
FINITELY GENERATED MULTIRESOLUTION ANALYSIS INSEVERAL VARIABLESANA BENAVENTEy AND CARLOS A. CABRELLIzy Instituto de Matem�atia Apliada, UNSL and CONICET.z FCEyN, Universidad de Buenos Aires and CONICET.Abstrat. Let � be a lattie in Rn and A a dilation matrix suh that A� � �.Let ' be a loalized square integrable vetor funtion and assume that the lattietranslates of ' are orthonormal. We give neessary and suÆient onditions on' in order that it generates a Multiresolution Analysis in Rn with respet to thelattie � and the dilation A. This haraterization extends previous results to thease of regular non-ompatly supported funtions.
1. IntrodutionThe onept of Multiresolution Analysis (MRA) due to Mallat [Mal89℄ and Meyer[Mey92℄ provided the �rst systemati way to onstrut orthonormal wavelet bases ofL2(R): The struture of a MRA is generated by a funtion (the saling funtion) thatsatis�es a ertain self-similarity ondition. The problem of onstruting orthonormalwavelets was then shifted to the problem of onstruting MRA's.The theory was extended to several variables. To take full advantage of the higher di-mensionality it is important to onsider arbitrary dilation matries (not only dyadidilations). This has proved to be useful in appliations to image representation wherethe geometry of the piture is better desribed with matries that adapt better tothe situation. The side e�et is that the theory beomes muh more ompliatedand the results are not a straightforward generalization of the 1-dimensional ase.Another important generalization is the ase in whih a �nite number of generatorsfor the MRA are allowed [Alp93℄ [GLT93℄ [GHM94℄ [CH96℄ [HSS96℄ [CDP97℄ [Ald97℄[JRZ99℄ [Cal99℄ [CHM99℄. This is known in the literature as MRA with multipliity,and the assoiated wavelets as Multiwavelets. The framework of multiple generatorsprovides muh more exibility to onstrut bases with predetermined properties.The haraterization of MRA in this generality was done in [CHM99℄ for ompatlysupported funtions.In the present artile we work in the following ontext: let � be an arbitrary lattiein Rn, and A a dilation matrix ompatible with the lattie �, (i.e. A(�) � � andevery eigenvalue � of A satis�es j�j > 1). Let ' = ('1; :::; 'r); ' 2 L2(Rn; C r)and b'i belongs to the Sobolev spae Hm(Rn); 8m 2 N . Assume that the lattietranslates of ' are orthonormal. We give neessary and suÆient onditions on1991 Mathematis Subjet Classi�ation. Primary:42C40 ; Seondary:42C30.Key words and phrases. Multiresolution Analysis, Wavelets, Multiwavelets, re�nable equation.The researh of the authors is partially supported by Grants: UBACyT TW84, and CONICET,PIP456/98 and BID-802/OC-AR. PICT-03134. 1



2 A.BENAVENTE AND C.A.CABRELLIthe vetor funtion ' in order that it generates a Multiresolution Analysis of Rn.(Theorem 3.1).These onditions were obtained by Albert Cohen for the 1-dimensional ase, salarfuntions (r = 1) and later extended to the multidimensional setting for the asethat the dilation matrix is 2I [Coh90℄. In [CHM99℄, Cohen's theorem was extendedto inlude the ase of arbitrary dilations matries and a �nite number of generatorswith ompat support.The ontribution of this paper is to show that these onditions an be extended toa muh wider lass of generators. We were able to proof that the hypothesis of thegenerators to be ompatly supported an be relaxed. We assume instead ertaindeay of '. More preisely we require that for i = 1; : : : ; r, eah b'i belongs to theSobolev spae Hm(Rn); 8m 2 N .The proof, as the ones in [Coh90℄ and [CHM99℄, is a \time-domain" proof in the sensethat it doesn't use the Fourier Transform. The main argument is based on a ountingtehnique related to the geometri properties of the tiling assoiated with the dilationmatrix. In the ase in whih the dilation matrix is A = 2I, the tile element is a ube;then the geometry is simple and the integrals that have to be estimated are integralsover ubes in Rn. When one allows arbitrary dilation matries, the assoiated tilean be of a very ompliated geometry and also have fratal boundary. This makesthe estimation of the integrals muh more involved, and the ounting results aremore ompliated to obtain. The removal of the assumption of ompat support forthe saling vetor, requires a re�nement of the tehniques in order that the ountingresults an be applied to this more general ase.Neessary and suÆient onditions for when a nested sequene of 2k-dilated prinipalshift invariant spae (PSI), has dense union and zero intersetion where obtained in[BDR93℄ for the one dimensional ase. A PSI is a shift invariant spae generatedby a single funtion. The generator in this ase doesn't need to be an orthonormalbasis neither a Riesz basis of the losure of the span of its integer translates. Thisgeneral ondition is expresed in terms of the zeroes of the Fourier transform ofthe generator. This setting di�ers from Cohen approah in the sense that Cohen'sTheorem haraterizes exatly orthonormal MRA's. The PSI here is generated bya funtion that has orthonormal translates. Later, Jia and Shen [JS94℄ formulatedthe onditions on [BDR93℄, (see also [Shen98℄) for the �nitely generated ase (FSI),given some indiation of the proof.The haraterization in our paper is in the diretion of the approah of Cohen. Weharaterize orthonormal MRA's for the ase of a general dilation matrix, ompatiblewith an arbitrary lattie, in higher dimensions, for several funtions.The organization of the paper is as follows. In Setion 2, we briey review theonepts of latties, tiles, Multiresolution Analysis and the relation between themin terms of the generalized Haar's MRA. In Setion 3 we state our main result inTheorem 3.1. For a better organization of the proof, in the following subsetions,we disuss and prove in Propositions 3.2, 3.4 and 3.5 the neessary and suÆientonditions that have to be satis�ed by the loalized vetor saling funtion to gen-erate a MRA. Finally, in subsetion 3.4 we ombine the results of the Propositionsto prove Theorem 3.1.



MULTIRESOLUTION ANALYSIS 32. Latties, Tiles and Multiresolution AnalysisLet � be an arbitrary lattie in Rn (i.e., � = R(Zn) with R any invertible n � nmatrix with real entries). Let now K be a fundamental domain for this lattie e.g.,K = R([0; 1)n) and set � = jdet(R)j.Let A be a dilation matrix for �, i.e., A(�) � � and every eigenvalue � of A satis�esj�j > 1. The determinant of a dilation matrix for a lattie is always an integer andits absolute value is the number of osets of the quotient group �=A(�). A digit setfor A and � is any set of representatives of this group.Let q = jdet(A)j. We assume that there exist a digit set D := fd0; : : : ; dq�1g for Aand � suh that the set Q := fP1k=1A�k�k : �k 2 Dg has n-dimensional Lebesguemeasure �. Without loss of generality we will assume that d0 = 0. For a generaldilation matrix it is not always true that suh digit set exists. (A ounterexamplewas found in [Pot97℄). If this set of digits exists, we will say that A is an admissibledilation matrix.The set Q is ompat and tiles the spae by ��translates in the sense that the��translates fQ + kgk2� over Rn with overlaps of measure zero. Moreover, theysatisfy the following self-similar ondition (See [GM92℄,[Hut81℄):A(Q) = q�1[s=0Q+ ds:Given a funtion g : Rn ! C r, A a dilation matrix, q = jdet Aj; j 2 Z and k 2 �,we will write gj;k(x) = qj=2g(Ajx� k); to denote a translation of g by A�jk followedby an L2-normalized dilation by Aj:2.1. Multiresolution Analysis. A Multiresolution Analysis (MRA) of multi-pliity r assoiated to a dilation matrix A and a lattie � is a sequene of losedsubspaes fV jgj2Z of L2(Rn) whih satisfy:P1 V j � V j+1 for eah j 2 Z,P2 g(x) 2 V j () g(Ax) 2 Vj+1 for eah j 2 Z,P3 Tj2ZV j = f0g,P4 Sj2ZV j is dense in L2(Rn), andP5 there exist funtions '1; : : : ; 'r 2 L2(Rn) suh that the olletion of lattietranslates f'i(x� k)gk2�; i=1;:::;r forms an orthonormal basis for V0.If these onditions are satis�ed, then the vetor funtion ' = ('1; : : : ; 'r)T is referredto as a saling vetor for the MRA.Gr�ohenig and Madyh [GM92℄ established a onnetion between self-similar tilingsand multiresolution analysis that have a harateristi funtion for a saling funtion.They showed that there is a Haar-like multiresolution analysis assoiated to eahhoie of dilation matrix A and a digit set D for whih the set Q is a tile. Inpartiular, they proved that if Q is a tile, then the salar-valued funtion XQgenerates a multiresolution analysis of L2(Rn) of multipliity 1. Note that the fatthat fXQ(x � k)gk2� forms an orthonormal basis for V0 is a restatement of theassumption that the lattie translates of the tile Q have overlaps of measure zero.An immediate onsequene of Gr�ohenig and Madyh's generalization of the Haar'smultiresolution analysis is the following:



4 A.BENAVENTE AND C.A.CABRELLILemma 2.1. The olletionfX j;kQ gj2Z;k2� = fqj=2XQ(Ajx� k)gj2Z;k2�is omplete in L2(Rn) i.e., its �nite linear span is dense in L2(Rn):2.2. Loalized vetor saling funtions. We say that a MRA in L2(Rn) isloalized or regular if the saling vetor ' = ('1; : : : ; 'r)T is loalized in the sensethat for i = 1; : : : ; r, eah b'i belongs to the Sobolev spae Hm(Rn); 8m 2 N . Thisondition is equivalent to: for eah i = 1; :::; r,(2.1) Z (1 + jxj)mj'i(x)j2dx <1:Using Cauhy-Shwarz's inequality and taking into aount that the funtion 1(1+jxj)mbelongs to L1(Rn) with m > 1; it is easy to prove that if a funtion f satis�esbf 2Hm(Rn) for all m 2 N , then:(2.2) Zkxk�M jf(x)j2dx � Cm(1 +M)m ;(2.3) f 2 L1(Rn) and(2.4) Zkxk�M jf(x)jdx � Cm(1 +M)m ; m > 1:For simpliity, we shall from now on write that the vetor funtion ' has orthonormallattie translates when we mean to say that f'i(x� k)gk2�;i=1;:::;r is an orthonormalsystem in L2(Rn):De�nition 2.2. Assume that ' 2 L2(Rn; C r) has orthonormal lattie translates.Let V0 be the losed linear subspae generated by the lattie translates of 'i, i.e.,(2.5) V0 = spanf'i(x� k)gk2�;i=1;:::;r:For eah j 2 Z let V j be the set of all the dilations of V0 by Aj, i.e.,(2.6) V j = fg(Ajx) : g 2 V0g = spanf'j;ki : i = 1; :::; rgk2�:If fVjgj�Z is a MRA for L2(Rn), then we say that the MRA is generated by ':Remark 2.3. In the haraterization of MRA due to A. Cohen [Coh90℄, he uses aloalized generator, but the dilation matrix is the uniform one: A = 2I: In the proof,he uses the essential fat that 2I maps dyadi ubes into dyadi ubes. This is notpossible in the ase of arbitrary dilation matrix.3. Neessary and suffiient onditions.We now are ready to state the main result in the paper:Theorem 3.1. Let ' = ('1; � � � ; 'r)T 2 L2(Rn; Cr) suh that for eah i =1; � � � ; r; b'i 2 Hm(Rn) for all m 2 N and that the set f'i(� � k)gk2�; i=1;:::;r isan orthonormal system. Let A be an admissible dilation matrix for the lattie �:Then ' generates a multiresolution analysis with multipliity r assoiated to (�; A)if and only if:



MULTIRESOLUTION ANALYSIS 5a) ' satis�es a re�nement equation of the form'(x) =Xk2� k'(Ax� k)for some r � r matries k = (kij); suh that for eah i; j = 1; :::; r;fkijgk2Zn ;2 `2(�) andb) kb'(0)k2 = rXi=1 jb'i(0)j2 = jQj:To prove this theorem, in the next propositions we will give neessary and suÆientonditions on the vetor funtion ', in order that the subspaes V j will satisfyproperties P1, P3 and P4 of the de�nition of MRA. Property P2 is satis�ed fromthe de�nition of V j and P5 is assumed.3.1. Property (P1): V j � V j+1.Proposition 3.2. Let ' = ('1; :::; 'r)T 2 L2(Rn; C r) with orthonormal lattietranslates. Let A be a dilation matrix and de�ne V j as in (2.5) and (2.6). Then,the following onditions are equivalent:(1) V j � V j+1 for all j 2 Z:(2) The vetor funtion ' is re�nable, i.e. it satis�es the re�nement equation:'(x) =Xk2� k'(Ax� k)for some r� r�matries k; suh that for eah i; j = 1; :::; r; the sequene ofoeÆients fki;jgk2� is in `2(�):Proof: If (1) is satis�ed, then 'i 2 V0 � V1 for i = 1; � � � ; r: The de�nitionof the subspaes V j implies that fq1=2'j(Ax � k)gk2�;i;j=1;��� ;r = f'1;kj (x)gk2� isan orthonormal basis for V1, then the representation of eah 'i respet to theorthonormal basis of V1 will be:(3.1) 'i = rXj=1Xk2� ki;j'1;kj (in L2(Rn));where kij :=< 'i; '1;kj > : For i; j = 1; :::; r; the sequene of oeÆients fki;jgk2� be-longs to `2(�): Let us all k the r�r�matrix whose olumns are (ki1; :::; kir): Consid-ering that ' = ('1; :::; 'r)T then, from (3.1) we have ' =Pk2� k'1;k in L2(Rn; C r);or equivalently '(x) = q1=2Xk2� k'(Ax� k) in L2(Rn; C r);and ondition (2) is satis�ed.For the onverse, if ' is re�nable, then 'i 2 V1; i = 1; :::; r so V0 is inluded in V1.23.2. Property (P3): Tj2ZV j = f0g. We shall prove that (P3) is a onsequeneof the orthonormal ��translates of ' and the loalization of eah 'i: To do this,we will use the following lemma (we omit the proof beause it is like in the lassial1-dimensional ase with dyadi dilations [Woj97℄):



6 A.BENAVENTE AND C.A.CABRELLILemma 3.3. Consider Vj as in (2.6). Let Pj be the orthogonal projetion of L2(Rn)onto V j: Suppose that for all g 2 L2(Rn); limj!�1 kPjgk2 = 0:Then \j2ZV j = f0g:Proposition 3.4. Let ' 2 L2(Rn; C r) be a loalized vetor funtion in the sense of(2.1). Suppose that ' has orthonormal lattie translates, A is a dilation matrix andonsider the subspaes V j as de�ned in (2.6). Then \j2ZV j = f0g:Proof: Using Lemma 3.3, it suÆes to show that limj!�1 kPjgk2 = 0; 8g 2 L2:Moreover, it suÆes to establish this limit for g ontained in a subset whose �nitelinear span is dense in L2(Rn): We will use the omplete set given in Lemma 2.1,i.e. we will prove that(3.2) 8s 2 Z; 8` 2 �; limj!�1 kPjX s;Q̀ k2 = 0:Fix any s 2 Z and ` 2 �. Sine q = jdet(A)j, we have for every j 2 Z thatjAj�s(Q+ `)j = qj�sjQ+ `j = qj�sjQj:Sine f'j;ki gk2�;i=1;:::;r is an orthonormal basis for the subspae V j then,kPjX s;Q̀ k22 = 1qj�s rXi=1 Xk2� ����ZAj�s(Q+`) 'i(x� k)dx����2 :Using Cauhy-Shwarz's inequality, we therefore ompute thatkPjX s;Q̀ k22 � jAj�s(Q+ `)jqj�s rXi=1 Xk2� ZAj�s(Q+`) j'i(x� k)j2dx= jQj rXi=1 Xk2� ZAj�s(Q+`)�k j'i(x)j2dx;(3.3)where the last sum is �nite. To see this, note that for a �xed s and j < s; using thatQ is a tile for Rn and A�1 is ontrative, we have that the lattie translates of Aj�sQhave overlaps of measure zero. To simplify the notation, write E := A�s(Q + `);then Aj�s(Q+ `)� k = AjE � k: Choose an integer J < 0 small enough suh thatjAjE � k \ AjE � k0j = 0 for all j � J ; k; k0 2 �; k 6= k0: Then, for j � J;Xk2� XAjE�k(x)j'i(x)j2 = XSk2�AjE�k(x)j'i(x)j2� j'i(x)j2:And sine j'i(x)j2 2 L1(Rn); thenXk2� ZAjE�k j'i(x)j2dx = ZRnXk2� XAjE�k(x)j'i(x)j2dx <1:Now, using (3.2) and (3.3), it suÆes to prove that for i = 1; :::; rPk2� RAjE�k j'i(x)j2dx



MULTIRESOLUTION ANALYSIS 7goes to 0 when j ! �1: Consider the same integer J 2 Z as before and j � J ; andde�ne fj(x) := Xk2ZnXAjE�k(x)j'i(x)j2. So fj(x) = j'i(x)j2X [k2�AjE�k(x): Then:Xk2� ZAjE�k j'i(x)j2dx = ZRn fj(x)dx= Z[�p;p℄n fj(x)dx + ZRnn[�p;p℄n fj(x)dx= I1 + I2:Write Bj := [k2�(AjE � k) \ [�p; p℄n; then(3.4) I1 = Z j'i(x)j2XBj (x) dx:We an see that jBjj ! 0 as j ! �1: In fat: onsider tj := ard(fk 2 Zn :AjE�k\ [�p; p℄n 6= ;g) and write Æ(�) as the diameter of a ertain set. Beause thespetral radius � of A�1 is less than 1, we have that kAjk1 ! 0 when j ! �1 (see[HJ℄) i.e. kAjk1 < � for j small enough. Then, onsidering the metri d(x; y) =kx� yk1 = maxfjxi � yij : i = 1; :::; ng we have that for x; y 2 AjE:d(x; y) = kAj(A1�jx� A1�jy)k1� kAjk1kA1�jx� A1�jyk1< d(A1�jx;A1�jy)� Æ(AE):Taking the supremum over AjE, we have that Æ(AjE) � Æ(AE) and then tj < t1,for all j < 0: Now, for j � J; the overlaps of the lattie translates of AjE havemeasure zero, so: jBjj = tj ��AjE � k \ [�p; p℄n��� t1 ��AjE��= t1 jEj qj< ":Sine jBjj ! 0 as j ! 0 then fjX [�p;p℄n ! 0; moreover jfjX [�p;p℄n(x)j � j'i(x)j2:From this fat, equality (3.4) and the Dominated Convergene theorem we have that(3.5) I1 = Z[�p;p℄n fj(x)dx �! 0 when j ! �1:For the integral I2; take " > 0 and j � J: Then 0 � fj(x) � j'i(x)j2: Using this andproperty (2.2) for some m; we haveI2 � Zkxk�p j'i(x)j2dx� Cm(1 + p)m :



8 A.BENAVENTE AND C.A.CABRELLIConsidering p large enough suh that Cm(1+p)m < "; we will have I2 < ": Finally:ZRn fj(x)dx = I1 + I2 � I1 + ":Taking limit for j ! �1; from (3.5) we onlude that for all s 2 Z and ` 2 �;limj!�1 kPjX s;Q̀ k2 = 0: Hene \j�ZV j = f0g: 23.3. Property (P4): [j2ZV j = L2(Rn).Proposition 3.5. Let ' = ('1; :::; 'r)T 2 L2(Rn; C r) a loalized vetor funtion.Suppose that ' has orthonormal lattie translates. Let A be a dilation matrix andlet V0 and V j be de�ned as (2.5) and (2.6) respetively. If(3.6) rXi=1 jb'i(0)j2 = rXi=1 j Z 'i(x)dxj2 = jQjThen Sj2ZV j is dense in L2(Rn): Reiproally, if Sj2ZV j is dense in L2(Rn) and' is re�nable, then (3.6) is satis�ed.Before proving this proposition, we are going to present some auxiliary results withrespet to the deomposition of Rn by the tiles fQ + kgk2�: First, note that thefat that Q is self-similar together with the fat that the translates of Q tile Rnwith overlaps of measure zero, implies that the dilated tile AjQ; j � 1 is a unionof exatly qj translates of Q; with eah of the translates lying entirely inside AjQ.Following the idea in [CHM99℄, for j � 1 we are going to split the lattie � intoa �nite set ontaining those elements that translate Q entirely inside AjQ; and a�nite set ontaining the elements that translate Q to the boundary of AjQ: Morepreisely, for eah j � 1 let us onsider the following �nite subsets of � :Nj = fk 2 � :Q+ k � AjQg;NÆj = fk 2 Nj :Q+ k � (AjQ)Æg;(3.7) N�j = fk 2 Nj : (Q+ k) \ �(AjQ) 6= ;g:These sets satisfy the following relations: AjQ =Q+Nj, ard(Nj) = qj; NÆj [N� =Nj and NÆj \N�j = ;:Let 
 = fk 2 � : (Q + k) \ B 6= ;g: The following tehnial lemma (see [CHM99℄for a proof) haraterizes those translates Q +  of Q for whih it is possible totranslate Q +  by elements of 
 so that one translate Q +  + k with k 2 
lies entirely within AjQ and another translate Q +  + k0 with k0 2 
 lies entirelyoutside of AjQ (negleting its boundary). This lemma also tells us that the ratioof the number of those translates Q+ k that interset the boundary of AjQ to thetotal number lying inside AjQ onverges to zero:Lemma 3.6. Let B; 
; Nj; NÆj and N�j de�ned as before, then:a) limj!1 ard(NÆj )qj = 1 and limj!1 ard(N�j )qj = 0:



MULTIRESOLUTION ANALYSIS 9b) limj!1 ard(NÆj n((N�j � 
) \Nj))qj = 1:) Let  2 �: If there exist k; k0 2 
 suh that Q+ k+  � AjQ and Q+ k0+  �Rnn(AjQ)Æ; then  2 N�j � 
 = f`� ! : ` 2 Nj�; ! 2 
g.Proof of proposition 3.5: Suppose that ' is re�nable, then we have to provethat [j2ZV j = L2(Rn)() rXi=1 jb'i(0)j2 = jQj:Note that if for all g 2 L2(Rn)(3.8) limj!1 kPjg � gk2 = 0;then Property (P4) is satis�ed. Further, if ' is re�nable, then by Proposition 3.2,V j � Vj+1 and therefore (3.8) is equivalent to Property (P4). Now, by orthogonality,kPjg � gk22 = kPjgk22 � kgk22; then we an rewrite equation (3.8) as:(3.9) 8g 2 L2(Rn); limj!1 kPjgk22 = kgk22:This expression is true for all g 2 L2(Rn) if and only if is true in a dense subset ofL2(Rn): So we will use the set of funtions onsidered in Lemma 2.1. Then,(3.10) kPj(XQ)k22 = 1qj rXi=1 Xk2� ����ZAjQ 'i(x� k)dx����2 :On the other hand, let s 2 Z; ` 2 �; and j � s: By a hange of variable and takinginto aount that A� � �; we have(3.11) kPj(X s;Q̀ )k22 = kPj�s(XQ)k22:Comparing (3.10) and (3.11), we onlude that (3.9) is equivalent to the statement:(3.12) limj!1kPj(XQ)k22 = kXQk22 = jQj:Sine statements (3.8), (3.9) and (3.12) are equivalent, we onlude that it suÆesto prove that limj!1kPj(XQ)k22 = rXi=1 jb'i(0)j2; or equivalently, to prove that for eahi = 1; :::; r :(3.13) limj!1 1qj Xk2� ����ZAjQ 'i(x� k)dx����2 = jb'i(0)j2:To do this, �x i; onsider a onstant Mi > 0 and de�ne Ki = fx 2 Rn : kxk �Mig:Using the property of unonditional onvergene of orthonormal bases, we will splitthe summation over � into three disjoint regions related to the subset Ki. The ideabehind this is that the �rst region should ontain only elements k of the lattie �suh that Ki + k is sure to lie in the interior of AjQ; the seond region shouldontain those k for whih this translation will interset the boundary of AjQ; andthe last region should be the omplement of the �rst two. More preisely, let Bi beany open ball in Rn whih ontains both Q and Ki; and de�ne
 = fk 2 � : (Q+ k) \Bi 6= ;g:



10 A.BENAVENTE AND C.A.CABRELLINote that 
 is �nite and Ki � 
 +Q: For eah j � 1; de�ne:�1;j = NÆj n((N�j � 
) \Nj);�2;j = N�j � 
;�3;j = �n(�1;j [ �2;j);where the sets Nj, NÆj and N�j are as in (3.7). Note that for eah j; the sets �1;j;�2;j; �3;j partition �: Further, by Lemma 3.6 a) and b), we have:(3.14) limj!1 ard(�1;j)qj = 1 and limj!1 ard(�2;j)qj = 0:Now de�ne Rsj = 1qj Xk2�s;j ����ZAjQ 'i(x� k)dx����2 ; s = 1; 2; 3We will show that: limj!1R1j = jb'i(0)j2; limj!1R2j = 0 and limj!1R3j = 0:Let us begin with R2j:R2j � 1qj Xk2�2;j �ZAjQ j'i(x� k)jdx�2� 1qj Xk2�2;j �ZRn j'i(x)jdx�2= C ard(�2;j)qj :By (3.14), the last term is arbitrarily small for j large enough. Then R2j ! 0 whenj !1.To analyzeR3j; let us write ~'i(x) = XKi(x)'i(x): Then 'i(x) = ~'i(x)+XKi (x)'i(x):Note that ~'i has ompat support.R3j � 1qj Xk2�3;j �ZAjQ j ~'i(x� k)jdx+ ZAjQ jXKi (y � k)'i(y � k)jdy�2= A+B + C;whereA = 1qj Xk2�3;j �ZAjQ j ~'i(x� k)jdx�2 ;B = 2qj Xk2�3;j �ZAjQ j ~'i(x� k)jdx��ZAjQ jXKi (y � k)'i(y � k)jdy� andC = 1qj Xk2�3;j �ZAjQ jXKi (y � k)'i(y � k)jdy�2 :We will show that A = B = 0 and C ! 0 as j ! 1: Suppose that A 6= 0, thenRAjQ j ~'i(x� )jdx 6= 0 for some  2 �3;j. Then (Ki+ )\AjQ has to have positiveLebesgue measure. Sine Ki � Bi � Q + 
, then (Ki + ) � (Q + 
 + ) and(Q + 
 + ) \ AjQ will have positive measure. Beause AjQ is the exat union of



MULTIRESOLUTION ANALYSIS 11qj translates of Q that do not overlap, then the only translates of Q that intersetsAjQ in sets of positive measure, are the translates that are ompletely inside ofAjQ. Hene:(3.15) Q+ k +  � AjQ for somek 2 
:Sine 0 2 
 and N�j � Nj, then N�j � (N�j � 
) \ Nj: Hene Nj = NÆj [ N�j ��1;j [ �2;j: Sine  2 �3;j = �n(�1;j [ �2;j), then  62 �2;j; so  62 Nj. This impliesthat Q+  is not ontained in AjQ. Then Q+  � Rnn(AjQ)Æ. Consequently(3.16) Q+ 0 +  � Rnn(AjQ)Æ;and sine 0 2 
, then from Lemma 3.6 ), applied to (3.15) and (3.16) we have 2 N�j � 
 = �2;j, and this is a ontradition. Then A = 0. By a similar reason,B = 0:To prove that C ! 0 as j !1; we write �3;j as the union of disjoint sets as follows:(3.17) �3;j = 1[s=1Djswhere for eah j 2 Z; Djs := fk 2 �3;j : s � dist(AjQ� k; 0) < s+ 1g:After the hange of variable x = y � k; we have:C = 1qj Xk2�3j  ZAjQ�k\Ki j'i(x)jdx!2� 1qj 1Xs=1 Xk2Djs �ZAjQ�k j'i(x)jdx�2� 1qj 1Xs=1 Xk2Djs �Zkxk�s j'i(x)jdx�2 :For a purpose that will beome lear later onsider m > 1+n2 : Using that b'i 2Hm(Rn) and property (2.4), then(3.18) C � 1qj 1Xs=1 Xk2Djs m(1 + s)2m � 1qj 1Xs=1 ard(Djs) m(1 + s)2m ;with m a onstant that depends on m: Let us �nd an upper bound for ard(Djs):Let us note that if  2 Djs then s � dist(AjQ � ; 0) < s + 1. Sine AjQ � is ompat, then there exists x 2 �(AjQ � ) where the distane is attained. Onthe other hand AjQ�  is the union of exatly qj tiles that do not overlap, henex 2Q� t for some t. Then Q� t � AjQ� andQ� (t+)\�(AjQ) 6= ;: Finallyt +  2 N�j and Djs � f 2 �3;j : 9t 2 D0s ; suh that  + t 2 N�j g: It follows that(3.19) ard(Djs) � ard(D0s) � ard(N�j ):Moreover ard(D0s) � (s + 1 + d); with d = diam(Q): To see that, take  2 D0sthen Q�  � B(0; s+1+ d) (the open ball entered at zero, and radius s+1+ d).Then D0s � L := f 2 � :Q�  � B(0; s+ 1 + d)g and ard(D0s) � ard(L). Now,



12 A.BENAVENTE AND C.A.CABRELLIsine the lattie translates of Q do not overlap, we have:(3.20) ard(L)jQj =X2L jQ� j = �����[2L(Q� )����� :On the other hand(3.21) �����[2L(Q� )����� � jB(0; s+ 1 + d)j = ~(s+ 1 + d)n:From (3.20) and (3.21) we have ard(L) � (s + 1 + d)n; and �nally ard(D0s) �(s + 1 + d)n: By (3.19) it follows that ard(Djs) � ard(N�j ) � (s + 1 + d)n; with a onstant that does not depend on j: Then, from (3.18) we haveC � ard(N�j )qj 1Xs=1 ~m(s+ 1 + d)n(1 + s)2m :Here, the summation is �nite beause m > 1+n2 ; then C � ard(N�j )qj C(m); with C(m)a onstant that depends on m: Finally, by Lemma 3.6, C ! 0 when j !1:It only remains to prove that for eah i = 1; � � � ; r; R1j ! jb'i(0)j2: Fix i; then����ZAjQ 'i(x� k)dx����2 = ����ZRn 'i(x)dx� Z(AjQ)�k 'i(x)dx����2� �jb'i(0)j+ Z(AjQ)�k j'i(x)jdx�2= jb'i(0)j2 + 2jb'i(0)j Z(AjQ)�k j'i(x)jdx++ �Z(AjQ)�k j'i(x)jdx�2 :Summing over �1;j and dividing by qj, we have:1qj Xk2�1;j ����ZAjQ 'i(x� k)dx����2 � ard(�1;j)qj jb'i(0)j2+ 2jb'i(0)j 1qj Xk2�1;j Z(AjQ)�k j'i(x)jdx+ 1qj Xk2�1;j �Z(AjQ)�k j'i(x)jdx�2(3.22)Now, by de�nition of �1;j and Lemma 3.6 ), it an be shown thatKi+k � (AjQ)Æ �AjQ for k 2 �1;j: Hene (AjQ) � k � Ki : From this and property (2.4), we have:1qj Xk2�1;j Z(AjQ)�k j'i(x)jdx � 1qj Xk2�1;j ZKi j'i(x)jdx� ard(�1;j)qj m(1 +Mi)m :



MULTIRESOLUTION ANALYSIS 13Now, onsider " > 0; using (3.14) we have that ard(�1;j)qj < "+ 1 for j large enough.Moreover, in the de�nition of Ki; we an hoose a onstantMi suh that m(1+Mi)m < "(for a �xed m). Then, we will have: 1qj Xk2�1;j Z(AjQ)�k j'i(x)jdx < ": Using this in(3.22) we an onlude that for " > 0 and j large enough:(3.23) 1qj Xk2�1j ����ZAjQ 'i(x� k)dx����2 < j'̂i(0)j2 + ":On the other hand:����ZAjQ 'i(x� k)dx����2 = ����ZRn 'i(x)dx� Z(AjQ)�k 'i(x)dx����2� �jb'i(0)j � ����Z(AjQ)�k 'i(x)dx�����2� jb'i(0)j2 � 2jb'i(0)j ����Z(AjQ)�k 'i(x)dx���� :Remember that from (3.14) we have that 1� " < ard(�1;j )qj and1qj Pk2�1;j R(AjQ)�k j'i(x)jdx < ": Then, summing over �1;j and dividing by qj :1qj Xk2�1;j ����ZAjQ 'i(x� k)dx����2 � ard(�1;j)qj jb'i(0)j2� 2jb'i(0)j 1qj Xk2�1;j ����Z(AjQ)�k 'i(x)dx����> (1� ")jb'i(0)j2 � 2jb'i(0)j"> jb'i(0)j2 � ":(3.24)Finally, from (3.23) y (3.24), we onlude that for i = 1; :::; r; R1j ! jb'i(0)j2 whenj !1: 23.4. Proof of Theorem 3.1. The proof of this result, is a diret onsequene ofPropositions 3.2, 3.4 and 3.5.Suppose that ' generates a MRA (V j)j2Z: Then Properties (P1)-(P5) of the mul-tiresolution analysis are satis�ed. Statement a) of the theorem is an immediateonsequene of Property (P1) and Proposition 3.2. Using Properties (P4), (P1) andProposition 3.5, then b) is veri�ed.Now, suppose that ' veri�es a) and b) of the theorem. To prove that ' gener-ates a MRA, de�ne V0 = spanf'i(� � k)gk2Zn; i=1:::r and V j = fg(Ajx)= g 2 V0g:Then Property (P1) is a onsequene of a) and Proposition 3.2. Properties (P2)is trivial due to the de�nition of V0 and V j; and (P5) is assumed. Property (P3)is a onsequene of the hipothesis of orthonormal latties translates and the loal-ization property of eah 'i as was proved in Proposition 3.4. Finally from b) andProposition 3.5, Property (P4) is satis�ed. Hene, ' generates a multiresolutionanalysis with multipliity r assoiated to the dilation matrix A and the lattie �:
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