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ada, UNSL and CONICET.z FCEyN, Universidad de Buenos Aires and CONICET.Abstra
t. Let � be a latti
e in Rn and A a dilation matrix su
h that A� � �.Let ' be a lo
alized square integrable ve
tor fun
tion and assume that the latti
etranslates of ' are orthonormal. We give ne
essary and suÆ
ient 
onditions on' in order that it generates a Multiresolution Analysis in Rn with respe
t to thelatti
e � and the dilation A. This 
hara
terization extends previous results to the
ase of regular non-
ompa
tly supported fun
tions.
1. Introdu
tionThe 
on
ept of Multiresolution Analysis (MRA) due to Mallat [Mal89℄ and Meyer[Mey92℄ provided the �rst systemati
 way to 
onstru
t orthonormal wavelet bases ofL2(R): The stru
ture of a MRA is generated by a fun
tion (the s
aling fun
tion) thatsatis�es a 
ertain self-similarity 
ondition. The problem of 
onstru
ting orthonormalwavelets was then shifted to the problem of 
onstru
ting MRA's.The theory was extended to several variables. To take full advantage of the higher di-mensionality it is important to 
onsider arbitrary dilation matri
es (not only dyadi
dilations). This has proved to be useful in appli
ations to image representation wherethe geometry of the pi
ture is better des
ribed with matri
es that adapt better tothe situation. The side e�e
t is that the theory be
omes mu
h more 
ompli
atedand the results are not a straightforward generalization of the 1-dimensional 
ase.Another important generalization is the 
ase in whi
h a �nite number of generatorsfor the MRA are allowed [Alp93℄ [GLT93℄ [GHM94℄ [CH96℄ [HSS96℄ [CDP97℄ [Ald97℄[JRZ99℄ [Cal99℄ [CHM99℄. This is known in the literature as MRA with multipli
ity,and the asso
iated wavelets as Multiwavelets. The framework of multiple generatorsprovides mu
h more 
exibility to 
onstru
t bases with predetermined properties.The 
hara
terization of MRA in this generality was done in [CHM99℄ for 
ompa
tlysupported fun
tions.In the present arti
le we work in the following 
ontext: let � be an arbitrary latti
ein Rn, and A a dilation matrix 
ompatible with the latti
e �, (i.e. A(�) � � andevery eigenvalue � of A satis�es j�j > 1). Let ' = ('1; :::; 'r); ' 2 L2(Rn; C r)and b'i belongs to the Sobolev spa
e Hm(Rn); 8m 2 N . Assume that the latti
etranslates of ' are orthonormal. We give ne
essary and suÆ
ient 
onditions on1991 Mathemati
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2 A.BENAVENTE AND C.A.CABRELLIthe ve
tor fun
tion ' in order that it generates a Multiresolution Analysis of Rn.(Theorem 3.1).These 
onditions were obtained by Albert Cohen for the 1-dimensional 
ase, s
alarfun
tions (r = 1) and later extended to the multidimensional setting for the 
asethat the dilation matrix is 2I [Coh90℄. In [CHM99℄, Cohen's theorem was extendedto in
lude the 
ase of arbitrary dilations matri
es and a �nite number of generatorswith 
ompa
t support.The 
ontribution of this paper is to show that these 
onditions 
an be extended toa mu
h wider 
lass of generators. We were able to proof that the hypothesis of thegenerators to be 
ompa
tly supported 
an be relaxed. We assume instead 
ertainde
ay of '. More pre
isely we require that for i = 1; : : : ; r, ea
h b'i belongs to theSobolev spa
e Hm(Rn); 8m 2 N .The proof, as the ones in [Coh90℄ and [CHM99℄, is a \time-domain" proof in the sensethat it doesn't use the Fourier Transform. The main argument is based on a 
ountingte
hnique related to the geometri
 properties of the tiling asso
iated with the dilationmatrix. In the 
ase in whi
h the dilation matrix is A = 2I, the tile element is a 
ube;then the geometry is simple and the integrals that have to be estimated are integralsover 
ubes in Rn. When one allows arbitrary dilation matri
es, the asso
iated tile
an be of a very 
ompli
ated geometry and also have fra
tal boundary. This makesthe estimation of the integrals mu
h more involved, and the 
ounting results aremore 
ompli
ated to obtain. The removal of the assumption of 
ompa
t support forthe s
aling ve
tor, requires a re�nement of the te
hniques in order that the 
ountingresults 
an be applied to this more general 
ase.Ne
essary and suÆ
ient 
onditions for when a nested sequen
e of 2k-dilated prin
ipalshift invariant spa
e (PSI), has dense union and zero interse
tion where obtained in[BDR93℄ for the one dimensional 
ase. A PSI is a shift invariant spa
e generatedby a single fun
tion. The generator in this 
ase doesn't need to be an orthonormalbasis neither a Riesz basis of the 
losure of the span of its integer translates. Thisgeneral 
ondition is expresed in terms of the zeroes of the Fourier transform ofthe generator. This setting di�ers from Cohen approa
h in the sense that Cohen'sTheorem 
hara
terizes exa
tly orthonormal MRA's. The PSI here is generated bya fun
tion that has orthonormal translates. Later, Jia and Shen [JS94℄ formulatedthe 
onditions on [BDR93℄, (see also [Shen98℄) for the �nitely generated 
ase (FSI),given some indi
ation of the proof.The 
hara
terization in our paper is in the dire
tion of the approa
h of Cohen. We
hara
terize orthonormal MRA's for the 
ase of a general dilation matrix, 
ompatiblewith an arbitrary latti
e, in higher dimensions, for several fun
tions.The organization of the paper is as follows. In Se
tion 2, we brie
y review the
on
epts of latti
es, tiles, Multiresolution Analysis and the relation between themin terms of the generalized Haar's MRA. In Se
tion 3 we state our main result inTheorem 3.1. For a better organization of the proof, in the following subse
tions,we dis
uss and prove in Propositions 3.2, 3.4 and 3.5 the ne
essary and suÆ
ient
onditions that have to be satis�ed by the lo
alized ve
tor s
aling fun
tion to gen-erate a MRA. Finally, in subse
tion 3.4 we 
ombine the results of the Propositionsto prove Theorem 3.1.



MULTIRESOLUTION ANALYSIS 32. Latti
es, Tiles and Multiresolution AnalysisLet � be an arbitrary latti
e in Rn (i.e., � = R(Zn) with R any invertible n � nmatrix with real entries). Let now K be a fundamental domain for this latti
e e.g.,K = R([0; 1)n) and set � = jdet(R)j.Let A be a dilation matrix for �, i.e., A(�) � � and every eigenvalue � of A satis�esj�j > 1. The determinant of a dilation matrix for a latti
e is always an integer andits absolute value is the number of 
osets of the quotient group �=A(�). A digit setfor A and � is any set of representatives of this group.Let q = jdet(A)j. We assume that there exist a digit set D := fd0; : : : ; dq�1g for Aand � su
h that the set Q := fP1k=1A�k�k : �k 2 Dg has n-dimensional Lebesguemeasure �. Without loss of generality we will assume that d0 = 0. For a generaldilation matrix it is not always true that su
h digit set exists. (A 
ounterexamplewas found in [Pot97℄). If this set of digits exists, we will say that A is an admissibledilation matrix.The set Q is 
ompa
t and tiles the spa
e by ��translates in the sense that the��translates fQ + kgk2� 
over Rn with overlaps of measure zero. Moreover, theysatisfy the following self-similar 
ondition (See [GM92℄,[Hut81℄):A(Q) = q�1[s=0Q+ ds:Given a fun
tion g : Rn ! C r, A a dilation matrix, q = jdet Aj; j 2 Z and k 2 �,we will write gj;k(x) = qj=2g(Ajx� k); to denote a translation of g by A�jk followedby an L2-normalized dilation by Aj:2.1. Multiresolution Analysis. A Multiresolution Analysis (MRA) of multi-pli
ity r asso
iated to a dilation matrix A and a latti
e � is a sequen
e of 
losedsubspa
es fV jgj2Z of L2(Rn) whi
h satisfy:P1 V j � V j+1 for ea
h j 2 Z,P2 g(x) 2 V j () g(Ax) 2 Vj+1 for ea
h j 2 Z,P3 Tj2ZV j = f0g,P4 Sj2ZV j is dense in L2(Rn), andP5 there exist fun
tions '1; : : : ; 'r 2 L2(Rn) su
h that the 
olle
tion of latti
etranslates f'i(x� k)gk2�; i=1;:::;r forms an orthonormal basis for V0.If these 
onditions are satis�ed, then the ve
tor fun
tion ' = ('1; : : : ; 'r)T is referredto as a s
aling ve
tor for the MRA.Gr�o
henig and Mady
h [GM92℄ established a 
onne
tion between self-similar tilingsand multiresolution analysis that have a 
hara
teristi
 fun
tion for a s
aling fun
tion.They showed that there is a Haar-like multiresolution analysis asso
iated to ea
h
hoi
e of dilation matrix A and a digit set D for whi
h the set Q is a tile. Inparti
ular, they proved that if Q is a tile, then the s
alar-valued fun
tion XQgenerates a multiresolution analysis of L2(Rn) of multipli
ity 1. Note that the fa
tthat fXQ(x � k)gk2� forms an orthonormal basis for V0 is a restatement of theassumption that the latti
e translates of the tile Q have overlaps of measure zero.An immediate 
onsequen
e of Gr�o
henig and Mady
h's generalization of the Haar'smultiresolution analysis is the following:



4 A.BENAVENTE AND C.A.CABRELLILemma 2.1. The 
olle
tionfX j;kQ gj2Z;k2� = fqj=2XQ(Ajx� k)gj2Z;k2�is 
omplete in L2(Rn) i.e., its �nite linear span is dense in L2(Rn):2.2. Lo
alized ve
tor s
aling fun
tions. We say that a MRA in L2(Rn) islo
alized or regular if the s
aling ve
tor ' = ('1; : : : ; 'r)T is lo
alized in the sensethat for i = 1; : : : ; r, ea
h b'i belongs to the Sobolev spa
e Hm(Rn); 8m 2 N . This
ondition is equivalent to: for ea
h i = 1; :::; r,(2.1) Z (1 + jxj)mj'i(x)j2dx <1:Using Cau
hy-S
hwarz's inequality and taking into a

ount that the fun
tion 1(1+jxj)mbelongs to L1(Rn) with m > 1; it is easy to prove that if a fun
tion f satis�esbf 2Hm(Rn) for all m 2 N , then:(2.2) Zkxk�M jf(x)j2dx � Cm(1 +M)m ;(2.3) f 2 L1(Rn) and(2.4) Zkxk�M jf(x)jdx � Cm(1 +M)m ; m > 1:For simpli
ity, we shall from now on write that the ve
tor fun
tion ' has orthonormallatti
e translates when we mean to say that f'i(x� k)gk2�;i=1;:::;r is an orthonormalsystem in L2(Rn):De�nition 2.2. Assume that ' 2 L2(Rn; C r) has orthonormal latti
e translates.Let V0 be the 
losed linear subspa
e generated by the latti
e translates of 'i, i.e.,(2.5) V0 = spanf'i(x� k)gk2�;i=1;:::;r:For ea
h j 2 Z let V j be the set of all the dilations of V0 by Aj, i.e.,(2.6) V j = fg(Ajx) : g 2 V0g = spanf'j;ki : i = 1; :::; rgk2�:If fVjgj�Z is a MRA for L2(Rn), then we say that the MRA is generated by ':Remark 2.3. In the 
hara
terization of MRA due to A. Cohen [Coh90℄, he uses alo
alized generator, but the dilation matrix is the uniform one: A = 2I: In the proof,he uses the essential fa
t that 2I maps dyadi
 
ubes into dyadi
 
ubes. This is notpossible in the 
ase of arbitrary dilation matrix.3. Ne
essary and suffi
ient 
onditions.We now are ready to state the main result in the paper:Theorem 3.1. Let ' = ('1; � � � ; 'r)T 2 L2(Rn; Cr) su
h that for ea
h i =1; � � � ; r; b'i 2 Hm(Rn) for all m 2 N and that the set f'i(� � k)gk2�; i=1;:::;r isan orthonormal system. Let A be an admissible dilation matrix for the latti
e �:Then ' generates a multiresolution analysis with multipli
ity r asso
iated to (�; A)if and only if:



MULTIRESOLUTION ANALYSIS 5a) ' satis�es a re�nement equation of the form'(x) =Xk2� 
k'(Ax� k)for some r � r matri
es 
k = (
kij); su
h that for ea
h i; j = 1; :::; r;f
kijgk2Zn ;2 `2(�) andb) kb'(0)k2 = rXi=1 jb'i(0)j2 = jQj:To prove this theorem, in the next propositions we will give ne
essary and suÆ
ient
onditions on the ve
tor fun
tion ', in order that the subspa
es V j will satisfyproperties P1, P3 and P4 of the de�nition of MRA. Property P2 is satis�ed fromthe de�nition of V j and P5 is assumed.3.1. Property (P1): V j � V j+1.Proposition 3.2. Let ' = ('1; :::; 'r)T 2 L2(Rn; C r) with orthonormal latti
etranslates. Let A be a dilation matrix and de�ne V j as in (2.5) and (2.6). Then,the following 
onditions are equivalent:(1) V j � V j+1 for all j 2 Z:(2) The ve
tor fun
tion ' is re�nable, i.e. it satis�es the re�nement equation:'(x) =Xk2� 
k'(Ax� k)for some r� r�matri
es 
k; su
h that for ea
h i; j = 1; :::; r; the sequen
e of
oeÆ
ients f
ki;jgk2� is in `2(�):Proof: If (1) is satis�ed, then 'i 2 V0 � V1 for i = 1; � � � ; r: The de�nitionof the subspa
es V j implies that fq1=2'j(Ax � k)gk2�;i;j=1;��� ;r = f'1;kj (x)gk2� isan orthonormal basis for V1, then the representation of ea
h 'i respe
t to theorthonormal basis of V1 will be:(3.1) 'i = rXj=1Xk2� 
ki;j'1;kj (in L2(Rn));where 
kij :=< 'i; '1;kj > : For i; j = 1; :::; r; the sequen
e of 
oeÆ
ients f
ki;jgk2� be-longs to `2(�): Let us 
all 
k the r�r�matrix whose 
olumns are (
ki1; :::; 
kir): Consid-ering that ' = ('1; :::; 'r)T then, from (3.1) we have ' =Pk2� 
k'1;k in L2(Rn; C r);or equivalently '(x) = q1=2Xk2� 
k'(Ax� k) in L2(Rn; C r);and 
ondition (2) is satis�ed.For the 
onverse, if ' is re�nable, then 'i 2 V1; i = 1; :::; r so V0 is in
luded in V1.23.2. Property (P3): Tj2ZV j = f0g. We shall prove that (P3) is a 
onsequen
eof the orthonormal ��translates of ' and the lo
alization of ea
h 'i: To do this,we will use the following lemma (we omit the proof be
ause it is like in the 
lassi
al1-dimensional 
ase with dyadi
 dilations [Woj97℄):



6 A.BENAVENTE AND C.A.CABRELLILemma 3.3. Consider Vj as in (2.6). Let Pj be the orthogonal proje
tion of L2(Rn)onto V j: Suppose that for all g 2 L2(Rn); limj!�1 kPjgk2 = 0:Then \j2ZV j = f0g:Proposition 3.4. Let ' 2 L2(Rn; C r) be a lo
alized ve
tor fun
tion in the sense of(2.1). Suppose that ' has orthonormal latti
e translates, A is a dilation matrix and
onsider the subspa
es V j as de�ned in (2.6). Then \j2ZV j = f0g:Proof: Using Lemma 3.3, it suÆ
es to show that limj!�1 kPjgk2 = 0; 8g 2 L2:Moreover, it suÆ
es to establish this limit for g 
ontained in a subset whose �nitelinear span is dense in L2(Rn): We will use the 
omplete set given in Lemma 2.1,i.e. we will prove that(3.2) 8s 2 Z; 8` 2 �; limj!�1 kPjX s;Q̀ k2 = 0:Fix any s 2 Z and ` 2 �. Sin
e q = jdet(A)j, we have for every j 2 Z thatjAj�s(Q+ `)j = qj�sjQ+ `j = qj�sjQj:Sin
e f'j;ki gk2�;i=1;:::;r is an orthonormal basis for the subspa
e V j then,kPjX s;Q̀ k22 = 1qj�s rXi=1 Xk2� ����ZAj�s(Q+`) 'i(x� k)dx����2 :Using Cau
hy-S
hwarz's inequality, we therefore 
ompute thatkPjX s;Q̀ k22 � jAj�s(Q+ `)jqj�s rXi=1 Xk2� ZAj�s(Q+`) j'i(x� k)j2dx= jQj rXi=1 Xk2� ZAj�s(Q+`)�k j'i(x)j2dx;(3.3)where the last sum is �nite. To see this, note that for a �xed s and j < s; using thatQ is a tile for Rn and A�1 is 
ontra
tive, we have that the latti
e translates of Aj�sQhave overlaps of measure zero. To simplify the notation, write E := A�s(Q + `);then Aj�s(Q+ `)� k = AjE � k: Choose an integer J < 0 small enough su
h thatjAjE � k \ AjE � k0j = 0 for all j � J ; k; k0 2 �; k 6= k0: Then, for j � J;Xk2� XAjE�k(x)j'i(x)j2 = XSk2�AjE�k(x)j'i(x)j2� j'i(x)j2:And sin
e j'i(x)j2 2 L1(Rn); thenXk2� ZAjE�k j'i(x)j2dx = ZRnXk2� XAjE�k(x)j'i(x)j2dx <1:Now, using (3.2) and (3.3), it suÆ
es to prove that for i = 1; :::; rPk2� RAjE�k j'i(x)j2dx



MULTIRESOLUTION ANALYSIS 7goes to 0 when j ! �1: Consider the same integer J 2 Z as before and j � J ; andde�ne fj(x) := Xk2ZnXAjE�k(x)j'i(x)j2. So fj(x) = j'i(x)j2X [k2�AjE�k(x): Then:Xk2� ZAjE�k j'i(x)j2dx = ZRn fj(x)dx= Z[�p;p℄n fj(x)dx + ZRnn[�p;p℄n fj(x)dx= I1 + I2:Write Bj := [k2�(AjE � k) \ [�p; p℄n; then(3.4) I1 = Z j'i(x)j2XBj (x) dx:We 
an see that jBjj ! 0 as j ! �1: In fa
t: 
onsider tj := 
ard(fk 2 Zn :AjE�k\ [�p; p℄n 6= ;g) and write Æ(�) as the diameter of a 
ertain set. Be
ause thespe
tral radius � of A�1 is less than 1, we have that kAjk1 ! 0 when j ! �1 (see[HJ℄) i.e. kAjk1 < � for j small enough. Then, 
onsidering the metri
 d(x; y) =kx� yk1 = maxfjxi � yij : i = 1; :::; ng we have that for x; y 2 AjE:d(x; y) = kAj(A1�jx� A1�jy)k1� kAjk1kA1�jx� A1�jyk1< d(A1�jx;A1�jy)� Æ(AE):Taking the supremum over AjE, we have that Æ(AjE) � Æ(AE) and then tj < t1,for all j < 0: Now, for j � J; the overlaps of the latti
e translates of AjE havemeasure zero, so: jBjj = tj ��AjE � k \ [�p; p℄n��� t1 ��AjE��= t1 jEj qj< ":Sin
e jBjj ! 0 as j ! 0 then fjX [�p;p℄n ! 0; moreover jfjX [�p;p℄n(x)j � j'i(x)j2:From this fa
t, equality (3.4) and the Dominated Convergen
e theorem we have that(3.5) I1 = Z[�p;p℄n fj(x)dx �! 0 when j ! �1:For the integral I2; take " > 0 and j � J: Then 0 � fj(x) � j'i(x)j2: Using this andproperty (2.2) for some m; we haveI2 � Zkxk�p j'i(x)j2dx� Cm(1 + p)m :



8 A.BENAVENTE AND C.A.CABRELLIConsidering p large enough su
h that Cm(1+p)m < "; we will have I2 < ": Finally:ZRn fj(x)dx = I1 + I2 � I1 + ":Taking limit for j ! �1; from (3.5) we 
on
lude that for all s 2 Z and ` 2 �;limj!�1 kPjX s;Q̀ k2 = 0: Hen
e \j�ZV j = f0g: 23.3. Property (P4): [j2ZV j = L2(Rn).Proposition 3.5. Let ' = ('1; :::; 'r)T 2 L2(Rn; C r) a lo
alized ve
tor fun
tion.Suppose that ' has orthonormal latti
e translates. Let A be a dilation matrix andlet V0 and V j be de�ned as (2.5) and (2.6) respe
tively. If(3.6) rXi=1 jb'i(0)j2 = rXi=1 j Z 'i(x)dxj2 = jQjThen Sj2ZV j is dense in L2(Rn): Re
ipro
ally, if Sj2ZV j is dense in L2(Rn) and' is re�nable, then (3.6) is satis�ed.Before proving this proposition, we are going to present some auxiliary results withrespe
t to the de
omposition of Rn by the tiles fQ + kgk2�: First, note that thefa
t that Q is self-similar together with the fa
t that the translates of Q tile Rnwith overlaps of measure zero, implies that the dilated tile AjQ; j � 1 is a unionof exa
tly qj translates of Q; with ea
h of the translates lying entirely inside AjQ.Following the idea in [CHM99℄, for j � 1 we are going to split the latti
e � intoa �nite set 
ontaining those elements that translate Q entirely inside AjQ; and a�nite set 
ontaining the elements that translate Q to the boundary of AjQ: Morepre
isely, for ea
h j � 1 let us 
onsider the following �nite subsets of � :Nj = fk 2 � :Q+ k � AjQg;NÆj = fk 2 Nj :Q+ k � (AjQ)Æg;(3.7) N�j = fk 2 Nj : (Q+ k) \ �(AjQ) 6= ;g:These sets satisfy the following relations: AjQ =Q+Nj, 
ard(Nj) = qj; NÆj [N� =Nj and NÆj \N�j = ;:Let 
 = fk 2 � : (Q + k) \ B 6= ;g: The following te
hni
al lemma (see [CHM99℄for a proof) 
hara
terizes those translates Q + 
 of Q for whi
h it is possible totranslate Q + 
 by elements of 
 so that one translate Q + 
 + k with k 2 
lies entirely within AjQ and another translate Q + 
 + k0 with k0 2 
 lies entirelyoutside of AjQ (negle
ting its boundary). This lemma also tells us that the ratioof the number of those translates Q+ k that interse
t the boundary of AjQ to thetotal number lying inside AjQ 
onverges to zero:Lemma 3.6. Let B; 
; Nj; NÆj and N�j de�ned as before, then:a) limj!1 
ard(NÆj )qj = 1 and limj!1 
ard(N�j )qj = 0:



MULTIRESOLUTION ANALYSIS 9b) limj!1 
ard(NÆj n((N�j � 
) \Nj))qj = 1:
) Let 
 2 �: If there exist k; k0 2 
 su
h that Q+ k+ 
 � AjQ and Q+ k0+ 
 �Rnn(AjQ)Æ; then 
 2 N�j � 
 = f`� ! : ` 2 Nj�; ! 2 
g.Proof of proposition 3.5: Suppose that ' is re�nable, then we have to provethat [j2ZV j = L2(Rn)() rXi=1 jb'i(0)j2 = jQj:Note that if for all g 2 L2(Rn)(3.8) limj!1 kPjg � gk2 = 0;then Property (P4) is satis�ed. Further, if ' is re�nable, then by Proposition 3.2,V j � Vj+1 and therefore (3.8) is equivalent to Property (P4). Now, by orthogonality,kPjg � gk22 = kPjgk22 � kgk22; then we 
an rewrite equation (3.8) as:(3.9) 8g 2 L2(Rn); limj!1 kPjgk22 = kgk22:This expression is true for all g 2 L2(Rn) if and only if is true in a dense subset ofL2(Rn): So we will use the set of fun
tions 
onsidered in Lemma 2.1. Then,(3.10) kPj(XQ)k22 = 1qj rXi=1 Xk2� ����ZAjQ 'i(x� k)dx����2 :On the other hand, let s 2 Z; ` 2 �; and j � s: By a 
hange of variable and takinginto a

ount that A� � �; we have(3.11) kPj(X s;Q̀ )k22 = kPj�s(XQ)k22:Comparing (3.10) and (3.11), we 
on
lude that (3.9) is equivalent to the statement:(3.12) limj!1kPj(XQ)k22 = kXQk22 = jQj:Sin
e statements (3.8), (3.9) and (3.12) are equivalent, we 
on
lude that it suÆ
esto prove that limj!1kPj(XQ)k22 = rXi=1 jb'i(0)j2; or equivalently, to prove that for ea
hi = 1; :::; r :(3.13) limj!1 1qj Xk2� ����ZAjQ 'i(x� k)dx����2 = jb'i(0)j2:To do this, �x i; 
onsider a 
onstant Mi > 0 and de�ne Ki = fx 2 Rn : kxk �Mig:Using the property of un
onditional 
onvergen
e of orthonormal bases, we will splitthe summation over � into three disjoint regions related to the subset Ki. The ideabehind this is that the �rst region should 
ontain only elements k of the latti
e �su
h that Ki + k is sure to lie in the interior of AjQ; the se
ond region should
ontain those k for whi
h this translation will interse
t the boundary of AjQ; andthe last region should be the 
omplement of the �rst two. More pre
isely, let Bi beany open ball in Rn whi
h 
ontains both Q and Ki; and de�ne
 = fk 2 � : (Q+ k) \Bi 6= ;g:
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 is �nite and Ki � 
 +Q: For ea
h j � 1; de�ne:�1;j = NÆj n((N�j � 
) \Nj);�2;j = N�j � 
;�3;j = �n(�1;j [ �2;j);where the sets Nj, NÆj and N�j are as in (3.7). Note that for ea
h j; the sets �1;j;�2;j; �3;j partition �: Further, by Lemma 3.6 a) and b), we have:(3.14) limj!1 
ard(�1;j)qj = 1 and limj!1 
ard(�2;j)qj = 0:Now de�ne Rsj = 1qj Xk2�s;j ����ZAjQ 'i(x� k)dx����2 ; s = 1; 2; 3We will show that: limj!1R1j = jb'i(0)j2; limj!1R2j = 0 and limj!1R3j = 0:Let us begin with R2j:R2j � 1qj Xk2�2;j �ZAjQ j'i(x� k)jdx�2� 1qj Xk2�2;j �ZRn j'i(x)jdx�2= C 
ard(�2;j)qj :By (3.14), the last term is arbitrarily small for j large enough. Then R2j ! 0 whenj !1.To analyzeR3j; let us write ~'i(x) = XKi(x)'i(x): Then 'i(x) = ~'i(x)+XK
i (x)'i(x):Note that ~'i has 
ompa
t support.R3j � 1qj Xk2�3;j �ZAjQ j ~'i(x� k)jdx+ ZAjQ jXK
i (y � k)'i(y � k)jdy�2= A+B + C;whereA = 1qj Xk2�3;j �ZAjQ j ~'i(x� k)jdx�2 ;B = 2qj Xk2�3;j �ZAjQ j ~'i(x� k)jdx��ZAjQ jXK
i (y � k)'i(y � k)jdy� andC = 1qj Xk2�3;j �ZAjQ jXK
i (y � k)'i(y � k)jdy�2 :We will show that A = B = 0 and C ! 0 as j ! 1: Suppose that A 6= 0, thenRAjQ j ~'i(x� 
)jdx 6= 0 for some 
 2 �3;j. Then (Ki+ 
)\AjQ has to have positiveLebesgue measure. Sin
e Ki � Bi � Q + 
, then (Ki + 
) � (Q + 
 + 
) and(Q + 
 + 
) \ AjQ will have positive measure. Be
ause AjQ is the exa
t union of



MULTIRESOLUTION ANALYSIS 11qj translates of Q that do not overlap, then the only translates of Q that interse
tsAjQ in sets of positive measure, are the translates that are 
ompletely inside ofAjQ. Hen
e:(3.15) Q+ k + 
 � AjQ for somek 2 
:Sin
e 0 2 
 and N�j � Nj, then N�j � (N�j � 
) \ Nj: Hen
e Nj = NÆj [ N�j ��1;j [ �2;j: Sin
e 
 2 �3;j = �n(�1;j [ �2;j), then 
 62 �2;j; so 
 62 Nj. This impliesthat Q+ 
 is not 
ontained in AjQ. Then Q+ 
 � Rnn(AjQ)Æ. Consequently(3.16) Q+ 0 + 
 � Rnn(AjQ)Æ;and sin
e 0 2 
, then from Lemma 3.6 
), applied to (3.15) and (3.16) we have
 2 N�j � 
 = �2;j, and this is a 
ontradi
tion. Then A = 0. By a similar reason,B = 0:To prove that C ! 0 as j !1; we write �3;j as the union of disjoint sets as follows:(3.17) �3;j = 1[s=1Djswhere for ea
h j 2 Z; Djs := fk 2 �3;j : s � dist(AjQ� k; 0) < s+ 1g:After the 
hange of variable x = y � k; we have:C = 1qj Xk2�3j  ZAjQ�k\K
i j'i(x)jdx!2� 1qj 1Xs=1 Xk2Djs �ZAjQ�k j'i(x)jdx�2� 1qj 1Xs=1 Xk2Djs �Zkxk�s j'i(x)jdx�2 :For a purpose that will be
ome 
lear later 
onsider m > 1+n2 : Using that b'i 2Hm(Rn) and property (2.4), then(3.18) C � 1qj 1Xs=1 Xk2Djs 
m(1 + s)2m � 1qj 1Xs=1 
ard(Djs) 
m(1 + s)2m ;with 
m a 
onstant that depends on m: Let us �nd an upper bound for 
ard(Djs):Let us note that if 
 2 Djs then s � dist(AjQ � 
; 0) < s + 1. Sin
e AjQ � 
is 
ompa
t, then there exists x 2 �(AjQ � 
) where the distan
e is attained. Onthe other hand AjQ� 
 is the union of exa
tly qj tiles that do not overlap, hen
ex 2Q� t for some t. Then Q� t � AjQ�
 andQ� (t+
)\�(AjQ) 6= ;: Finallyt + 
 2 N�j and Djs � f
 2 �3;j : 9t 2 D0s ; su
h that 
 + t 2 N�j g: It follows that(3.19) 
ard(Djs) � 
ard(D0s) � 
ard(N�j ):Moreover 
ard(D0s) � 
(s + 1 + d); with d = diam(Q): To see that, take 
 2 D0sthen Q� 
 � B(0; s+1+ d) (the open ball 
entered at zero, and radius s+1+ d).Then D0s � L := f
 2 � :Q� 
 � B(0; s+ 1 + d)g and 
ard(D0s) � 
ard(L). Now,
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e the latti
e translates of Q do not overlap, we have:(3.20) 
ard(L)jQj =X
2L jQ� 
j = �����[
2L(Q� 
)����� :On the other hand(3.21) �����[
2L(Q� 
)����� � jB(0; s+ 1 + d)j = ~
(s+ 1 + d)n:From (3.20) and (3.21) we have 
ard(L) � 
(s + 1 + d)n; and �nally 
ard(D0s) �
(s + 1 + d)n: By (3.19) it follows that 
ard(Djs) � 
ard(N�j ) � 
(s + 1 + d)n; with 
a 
onstant that does not depend on j: Then, from (3.18) we haveC � 
ard(N�j )qj 1Xs=1 ~
m(s+ 1 + d)n(1 + s)2m :Here, the summation is �nite be
ause m > 1+n2 ; then C � 
ard(N�j )qj C(m); with C(m)a 
onstant that depends on m: Finally, by Lemma 3.6, C ! 0 when j !1:It only remains to prove that for ea
h i = 1; � � � ; r; R1j ! jb'i(0)j2: Fix i; then����ZAjQ 'i(x� k)dx����2 = ����ZRn 'i(x)dx� Z(AjQ)
�k 'i(x)dx����2� �jb'i(0)j+ Z(AjQ)
�k j'i(x)jdx�2= jb'i(0)j2 + 2jb'i(0)j Z(AjQ)
�k j'i(x)jdx++ �Z(AjQ)
�k j'i(x)jdx�2 :Summing over �1;j and dividing by qj, we have:1qj Xk2�1;j ����ZAjQ 'i(x� k)dx����2 � 
ard(�1;j)qj jb'i(0)j2+ 2jb'i(0)j 1qj Xk2�1;j Z(AjQ)
�k j'i(x)jdx+ 1qj Xk2�1;j �Z(AjQ)
�k j'i(x)jdx�2(3.22)Now, by de�nition of �1;j and Lemma 3.6 
), it 
an be shown thatKi+k � (AjQ)Æ �AjQ for k 2 �1;j: Hen
e (AjQ)
 � k � K
i : From this and property (2.4), we have:1qj Xk2�1;j Z(AjQ)
�k j'i(x)jdx � 1qj Xk2�1;j ZK
i j'i(x)jdx� 
ard(�1;j)qj 
m(1 +Mi)m :
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onsider " > 0; using (3.14) we have that 
ard(�1;j)qj < "+ 1 for j large enough.Moreover, in the de�nition of Ki; we 
an 
hoose a 
onstantMi su
h that 
m(1+Mi)m < "(for a �xed m). Then, we will have: 1qj Xk2�1;j Z(AjQ)
�k j'i(x)jdx < ": Using this in(3.22) we 
an 
on
lude that for " > 0 and j large enough:(3.23) 1qj Xk2�1j ����ZAjQ 'i(x� k)dx����2 < j'̂i(0)j2 + ":On the other hand:����ZAjQ 'i(x� k)dx����2 = ����ZRn 'i(x)dx� Z(AjQ)
�k 'i(x)dx����2� �jb'i(0)j � ����Z(AjQ)
�k 'i(x)dx�����2� jb'i(0)j2 � 2jb'i(0)j ����Z(AjQ)
�k 'i(x)dx���� :Remember that from (3.14) we have that 1� " < 
ard(�1;j )qj and1qj Pk2�1;j R(AjQ)
�k j'i(x)jdx < ": Then, summing over �1;j and dividing by qj :1qj Xk2�1;j ����ZAjQ 'i(x� k)dx����2 � 
ard(�1;j)qj jb'i(0)j2� 2jb'i(0)j 1qj Xk2�1;j ����Z(AjQ)
�k 'i(x)dx����> (1� ")jb'i(0)j2 � 2jb'i(0)j"> jb'i(0)j2 � ":(3.24)Finally, from (3.23) y (3.24), we 
on
lude that for i = 1; :::; r; R1j ! jb'i(0)j2 whenj !1: 23.4. Proof of Theorem 3.1. The proof of this result, is a dire
t 
onsequen
e ofPropositions 3.2, 3.4 and 3.5.Suppose that ' generates a MRA (V j)j2Z: Then Properties (P1)-(P5) of the mul-tiresolution analysis are satis�ed. Statement a) of the theorem is an immediate
onsequen
e of Property (P1) and Proposition 3.2. Using Properties (P4), (P1) andProposition 3.5, then b) is veri�ed.Now, suppose that ' veri�es a) and b) of the theorem. To prove that ' gener-ates a MRA, de�ne V0 = spanf'i(� � k)gk2Zn; i=1:::r and V j = fg(Ajx)= g 2 V0g:Then Property (P1) is a 
onsequen
e of a) and Proposition 3.2. Properties (P2)is trivial due to the de�nition of V0 and V j; and (P5) is assumed. Property (P3)is a 
onsequen
e of the hipothesis of orthonormal latti
es translates and the lo
al-ization property of ea
h 'i as was proved in Proposition 3.4. Finally from b) andProposition 3.5, Property (P4) is satis�ed. Hen
e, ' generates a multiresolutionanalysis with multipli
ity r asso
iated to the dilation matrix A and the latti
e �:
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