method allows. As seen in Section 2, the class R of blocks that covers the image does
not need to be a partition of the image. This is an advantage of this method over the one of
Jacquin, where a partition in the strict sense is required.

For example, we partition the [0, 1]× [0, 1] square in rectangles and extend their edges by an ε
so that a rectangle can intersect neighboring rectangles and at most four rectangles can intersect
at one corner. For a given x in the intersection of two or more blocks, several ϕ are applied
which then are conveniently combined through the operator O. Therefore, it is apparent that
the operator should depend strongly on x = (x1, x2). Let R̃ = {R̃i}1≤i≤N0 be a set of square
blocks, of side ρ, that cover X = [0, 1] × [0, 1]. For each R̃i, we need to define W̃i out of which
we choose the corresponding wi. For this, take a square D̃ of side αρ at the origin where α is
again (as in the one-dimensional case) either 2, 1/2, or 3/2. We translate D̃ so that it covers a
predetermined fixed area near to R̃i, resulting in a collection {D̃k}1≤k≤r of blocks. For each D̃k,
there are exactly eight affine functions that bijectively map D̃k onto R̃i; each one results from the
composition of one of the eight isometries that map the square R̃i into itself, with a translation
and a homothetic transformation of ratio 1/α. We will keep the same class of functions Φ as for
the one-dimensional case (see equation (3.1)) , i.e.,

ϕi ((x1, x2) , t) =
{

(aix1 + bix2 + cit+ di) , if x ∈ Ri,
p0, if x 6∈ Ri, p0 fixed,

∀ i, 1 ≤ i ≤ n. (4.5)

Now, we will define O. As we said earlier, we will choose the R̃i such that X =
⋃n
i=1 R̃i in the

Fractal Block-Coding 15

R̃i

R̂i

ε

R̃i1 R̃i2 R̃i3

R̃i4

R̃i5R̃i6R̃i7

R̃i8

C1i C2i

C3iC4i

A1i

A2i

A3i

A4i Bi

Figure 8. R̂i’s edges (dashed block) are

extended by ε. R̃i overlaps next blocks R̃ij .

Figure 9. Regions in R̂i determined
by intersections of R̃i and R̃ij .

following way. Let R̂i, 1 ≤ i ≤ n, be such that X =
⋃n
i=1 R̂i with R̂i ∩ R̂j = ∅ if i 6= j. We then

extend the edges of R̂i by ε to obtain the overlapping blocks R̃i shown in Figure 8.
Given R̃i, there are exactly eight blocks {R̃ij}1≤j≤8 such that R̃ij ∩ R̃i 6= ∅. These blocks

determine in R̂i the regions as shown in Figure 9.
We will consider that the regions Aji, Cji, and Bi do not intersect, for example, by extracting

left and lower borders. We define Iji = {k ∈ N :
⋂
k R̃k = Cji} and Hji = {k ∈ N :

⋂
k R̃k = Aji}.

Then if x ∈ X, since
⋃

1≤i≤n R̂i = X, certainly x lies in one of these regions of R̂i. We define
the following operator O : X × Rn → R:

O(x, ~k) =

αij1km1 + αij2km2 + αij3km3 + αij4km4 , x ∈ Cji, ml ∈ Iji,
1 ≤ l ≤ 4, 1 ≤ j ≤ 4,

βij1km1 + βij2km2 , x ∈ Aji, ml ∈ Hji,

1 ≤ l ≤ 2, 1 ≤ j ≤ 4,

ki, x ∈ Bi,

(4.6)

with

αijk ≥ 0, 1 ≤ j ≤ 4, 1 ≤ k ≤ 4, and αij1 + αij2 + αij3 + αij4 = 1,

βijk ≥ 0, 1 ≤ j ≤ 4, 1 ≤ k ≤ 2, and βij1 + βj2 = 1, 1 ≤ i ≤ n.

Note that if we would like to stress even more the dependence on x, we could allow these
parameters also to depend on x. It is easy to verify that O is nonexpansive. For example, if
x = (x1, x2) ∈ C1i,∣∣∣O (x, ~k

)
−O

(
x, ~k′

)∣∣∣ =
∣∣αi11

(
km1 − k′m1

)
+ · · ·+ αi14

(
km4 − k′m4

)∣∣
≤ αi11

∥∥∥~k− ~k′
∥∥∥ · · ·+ αi14

∥∥∥~k− ~k′
∥∥∥

≤
(
αi11 + αi12 + αi13 + αi14

) ∥∥∥~k− ~k′
∥∥∥

≤
∥∥∥~k− ~k′

∥∥∥ .
The other cases are similar.

Since O is defined using affine combinations, if A ⊂ X×Rn is bounded, O(A) is also bounded,
therefore, O is stable too. If |ci| < 1, 1 ≤ i ≤ n, the operator T defined in equation (2.5) is
contractive, with contractivity factor c = max1≤i≤n |ci|. By Corollary 2.1.1, there exists u∗ such
that T u∗ = u∗.

16 C. A. Cabrelli et al.

Now, we proceed as in Sections 3.2 and 4.2 to define the classes R, W, and Φ.
The following lemma shows that the operators defined by equation (3.2) or equation (4.6) are

suitable for this encoding model. Recall the definition of Jx from equation (2.6),

Jx = {i : 1 ≤ i ≤ n and x ∈ Ri}.

Lemma 4.3.1. Let O be defined as in equation (3.2) or equation (4.6), u ∈ B(X,R) and T the

corresponding operator. For ε > 0, there exists δ > 0, δ = δ(ε), such that if |u(x)−ϕi(x, ũi(x))| <
δ, i ∈ Jx, ∀x ∈ X, then L(u, T u) < ε.

Proof. We separate the proof into two cases.

The Supremum Operator (3.2). Here we need to choose p0 in the definition of ϕi equa-
tion (3.1) such that p0 < −ε − supx∈X u(x), in order to have that sup1≤i≤n{ϕi(x, ũi(x))} =
supi∈Jx{ϕi(x, ũi(x))}, ∀x ∈ X. If x ∈ X is such that |u(x)− ϕi(x, ũi(x))| < δ and taking δ = ε,
we have

T (u)(x) = sup
1≤i≤n

{ϕi (x, ũi(x))}

= sup
i∈Jx
{ϕi (x, ũi(x))}

= max
i∈Jx
{ϕi (x, ũi(x))} = ϕi0 (x, ũi0(x)) , for some i0 ∈ Jx.

Hence, |u(x)− T u(x)| = |u(x)− ϕi0(x, ũi0(x))| < δ = ε and the lemma is true.

Operator (4.6). We do not need any restriction for p0 in this case. Here the cardinal of Jx is
at most four. Suppose, for example, that x = (x1, x2) is in the corner C1i, for some i, 1 ≤ i ≤ n.
Then Jx = I1i (see equation (4.6)) and the operator T results

T (u)(x) = αi11ϕm1 (x, ũm1(x)) +αi12ϕm2 (x, ũm2(x)) +αi13ϕm3 (x, ũm3(x)) +αi14ϕm4 (x, ũm4(x)) ,

with ml ∈ I1i, 1 ≤ l ≤ 4.
We now evaluate the distance between u(x) and T (u)(x),

|u(x)− T (u)(x)| ≤
∣∣u(x)−

(
αi11 + αi12 + αi13 + αi14

)
ϕm1 (x, ũm1(x))

∣∣
+ αi12 |ϕm1 (x, ũm1(x))− ϕm2 (x, ũm2(x))|

+ αi13 |ϕm1 (x, ũm1(x))− ϕm3 (x, ũm3(x))|

+ αi14 |ϕm1 (x, ũm1(x))− ϕm4 (x, ũm4(x))|

< δ + α12 |(−u(x) + ϕm1 (x, ũm1(x))− (−u(x) + ϕm2 (x, ũm2(x))|

+ · · ·+ α14 |−u(x) + ϕm1 (x, ũm1(x))− (−u(x) + ϕm4 (x, ũm4(x))|

< δ + αi12(2δ) + αi13(2δ) + αi14(2δ)

< 7δ since, by (4.6), 0 ≤ αijk ≤ 1.

If x lies in another region of R̂i, we obtain a similar inequality. The lemma is therefore true if
we take δ ≤ ε/7.

Choosing operator (4.6), we obtained much better results for the encoding of images than with
the supremum operator. Already, without allowing overlap, the resulting image is much better,
but the block-effect shows very strongly if there is no overlap. This effect disappears completely
when the same operator is chosen, but overlap is allowed. The different shading is as smooth as
in the original image (Figure 10), as can be seen in the figures below.

Fractal Block-Coding 17

Figure 10. Original image. Figure 11. Circle reconstructed with T1.

Figure 12. T2 without overlap. Figure 13. T2 with overlap.

Figure 14. Reconstructed with T2 and 256 triples.

18 C. A. Cabrelli et al.

We denote by T1 the supremum operator defined in equation (3.2) and T2 the operator defined
in equation (4.6). Figure 13 shows the grey scale circle reconstructed by T1 with overlap, Figures
10 and 12 are reconstructed using T2 without overlap and with overlap, respectively. These figures
have a code of 64 triples. In Figure 10, little spots can be observed near the border because,
although overlap has a great advantage for improving shading, it provokes a little distortion of the
border zones. However, this effect disappears by increasing the number of blocks of the partition.
For example, the reconstruction shown in Figure 11 of the same image encoded with 256 triples
is perfect.

All figures show the 10th iteration with overlap. The starting function for the reconstruction
algorithm is u0(x) = χ[0,1]×[0,1](x) and the threshold error ε = 0.01.

REFERENCES

1. C. Cabrelli and U. Molter, Generalized self-similarity, Journal of Mathematical Analysis and Applications
230, 251–260 (1999).

2. A.E. Jacquin, Image coding based on a fractal theory of iterated contractive Markov operators, Parts I
and II, Georgia Tech. Ph.D. Thesis 091389-017 (1989).

3. A.E. Jacquin, A novel fractal block-coding technique for digital images, ICASSP 4, 2225–2228 (1990).
4. A. Jacquin, Image coding based on fractal theory of iterated contractive image transformations, IEEE Trans.

Image Processing 1, 18–30 (1992).
5. A. Jacquin, Fractal image coding: A review, Proceedings of the IEEE 81, (10) (1993).
6. D.M. Monro and F. Dudbridge, Fractal approximation of image blocks, Proc. ICASSP 3, 485–488 (1992).
7. Y. Fisher, Sample code, In Fractal Image Compression, (Edited by Y. Fisher), pp. 259–291, Springer-Verlag,

(1995).
8. M.F. Barnsley and S. Demko, Iterated function systems and global construction of fractals, Proceedings of

the Royal Society of London A399, 243–275 (1985).
9. M.F. Barnsley, V. Ervin and D.P. Hardin, Solution of an inverse problem for fractals and other sets, Proc.

Natl. Acad. Sci. USA 83 (1986).
10. B. Forte and E. Vrscay, Theory of generalized fractal transform, In Fractal Image Encoding and Analysis,

NATO ASI Series F, (Edited by Y. Fisher), Springer-Verlag, Berlin, (1998).
11. B. Forte and E. Vrscay, Inverse problem methods for generalized fractal transform, In Fractal Image Encoding

and Analysis, NATO ASI Series F, (Edited by Y. Fisher), Springer-Verlag, Berlin, (1998).
12. Y. Fisher, Fractal image compression with quadtrees, In Fractal Image Compression, (Edited by Y. Fisher)

pp. 55–77, Springer-Verlag, (1995).
13. F. Dudbridge, Linear time fractal quadtree coder, In Fractal Image Encoding and Analysis, NATO ASI

Series F, (Edited by Y. Fisher), Springer-Verlag, (1998).
14. M.F. Barnsley, Fractals Everywhere, Academic Press, (1988).

